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Abstract. The Jones–Wenzl projectors pn play a central role in quantum topology, underlying
the construction of SU.2/ topological quantum field theories and quantum spin networks. We
construct chain complexes Pn, whose graded Euler characteristic is the “classical” projector
pn in the Temperley–Lieb algebra. We show that thePn are idempotents and uniquely defined
up to homotopy. Our results fit within the general framework of Khovanov’s categorification
of the Jones polynomial. Consequences of our construction include families of knot invariants
corresponding to higher representations of Uq sl.2/ and a categorification of quantum spin
networks. We introduce 6j -symbols in this context.
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1. Introduction

In [15] Mikhail Khovanov introduced a categorification of the Jones polynomial,
giving rise to a new conceptual framework for quantum invariants of links in the

1The second author was partially supported by the NSF and by the IHES.
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3-sphere. The results in [15] fit in the context of categorification of the Temperley–
Lieb algebra; see [16] and [4] (also [6] and [24]). Roughly speaking, categorification
associates to an algebraA a category C whose Grothendieck group K0.C/ is isomor-
phic toA. Moreover, multiplication by generators ofA gives rise to functors acting on
C and satisfying natural properties [19]. An extension from planar Temperley–Lieb
diagrams to tangles is achieved by passing from additive to triangulated categories.
The resulting link homology theory satisfies functoriality under surface cobordisms
in 4-space, an important feature that was not apparent at the level of its graded Euler
characteristic, the Jones polynomial.

An important open problem in the subject is to extend known categorifications
from links in the 3-sphere to quantum invariants of 3-manifolds. The constructions of
the SU.2/ quantum invariants by Reshetikhin–Turaev [25] and Turaev–Viro [26] rely
on the Jones–Wenzl projectors pn, certain special elements of the Temperley–Lieb
algebra; see [13] and [29]. In the Reshetikhin–Turaev theory, one uses the Jones–
Wenzl projectors to label the components of the link in a surgery presentation of
the 3-manifold. In the Turaev–Viro approach, to a triangulation of the 3-manifold is
assigned a state sum involving the 6j -symbols, an important ingredient in the theory
of quantum spin networks. (An additional key feature of 3-manifold invariants,
closely related to the properties of the Jones–Wenzl projectors, is that the “quantum”
parameter q has to be specialized to a root of unity in order to get a semisimple
theory).

The main goal of this paper is to introduce a categorification of the Jones–Wenzl
projectors. The Temperley–Lieb algebra TLn is an algebra over ZŒq; q�1�, additively
generated by planar diagrams connecting n points at the top and at the bottom of a
rectangle and the multiplication is defined on generators by vertical stacking of such
diagrams (see Section 2 below for more details). The Jones–Wenzl projector pn is an
idempotent element of TLn, uniquely characterized by the following two properties:
(1) the coefficient of the unit element, corresponding to n vertical strands, in the
expression for pn is 1 and (2) pn is “killed by turnbacks”, that is pnD D Dpn D 0

where D is any planar diagram generator of TLn other than the unit element.
Note that, unlike the Jones polynomial and various other link invariants that have

been previously categorified, the coefficients in the expansion of pn in terms of
the generators of TLn are rational, rather than polynomial, functions of q; q�1. This
suggests that categorification of the projectors cannot be achieved by chain complexes
of finite length.

We use Bar-Natan’s formulation of Khovanov’s theory: the objects in this category
are the Temperley–Lieb diagrams and morphisms are surface cobordisms in 3-space
between such diagrams; see [4] and Section 2 below. In this framework, for each
n we construct a chain complex Pn whose graded Euler characteristic is the formal
power series corresponding to pn. For example, the power series for n D 2 is

2 D � 1

q C q�1
D C

1X
iD1

.�1/iq2i�1 : (1)
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We show that the chain complexes Pn are uniquely characterized up to homotopy
by properties analogous to those of the Jones–Wenzl projectors pn 2 TLn: (1) the
identity diagram appears in the chain complex Pn only once, in degree zero and (2)
Pn is contractible “under turnbacks”; see the definition of a universal projector and
Theorem 3.2 in Section 3. It follows from these properties that Pn is a “homotopy
idempotent”: Pn ˝ Pn ' Pn. We write down the chain complexes explicitly for
n D 2; 3, see Section 4. The main technical part of the paper is the inductive
construction of the chain complex Pn for larger n in Section 7, modeled on the
Frenkel–Khovanov recursion [7] for the Jones–Wenzl projectors. The universality
properties satisfied by Pn and the invariance under Reidemeister moves, discussed
further below, suggest the naturality of the construction proposed in this paper. We
summarize the discussion so far with the table below.

Algebra Category

Temperley–Lieb algebra: TLn Bar-Natan–Khovanov Category: Kom.n/
pn 2 TLn Pn 2 Kom.n/, K0.Pn/ D pn

pn � pn D pn Pn ˝ Pn ' Pn

pn is unique Pn is unique up to homotopy

An immediate consequence of our construction is a categorification of quantum
spin networks. That is, to a spin network G we associate a chain complex whose
graded Euler characteristic is a Laurent series in q corresponding to the quantum
evaluation of G. Some interesting phenomena are observed here. In the simplest
example, the rational homology of the trace of the second projector, Tr.P2/, has the
expected graded Euler characteristic Œ3� D q�2 C 1 C q2, but the homology itself
has infinite rank (with extra generators canceling in pairs in the Euler characteristic).
Further, there is 2-torsion when the homology is taken with integer coefficients; see
Section 4.1.1. In Section 6.2 we formulate a categorified analogue of the 6j -symbols.
It takes the form of an iterated cone construction, giving rise to a “homotopy change
of basis” in the category of chain complexes.

Our construction also gives rise to an invariant of tangles, leading to a cate-
gorification of the colored Jones polynomial, see Section 5. Note that the included
computations imply that our work is different from the previously defined categorifi-
cation of the colored Jones polynomial [17] (see also [5]). See Section 4.1 for further
discussion.

We would like to mention that, while preparing this manuscript for publication,
during the MSRI workshop “Homology Theories of Knots and Links” in March 2010
we learned that an alternative, representation-theoretic, approach to categorifying
the Jones–Wenzl projectors has been pursued by Igor Frenkel, Catharina Stroppel
and Joshua Sussan [9]. In light of the universality properties of our construction
(see Section 3), it is plausible that the two approaches are equivalent, although the
methods are quite different. One advantage of working in Khovanov’s and Bar-
Natan’s framework for categorification of the Temperley–Lieb algebra is that our
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construction of the categorified projectors is explicit and it is readily available for
topological applications. The interested reader may want to compare our construction
in Section 6.2 to the discussion of the 6j -symbols in [9], Section 17.

We would like to add that more recently Lev Rozansky [23] has proposed an ele-
gant idea on categorification of the Jones–Wenzl projectors, based on the properties
of the infinite torus braid. Our construction is based on the Frenkel–Khovanov re-
cursive formula, however it seems reasonable to believe that the two approaches may
be related (and more generally the universality properties satisfied by the projectors
imply that the different constructions are homotopy equivalent).

Acknowledgements. The authors would like to thank the referee for a number of
suggestions which have led to a better exposition.

2. The Temperley–Lieb algebra and the Jones–Wenzl projectors

This section summarizes the relevant background on the definition and categorifi-
cation of the Temperley–Lieb algebra. Section 2.4 states a version of the Gaussian
elimination lemma which will be used throughout the paper.

2.1. The Temperley–Lieb algebra. We recall that the Temperley–Lieb algebra is
the unital ZŒq; q�1�-algebra of Uq sl.2/-equivariant maps between n-fold tensor pow-
ers of the fundamental representation V ,

TLn D HomUq sl.2/.V
˝n; V ˝n/:

There is an explicit presentation given by the standard generators 1 and ei , 0 < i < n,
satisfying the relations:

(1) eiej D ej ei if ji � j j � 2,

(2) eiei˙1ei D ei ,

(3) e2
i D Œ2�ei ,

where the quantum integer Œn� is defined to be

Œn� D qn � q�n

q � q�1
D q�.n�1/ C q�.n�3/ C � � � C qn�3 C qn�1:

Each generator ei can be pictured as a diagram consisting of n chords between two
collections of n points on two horizontal lines in the plane. All strands are vertical
except for two, connecting the i th and the .i C 1/-st points in each collection. For
instance, when n D 3 we have the following diagrams,

1 D ; e1 D ; and e2 D :
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The multiplication is given by vertical composition of diagrams, and planar isotopy
induces relations (1) and (2) between the generators above. The third relation says
that any circles which are created may be removed at the cost of multiplication by
Œ2� D q C q�1.

This algebra is well-known in low-dimensional topology in particular due to its
natural extension from planar diagrams to tangles, captured by the Kauffman bracket
relations

D q � q2 ;

D q�2 � q�1 ;

which yield the Jones polynomial up to normalization; see [14] and [13].

2.2. Jones–Wenzl projectors. The Jones–Wenzl Projectors pn 2 TLn are idempo-
tent elements of the Temperley–Lieb algebra which have proven to be fundamental
to its study and applications. The projectors appear in the study of spin networks or
the graphical calculus of higher Uq sl.2/ representations, the colored Jones polyno-
mial and many constructions of Chern–Simons theory; see [14], [26], [25], [2], [3],
and [27].

The projectors were originally [29] defined by the recurrence relation

p1 D 1;

pn D pn�1 � Œn � 1�
Œn�

pn�1en�1pn�1:

If we depict pn graphically by a box with n incoming and outgoing chords:

pn D n ;

then the formula may be illustrated as follows:

n D n�1 � Œn � 1�
Œn� n�1

n�1

:

It can be shown that the Jones–Wenzl projectors are uniquely characterized by
the following properties:

(1) pn 2 TLn considered as a ZŒq�1�ŒŒq��-algebra;

(2) pn � 1 belongs to the subalgebra generated by fe1; e2; : : : ; en�1g;
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(3) eipn D pnei D 0 for all i D 1; : : : ; n� 1.

See for instance [14] and [21].
The coefficients of Temperley–Lieb diagrams in the expression for pn uniquely

determine power series with positive powers of q. The equations above then define
pn as a power series in Temperley–Lieb elements, for example the power series forp2

is given in (1) in the introduction. (Alternatively, one could expand rational functions
as series in q�1 producing a dual projector, see discussion following Definition 3.1.)

2.3. Categorification of the Temperley–Lieb algebra. Work by a number of au-
thors on the existence of integral bases in Lie theory led to a categorification of the
Temperley–Lieb algebra by Mikhail Khovanov in which integer coefficients were in-
terpreted as the dimensions of graded vector spaces and polynomials as graded Euler
characteristics; see [7], [1], [15], [16], [24], and [8]. This construction extends to
tangles and there is a corresponding functoriality with respect to cobordisms between
these tangles; see [12] and [4].

In this section we recall Dror Bar-Natan’s graphical formulation [4] of the Kho-
vanov categorification. It will be used throughout the remainder of this paper. Using
the Bar-Natan formulation has the advantage of allowing our constructions to apply
to a number of variant categorifications which exist in the literature.

Definition 2.1. If C is an additive category then the split Grothendieck group of C is

K0.C/ D ZhIso.C/i=.ŒA˚ B� D ŒA�C ŒB�/;

the free abelian group generated by isomorphism classes of objects in C modulo the
relation above. If C is a monoidal category then the map C ˝ C ! C induces
K0.C/ ˝ K0.C/ ! K0.C/, endowing K0.C/ with an algebra structure; see [28]
and [19].

Our goal is to define an additive monoidal category Cob.n/ such that

K0.Cob.n// Š TLn:

There is an additive category Pre-Cob.n/whose objects are isotopy classes of formally
q-graded Temperley–Lieb diagrams with 2n boundary points. The morphisms are
given by the free Z-module spanned by isotopy classes of orientable cobordisms
bounded in R3 between any two planes containing such diagrams.

The degree of a cobordism C W qiA ! qjB is given by

deg.C / D degt .C /C degq.C /;

where the topological degree degt .C / D �.C / � n is given by the Euler character-
istic of C and the q-degree degq.C / D j � i is given by the relative difference in
q-gradings. The maps C used throughout the paper will satisfy deg.C / D 0. The
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formal q-grading will be chosen to cancel the topological grading. When working
with chain complexes every object will also contain a homological grading and every
map will have an associated homological degree. Homological degree is not part of
the definition deg.C /.

It has become a common notational shorthand to represent a handle by a dot and
a saddle by a flattened diagram containing a dark line:

D 2 D 2

and

D :

(The topological degrees of the cobordisms above are �2, �1 respectively.)
We would like a category C such that K0.C/ Š TLn so we require that the object

represented by a closed circle be isomorphic to sum of two empty objects in degrees
˙1 respectively. If such maps are to be degree preserving then the most natural choice
for these

' W

� �
��
q�1; ˚ q; W :� ���

In order to obtain ' B  D 1 and  B ' D 1 we form a new category Cob.n/ D
Cob3

�=l.n/ obtained as a quotient of the category Pre-Cob.n/ by the relations given
below:

D 0; D 1; D 0; D ˛;

D C :

The cylinder or neck cutting relation implies that closed surfaces†g of genus g > 3
evaluate to 0. In what follows we will let ˛ be a free variable and absorb it into our
base ring (†3 D 8˛). One can think of ˛ as a deformation parameter; see [4] for
further details.

Example 2.2 (the circle). In both Pre-Cob.0/ and Cob.0/ there are objects associated
to the circle and the empty set. Consider

A D HomPre-Cob.0/.;; / and B D HomCob.0/.;; /:
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BothA andB are abelian groups. An element ofA consists of a linear combination of
isotopy classes of orientable surfaces with a single fixed boundary circle. An element
of B consists of a linear combination of such surfaces subject to the relations above.
In particular, the last relation allows us to cut any surface along a closed curve which
bounds a disk in 3-space. The reader can check that every element x 2 B is of the
form

x D m C n

for some m; n. HomCob.0/.;; / can be endowed with a Frobenius algebra structure
using maps induced by cobordisms. When ˛ D 0 this is the Frobenius algebra which
appears in Khovanov’s original construction; see [18].

Given two objects C;D 2 Cob.n/ we will use C ˝D to denote the map

Cob.n/˝ Cob.n/ �! Cob.n/

obtained by gluing all diagrams and morphisms along the n boundary points and n
boundary intervals respectively; pictorially we have

C ˝D D C

D
:

Lemma 2.3. There is an isomorphism of ZŒq; q�1�-algebras

K0.Cob.n// Š TLn:

Proof. Note that the q-degree shifting functor determines an endomorphism

K0.q/ W K0.Cob.n// �! K0.Cob.n//

making K0.Cob.n// into a ZŒq; q�1�-algebra. The proof follows directly from the
construction above.

The categorifications Cob.n/ fit together in much the same way as the Temperley–
Lieb algebras TLn. There is an inclusion � t 1m�n W Cob.n/ ! Cob.m/ whenever
n � m obtained by unioning each diagram withm�n disjoint vertical line segments
on the right to each object andm�n disjoint disks to each morphism. Ifm D n then
the empty set is used instead of either intervals or disks.

Definition 2.4. Let Kom.n/ D Kom.Mat.Cob3
�=l.n/// be the category of chain com-

plexes of finite direct sums of objects in Cob3
�=l.n/. We allow chain complexes K�

of unbounded positive homological degree and require that for each K� there exists
an N 2 Z� such that Kn D 0 for n < N .
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Note that ˝ extends to Kom.n/; see [10]. The functor � t 1m�n extends to
Kom.n/ in the obvious way. The skein relation becomes

D q ����! q2 ;

D q�2 ����! q�1 ;

where the underlined diagram represents homological degree 0.
The skein relation allows us to associate to any tangle diagramD with2nboundary

points an object in Kom.n/.

2.3.1. Grothendieck group of Kom.n/. We have included this section in order to
explain how the word categorification pertains to the categories of partially unbounded
chain complexes appearing in this paper. What appears here represents only a minor
variation of the theory; see [28].

Definition 2.5. IfK is a finite sum of q-graded objects then define maxq.K/ to be the
maximum q-degree of a summand ofK. Define minq.K/ to be the minimal q-degree
of a summand of K.

Let Kom0.n/ � Kom.n/ be the subcategory consisting of chain complexes K�
such that the functionsf .i/ D maxq Ki andg.j / D minq Kj are both monotonically
increasing.

All of the constructions in this paper reside within this subcategory of Kom.n/.
For example, the diagram in Section 7.2, which is important in the proof of the
main theorem, has monotonically increasing q-degree. It follows from the definition
of Kom0.n/ that the q-graded Euler characteristic of any object C 2 Kom0.n/ is
well-defined as a power series in ZŒq�1�ŒŒq��.

Definition 2.6. The Grothendieck group of Kom is

K0.Kom/ D ZhIso.Kom0/iı�ŒK�� D
1X

iD�1
.�1/i ŒKi �

�
;

the free abelian group generated by isomorphism classes of objects in Kom0 modulo
the relation above. We again identify ŒqjKi � D qj ŒKi �, and the monotonicity implies
that these relations are well-defined power series. Since the objects of Kom are
bounded in negative homological degree the sum above contains only finitely many
terms with i < 0. K0.Kom/ inherits an algebra structure as in Definition 2.1.
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Lemma 2.7. There is an isomorphism of ZŒq�1�ŒŒq��-algebras

K0.Kom.n// Š TLn:

The proof is standard.

Remark 2.8. The monotonicity condition imposed on Kom.n/ is very natural in our
context. Let f W A ! B be a morphism in Cob.n/, then one of the following holds:

(1) degt .f / > 0 and f D 0;

(2) degt .f / D 0, A D B , and f D m1A, for some m 2 Z;

(3) degt .f / < 0.

This follows from the classification of surfaces and the relations imposed on
surfaces in Cob.n/. For instance, the only surface of positive Euler characteristic is
the sphere which evaluates to 0. We conclude that the graded components of non-
trivial chain complexesK� in Kom.n/ with degree 0 differential, as in Definition 3.1
below, are monotonically increasing in the sense defined above.

2.4. Chain homotopy lemmas. We will make frequent use of the following standard
lemma in this paper; see [4] and [22]. For the definition of homotopy see [10].

Lemma 2.9 (Gaussian elimination). Let K� be a chain complex in an additive cat-
egory A containing a subcomplex isomorphic to the top row below. If ' W B ! D

is an isomorphism there is a homotopy equivalence from K� to a smaller complex
containing the bottom row below:

A
. �̨ / ��

��

B˚
C

�
' �
� �

�
��

��

D˚
E

. � " / ��

��

F

��
A

˛
�� C

���'�1�

�� E
"

�� F .

Remark 2.10. Often a preliminary step before an application of Gaussian Elimination
will be delooping. This consists of using the isomorphisms ' and  defined in
Section 2.3 to remove a disjoint circle from a diagram and adjust any maps to and
from the diagram accordingly. In applications this results in an isomorphism which
can be removed using Lemma 2.9. For example, see the proof of Theorem 4.2.

The following result is a direct generalization which will be very useful in our
context.
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Lemma 2.11 (simultaneous Gaussian elimination). LetK� be a chain complex in an
additive category A of the form

K� D
A0

˚
C0

M0���!
A1˚
B1˚
C1

M1���!
A2˚
B2˚
C2

M2���!
A3˚
B3˚
C3

M3���! � � �

where

M0 D
0
@ a0 c0

d0 f0

g0 j0

1
A

and

Mi D
0
@ ai bi ci

di ei fi

gi hi ji

1
A

for all i > 0.
If a2i W A2i ! A2iC1 and e2iC1 W B2iC1 ! B2iC2 are isomorphisms for i � 0

then the chain complex K� is homotopy equivalent to the smaller chain complexD�
obtained by removing all Ai and Bi terms via the isomorphisms a2i and e2iC1:

D� D C0

q0��! C1

q1��! C2

q2��! C3

q3��! � � �
where q2i D j2i � g2ia

�1
2i c2i and q2iC1 D j2iC1 � h2iC1e

�1
2iC1f2iC1.

Proof. First apply Gaussian elimination to each isomorphism a2i in order to obtain
the chain complex

C0
X��!

B1˚
C1

Y1��!
B2˚
C2

Y2��!
B3˚
C3

Y3��!
B4˚
C4

��! � � �

where

X D
 
f0 � c0a

�1
0 d0

j0 � c0a
�1
0 g0

!

and

Y2i D
 
e2i � d2ia

�1
2i b2i f2i � d2ia

�1
2i c2i

h2i � g2ia
�1
2i b2i j2i � g2ia

�1
2i c2i

!
; Y2iC1 D

 
e2iC1 f2iC1

h2iC1 j2iC1

!
:

Now apply Gaussian elimination to each isomorphism e2iC1 in order to obtain the
chain complex D� above.

A chain complex K� is contractible if K� ' 0; see [10].

Lemma 2.12 (big collapse). A chain complex K� of contractible chain complexes
Ki is contractible.
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3. Universal projectors and statement of the main theorem

The projectors defined in this paper satisfy a universal property making them unique
up to homotopy.

Definition 3.1. A chain complex .P�; d�/ 2 Kom.n/ is a universal projector if the
following conditions hold.

(1) The complex is positively graded with degree zero differential:

(a) Pk D 0 for all k < 0 and degq.Pk/ � 0 for all k > 0;

(b) dk is a matrix of degree zero maps for all k 2 Z.

(2) The identity diagram appears only in homological degree zero and only once:

(a) P0 Š 1;

(b) Pk 6Š 1˚D for any D 2 Mat.Cob.n// and for all k > 0.

(3) The chain complexP� is contractible “under turnbacks,” that is for any generator
ei 2 TLn, 0 < i < n

(a) P� ˝ ei ' 0 and

(b) ei ˝ P� ' 0.

See Section 2.3 for a discussion of degrees.
Compare these axioms to the axioms in Section 2.2 characterizing the Jones–

Wenzl projectors pn 2 TLn. The first two axioms are non-triviality conditions. The
first excludes uninteresting variants of the definition obtained by degree shifting and
symmetry. For instance, we could change 3.1(1) to require a negative q-grading and
reverse of all the arrows. The second excludes contractible complexes from consider-
ation. The third axiom implies that composing the projector with any Temperley–Lieb
diagram which is not identity yields an object in Kom.n/ which is homotopic to the
zero complex.

IfPn 2 Kom.n/ is a universal projector then ŒPn� 2 K0.Kom.n// Š TLn satisfies
the axioms in Section 2.2, implying that ŒPn� D pn 2 TLn. See Section 2.3.1 for a
detailed discussion of what categorification means in this context.

In [18] it was shown that those categorifications of TLn giving rise to functorial in-
variants of tangles must be categories containing Frobenius algebra objects which are
quotients of the one described by Section 2.3 (see Example 2.2). Since the construc-
tion of the universal projector only uses relations which follow from the existence
of such an algebra it is possible that the construction of the universal projector in
Kom.n/ could be carried out within other categorifications.

It is important to note that our definition disagrees with some previous categorifi-
cations based on different axiomatizations of the Jones–Wenzl projectors such as the
dimension axiom [17] (for related work see [5] and [11]):

Tr.pn/ D ŒnC 1�:
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This is implied by the homotopy uniqueness corollary below and the computation of
H�.Tr.P2// contained in the next section.

We can now state the main theorem of the paper.

Theorem 3.2. For each n > 0, there exists a chain complex C 2 Kom.n/ that is a
universal projector.

We summarize some immediate consequences of the axioms in Definition 3.1.
See also Sections 5 and 6.

Proposition 3.3. If C 2 Kom.n/ is a universal projector and D 2 Kom.m/ is a
universal projector such that 0 � m � n then

C ˝ .D t 1n�m/ ' C ' .D t 1n�m/˝ C I
pictorially

D

C ' C '
D

C

:

Proof. The tensor product of chain complexesC� ˝.D� t1n�m/ is the total complex
of a bicomplex which can be written as a chain complex of chain complexes

C� ˝ .D0 t 1n�m/ �! C� ˝ .D1 t 1n�m/ �! C� ˝ .D2 t 1n�m/ �! � � �
or, graphically,

D0

C �! D1

C �! D2

C �! � � � :

By the second axiomD0 D 1 in homological degree 0 and so the identity diagram
cannot be found as a summand of Dk t 1n�m for any k > 1. In addition, C
satisfies 3.1(3) so it follows that

(1) the homological degree 0 portion of this complex is isomorphic to C� and

(2) all chain complexes in degree above zero are contractible.

Lemma 2.12 (big collapse) implies that there is a homotopy equivalence C� '
C� ˝ .D� t 1n�m/. The other equivalence .D� t 1n�m/ ˝ C� ' C� is proven in
the same manner.

A special case of the above proposition with m D n implies that universal pro-
jectors we have defined behave like idempotent elements. In other words, if C is
a universal projector then the functors C ˝ � and � ˝ C are idempotent on the
homotopy category of Kom.n/.
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Corollary 3.4 (idempotence). If C 2 Kom.n/ is a universal projector then

C ˝ C ' C:

This is represented diagrammatically as

C

C ' C :

Proposition 3.3 also implies that the universal projectors are unique up to homo-
topy.

Corollary 3.5 (homotopy uniqueness). If C;D 2 Kom.n/ are universal projectors
then C ' D.

Proof. Let C;D 2 Kom.n/ be universal projectors. Proposition 3.3 holds when
n D m so that 10 D ;,

C ' C ˝ .D t ;/ Š .C t ;/˝D ' D;

in pictures,

C ' C

D
' D :

4. Explicit formulae and computations

We now give some explicit examples of lower order projectors. The second projector
below will play a role in the proof of the main theorem. Higher projectors are much
more complicated.

4.1. The second projector. The second projector is defined to be the chain complex

����! q

�
��������! q3

C
��������! q5 �! � � �

in which the last two maps alternate ad infinitum. More explicitly, we have

P2 D .C�; d�/:
The chain groups are given by

Cn D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

q0 n D 0;

q2n�1 n > 0:
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The differential is given by

dn D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

W ! q n D 0;

C W q4k�1 ! q4kC1 n ¤ 0; n D 2k;

� W q4kC1 ! q4kC3 n D 2k C 1:

Proposition 4.1. P2 defined above is a chain complex, that is successive compositions
of the differential are equal to zero.

Proof. Since d2nC1 B d2n D d2n B d2n�1 there are only two cases. We have

d1 B d0 D �

D � D 0:

The second equality follows from moving the dot from one side of the saddle to the
other, and isotopic cobordisms are considered equal by construction, see Section 2.3.

Further we have

d2nC1 B d2n D
 

C
!

B
 

�
!

D C � �

D ˛ C 0� ˛ D 0:

The last equality follows because the relations of Section 2.3 allow us to replace two
dots by multiplication with ˛.

Theorem 4.2. The chain complex P2 2 Kom.2/ defined above is a universal projec-
tor.

Proof. Since the identity object only appears in degree 0 and the chain complex
is positively graded with degree zero differentials, 3.1(3) and3.1(2) are satisfied by
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definition. For 3.1(3), note that there is only one standard generator e1 2 TL2 and
the vertical symmetry in the definition of P2 implies P2 ˝ e1 Š e1 ˝ P2. Consider
e1 ˝ P2:

���! q

�
�������! q3

C
�������! q5 �! � � � :

The top strand of e1 has been omitted in the illustration above.
Now we “deloop” (see remark in Section 2.10) and conjugate our differentials by

the isomorphism ' in Section 2.3 to obtain the isomorphic complex

M0���! q0 ˚ q2 M1���! q2 ˚ q4 M2���! q4 ˚ q6 �! � � �
where

M0 D
0
@

1
A; M1 D

0
@�
˛ �

1
A; M2 D

0
@
˛

1
A:

Applying Lemma 2.11 (simultaneous Gaussian elimination) using C� D 0 and
selecting for a2i and e2iC1 the first component of M0 and the identity map in the
upper right-hand component of each successive matrix shows that the complex is
homotopic to the zero complex.

4.1.1. Homology of the trace. In the Temperley–Lieb algebra the trace of any di-
agram D 2 TLn is defined to be the element Tr.D/ 2 ZŒq; q�1� associated with
the diagram obtained by connecting each of the bottom boundary points to the cor-
responding top points by parallel arcs in the plane:

Tr.D/ D D :

The Jones–Wenzl projectors, pn 2 TLn are commonly known to satisfy

Tr.pn/ D ŒnC 1�:

In fact, they can be characterized by this property together with the turnback 3.1(3).
One would expect then that the graded Euler characteristic of the complex given

by the trace of the universal projectors defined in this document are given by the
polynomials Œn C 1�. This is true when the coefficient ring is rational and ˛ D 0.
It is however not true that the homology of Tr.P2/ is spanned only by classes that
correspond to coefficients of the graded Euler characteristic; the homology contains
infinitely many terms which cancel in the graded Euler characteristic.
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When ˛ D 0 and coefficients are rational we have

Hn.Tr.P2/I Q/ D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

q�2Q ˚ q0Q n D 0;

0 n D 1;

q4k�2Q n D 2k and k > 0;

q4kC2Q n D 2k C 1 and k > 0:

Note that the graded Euler characteristic equals Œ3� D q�2 C 1C q2. All other terms
cancel in pairs.

If ˛ D 0 and the coefficient ring is integral then there is an additional infinite
family of 2-torsion. If ˛ ¤ 0 and the coefficient ring is Q then the homology ofP2 is
2-dimensional and isomorphic for any choice of ˛. If ˛ 2 ZC and the coefficient ring
is Z then there is an infinite family of 2-torsion and an infinite family of 2˛-torsion.
In particular, the homotopy type of the projectors is not constant with respect to the
deformation parameter ˛.

Taking the trace of our projector yields a complex with alternating differential

�����! q
0��! q3

2

������! q5 �! � � � :

The homology of this complex is in general given by

Hn.Tr.P2// D

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

q�2Z ˚ q0Z n D 0; ˛ D 0 or ˛ ¤ 0;

0 n D 1; ˛ D 0 or ˛ ¤ 0;

q4k�2Z n D 2k; ˛ D 0;

q4kC2Z ˚ q4kZ=2 n D 2k C 1; ˛ D 0;

0 n D 2k; ˛ ¤ 0;

q4kC2Z=.2˛/˚ q4kZ=2 n D 2k C 1; ˛ ¤ 0:

4.2. The third projector. We give an inductive definition of the chain complex for
the nth projector in Section 7 below, with the second projector defined above as the
base of the induction. The third projector P3 can therefore be deduced from that
inductive definition. In this section we present a minimal (in the sense that it is not
homotopic to a chain complex containing fewer Temperley–Lieb diagrams) chain
complex for P3. The third projector is the last which can be written down in a short
and explicit diagrammatic form. After the initial identity term the complex below
becomes 4 periodic.
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We have

A �� q1
�

˚
�

B �� q2
�

˚
�

C �� q4
�

˚
�

D

��

� � � q8
�

˚
�

�� q7
�

˚
�

B
�� q5

�
˚

�
;

E
��

where

A D
�
�

�tr
;

B D

0
B@ �

�

1
CA;

C D

0
B@ C

C

1
CA;

D D

0
B@ �

�

1
CA;

and

E D

0
B@ C

C

1
CA:

Theorem 4.3. The definition of P3 given above is a chain complex that satisfies the
axioms of the universal projector. In particular,

ei ˝ P3 ' 0 ' P3 ˝ ei i D 1; 2:

The proof is analogous to the proof of Theorem 4.2. The main theorem also
produces a universal projector Pn for n D 3.

5. Reidemeister moves and graphical calculus

In this section we define invariants of framed tangles obtained by applying the mth
projector to the strands of a cabling and showing that the homotopy type of the result
is invariant under Reidemeister moves 2 and 3. These are categorifications of the
invariants of higher representations of Uq sl.2/ corresponding to the colored Jones
polynomial.
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Definition 5.1. Given m 2 N consider the category Komm.n/ with objects

Ob.Komm.n// D Ob.Kom.n//:

To any object D 2 Ob.Kom.n// associate a chain complex F.D/ in the category
Kom.mn/ by replacing each strand in each diagram withm parallel strands composed
with the mth projector.

If A and B 2 Komm.n/ are two objects then we define

HomKomm.n/.A; B/ D HomKom.mn/.F.A/; F.B//:

This can be illustrated by

7�! ; 7�! :

In the remainder of this section we wish to prove that the Reidemeister moves and
some standard graphical relations are satisfied up to homotopy.

Lemma 5.2 (projector isotopy). A free strand can be moved over or under a projector
up to homotopy. In pictures,

' ; ' :

Proof. The proof is similar to the proof of Proposition 3.3 and Corollary 3.5 in
Section 3. Specifically, observe that both the chain complex for the diagram with the
projector below the strand and the chain complex for the diagram with the projector
above the strand are chain homotopy equivalent to the chain complex C for the
diagram with two projectors: one above the strand and one below the strand. This is
true because expanding either of the two projectors in C gives the identity diagram
in degree zero and every other term involves a turnback, which is contractible when
combined with the second copy of the projector.

Applications of this lemma allow us to show that the Reidemeister moves are
satisfied by the category Komm.n/.

Theorem 5.3. The category Komm.n/ contains invariants of framed tangles.

Proof. Lemma 5.2 implies that up to homotopy projectors can be slid under or over
crossings. Corollary 3.4 implies that up to homotopy any two projectors on the same
strand can be replaced with one projector.

For the second Reidemeister move we have

D ' :
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The first equality is by definition. The homotopy equivalence follows from the pro-
jector isotopy lemma and Pn ˝ Pn ' Pn. We have

' ' D :

The first homotopy equivalence follows from the second Reidemeister move in the
category Kom.mn/; the second follows from another application of Pn ˝Pn ' Pn.

The argument for the third Reidemeister move features the same ideas. We have

D ' '

and

' D :

Applying the definition to the standard Reidemeister 3 diagram we obtain a diagram
that looks like spaghetti which simplifies considerably up to homotopy to a diagram
in which the standard Reidemeister 3 homotopy in Kom.mn/ holds.

Given a framed link L the chain complex associated to L in Komn.0/ has the
graded Euler characteristic of the positive q-power series expansion of the nth colored
Jones polynomial. This is a categorification of the nth colored Jones polynomial. See
Section 2.3.1 for a detailed discussion of what categorification means in this context.

6. Spin networks

In this section we describe how to associate to any spin network a chain complex in a
category defined using the universal projector of Section 3. Constructions involving
four projectors are then explored more thoroughly leading to a categorification of the
6j -symbols.

6.1. Categories and invariants. Let I D N be the set indexing the finite dimen-
sional irreducible representations of Uq sl.2/. For any n-tuple t D .i1; : : : ; in/ 2 I n

define the invariants of the n-fold tensor product by

Inv.t/ D Inv.Vi1 ˝ � � � ˝ Vin/ D HomUq sl.2/.Vi1 ˝ � � � ˝ Vin ; 1/:

This space is described by Temperley–Lieb diagrams or unoriented isotopy classes
of 1-manifolds in a disk with boundary fixed in the boundary of the disk and with
boundary labeled by Jones–Wenzl projectors: pi1 tpi2 t� � �tpin . See the illustration
below or also [14] and [20].
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For any such t 2 In the main theorem allows us to construct a category Kom.t/
with objects given by chain complexes obtained from Temperley–Lieb diagrams with
boundary labeled by universal projectors and morphisms given by chain maps. When
t D .a; b; c; d/ there is an associated picture

Ob.Kom.t// D
8<
:

a

b

c

d

D W D is a Temperley–Lieb diagram

9=
; :

The axiomatic correspondence between the Jones–Wenzl projector and the uni-
versal projectors in this paper implies the following theorem.

Theorem 6.1. The category Kom.t/ categorifies the invariants Inv.t/.

See Section 2.3.1 for a detailed discussion of what categorification means in this
context.

6.2. 6j -symbols. There is a standard way to resolve (compare [14], Chapter 4.1) a
trivalent vertex with edges labeled by a; b; c 2 I in a spin network:

a

b

c

D

a

b

c

i j

k

:

where i D .a C b � c/=2, j D .a C c � b/=2 and k D .b C c � a/=2 are the
number of unoriented intervals placed between the projectors. We say that a diagram
is admissible if all trivalent vertices can be resolved using the assigned labels or
equivalently aCbC c is even and the triangle inequalities hold for a, b and c. Using
this notation we can describe two bases for Inv.a; b; c; d/,

V D
´

a

b c

d

j W j 2 I
admissible

μ
and H D

´
a

b c

d

i W i 2 I
admissible

μ
:

The base change coefficients are called 6j -symbols,

a

b c

d

i D
X

j

²
a b i

c d j

³
a

b c

d

j ;

which determine the change of basis map S W H ! V . S is the matrix of 6j -symbols,

Sij D
²
a b i

c d j

³
:
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Outline. Our goal is to categorifyS as a functor Kom.a; b; c; d/ ! Kom.a; b; c; d/.
Our construction is modeled on the linear-algebraic proof (see [14]; Chapter 7.2) that
the “vertical” and “horizontal” collections V;H above are indeed bases for the space
of Temperley–Lieb diagrams Inv.a; b; c; d/, pictured on the previous page. The key
point is that the identity diagram appears only once in the chain complex for the
projector Pn, in degree zero (Definition 3.1(1) of the universal projector). Therefore,
the identity diagram may be represented up to homotopy as the cone of the inclusion of
the positive degree part into the chain complex Pn. However the positive degree part
may in turn be inductively represented as an iterated cone on lower order projectors.
This is made precise in the proof of Theorem 6.4 below. We begin by introducing a
categorical analogue of a linear basis.

Before proceeding we recall a number of definitions. The concept we wish to
capture is that of a category which is homotopy equivalent to some subcategory
sitting inside of it. In our case this amounts to a category of complexes in which
every chain complex is homotopy equivalent to a chain complex of chain complexes
contained within the subcategory of interest. All of the categories involved in our
discussion will be categories of chain complexes of direct sums of objects in a small
additive category.

A subcategory C � D is full if for all pairs of objects A;B 2 Ob.C/,

HomC .A; B/ D HomD.A; B/:

A category C is differential graded if for all objects A;B 2 Ob.C/, HomC .A; B/

is a chain complex. A functor of differential graded categories F W C ! D is a
differential graded functor if the maps

FA;B W HomC .A; B/ �! HomD.F.A/; F.B//

are chain maps for all objectsA;B 2 C . Two differential graded functorsF;G W C !
D are homotopic, F ' G if there is a natural transformation ' W F ! G such that 'A

is a homotopy equivalence for all A 2 Ob.C/. Two differential graded categories C

and D are homotopy equivalent if there exist differential graded functorsF W C ! D

and G W D ! C such that FG ' 1D and GF ' 1C .

Definition 6.2. If A is an additive category and C D Kom.A/ is the category of
chain complexes of finite direct sums of objects in A then a full subcategory B � C

spans C if the inclusion B ,! C is a homotopy equivalence of categories.

Lemma 6.3. For anya; b; c; d 2 N the category Kom.a; b; c; d/ is naturally spanned
by the full subcategory N :

Ob.N / D
8<
:

a

b

c

d

D W D is a TL diagram which contains no disjoint circles
and no projector is capped by a turnback

9=
; :
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Proof. Axioms 3.1(3a) and 3.1(3b) imply that projectors with turnbacks are con-
tractible. Using the isomorphisms of Section 2.3 any complex associated to a diagram
with disjoint circles is isomorphic to a finite direct sum of chain complexes associated
to diagrams without circles. This defines a functor

� W Kom.a; b; c; d/ �! N

which together with the obvious inclusion functor

i W N ,�! Kom.a; b; c; d/

satisfy
�i D 1N and i� ' 1Kom.a;b;c;d/ :

There are two other categories we would like to consider: H and V . These are
the full subcategories of Kom.a; b; c; d/with objects given by horizontal and vertical
diagrams respectively.

Ob.H / D
´

a

b c

d

i W i 2 I
admissible

μ
and Ob.V/ D

´
a

b c

d

j W j 2 I
admissible

μ
:

We can now state our theorem.

Theorem 6.4. For any a; b; c; d 2 I the full subcategories H and V defined above
span the category Kom.a; b; c; d/.

The proof consists of constructing a family of chain complexes Vn and Hn each
of which comes from the positive degree part of the chain complex defining the nth
universal projector Pn constructed above. The gist of the proof is captured by the
two tables below in which .a; b; c; d/ D .2; 2; 2; 2/:

V N

Cone

 
V4

 
0 ; 2

!
,�! 4

!
'

a

b

c

d

,

Cone

 
V2

 
0

!
,�! 2

!
'

a

b

c

d

,

Cone

 
V0 ,�! 0

!
'

a

b

c

d

.

and
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N H

a

b

c

d

' Cone

 
H0 ,�! 0

!
;

a

b

c

d

' Cone

 
H2

 
0

!
,�! 2

!
;

a

b

c

d

' Cone

 
H4

 
0 ; 2

!
,�! 4

!
:

In the first table, the third chain complex

X D

a

b

c

d

can be constructed as a cone on the vertical spin network

4 :

When .a; b; c; d/ D .2; 2; 2; 2/ and V0 D 0, the spin network itself is equal to X .
Next, to define the chain complex V2 expand the central projector of

Y D 2

and then substitute instances of X with

Cone

 
V0 ,�! 0

!
:

The chain complex V2 consists only of the resulting terms with the 0 labeled edge.
The cone on the inclusion of V2 into Y is homotopic to

a

b

c

d

:

Finally, the first line states that the object

a

b

c

d
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is homotopic to the cone on a chain complex V4 consisting of only vertical networks
labeled 0 and 2. We now give a proof of Theorem 6.4.

Proof. We will explain the construction only for V since the argument is the same
for H . For fixed a; b; c; d 2 I each diagram D defining an object in the spanning
subcategory N defined above must be of the form

Dj D

a

b

c

d

j D

a

b

c

d

i

i

j j

where j is the total number of vertical strands and i is the total number of horizontal
strands. Notice i depends on j and if the diagram is admissible the number j assumes
either odd or even integer values between two numbers l0; lN 2 ZC. If we useDn to
denote the diagram with j D n in the illustration above then for a given a; b; c; d 2 I
we have diagrams Dl0

; Dl0C2; : : : ; DlN �2; DlN
. The proof is by induction on the

number of vertical strands.
For each a; b; c; d 2 I and admissible j we define the chain complex Vj ,

Vj D Vj

0
@

a

b

c

d

l0 ; : : : ;

a

b

c

d

j � 2

1
A ;

to be the subcomplex

a

b c

d

j D

a

b

c

d

j �! Vj

0
@

a

b

c

d

l0 ; : : : ;

a

b

c

d

j � 2

1
A

obtained by expanding the central projectorPj . As our notation suggests Vj is a chain
complex containing only contractible terms and objects of N defined by diagrams
Dl0

; : : : ; Dj �2.
The preceding diagram implies that the homotopy equivalence below is tautolog-

ical:

a

b

c

d

j ' Cone

0
@Vj

0
@

a

b

c

d

l0 ; : : : ;

a

b

c

d

j � 2
1
A i
,�!

a

b c

d

j

1
A I

where i is the inclusion of the subcomplexVj into the complex representing the labeled
graph. This inclusion exists by construction of Vj above. The diagrams appearing in
D0; : : : ; Dj �2 have fewer vertical strands and are homotopic to diagrams containing
only vertical spin networks by induction:

a

b

c

d

j ' Cone

 
Vj

 
a

b c

d

l0 ; : : : ;
a

b c

d

j �2

!
i

,�!
a

b c

d

j

!
:
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Again i is the inclusion of the subcomplex Vj into the complex representing the
labeled graph. The proof that substitution works is an application of the change of
basis isomorphism used in the Gaussian elimination lemma in Section 2.4 to the first
vertical identity map below:

a

b

c

d

j D Cone

0
BBBB@
Dj

d1 �� C1
d2 �� C2

�� � � �

0

��

�� C1

1

��

d2

�� C2

1

��

�� � � �

1
CCCCA

Š Cone

0
BBBB@
Dj

0 �� C1
d2 �� C2

�� � � �

0

��

�� C1

1

��

0
�� C2

1

��

�� � � �

1
CCCCA :

Note that in the base case, expanding the projector pl0
yields only contractible

terms in degree greater than zero. The a; b; c; d; l0 labeled network is homotopy
equivalent to the cone on a nullhomotopic map of the form above.

Remark 6.5. The naturally defined homotopy equivalence of categories S W H ! V

may be viewed as a categorical analogue of the matrix of 6j symbols S W H ! V de-
fined in Section 6.2. See Section 2.3.1 for further discussion of what categorification
means in this context.

The quantum reader is invited to prove the homotopy Biedenharn–Elliot identity.

7. Proof of the main theorem

The two term recurrence relation satisfied by the Jones–Wenzl projectors in Sec-
tion 2.2 is quadratic in the sense that in order to define pn the .n � 1/-st projector
pn�1 appears twice in the second term. One obtains the linear recurrence of Frenkel
and Khovanov [7] by expanding the bottom pn�1 term completely and removing
terms containing a turnback pn�1ei for any 0 < i < n � 1. Keeping track of the
coefficients in this process gives the recurrence

n D n�1 � Œn � 1�
Œn�

n�1 C � � � ˙ Œ1�

Œn�
n�1 :

Note that our sign conventions differ from [7]. This can be shown to satisfy 3.1(1–3) in
Section 2.2 and so is equal to the Jones–Wenzl projector. In this section we prove the
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main theorem of the paper by constructing a chain complex in the category Kom.n/,
motivated by the Frenkel–Khovanov recursive formula above, satisfying the axioms
of the universal projector given in Section 3.

7.1. Triples and quadruples. We will begin by examining some situations in which
local cancellations can be made in a chain complex containing a turnback: C� ˝ ei .
There are two important cases: either a sequence of three terms can be canceled after
delooping the middle term or a sequence of four terms can be canceled after delooping
the two middle terms. We will call the first case a triple and the second a quadruple.
Both cases are necessary to prove P3 ˝ ei ' 0 and, as we will see, they suffice to
prove the general case.

7.1.1. The triple

Definition 7.1. If D 2 Kom.n/ is any chain complex and ei is a standard generator
of TLn then an i -triple or triple is a sequence of maps in Kom.n/ of the form

D �! qD ˝ ei �! q2D ˝ ei ˝ ei˙1;

where the maps are given by saddles, as illustrated below:

D
D

����! q
D

D

����! q2
D

:

Applying the functor � ˝ ei to the above yields the top sequence in the following
commutative diagram:

D ˝ ei

Š
��

�� q2D ˝ ei

Š
��

�� q2D ˝ ei ˝ ei˙1 ˝ ei

Š
��

D ˝ ei
1˚�

�� .D ˝ ei /˚ q2.D ˝ ei / �˚1
�� q2D ˝ ei .

After applying � ˝ ei to an i -triple, the middle term can be delooped (see Re-
mark 2.10) yielding the second isomorphism. The last term satisfies the categorified
planar isotopy relation 2 of Section 2, yielding the bottom sequence in the diagram
above. Note that if this triple is part of a chain complex, then it can be canceled
using two applications of the Gaussian elimination (Lemma 2.9 in Section 2.4) or by
a single application of the simultaneous Gaussian Elimination (Lemma 2).

7.1.2. The quadruple

Definition 7.2. IfD 2 Kom.n/ is any chain complex and ei an elementary generator
of TLn then an i -quadruple or quadruple is a sequence of maps in Kom.n/ of the
form

D �! qD ˝ ei
A���! q3D ˝ ei �! q4D ˝ ei ˝ ei˙1 :
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All maps are given by saddles except for the q-degree 2 map A,

A D
D

�
D

:

A is given by subtracting the addition of a handle on one strand from the addition of
a handle on an adjacent strand. Although this will not affect the arguments below,
we will fix the convention that the dot is placed either to the left or the right of the
saddle in the second term, depending upon whether the eiC1 or ei�1 saddle is used
at the end of the quadruple. The entire sequence of maps can be pictured as

D
D

����! q
D

D � D

���������! q3
D

D

����! q4
D

:

Applying the functor � ˝ ei yields the top row of the following diagram:

D˝ei
��

Š
��

qD˝ei ˝ei

A ��

Š
��

q3D˝ei ˝ei
��

Š
��

q4D˝ei ˝ei˙1˝ei

Š
��

D˝ei
1˚�

�� .D˝ei /˚q2.D˝ei /
B

�� q2.D˝ei /˚q4.D˝ei /
�˚1

�� q4D˝ei

in which B is of the form
B D � � 1

� �
�
:

Compare to delooping in Section 4.1 and Remark 2.10.
Again note that if this quadruple is part of a chain complex, then it can be canceled

using three applications of the Gaussian elimination (or a single application of the
simultaneous Gaussian Elimination).

7.2. The Frenkel–Khovanov sequence. The Frenkel–Khovanov formula from the
beginning of this section suggests the following recursive definition: for n D 1

1 D I

for n D 2

2

is defined in Section 4.1; and for n > 2

n
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is defined as

q0
n�1

n�1

�� q1
n�1

n�1

�� q2
n�1

n�1

��

qn�2
n�1

n�1

��

� � �
n�1

�� q3
n�1

n�1

��

qn�1
n�1

n�1 � n�1

�� qnC1
n�1

n�1

�� qnC2
n�1

n�1

��

q2n�2
n�1

n�1

��

� � �
n�1

�� qnC3
n�1

n�1

��

q2n�1
n�1

n�1 � n�1

�� q2nC1
n�1 �� � � � :

Although the proposition below implies that this definition behaves “correctly”
with respect to the turnback axiom 3.1(3) of the universal projector (see Section 3),
the composition of two saddles is not equal to zero (although it is homotopic to zero).
The technical heart of this paper consists of a detour taken purely for the purpose of
arriving at an actual chain complex. The final formulation obtained in Section 7.3 will
amount to a version of the above which has been carefully thickened by contractible
summands. See Definition 7.9 and the picture following it. The reader is encouraged
to check that the graded Euler characteristic of the sequence illustrated above is a
formal power series corresponding to the Frenkel–Khovanov recursion formula for
pn 2 TLn.

In order to formalize the definition above consider the category N determined by
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the graph

0
d0

���! 1
d1

���! 2
d2

���! � � � :
The objects of N are non-negative integers and the morphisms are freely generated
by compositions of identity morphisms 1i W i ! i and morphisms d i W i ! i C 1.

Definition 7.3. A sequence F in Kom.n/ is a functor

F W N �! Kom.n/:

For each n � 1, we will define a sequence FKn W N ! Kom.n/. FKn.k/ will
correspond to the bottom of each diagram in the illustration on the previous page (the
illustration itself equals .Pn�1 t1/˝ FKn). After the initial identity diagram, FKn is
2.n � 1/ periodic. The following is an algebraic definition of the diagrams pictured
above.

Definition 7.4. If m 2 ZC write m D 2.n � 1/q C r with 0 < r � 2.n � 1/ then
the mth diagram of the nth Frenkel–Khovanov sequence is defined by

FKn.m/ D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

1 if m D 0;

qmen�1 ˝ : : :˝ en�m if 1 � m < n;

q2.m�nC1/ FKn.2n�m � 1/ if n � m � 2.n� 1/;
q2n FKn.r/ otherwise.

We use the multiplicativity of the formal q-grading: qi .qjD/ D qiCjD for any
D 2 Kom.n/. The differential between any two objects whose q-degree differs
by one is given by a saddle map. In each period the two q-degree 2 differentials
are defined to be those illustrated in the diagram above. (The degree 2 maps in the
sequence are separated by n � 2 saddle maps). In what follows fm will be used to
denote the differential, fm W FKn.m/ �! FKn.mC 1/.

For a given length l � 0 the nth truncated Frenkel–Khovanov sequence is given
by

FKn;l .m/ D
´

FKn.m/ if m � l

0 otherwise.

The following proposition and its corollary are key ingredients in the proof of
contractibility under turnbacks contained in Section 7.3.

Proposition 7.5. Let FKn W N ! Kom.n/ be the nth Frenkel–Khovanov sequence
defined above. Then for any standard generator ei , i D 1; : : : ; n� 1,

FKn.�/˝ ei W N �! Kom.n/
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is a sequence such that for every k 2 N the diagram FKn.k/˝ ei 2 Kom.n/ either

(1) satisfies a commutativity condition: there exists a Temperley–Lieb element
D 2 Cob.n/ such that

FKn.k/˝ ei Š ej ˝D;

where j D i; i � 1 or i � 2, or

(2) is contained in an i -triple or i -quadruple sequence.

The case (1) above when j D i can be pictured by

FKn.k/

:::

Š
D

:::

:

Before giving the proof, we note that once FKn is part of the chain complex for the
universal projector (defined further below), both conclusions (1) and (2) above imply
that all terms in .Pn�1 t 1/˝ FKn ˝ei may be contracted. In the case (1) this will
follow by the inductive contractibility of Pn�1 under turnbacks. The contractibility
in case (2) follows from the analysis of triples and quadruples in Section 7.1.

Proof. The periodicity of the diagram FKn ensures that inspecting the first 2n C 1

terms of FKn ˝ei is sufficient. Geometrically inclined readers are invited to prove the
proposition by examining the illustration at the beginning of this section. Expanding
FKn allows us to write the first period of FKn ˝ei as follows:

1˝ei
�� en�1˝ei

�� .en�1˝en�2/˝ei
�� ��� �� .en�1˝���˝e1/˝ei

2

��
en�1˝ei en�1˝ei

2�� ����� .en�1˝���˝e2/˝ei
�� .en�1˝���˝e1/˝ei

�� .

We have dropped the q-grading because it is implied by the requirement that the first
axiom (in Definition 3.1) holds. We write “2” above arrows in order to indicate which
maps are of q-degree 2 and all other maps are given by saddles.

There are several cases to consider. The first two are boundary cases i D 1 and
i D n � 1 and the last is the generic case for 1 < i < n� 1.

(1) If i D 1 then consider � ˝ e1. If n � k > 2 then because of the far
commutativity relation

.en�1 ˝ en�2 ˝ � � � ˝ en�k/˝ e1 Š e1 ˝ .en�1 ˝ en�2 ˝ � � � ˝ en�k/;

:::

Š :::

:
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The terms corresponding to n � k D 1 and n � k D 2 fit in the following four
term sequence:

˛ ˝ e1 �! ˛ ˝ e1 ˝ e1
2��! ˛ ˝ e1 ˝ e1 �! ˛ ˝ e1;

where ˛ D en�1 ˝ en�2 ˝ � � � ˝ e2. This sequence forms a 1-quadruple (see Sec-
tion 7.1.2).

(2) If i D n � 1 then when k > 2 we have

.en�1 ˝ en�2 ˝ � � � ˝ en�k/˝ en�1 Š en�3 ˝ .en�1 ˝ en�2 ˝ � � � ˝ en�k/;

Š :

When k � 2, the first three terms form an .n � 1/-triple (see Section 7.1.1)

1˝ en�1 �! en�1 ˝ en�1 �! en�1 ˝ en�2 ˝ en�1 :

After the first period there is an .n � 1/-quadruple surrounding every other degree 2
map:

en�1 ˝ en�2 ˝ en�1 �! en�1 ˝ en�1
2��! en�1 ˝ en�1 �! en�1 ˝ en�2 ˝ en�1 :

(3) If i ¤ 1 and i ¤ n � 1, each term has the form

.en�1 ˝ en�2 ˝ � � � ˝ en�k/˝ ei

for some k such that 2 � k < n � 1. Depending on k there are several cases to
consider.

(a) If n � k > i C 1 then ei commutes with ej for all j , n � k � j � n � 1

because of the far commutativity relation. It follows that

.en�1 ˝ en�2 ˝ � � � ˝ en�k/˝ ei Š ei ˝ .en�1 ˝ en�2 ˝ � � � ˝ en�k/:

This can be pictured in the same way as the other application of the far commu-
tativity relation in (1).

(b) If n � k < i � 1, then, similarly,

.en�1 ˝ en�2 ˝ � � � ˝ en�k/˝ ei Š ei�2 ˝ .en�1 ˝ en�2 ˝ � � � ˝ en�k/;

Š :
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(c) The terms in which n � k D i � 1, n � k D i and n � k D i C 1 form an
i -triple. For instance,

: : : �!
n�1

�!
n�1

�!
n�1

�! : : : :

Let fm be the mth map in the Frenkel–Khovanov sequence,

fm W FKn.m/ �! FKn.mC 1/

(see Definition 7.4). Recall that each map fm has q-degree equal to either 1 or 2. All
degree 1 maps are given by saddle cobordisms and the degree 2 maps are shown in
the diagram at the beginning of Section 7.2.

Corollary 7.6. Suppose Pn�1 2 Kom.n � 1/ is an .n � 1/-st universal projector
and let l 2 N be such that fl is a degree 1 map. Then each term in the truncated
sequence

fl ..Pn�1 t 1/˝ FKn;l�1/

either is the projector Pn�1 capped with a turnback or is contained in a triple or a
quadruple.

Proof. The proof follows from Proposition 7.5 since the map fl is assumed to be a
degree 1 map, that is a saddle cobordism. Therefore the sequence fl ..Pn�1 t 1/˝
FKn;l / equals ..Pn�1 t 1/˝ FKn;l /˝ ei for some i .

The point of this corollary is that if fl ..Pn�1 t 1/ ˝ FKn;l / is part of a chain
complex, then it can be contracted. (In the first case, the projector Pn�1 capped
with a turnback is contractible by Axiom 3.1(1) of the universal projector Pn�1. In
the second case, each triple or quadruple is contractible according to the analysis in
Sections 7.1.1 and 7.1.2). This will play an important role in the proof of the main
theorem below.

7.2.1. The homotopy projector. If an .n � 1/-st universal projector Pn�1 exists
then Corollary 7.6 shows that the Frenkel–Khovanov sequence can be used to define
a sequence which satisfies the axioms for an nth universal projector (Definition 3.1)
up to homotopy.

Definition 7.7. The nth homotopy projector HPn W N ! Kom.n/ is the sequence
defined by

HP1 D 1;

HPn D Tot..Pn�1 t 1/˝ FKn/:
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For a given length l � 0 the truncated homotopy projector is defined using the
truncated Frenkel–Khovanov sequence

HPn;l D .Pn�1 t 1/˝ FKn;l :

Remark 7.8. A picture of HPn is given at the beginning of this section. For each
ei , 0 < i < n by the above proposition HPn.k/ ˝ ei is either a term containing
.HPn�1 ˝ej / t 1 where 0 < j < n � 1 or fits into an i -triple or i -quadruple. If this
were a chain complex then it would be contractible by the lemmas of Section 2.4.

7.3. Construction of the chain complex: fattening the FK sequence. The remark
at the end of Section 7.2.1 implies that the sequence HPn (Definition 7.7) behaves
like a universal projector. However it is not a chain complex: the composition of
any two successive saddle maps is not zero (although it is not difficult to see that all
compositions are homotopic to zero).

In order to obtain a chain complex and so complete the proof of the main theorem,
we thicken the FK sequence by contractible pieces. Specifically, we consider the
truncated Frenkel–Khovanov sequence FKn;l of length l and our construction is
inductive in l .

Let Pn�1 2 Kom.n� 1/ be a chain complex representing the .n� 1/st universal
projector. We will now define a chain complex CFKn;l inductively in length l using
the maps ffkg1

0 of the FK-sequence. At each stage CFKn;l is defined as either a two
term chain complex using fl�1 (in case the following map fl has q-degree 1) or as a
three term chain complex using fl�1 and fl (in case fl has degree 2).

Definition 7.9. Set CFKn;0 D Pn�1 t 1. For each l > 0 the q-degree of fl�1 is
either 1 or 2. If fl�1 has q-degree 1 then set CFKn;l equal to8<
:CFKn;l�1

fl�1����! qfl�1 CFKn;l�1 if degq.fl / D 1;

CFKn;l�1

fl�1����! qfl�1 CFKn;l�1

fl��! q3flfl�1 CFKn;l�1 if degq.fl / D 2:

Otherwise, the q-degree of fl�1 is 2 and we set

CFKn;l D CFKn;l�1 :

In this second step we do not change the complex CFKn;l after having just used a
degree 2 map in order to avoid a degree shift.

Here we follow the convention that

fl .D ˚D/ D fl.D/˚ fl .D/;

qi .qjD/ D qiCjD;

and

fl .D/ D D
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if degq.fl / D 2. Note that the three term sequence in the last case is indeed a chain
complex, that is flfl�1 D 0.

The recursive step can be visualized as follows. (1) If degq.fl�1/ D 1 and
degq.fl/ D 1, then we have

n;l D n;l�1 fl�1����! q
n;l�1

:

(2) If degq.fl/ D 2, then we have

n;l D n;l�1 fl�1����! q
n;l�1 fl��! q3 n;l�1

:

Consider the chain complex CFK4;3 W
f0 ��

f2

��

f1

���
��

�� f1

��
f0 ��

f2

��

f2

��

f2

��
f1

���
��

��
f0

��

f1
���

��
��

f0

��
.

(To make the illustration more compact, only a part of the actual chain complex
CFK4;3 is shown above. The actual CFK4;3 has another layer below the cube shown
above.)

Recall that the truncated Frenkel–Khovanov sequence FK4;3 is given by

f0 �� f1 �� f2 �� f3 �� :

Here we use dotted arrows to help the reader find the relevant information. The first
four terms of the sequence FK4;3 start in the upper left hand corner of the cube, travel
to the right then to the front face of the cube and land in the lower right hand corner.
These are precisely the first four terms of the diagram pictured at the beginning of
Section 7.2 together with four contractible terms.

The proofs contained in the remainder of this section are rooted in the observation
that CFKn;l will always decompose as FKn;l plus a contractible subcomplex Kl

consisting of truncated Frenkel–Khovanov sequences containing turnbacks.
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Lemma 7.10 (structure of CFKn;l ). For each l � 0 the chain complex CFKn;l admits
a decomposition,

CFKn;l Š .Pn�1 t 1/˝ .FKn;l ˚Kl/; (2)

where the second summand .Pn�1 t 1/˝Kl is contractible.
More specifically, the contractibility of .Pn�1 t 1/ ˝ Kl is a consequence of

simultaneous Gaussian elimination of some of the terms inKl , so that each remaining
term (in the notation of Lemma 2.11) .Pn�1 t 1/˝Ci is contractible. Moreover, the
off-diagonal component

.Pn�1 t 1/˝Kl

ˇ��! .Pn�1 t 1/˝ FKn;l

of the CFKn;l differential with respect to the decomposition (2) vanishes on the domain
of the isomorphisms underlying the simultaneous Gaussian elimination in Kl .

Proof. The proof is by induction on l using the recurrence defining CFKn;l (Defini-
tion 7.9). If l D 0 or degq.fl�1/ D 2 then there is nothing to prove. If degq.fl / ¤ 2

then CFKn;l is defined as a two term sequence,

CFKn;l D CFKn;l�1

fl�1����! qfl�1 CFKn;l�1 :

By induction we may assume that

CFKn;l�1 Š .Pn�1 t 1/˝ .FKn;l�1 ˚Kl�1/;

where Kl�1 ' 0 satisfies the conclusion of the lemma. We claim that there is a
decomposition

CFKn;l Š .Pn�1 t 1/˝ .FKn;l ˚qfl�1 FKn;l�2 ˚Kl�1 ˚ qfl�1Kl�1/: (3)

This can be observed by writing the most important part of the recursion defining
CFKn;l in a helpful way:

h
FKn;l�1.0/

f0 ��

� � �fl�1

��

� � � fl�3 �� FKn;l�1.l � 2/
fl�2 ��

fl�1

��

FKn;l�1.l � 1/
i

fl�1

��h
fl�1 FKn;l�1.0/

f0

�� � � �
fl�3

�� fl�1 FKn;l�1.l � 2/
i

ˇ1

�� fl�1 FKn;l�1.l � 1/

FKn;l .l/:

The i th row above is contained in the i th term below, i D 1; 2:

CFKn;l�1

fl�1����! fl�1 CFKn;l�1 :
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In this diagram the lower order projector .Pn�1 t1/ is omitted to simplify the notation.
The terms in the top row are FKn;l�1, the truncated Frenkel–Khovanov sequence of
length l � 1. By the inductive assumption, this sequence is a summand in CFKn;l�1

and the remaining part – the contractible summand Kl�1 – is not included in the
diagram. The terms on the left in the bottom row are of the form fl�1 FKn;l�2.
Observe that by definition the last term fl�1 FKn;l�1.l � 1/ is equal to the next term
FKn;l .l/ in the Frenkel–Khovanov sequence. The FKn;l summand in (2) is seen in
the diagram above as FKn;l�1 in the top row followed by the vertical map fl�1 to
fl�1 FKn;l�1.l � 1/. Equation (3) follows immediately.

To prove that .Pn�1 t 1/˝Kl is contractible, where

Kl D qfl�1 FKn;l�2 ˚Kl�1 ˚ qfl�1Kl�1;

further analysis of the differential CFKn;l is necessary. Note that .Pn�1 t 1/ ˝
fl�1 FKn;l�2 is contractible by Corollary 7.6, more precisely all terms in this se-
quence are either contained in triples or quadruples or are projectors capped by turn-
backs. By the inductive hypothesis on the off-diagonal entry of the differential in
the statement of the lemma, when the terms participating in the Gaussian elimina-
tions in Kl�1, qfl�1Kl�1 and qfl�1 FKn;l�2 are grouped together, (in the notation
of Lemma 2.11) the isomorphisms underlying the Gaussian eliminations in the sum-
mands, a2i W A2i ! A2iC1 and e2iC1 W B2iC1 ! B2iC2 remain isomorphisms be-
cause the matrices are lower triangular. After removing all triples and quadruples,
the remaining chain complex consisting of contractible terms may be contracted by
Lemma 2.12 (big collapse). This concludes the proof that .Pn�1 t 1/˝ Kl is con-
tractible.

To propagate the inductive hypothesis on the differential, note that the only new
off-diagonal component, of the form in the statement of the lemma, introduced during
the inductive step, is the map ˇl in the diagram above. The Gaussian eliminations
take place in the sequence qfl�1 FKn;l�2 in the bottom row and since ˇl is defined
on the last term of that sequence, clearly the component of the differential on the
domain of the isomorphisms in the Gaussian eliminations is trivial.

The proof in the second case (when degq.fl / D 2) is almost exactly the same.
Instead of one row of contractible terms there are two new rows of contractible terms.
By definition,

CFKn;l D CFKn;l�1

fl�1����! qfl�1 CFKn;l�1

fl��! q3flfl�1 CFKn;l�1 :

Again by induction we may assume that

CFKn;l�1 Š .Pn�1 t 1/˝ .FKn;l�1 ˚Kl�1/

and Cl�1 ' 0. In this case the claim is that there is a decomposition

CFKn;l Š .Pn�1 t 1/˝ .FKn;l ˚Kl/;
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where

Kl D qfl�1 FKn;l�2 ˚Kl�1 ˚ qfl�1Kl�1 ˚ q3flfl�1 FKn;l�1 ˚q3flfl�1Kl�1 :

Again this can be observed by writing the most important part of the recursion as
follows:h

FKn;l�1.0/
f0 ��

� � �fl�1

��

� � � fl�3 �� FKn;l�1.l � 2/ fl�2 ��

fl�1

��

FKn;l�1.l � 1/
i

fl�1

��h
fl�1 FKn;l�1.0/

f0 ��

fl

��
� � �
� � � fl�3 �� fl�1 FKn;l�1.l � 2/

i
ˇ1 ��

fl

��

fl�1 FKn;l�1.l � 1/
fl

��h
flfl�1 FKn;l�1.0/

f0 �� � � �fl�3�� flfl�1 FKn;l�1.l � 2/
i

ˇlC3�� flfl�1 FKn;l�1.l � 1/:

The i th row above is contained in the i th term below, i D 1; 2; 3:

CFKn;l�1

fl��! fl CFKn;l�1

flC1����! flC1fl CFKn;l�1 :

As in the previous case, the summands in Kl are contractible.

Remark 7.11. The proof of the lemma above used the recursive definition of the
chain complex CFKn;l . Completely expanding the recursion gives the following
decomposition:

CFKn;l D
M

I

ql.I/C�.I/fI FKn;l�l.I/

where I are k-tuples indexing maps in the sequence FKn, l.I / is the cardinality
of I , fI D fi1 B fi2 B � � � B fik when I D .i1; i2; : : : ; ik/ and �.I / is the num-
ber of degree 2 maps in fI . Moreover, if fm is the differential of FKn then the
differential of in each summand, fI FKn;l�l.I/, is fI .fm/. Each summand (ex-
cept for I D ;) is contractible by Corollary 7.6. In the notation of Lemma 7.10,
Kl D L

I¤; ql.I/C�.I/fI FKn;l�l.I/ and the summand FKn;l corresponds to I D ;.

The following statement is important for establishing the properties of a universal
projector:

Lemma 7.12 (contractibility under turnbacks). Let n > 2, l � 0 and j 2 f1; : : : ;
n� 1g. Then all terms in the chain complex

CFKn;l ˝ej
may be contracted, except possibly for the l th term,

.Pn�1 t 1/˝ FKn;l .l/
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Proof. By Lemma 7.10,

CFKn;l ˝ej Š ..Pn�1 t 1/˝ .FKn;l ˝ej //˚ ..Pn�1 t 1/˝ .Kl ˝ ej //:

Application of � ˝ ej does not change the contractibility of the second summand.
By Proposition 7.5 all of the terms (besides possibly the last, depending on j ) in the
first summand are either projectors Pn�1 capped by turnbacks or contained in triples
and quadruples. The rest of the proof is identical to the proof of the inductive step in
Lemma 7.10.

As a consequence of Lemma 7.10 we have the following definition.

Definition 7.13 (the truncated projector Pn;l ). Contracting Kl � CFKn;l yields a
homotopy equivalence

CFKn;l �! Pn;l

onto a chain complex Pn;l that consists of the first l terms of the Frenkel–Khovanov
sequence pictured at the beginning of Section 7.2.

Note that the chain complex Pn;l may be thought of as a completed version of
the truncated homotopy chain complex HPn;l (Definition 7.7). Given a homotopy
chain complex there is a standard obstruction theoretic approach to constructing
a chain complex in which new components corresponding to nullhomotopies and
Massey products of nullhomotopies are added to the differential; see IV.2.10 in [10].
The extra maps in Pn;l are precisely those corresponding to these homotopies and
Massey products. Our axioms (Definition 3.1) guarantee that any such choice of
Massey products yields a unique chain complex up to homotopy.

The universal projector Pn will be defined as the limit of Pn;l as l ! 1. Its
contractibility under turnbacks (to show that Pn satisfies the axioms of a universal
projector in Definition 3.1) follows from Lemma 7.12. The remaining property,
ensuring that the limit exists, is the “stability” of the sequence fPn;lg, proved in the
following Proposition 7.14.

We now show that the chain complex Pn;lC1 is obtained from the chain complex
Pn;l by adding the next term in the picture at the beginning of Section 7.2 and only
adding maps to the differential from the old terms to the new term. The maps between
those terms inPn;lC1 which come fromPn;l are exactly the same as the maps between
terms in Pn;l . We may conclude from this together with the previous proposition that
there is a chain complex Pn D Pn;1 which is a universal projector.

Proposition 7.14 (Stability of construction). The inclusion

Pn;l ,�! Pn;lC1

is an isomorphism onto its image. Moreover,

Pn;lC1 Š Pn;l ˚ �
.Pn�1 t 1/˝ FKn;l .l/

�
:
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dPn;lC1
is lower triangular with respect to this decomposition and dPn;lC1

jPn;l
D

dPn;l
.

Proof. This follows from an analogue of the first commutative diagram in the proof
of Proposition 7.10. Pn;lC1 is obtained from Pn;l by

h
Pn;l .0/

d0 ��

fl�1

��
� � �
� � � dl�3 �� Pn;l .l � 2/

dl�2 ��

fl�1

��

Pn;l .l � 1/
i

fl�1

��h
fl�1Pn;l.0/

d0

�� � � �
dl�3

�� fl�1Pn;l.l � 2/
i

ˇl

�� fl�1Pn;l .l � 1/ .

For the sake of clarity we have omitted from the diagram the parts of the differential
dPn;l

between non-consecutive terms. The terms in the lower left-hand corner are
again contractible. Contracting them does not change the maps di along the top
row.

7.4. A doubling construction. In the proof of the main theorem we only concerned
ourselves with what could be called right contractibility or the statement that for
C� 2 Kom.n/ and 0 < i < n,

C� ˝ ei ' 0:

If C� is right contractible then define NC� 2 Kom.n/ to be the chain complex in
which each diagram and morphism is flipped upside down. Now define a new chain
complex D� by

D� D xC� ˝ C�:
The contractibility of D� by turnbacks on both sides now follows from that of

C� on one side. The first two axioms of the universal projector are satisfied by D�
provided that they are satisfied by C�.
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