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A quaternionic braid representation
(after Goldschmidt and Jones)

Eric C. Rowell1

Abstract. We show that the braid group representations associated with the .3; 6/-quotients
of the Hecke algebras factor over a finite group. This was known to experts going back to the
1980s, but a proof has never appeared in print. Our proof uses an unpublished quaternionic
representation of the braid group due to Goldschmidt and Jones. Possible topological and
categorical generalizations are discussed.
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1. Introduction

Jones analyzed the images of the braid group representations obtained from Temper-
ley–Lieb algebras in [11] where, in particular, he determined when the braid group
images are finite or not. Braid group representations with finite image were also
recognized in [12] and [8]. Some 15 years later the problem of determining the
closure of the image of braid group representations associated with Hecke algebras
played a critical role in analyzing the computational power of the topological model
for quantum computation [6]. Following these developments the author and collabo-
rators analyzed braid group representations associated with BMW-algebras [15] and
twisted doubles of finite groups [5]. Partially motivated by empirical evidence the
author conjectured that the braid group representations associated with an object X

in a braided fusion category C has finite image if, and only if, the Frobenius–Perron
dimension of C is integral (see e.g. Conjecture 6.6 of [22]). In [18], [25] various
instances of this conjecture were verified. This current work verifies this conjecture
for the braided fusion category C.sl3; 6/ obtained from the representation category
of the quantum group Uqsl3 at q D e� i =6 (see [23] for details and notation). More

1The author was partially supported by NSA grant H98230-10-1-0215 and benefitted from discussions
with V. Jones, M. Larsen, V. Ostrik, D. Nikshych, F. Sottile and H. Wenzl. Handwritten notes by D. Gold-
schmidt and V. Jones were very useful.
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generally, Jimbo’s [10] quantum Schur–Weyl duality establishes a relationship be-
tween the modular categories C.slk; `/ obtained from the quantum group Uqslk at
q D e� i =` and certain semisimple quotients Hn.k; `/ of specialized Hecke alge-
bras Hn.q/ (defined below). That is, if we denote by X 2 C.slk; `/ the simple
object analogous to the vector representation of slk then there is an isomorphism
Hn.k; `/ Š End.X˝n/ induced by gi ! I ˝i�1

X ˝ cX;X ˝ I ˝n�i�1
X . In particular,

the braid group representations associated with themodular categoryC.sl3; 6/ are the
same as those obtained from Hn.3; 6/. It is known that braid group representations
obtained from Hn.3; 6/ have finite image (mentioned in [6], [13], [18]), but a proof
has never appeared in print. This fact was discovered by Goldschmidt and Jones
during the writing of [8] and independently by Larsen during the writing of [6]. We
benefitted from the notes of Goldschmidt and Jones containing the description of the
quaternionic braid representation below. Our techniques follow closely those of [11],
[12], [14]. The rest of the paper is organized into three sections. In Section 2 we
recall some notation and facts about Hecke algebras and their quotients. The main
results are in Section 3, and in Section 4 we indicate how the category C.sl3; 6/ is
exceptional from topological and categorical points of view.

2. Hecke algebras

We extract the necessary definitions and results from [27] that we will need in the
sequel.

Definition 2.1. TheHecke algebraHn.q/ for q 2 C is theC-algebra with generators
g1; : : : ; gn�1 satisfying relations

(H1)0 gigiC1gi D giC1gigiC1 for 1 � i � n � 2,

(H2)0 gigj D gj gi for ji � j j > 1, and

(H3)0 .gi C 1/.gi � q/ D 0.

Technically,Hn.q/ is the Hecke algebra of typeA, but we will not be considering
other types so we suppress this distinction. One immediately observes thatHn.q/ is
the quotient of the braid group algebra CBn by the relation (H1)0. Hn.q/ may also
be described in terms of the generators ei D .q�gi /

.1Cq/
, which satisfy

(H1) e2
i D ei ,

(H2) ei ej D ej ei for ji � j j > 1, and

(H3) ei eiC1ei � q=.1 C q/2ei D eiC1ei eiC1 � q=.1 C q/2eiC1 for 1 � i � n � 2.

For any � 2 C, Ocneanu [7] showed that one may uniquely define a linear functional
tr onH1.q/ D S1

nD1 Hn.q/ satisfying

(1) tr.1/ D 1,
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(2) tr.ab/ D tr.ba/, and

(3) tr.xen/ D � tr.x/ for any x 2 Hn.q/.

Any linear function on H1 satisfying these conditions is called a Markov trace
and is determined by the value � D tr.e1/. Now suppose that q D e2� i =` and

� D .1�q1�k/

.1Cq/.1�qk/
for some integers k < `. Then, for each n, the (semisimple)

quotient ofHn.q/ by the annihilator of the restriction of the traceHn.q/=Ann.tr/ is
called the .k; `/-quotient. We will denote this quotient byHn.k; `/ for convenience.
Wenzl [27] has shown that Hn.k; `/ is semisimple and described the irreducible
representations �

.k;`/

�
where � is a .k; `/-admissible Young diagrams of size n. Here

a Young diagram � is .k; `/-admissible if � has at most k rows and �1 � �k � ` � k

where �i denotes the number of boxes in the i th row of �. The (faithful) Jones–
Wenzl representation is the sum �.k;`/ D L

� �
.k;`/

�
. Wenzl [27] has shown that

�.k;`/ is a C �-representation, i.e. the representation space is a Hilbert space (with
respect to a Hermitian form induced by the trace tr) and �

.k;`/

�
.ei / is a self-adjoint

operator. One important consequence is that each �
.k;`/

�
induces an irreducible unitary

representation of the braid group Bn via composition with �i ! gi , which is also
called the Jones–Wenzl representation of Bn.

3. A quaternionic representation

Consider the .3; 6/-quotient Hn.3; 6/. The .3; 6/-admissible Young diagrams have
at most 3 rows and �1 � �3 � 3. For n � 3 there are either 3 or 4 Young diagrams of

size n that are .3; 6/-admissible, and � D .1�q1�3/

.1Cq/.1�q3/
D 1=2 in this case. Denote by

'n the unitary Jones–Wenzl representation of Bn induced by �.3;6/. Our main goal
is to prove the following:

Theorem 3.1. The image 'n.Bn/ is a finite group.

We will prove this theorem by embedding Hn.3; 6/ into a finite dimensional
algebra (Lemma 3.2) and then showing that the group generated by the images
of g1; : : : ; gn�1 is finite (Lemma 3.3). Denote by Œ ; � the multiplicative group
commutator and let q D e2� i =6. Consider the C-algebra Qn with generators
u1; v1; : : : ; un�1; vn�1 subject to the relations

(G1) u2
i D v2

i D �1,

(G2) Œui ; vj � D �1 if ji � j j � 1,

(G3) Œui ; vj � D 1 if ji � j j � 2, and

(G4) Œui ; uj � D Œvi ; vj � D 1.
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Notice that the group f˙1; ˙ui ; ˙vi ; ˙uivig is isomorphic to the group of quater-
nions. We see from these relations that dim.Qn/ D 22n�2 since each word in the
ui ; vi has a unique normal form

˙ u
�1

1 : : : u
�n�1

n�1 v
�1

1 : : : v
�n�1

n�1 (1)

with �i ; �i 2 f0; 1g. Observe that a basis forQn is given by taking allC signs in (1).
We define a C-valued trace Tr on Qn by setting Tr.1/ D 1 and Tr.w/ D 0 for any
non-identity word in the ui ; vi . One deduces that Tr is faithful from the uniqueness
of the normal form (1). Define

si D �1

2q
.1 C ui C vi C uivi /; (2)

for 1 � i � n � 1.

Lemma 3.2. The subalgebra An � Qn generated by s1; : : : ; sn�1 is isomorphic to
Hn.3; 6/.

Proof. It is a straightforward computation to see that the si satisfy

(B1) sisiC1si D siC1si siC1,

(B2) sj si D si sj if ji � j j � 2, and

(E1) .si � q/.si C 1/ D 0.

Indeed, relation (B2) is immediate from relations (G3) and (G4). It is enough to
check (B1) and (E1) for i D 1. For this we compute

s�1
1 D �q

2
.1 � u1 � v1 � u1v1/;

s�1
1 u1s1 D u1v1; s�1

1 v1s1 D u1; (3)

s�1
1 u2s1 D u2v1; s�1

1 v2s1 D �u1v1v2;

from which (B1) and (E1) are deduced. Thus '.gi / D si induces an algebra ho-
momorphism ' W Hn.q/ ! Qn with '.Hn.q// D An. Set fi D '.ei / D .q�si /

.1Cq/

and let b 2 Qn�1, that is b is in the span of the words in fu1; v1; : : : ; un�2; vn�2g.
The constant term of fn�1b is the product of the constant terms of b and fn�1 since
fn�1 is in the span of f1; un�1; vn�1; un�1vn�1g, so Tr.fn�1b/ D Tr.fn�1/Tr.b/.
For each a 2 Hn.q/ we define '�1.Tr/.a/ D Tr.'.a//, and conclude that '�1.Tr/
is a Markov trace on Hn.q/. Computing, we see that Tr.fn�1/ D 1=2, so that
by uniqueness '�1.Tr/ D tr as functionals on Hn.q/. Now if a 2 ker.'/ we see
that tr.ac/ D Tr.'.ac// D 0 for any c so that ker.'/ � Ann.tr/. On the other
hand, if a 2 Ann.tr/ we must have Tr.'.ac// D tr.ac/ D 0 for all c 2 Hn.q/.
If '.a/ ¤ 0 then, by definition of Tr and ', there exists an a� 2 Hn.q/ such that
Tr.'.a/'.a�// ¤ 0 since Tr is faithful. Therefore Ann.tr/ � ker.'/. In particular,
we see that ' induces

Hn.3; 6/ D Hn.q/=Ann.tr/ Š '.Hn.q// D An � Qn:
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Lemma 3.3. The group Gn generated by s1; : : : ; sn�1 is finite.

Proof. Consider the conjugation action of the si onQn. We claim that the conjugation
action of si on the words in the ui ; vi is by a signed permutation. Since si commutes
withwords inuj ; vj with j 62 fi �1; i; i C1g, by symmetry it is enough to consider the
conjugation action of s1 on the four elements fu1; v1; u2; v2g, which is given in (3).
Thus we see that Gn modulo the kernel of this action is a (finite) signed permutation
group. The kernel of this conjugation action lies in the center Z.Qn/ of Qn. Using
the normal form above we find that the center Z.Qn/ is either 1-dimensional or
4-dimensional. Indeed, since the words

W D fu�1

1 : : : u
�n�1

n�1 v
�1

1 : : : v
�n�1

n�1 g
for .�1; : : : ; �n�1; �1; : : : ; �n�1/ 2 Z2n�2

2 form a basis for Qn and tw D ˙wt for
w; t 2 W we may explicitly compute a basis for the center as those words w 2 W

that commute with ui and vi for all i . This yields two systems of linear equations
over Z2: 8̂

<
:̂

�1 C �2 D 0;

�i C �iC1 C �iC2 D 0; 1 � i � n � 3;

�n�2 C �n�1 D 0;

(4)

and 8̂
<
:̂

�1 C �2 D 0;

�i�1 C �i C �iC1 D 0; 1 � i � n � 3;

�n�2 C �n�1 D 0:

(5)

Non-trivial solutions to (4) only exist if 3 j n since we must have �1 D �2 D �n�2 D
�n�1 D 1 as well as �i D 0 if 3 j i and �j D 1 if 3 − j and similarly for (5). Thus
Z.Qn/ is C if 3 − n and is spanned by 1; U; V and U V where U D Q

3−i ui and
V D Q

3−i vi if 3 j n. The determinant of the image of si under any representation is
a 6th root of unity and hence the same is true for any element z 2 Z.Qn/\Gn. Thus
for 3 − n the image of any z 2 Z.Qn/ \ Gn under the left regular representation is
a root of unity times the identity matrix, and thus has finite order. Similarly, if 3 j n,
the restriction of any z 2 Z.Qn/ \ Gn to any of the four simple components of the
left regular representation is a root of unity times the identity matrix and so has finite
order. So the group Gn itself is finite.

This completes the proof of Theorem 3.1.

Remark 3.4. The proof of Lemma 3.3 shows that the projective image ofGn is a (non-
abelian) subgroup of the full monomial group G.2; 1; 4n�1/ of signed 4n�1 � 4n�1

matrices. Themain goal of this paper is to verify [22], Conjecture 6.6, in this case, but
with further effort one could determine the group Gn more precisely. It is suggested
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in [13] that Gn is an extension of PSU.n � 1; F2/ so that

jGnj � 1

3
2.n�1/.n�2/=2

n�1Y
iD1

.2i � .�1/i /;

but that such a result has not appeared in print. Modulo the center, the generators
si have order 3 so that Gn=Z.Gn/ is a quotient of the factor group Bn=h�3

1 i (here
�i are the usual generators of Bn). For n � 5, Coxeter [1] has shown that these
quotients are finite groups and determined their structure. In particular, the projective
image of B5=h�3

1 i is PSU.4; F2/, so G5 is an extension of this simple group. A
strategy for showingGn is an extension of PSU.n � 1; F2/ for n > 5would be to find
an .n � 1/-dimensional invariant subspace of Qn so that the restricted action of the
braid generators is by order 3 pseudo-reflections (projectively). A comparison of the
dimensions of the simple Hn.3; 6/-modules with those of PSU.n � 1; F2/ indicates
that one must also restrict to those n not divisible by 3.

4. Concluding remarks, questions and speculations

The categoryC.sl3; 6/ does not seem to have any obvious generalizations. Wediscuss
some of the ways in which C.sl3; 6/ appears to be exceptional by posing a number
of (somewhat naïve) questions which we expect to have negative answers.

4.1. Link invariants. From any modular category one obtains (quantum) link in-
variants via Turaev’s approach [26]. The link invariant P 0

L.q; �/ associated with
C.slk; `/ is (a variant of) the HOMFLY-PT polynomial ([7], where a different choice
of variables is used). For the choices q D e2� i =6 and � D 1=2 corresponding to
C.sl3; 6/ the invariant has been identified [16]:

P 0
L.e2� i =6; 1=2/ D ˙ i.

p
2/dimH1.TLIZ2/;

where TL is the triple cyclic cover of the three sphere S3 branched over the link L.
There is a similar series of invariants for any odd prime p: ˙ i.

p
p/dimH1.DLIZp/,

where DL is the double cyclic cover of S3 branched over L (see [16] and [8]).
It appears that this series of invariants can be obtained from modular categories
C.sop; 2p/. This has been verified for p D 3; 5 (see [8] and [12]) and we have
recently handled the p D 7 case (unpublished, using results in [29]).

Question 4.1. Are there modular categories with associated link invariant

˙ i.
p

p/dimH1.TLIZp/‹

In [15] it is suggested that if the braid group images corresponding to some ribbon
category are finite then the corresponding link invariant is classical, i.e. equivalent
to a homotopy-type invariant. Another formulation of this idea is found in [24] in
which classical is interpreted in terms of computational complexity.
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4.2. Fusion categories and II1 factors. The categoryC.sl3; 6/ is an integral fusion
category, that is the simple objects have integral dimensions. The categoriesC.slk; `/

are integral for .k; `/ D .3; 6/ and .k; k C 1/ but no other examples are known
(or believed to exist). C.sl3; 6/ has six simple (isomorphism classes of) objects:
fXi ; X�

i g3
iD1 of dimension 2 (dual pairs), three simple objects 1; Z; Z� of dimension

1, and one simple object Y of dimension 3. The Bratteli diagram for tensor powers
of the generating object X1 is given in Figure 1. It is shown in [4] that C is an
integral fusion category if, and only if, C Š Rep.H/ for some semisimple finite
dimensional quasi-Hopf algebra H , so in particular C.sl3; 6/ Š Rep.H/ for some
quasi-triangular quasi-Hopf algebra H . One wonders if strict coassociativity can be
achieved:

Question 4.2. Is there a (quasi-triangular) semisimple finite dimensional Hopf alge-
bra H with C.sl3; 6/ Š Rep.H/?

Other examples of integral categories are the representation categoriesRep.D!G/

of twisted doubles of finite groups studied in [5] (here G is a finite group and ! is
a 3-cocycle on G). Any fusion category C with the property that its Drinfeld center
Z.C/ is equivalent as a braided fusion category to Rep.D!G/ for some!; G is called
group-theoretical (see [4], [19]). Themain result of [5] implies that ifC is any braided
group-theoretical fusion category then the braid group representations obtained from
C must have finite image. In [18] we showed that C.sl3; 6/ is not group-theoretical
and in fact hasminimal dimension (36) among non-group-theoretical integralmodular
categories.

Question 4.3. Is there a family of non-group-theoretical integral modular categories
that includes C.sl3; 6/?

Notice that C.sl3; 6/ has a ribbon subcategory D with simple objects 1; Z; Z�
and Y. The fusion rules are the same as those of Rep.A4/: Y ˝ Y Š 1 ˚ Z ˚
Z� ˚ Y . HoweverD is not symmetric and C.sl3; 6/ has smallest dimension among
modular categories containingD as a ribbon subcategory (what Müger would call a
minimal modular extension [17]). One possible generalization of C.sl3; 6/ would be
a minimal modular extension of a non-symmetric ribbon category Dn similar to D

above. That is,Dn should be a non-symmetric ribbon category with n 1-dimensional
simple objects 1 D Z0; : : : ; Zn�1 and one simple n-dimensional object Yn such that
Yn ˝ Yn Š Yn ˚ Ln�1

iD0 Zi and the Zi have fusion rules like Zn. For Dn to exist
even at the generality of fusion categories one must have n D p˛ � 1 for some
prime p and integer ˛ by [3], Corollary 7.4. However, V. Ostrik [20] informs us
that these categories do not admit non-symmetric braidings except for n D 2; 3. So
this does not produce a generalization. A pair of hyperfinite II1 factors A � B with
index ŒB W A� D 4 can be constructed from C.sl3; 6/ (see [28], Section 4.5). The
corresponding principal graph is the Dynkin diagram E

.1/
6 the nodes of which we
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Figure 1. Bratteli diagram for C.sl3; 6/.

label by simple objects:

Z�

X3

1 X1 Y X�
2 Z:

This principal graph can be obtained directly from the Bratteli diagram in Figure 1 as
the nodes in the 6th and 7th levels and the edges between them. Hong [9] showed that
any II1 subfactor pairM � N with principal graphE

.1/
6 can be constructed from some

II1 factor P with an outer action of A4 asM D P Ì Z3 � P Ì A4 D N. Subfactor
pairs with principal graph E

.1/
7 and E

.1/
8 can also be constructed (see e.g. [21]). We

ask:

Question 4.4. Is there a unitary non-group-theoretical integralmodular categorywith
principal graph E

.1/
7 or E

.1/
8 ?

Even a braided fusion category with such a principal graph would be interesting,
and have interesting braid group image. Notice that the subcategory D mentioned
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above plays a role here as A4 corresponds to the Dynkin diagram E
.1/
6 in the McKay

correspondence. A modular category C with principal graphE
.1/
7 (resp.E.1/

8 ) would
contain a ribbon subcategory F1 (resp. F2) with the same fusion rules as Rep.S4/

(resp. Rep.A5/). Using [2], Lemma 1.2, we find that such a category C must have
dimension divisible by 144 (resp. 3600). The ribbon subcategory F2 must have
symmetric braiding (D. Nikshych’s proof: Rep.A5/ has no non-trivial fusion subcat-
egories so if it has a non-symmetric braiding, the Müger center is trivial. But if the
Müger center is trivial it is modular, which fails by [2], Lemma 1.2). This suggests
that forE

.1/
8 the answer to Question 4.4 is “no.” There is a non-symmetric choice for

F1 (as V. Ostrik informs us [20]), withMüger center equivalent to Rep.S3/. By [17],
Proposition 5.1, a minimal modular extensionC of such anF1 would have dimension
144.
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