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construction of the classical Kauffman polynomial.

Keywords. Characteristic submanifold, framed links, finite type invariants, Kauffman skein
module, loop space, Seifert fibered 3-manifolds, toroidal decompositions.

Mathematics Subject Classification (2010). 57N10, 57M2, 57R42, 57R56.

1. Introduction

The Kauffman polynomial is a 2-variable Laurent polynomial invariant for links in
S3 [17] that has interesting applications and connections with contact geometry. The
degree in one of the variables of the Kauffman polynomial provides an upper bound
for the Thurston–Bennequin norm of Legendrian links [8], [26]. The inequality is
known to be sharp for several classes of links (e.g. alternating links) and the proof of
this sharpness has led to deeper connections between knot polynomials and contact
geometry [25].

In this paper we study framed links in oriented, irreducible 3-manifolds that are Z-
homology 3-spheres or atoroidal Q-homology 3-spheres. We give conditions under
which an invariant that is defined on framed singular links with one double point
gives rise to an invariant of framed links (Theorem 2.6). This allows us to construct
formal power series framed link invariants obeying the Kauffman polynomial skein
relations. The coefficients of these series are finite type framed link invariants and are
perturbative versions of the Reshetikhin–Turaev, Witten SO.n/-invariants [24], [29]
in the sense of Le–Murakami–Ohtsuki [20]. Using weight systems corresponding to
appropriate representations of the Lie algebras so.n/ and the naturality of the LMO
invariant, one obtains a Kauffman type power series invariant for framed links in all
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Q-homology 3-spheres. Our approach in this paper is quite different from this line
and allows us to solve the subtler problem of constructing power series invariants with
given values on a set of initial links. Our approach here, that exhibits the interplay
between skein framed link theory and the topology of 3-manifolds, is inspired by
the study of Vassiliev invariants (also known as finite type invariants) [27] using
3-dimensional topology techniques [14]. The precise relation of the power series
constructed here to the one obtained via the LMO invariant is not clear to us at this
point.

Definition 1.1. LetM be an oriented Q-homology 3-sphere. A framedm-component
link is a collection of m unordered (unoriented) circles smoothly and disjointly em-
bedded inM and such that each component is equipped with a continuous unit normal
vector field. Two framed links are equivalent if they are isotopic by an ambient iso-
topy that preserves the homotopy class of the vector field on each component. Let
xL ´ xL.M/ denote the set of isotopy classes of framed links in M .

Figure 1. The parts of LC, L� and Lo and L1 in B .

L Lr

Ll

Figure 2. Lr and Ll are obtained by a full twist from L.

To state the main result of the paper we need some notation and conventions: Let
LC,L�,Lo andL1 denote four framed links that are identical everywhere except in
a 3-ballB inM . There under a suitable projection of the parts inB , LC, L�, Lo and
L1 look as shown in Figure 1. Also for every framed link we denote by Lr ; Ll the
framed links that are identical to L everywhere except in a 3-ball where they differ
as shown in Figure 2. Here we suppose that the orientation of M agrees with the
right-handed orientation of the 3-balls containing the link parts in Figures 1 and 2
and that the framing vector for link parts in these figures is perpendicular to the page.
The framings of the links coincide everywhere outside the parts shown in Figures 1
and 2.

Let Oƒ ´ CŒŒx; y�� denote the ring of formal power series in x, y over C and let

t ´ ex D 1 C x C x2

2
C � � � . Let us set a ´ iey D i C iy C iy2

2
C � � � and set

z ´ i t � .i t/�1 D iex C ie�x D 2i C ix2 C � � � . Note that a and z are invertible
in Oƒ.
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Definition 1.2. The Kauffman skein module of M over Oƒ, denoted by F.M/, is the
quotient of the free Oƒ-module with basis xL by its ideal generated by all the relations
of the following two types:

LC � L� D zŒLo � L1�;
Lr D aL and Ll D a�1L:

We will use F�.M/ ´ Hom Oƒ.F.M/; Oƒ/ to denote the Oƒ-dual of F.M/.

Remark 1.3. The usual convention in skein module theory is to allow an empty link
as part of the set xL. In contrast to that, in this paper, we find it convenient to work
with non-empty links (Definition 1.1).

Remark 1.4. Since the links are unoriented the declarations LC and L�, when con-
sidering a crossing, are arbitrary. However this does not matter for our purposes since
the first skein relation in Definition 1.2 is invariant under simultaneously interchang-
ing LC with L� and Lo with L1.

To continue let � ´ �.M/ denote the set of non-trivial conjugacy classes of
�1.M/ and O� denote the set obtained from � by identifying the conjugacy class
of every element 1 ¤ x 2 �1.M/ with that of x�1. Also let S. O�/ denote the
symmetric algebra of the free Oƒ-module, say Oƒ O� , with basis O� . Finally, let S�. O�/ ´
Hom Oƒ

�
S. O�/; Oƒ�

denote the Oƒ-dual of S. O�/.
Theorem 1.5. Let M be an oriented Q-homology 3-sphere with �2.M/ D 0 and
such that ifH1.M/ ¤ 0 thenM is atoroidal. Then there is a Oƒ-module isomorphism

F�.M/ Š S�. O�/:
For components that are homologically trivial in M the homotopy class of the

framing vector field is determined by an integer: the algebraic intersection number
of a push-out of the component in the direction of the framing vector field with a
Seifert surface bounded by the component. This algebraic intersection number is
the self-linking number of the component. There is a canonical framing defined by
the Seifert surface that corresponds to the integer zero. This implies that in a Z-
homology sphere, for every underlying (unframed) isotopy class of knots the framed
knot types correspond to integers. The self-linking number can also be defined in
terms of Vassiliev–Gusarov axioms; it is a finite type framed link invariant of order
one. As shown by Chernov [3] this point of view generalizes to all framed knots
in 3-manifolds; in particular for knots in irreducible Q-homology 3-spheres that we
study here. For M as above, given a conjugacy class c in �1.M/ and a fixed framed
knot CK representing c, Chernov shows that there is a unique Z-valued invariant for
all framed knots representing c with given value on CK (Theorem 2.2 of [3]). His
work implies that, with a chosen set of initial knots, for every underlying (unframed)
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isotopy class of knots the framed knot types correspond to integers. This point will
be useful to us in the next sections.

The isomorphism in Theorem 1.5 also depends on a choice of initial links which
we now discuss: For every unordered sequence of elements in O� [ f1g we choose
a framed link CL that realizes it and call it an initial link. For elements in O� [ f1g
that are trivial in H1.M/ we choose the canonical framing. This means that the
integer describing the framing on each component of an initial link is zero. For an
initial link CL with k homotopically trivial components we choose CL D CL� tU k ,
where CL� is an initial link with no homotopically trivial components and U k is the
standard unlink in a 3-ball disjoint from CL�. The one component unlink U 1 will
be abbreviated to U . In general we will assume that each component of an initial
link CL is the chosen initial knot for the corresponding element in O� [ f1g. We
will also assume that each component is the initial knot required to define Chernov’s
self-linking invariant. We will denote by CL� the set of all initial links with no
homotopically trivial components.

The elements in the set CL� [ fU g are in one-to-one correspondence with a basis
of S. O�/. An element RM 2 F�.M/ gives rise to one in S�. O�/ by restriction on the
set CL� [ fU g. Theorem 1.5 will follow easily once we have proven the following
result (see Section 4 for details).

Theorem 1.6. Let M be an oriented Q-homology 3-sphere with �2.M/ D 0, and
such that if H1.M/ ¤ 0 thenM is atoroidal. Given a map RM W CL� [ fU g ! Oƒ
there exists a unique map RM W xL ! Oƒ such that:

(1) The restriction of RM on CL� [ fU g is equal to RM .

(2) RM satisfies the Kauffman skein relation

RM .LC/ �RM .L�/ D zŒRM .Lo/ �RM .L1/�

for every skein quadruple of links LC, L�, Lo and L1 as in Figure 1.

(3) RM .Lr/ D aRM .L/ and RM .Ll/ D a�1RM .L/ for every L 2 xL.

Letƒ ´ CŒa˙1; z˙1� denote the ring of Laurent polynomials in a and z. We can
define the Kauffman skein module of M over ƒ, denoted by Fƒ.M/, and consider
its ƒ-dual, F�

ƒ.M/ ´ Homƒ.Fƒ.M/;ƒ/. As we will discuss in Section 4, for
links in S3, if we choose the value RS3.U / to lie in ƒ then RS3.L/ 2 ƒ, for every
L 2 xL. This implies that F�

ƒ.S
3/ Š ƒ and leads to the following question:

Question. LetM be as in Theorem 1.5. Can we choose the initial links CL� 2 CL�
so that we have a ƒ-module isomorphism

F�
ƒ.M/ Š S�

ƒ. O�/‹
Here, S�

ƒ. O�/ denotes theƒ-dual of the symmetric algebra of the freeƒ-module with
basis O� .
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In [16] we constructed formal power series invariants that satisfy the HOMFLY
skein change formula for unframed oriented links in large classes of Q-homology
3-spheres. Cornwell [4], [5], [6] shows that for lens spaces both the question above
and its analogue for the HOMFLY skein module of [15] have a positive answer. As a
result he obtains analogues of the aforementioned results of [8], [26] for Legendrian
links in contact lens spaces.

Theorem 2.6 of this paper is the framed link analogue of the “integrability of
singular link invariants” results proved in [14], [16]. Theorem 2.6 does not follow
from the results in these papers: In [14] we only treat knots while in [16] we treat
links in some classes of irreducible Z-homology 3-spheres. In this paper we are able
to remove those restrictions and deal with all irreducible Z-homology 3-spheres; see
Theorem 3.1 and Remark 3.2. If one forgets the framing, Theorem 3.1 generalizes the
integrability results and Theorem A of [16] for links in all irreducible Z-homology
3-spheres.

Framed links in general 3-manifolds and their skein modules were studied by sev-
eral authors before; see [23] and references therein. In particular, Przytycki [22] in-
troduced a two term homotopy skein module of framed links in oriented 3-manifolds
as quantum deformation of the fundamental group. In [13] Kaiser calculated this
module over the ring of Laurent polynomials with Z-coefficients. He showed that if
a 3-manifold contains no non-separating 2-spheres or tori then Przytycki’s module
is a symmetric algebra of the free module with basis the set of non-trivial conjugacy
classes of �1.M/. Kaiser also studied several variations of two term skein mod-
ules and put the classical self-linking number for null homologous knots as well as
Chernov’s generalization of it in the skein module theory framework. For details the
reader is referred to [13].

The paper is organized as follows: In Section 2 we formulate the problem of
integrating framed singular link invariants to invariants of framed links. Then we
state an integrability theorem and prove it for atoroidal Q-homology spheres. In
Section 3 we treat manifolds containing essential tori and in Section 4 we construct
the Kauffman power series invariants and prove Theorems 1.5 and 1.6.

Throughout the paper we will work in the smooth category.

Acknowledgment. I thank Chris Cornwell for his interest in this work and for
several stimulating questions about link theory in 3-manifolds that motivated me to
go back and work on this project. I thank Vladimir Turaev for suggesting that I
formulate the main result of the paper in terms of skein modules. I am grateful to the
anonymous referees for reading the paper carefully and making thoughtful comments
and suggestions that helped me improve the exposition.
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2. Framed oriented singular link invariants

Throughout this section we will work with oriented links in oriented 3-manifolds.
Theorem 2.6, as well as its unframed counterparts [14], [16], [21], are proved for
oriented links in oriented 3-manifolds. For example, the definitions of the signs of
resolutions of double points below use the orientation of links as well as that of the
ambient 3-manifolds.

2.1. Framed oriented singular links and resolutions. Let M be an oriented Q-
homology 3-sphere. An m-component oriented framed singular link of order n is
a collection of unordered oriented circles, smoothly immersed in M such that (i)
the only singularities are exactly n transverse double points; and (ii) the image of
each component is equipped with a continuous unit normal vector field. We con-
sider framed singular links up to ambient isotopy that preserves the orientations, the
transversality of the double points and the homotopy class of the vector field on
each component. For n D 0 we have an oriented framed link. We will denote by
L.n/ ´ L.n/.M/ (resp. L ´ L.M/) the set of isotopy classes of oriented framed
singular links of order n (resp. links) in M .

Convention. To simplify the exposition, for the remaining of the section and the next
section, we will say a framed link (resp. singular link) to mean an oriented framed
link (resp. singular link). Also when we say a 3-manifold, we will mean an oriented
3-manifold.

Let P denote a disjoint union of oriented circles and consider a framed singular
link represented by a smooth immersion L W P ! M . Let p 2 M be a double point
ofL; the inverse image consists of two pointsp1; p2 2 P . There are disjoint intervals
�1 and �2 on P with pi 2 int.�i /, i D 1; 2, such that for a neighborhood B of p we
have L \ B D L.�1/ [ L.�2/. Moreover, there is a proper 2-disc D in B such that
L.�1/, L.�2/ � D intersect transversally at p. Now L.�1/ [ L.�2/ intersects @D
at four points and, since �i inherits an orientation from that of P , we can talk of the
initial and terminal point of L.�i /. Choose arcs a1, a2, b1, b2 with disjoint interiors
such that

(1) a1 and a2 go from the initial point of L.�1/ to the terminal point of L.�1/ and
lie in distinct components of @B n @D; and

(2) b1 and b2 lie on @D with b1 going from the initial point of L.�1/ to the terminal
point of L.�2/ and b2 from the initial point of L.�2/ to the terminal point of
L.�1/. The complement of b1 t b2 in @D consists of two arcs, say c1, c2.

The orientation of M and that of L.�2/ define an orientation of a1 t a2; suppose
that this induced orientation agrees with the one of a1 and is opposite to that of a2.
Define the positive resolution of L at p to be

LC D L n L.�2/ [ a1;
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and the negative resolution to be

L� D L n L.�2/ [ a2:

In the case that n D 1 we also define

Lo D L n .L.�2/ [ L.�1// [ .b1 t b2/;

L1 D L n .L.�2/ [ L.�1// [ .c1 t c2/:

Note that L1 only makes sense as an unoriented link.

Definition 2.1. A framed singular linkL is called inadmissible if there is a 2-discD �
M such that L\D D @D and exactly one double point of L lies on @D. Otherwise
the singular link is called admissible. A crossing change on a link that produces an
inadmissible singular link as intermediate step will be called an inadmissible crossing
change.

In the proof of Theorem 2.6 it will be convenient for us to work with framed
links with ordered components: Let zL denote the set of isotopy classes of such
framed links in M . Similarly, let zL.n/ denote the set of isotopy classes of ordered
framed singular links with n-double points. There is an obvious map r W zL ! L that
forgets the ordering of the components of links; similarly we have forgetful maps
rn W zL.n/ ! L.n/ for all n 2 N. Recall from the Introduction that the framing of a
knot is determined by an integer, where in the case of not homologically trivial knots
this integer is provided by Chernov’s work. Thus the framing of anm-component link
in zL is determined by an ordered sequence ff1; : : : ; fmg of m integers; one assigned
to each component of the link. Every entry of the sequence is the affine self-linking
number of a link component and it changes by2under an inadmissible crossing change
while it remains unchanged under admissible crossing changes (Theorems 2.2, [3]).
Then, via r, an unordered link L 2 L inherits an unordered sequence of integers:
More specifically, given L 2 L, there is a set of ordered integer sequences, say f ,
corresponding to elements in r�1.L/. We assign to L the map

r�1.L/ ! f ;

sending each element to its corresponding ordered sequence. We will often abuse the
terminology and refer to f as the framing of the link L.

Definition 2.2. The total framing of a link L 2 L is defined to be �.L/ ´ Pm
iD1 fi

where ff1; : : : ; fmg is the ordered sequence corresponding to an appropriate lift
zL 2 r�1.L/ of L.

Definition 2.3. For an ordered, framed singular link zL� 2 zL.1/ we define a sequence
of integers ff1; : : : ; fmg by

fi .zL�/ ´
´

fi . QLC/ � fi .zL�/ if � 2 zLi ;

fi . QLC/ D fi . QL�/ otherwise.
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Note that, in the first case, fi .zL�/ is non-zero only if L� is inadmissible, in which
case it is equal to 2. For an unordered singular link L� 2 L.1/ we have a set of
ordered integer sequences, say f , corresponding to elements in r�1.L�/. The map
r�1.L�/ ! f , assigning to every ordered link in that preimage its corresponding
sequence, gives an unordered sequence of integers for L�.

2.2. Integration of singular link invariants. Given an abelian group A and a
framed link invariant F W L ! A, we can extend it to an invariant of framed singular
links by defining

f .L�/ ´ F.LC/ � F.L�/; (1)

for every L� 2 L.1/. Continuing inductively we can extend the invariant on singular
links in L.n/ for all n 2 N. We are interested in reversing this process; the reverse
process is usually referred to as integration of the singular link invariant to an invariant
of links [1], [14], [16], [21]. In this section we deal with the following question:
Suppose that we are given an invariant of framed singular links f W L.1/ ! A. Under
what conditions is there a framed link invariant F W L ! A so that (1) holds for all
singular links L� 2 L.1/? We will address this question for links in Q-homology
3-spheres with trivial �2.

Definition 2.4. LetN be an oriented compact 3-manifold with or without boundary.
A map ˆ W S1 � S1 ! N is called essential if it induces an injection on �1 and it
cannot be homotoped to a mapˆ0 W S1�S1 ! @N . Otherwiseˆ is called inessential.
The manifold N is called atoroidal if there are no essential maps S1 � S1 ! N .

Remark 2.5. Let L�� 2 L.2/ be a framed singular link with two inadmissible
singular points. By resolving the singular points, one at a time, we obtain four
singular links in L.1/. These are shown in Figure 3, where the notation is consistent
with that of Figure 2. We note that L�r is equivalent to Lr�. Similarly, L�l is

Figure 3. From left to right: L�r , Lr�, L�l , Ll�.

equivalent toLl�. Thus if f W L.1/ ! A is an invariant of framed singular links then
we have

f .L�r/ D f .Lr�/ and f .L�l/ D f .Ll�/: (2)



An intrinsic approach to invariants of framed links in 3-manifolds 79

Now (2) implies that the signed sum of f on the four singular links in Figure 3, where
signs are determined by (1), is equal to zero. Next we will show that if this holds true
for all L�� 2 L.2/, then f can be integrated to a framed link invariant.

Theorem 2.6. Suppose that M is a Q-homology sphere with �2.M/ D 0 and such
that ifH1.M/ ¤ 0 thenM is atoroidal. Let f W L.1/ ! A be an invariant of framed
singular links with one double point. Suppose that A is torsion free and that the
invariant f satisfies the relation

f .L�C/ � f .L��/ D f .LC�/ � f .L��/ (3)

for every L�� 2 L.2/. Then there exists a framed link invariant F such that f is
derived from F via equation (1). Here, the four singular links appearing in (3) are
obtained by resolving the singular points of L�� one at a time.

Theorem 2.6 is the framed link analogue of Theorem 3.16 of [14] and Theo-
rem 3.1.2 of [16]. As explained in the Introduction, however, here we work in a more
general class of manifolds. Also the presence of framing requires an adaptation of
the arguments: to formulate the correct “global integrability condition” (equation (6)
below) we need a notion of global framing around homotopies of links. The defi-
nition of such a notion is facilitated by the works of Chernov and Kaiser [3], [13]
(Definition 2.7). For arguments that are very similar to these in [14], [16] we will
refer the reader to these articles for details.

2.3. Loop space and framing control. Because in this section we work with ori-
ented links we need to slightly modify the set of initial links CL� [ fU g chosen
in the Introduction. Recall that L (resp. xL) denotes the set of isotopy classes of
framed oriented (resp. unoriented) links in M . Consider the set of oriented links
CL ´ o�1.CL� [fU g/, where o W L ! xL is the obvious forgetful map. Also recall
that zL denotes the set of isotopy classes of ordered framed links in M and that we
defined a forgetful map r W zL ! L. Given CL 2 CL, we pick L 2 r�1.CL/. We
will also use L to denote a representative L W P ! M of L, where P is a disjoint
union of oriented circles. Let ML.P;M/ denote the space of ordered smooth framed
immersions P ! M homotopic to L, equipped with the compact-open topology.
For every L0 2 zL and representative L0 2 ML.P;M/, let ˆ W P�Œ0; 1� ! M be a
homotopy with ˆ.P � f0g/ D L0 and ˆ.P � f1g/ D L. After a small perturbation
we can assume that for only finitely many points 0 < t1 < t2 < � � � < tn < 1,
�t ´ ˆ.P �ftg/ is not an embedding and it is a singular framed link of order 1. For
different t 0s in an interval of Œ0; 1� n ft1; t2; : : : ; tng the corresponding framed links
are equivalent and when t passes through ti , �t changes from one resolution of �ti

to the other.
For CL 2 CL, let MCL.M/ denote the space of unordered smooth framed immer-

sions homotopic to CL, equipped with the compact-open topology. The projection
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q W ML.P;M/ ! MCL.M/ is a covering map away from points that are fixed under
permutation of components.

Definition 2.7. Let ˆ be a homotopy between ordered links L1; L2 2 ML.P;M/

with points 0 < t1 < � � � < tn < 1 such that �tj 2 zL.1/. For each singular link �tj

we have a sequence ff j
i j i D 1; : : : ; mg as in Definition 2.3. We define the total

framing of ˆ to be the sequence of integers f�fi j i D 1; : : : ; mg, where

�fi ´
nP

j D1

ıi
j "j f

j
i .�tj /: (4)

Here ıi
j D 1 if the i -th component of �tj contains the double point and 0 otherwise.

Also "j D 1 if �tj Cı , for ı > 0 sufficiently small, is a positive resolution of �tj and
"j D �1 otherwise. We will say that the total framing is zero iff �fi D 0, for all
1; : : : ; m.

Given a loopˆ 2 MCL.M/ we obtain a set of ordered sequences�fˆ associated
to the set of all lifts of ˆ in ML.P;M/. The map q�1.ˆ/ ! �fˆ defines an
unordered sequence of integers forˆ. The homotopyˆ is called framing preserving
iff the total framing of every element in q�1.ˆ/ is zero. We will write �fˆ D 0.

2.4. Beginning the proof of Theorem 2.6. We want to define an invariant F W L !
A that is obtained from the given f W L.1/ ! A via (1). First we assign values of F
on the set of initial links CL. Now fix CL 2 CL and let L0 2 MCL.M/ be a framed
link. Choose a generic homotopy ˆ from L0 to CL. Let 0 < t1 < t2 < � � � < tn < 1
denote the points where �t is not an embedding. Recall that �ti 2 L.1/ such that for
different t 0s in an interval of Œ0; 1� n ft1; t2; : : : ; tng, the corresponding framed links
are equivalent. When t passes through ti , �t changes from one resolution of �ti to
another. We define

F.L0/ D F.CL/C
nP

iD1

"if .�ti / (5)

Here "i D ˙1 is determined as follows: If �ti Cı , for ı > 0 sufficiently small, is a
positive resolution of �ti then "i D 1. Otherwise "i D �1.

To prove that F is well defined we have to show that modulo “the integration con-
stant” F.CL/, the definition of F.L0/ is independent of the choice of the homotopy.
For this we consider a closed homotopy ‰ from CL to itself. After a small pertur-
bation, we can assume that there are only finitely many points x1; x2; : : : ; xn 2 S1,
ordered cyclicly according to the orientation of S1, so that  xi

2 L1 and  x is
equivalent to  y for all xi < x; y < xiC1. To prove that F is well defined we need
to show that

X‰ ´
nP

iD1

"if . ti / D 0; (6)

where "i D ˙1 is determined by the same rule as above.
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Independence of link component orderings: To prove (6) we will turn our attention
to ordered links: First we note that the invariant f pulls back to an invariant on zL.1/

via the forgetful map r. After iterating ˆ several times if necessary we can assume
that it lifts to a loop in ML.P;M/ based at L (compare p. 3874 of [13]). Given a
self-homotopy ˆ of CL and the associated quantity Xˆ, lift ˆ to a closed homotopy
‰ in ML.P;M/ and let X‰ denote the lift of Xˆ. Note that X‰ D aXˆ for some
integer a 2 Z. Since A is torsion free we haveXˆ D 0 exactly whenX‰ D 0. Thus,
it is enough to check (6) for homotopies that preserve the ordering of components.

Restriction to framing preserving homotopies: Next we observe that it is enough
to check (6) for homotopies that are framing preserving in the sense of Definition 2.7:
To see that we recall that given a framed link L0 2 MCL.M/ we need to check that
(5) does not depend on the homotopy from L0 to the framed link CL used to define
it. Thus the closed homotopies ˆ that we need (6) to hold for, are those obtained
by composing two homotopies from L0 to CL. Each component of CL is equipped
with a vector field and going around ˆ does not change the homotopy class of this
vector field (that is the equivalence class of CL as a framed link). We can think that
the framing of CL transports to a “new” framing around ˆ. The two framings might
differ by twists on the components of CL but the total singed number of the twists
must be zero. The total sum of such twists is captured exactly by the quantity �fˆ

(compare, Theorem 6 of [13]). The framing of CL lifts to one onL and going around
the self-homotopy of L that lifts ˆ also preserves the homotopy class of the framing
vector field.

The proof of (6), which occupies the remaining of Section 2 and Section 3, will
be divided into several steps. In this section we will give the proof of (6) for closed
homotopies in atoroidal 3-manifolds and in the next section we deal with essential
tori.

To continue, suppose that P has m components P D Fm
iD1 Pi , where each Pi

is an oriented circle. Let L W P ! M be a link. Pick a base point pi 2 Pi and
let ai denote the homotopy class of L.Pi / in �1.M;L.pi //. We denote by Z.ai /

the centralizer of ai in �1.M;L.pi //. We begin with the following lemma (see, for
example, the proof of Proposition 4.3 of [21]).

Lemma 2.8. Suppose that M is an orientable 3-manifold with �2.M/ D 0 and let
the notation be as above. Then

�1.M
L.P;M/;L/ Š

mL
iD1

Z.ai /:

2.5. Integrating around inessential tori. Here we show how to derive (6) in the
case where the closed homotopy ˆ represents a collection of inessential tori in M .
Since @M D ; this means that the induced map .ˆi /� W �1.Pi � S1/ ! �1.M/ has
non-trivial kernel. Here ˆi ´ ˆjPi � S1, for i D 1; : : : ; m.
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Lemma 2.9. Let ˆ be a loop in ML.P;M/ representing a framing preserving self-
homotopy of L. Suppose that ˆ can be extended to a map ŷ W P �D2 ! M where
D2 is a 2-disc with @D2 D f�g � S1. Then Xˆ D 0.

Proof. We perturb ŷ , relatively @D2, so that it is in general position in the sense of
Proposition 1.1 of [14]. Then the set

S ŷ ´ fx 2 D2 j y�x ´ ŷ .P � fxg/ is not an embeddingg

is a graph inD2 with properties (1)–(5) given in Proposition 1.1 of [14]. The vertices
of S ŷ in the interior of D2 are of valence one or four (see Figure 4).

Figure 4. The set of singularities S ŷ with the types of double points they represent.

The invariant f assigns an element of A to every edge of S ŷ . We observe that
condition (3) in the statement of Theorem 2.6 implies that Xˆ is independent on the
order in which the crossing changes around ˆ ´ ŷjP � @D2 occur. Thus, without
loss of generality, we may assume that the valence one vertices of S ŷ in the interior
of D2 correspond to inadmissible crossing changes on @D2. With the notation as
above, we will assume that the framed singular link �xi

2 L1 is inadmissible for
i D 1; : : : ; s and admissible for i D s; : : : ; n. In particular, there are s edges of S ŷ
emanating from x1; : : : ; xs respectively and ending at an interior vertex of valence
one, and these are the only valence one vertices of S ŷ .

For every interior vertex of S ŷ we draw a small circle C around it so that the
number of points in C \ S ŷ is equal to the valence of the vertex. See Figure 5. Let
C1; : : : ; Cs denote the circles surrounding the valence one vertices of S ŷ and let �
denote the disjoint union of the circles surrounding the vertices of valence four. For a
vertex of valence four the four points inC \S ŷ correspond exactly to these appearing
in equation (3). Thus by (3) we have

P
x2�\S ŷ

"xf .y�x/ D 0; (7)
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C

x

x

2

1

e

e 0

Figure 5. The singular links �x1
, �x2

form a pair of type L�r ; Lr� (or L�l ; Ll�) shown in
Figure 3. The framed links corresponding to the components e, e0 of @D2 n fx1; x2; : : : g are
isotopic.

where y�x ´ ŷ .P � fxg/: Now observe that

nP
iDsC1

"if .�xi
/ D P

x2�\S ŷ

"xf .y�x/ D 0:

The last equation and (7) imply that

Xˆ D
sP

iD1

"if .�xi
/: (8)

Sinceˆ is framing preserving we have�fˆ D 0. By Definitions 2.3 and 2.7 and the
fact that f remains unchanged under admissible crossing changes we have�fC D 0,
for every loop C 2 � . This in turn implies that

�f� ´ P
C 2�

�fC D 0:

Since we have

�fˆ D
sP

iD1

"i f .�xi
/C�f� D 0;

we conclude that
Ps

iD1 "i f .�xi
/ D 0. This in turn implies that the inadmissible

singular links �xi
can be partitioned into pairs of the forms shown in Figure 3.

Relation (2) in Remark 2.5 shows that the right-hand side of (8) is identically zero.
Thus Xˆ D 0, as desired. �

Remark 2.10. Let xXˆ denote the contribution of the admissible singular links around
ˆ to Xˆ. The proof of Lemma 2.9 shows that regardless of whether ˆ is framing
preserving, relation (3) implies that xXˆ D 0.
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Remark 2.11. Proposition 1.1 of [14], referenced in the proof of Lemma 2.9, is
stated in there for the PL-category. However, as explained by Kaiser in Section 3
of [12], the statement is true in the smooth category which is actually what we need
here. We should also remark that, as explained by Lin in [21], the conclusion holds
if the disc D2 is replaced by any planar surface F . Furthermore, if ˆj@F is already
in general position then the modifications that put ˆ into general position on F can
be performed relatively @F .

A slight variation of the proof of Lemma 2.9 shows the following.

Lemma 2.12. Letˆ be a loop in ML.P;M/ representing a framing preserving self-
homotopy of a framed linkL. Let P 0 ´ P nP1. Suppose thatˆjP 0 can be extended
to a map ŷ W P 0 �D2 ! M where D2 is a 2-disc with @D2 D f�g � S1. Suppose
moreover that ˆj.P1 � S1/ is an embedding. Then Xˆ D 0.

The proof of the next lemma is given in the proof of Lemma 3.3.4 of [16].

Lemma 2.13. Let M be a Q-homology 3-sphere with �2.M/ D 0. Suppose that
�1.M/ is infinite and that L has no homotopically trivial components. Let ˆ �
ML.P;M/ be a framing preserving closed homotopy such that the restrictionˆjPi �
S1 ! M is inessential, for all i D 1; : : : ; m. There exists a 2-disc D2 and a map
ẑ W P �D2 ! M such that

X@ ẑ D aXˆ (9)

for some a 2 Z. Here @ ẑ D ẑ jP � @D2.

2.6. Theorem 2.6 for atoroidal manifolds. Before we can proceed with the proof
of the theorem we need two additional lemmas.

Lemma 2.14. Considerˆ;ˆ0 W S1 ! ML.P;M/ two self-homotopies ofL. Let xXˆ

and xXˆ0 denote the contribution to Xˆ and Xˆ0 coming from admissible singular
links around ˆ and ˆ0, respectively. Suppose that ˆ;ˆ0 are freely homotopic as
loops in ML.P;M/. Then we have xXˆ0 D xXˆ. Furthermore, there is a group
homomorphism  W �1.M

L.P;M/;L/ ! A defined by  .Œˆ�/ ´ xXˆ.

Proof. By a slight variation of the argument in the proof of Lemma 3.3.2 of [16] we
have the following: There exists a map y‰ W D2 ! ML.P;M/ such that if we set
‰ ´ y‰j@D2, then ‰ W S1 ! ML.P;M/ is a self-homotopy of L with

X‰ D Xˆ �Xˆ0 :

Lemma 2.9 and Remark 2.10 imply xX‰ D 0; thus xXˆ D xXˆ0 .
For the remaining of the claim define  W �1.M

L.P;M/;L/ ! A as follows:
Given ˛ 2 �1.M

L.P;M/;L/, let ˆ is be a self-homotopy of L representing ˛. De-
fine .˛/ D xXˆ. By our earlier arguments .˛/ is independent on the representative
ˆ. The fact that  is a group homomorphism follows easily. �
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The next result is Lemma 3.2.5 in [16]. We point out that the proof of this lemma
uses the hypothesis that the group A in which the invariants take values is torsion
free.

Lemma 2.15. Suppose that M is a Q-homology 3-sphere with �2.M/ D 0. Let
L W P ! M be a framed link and let ˆ W P�S1 ! M be a framing preserving
self-homotopy of L. Assume that, for some i D 1; : : : ; m, we have ai D 1. Set
P 0 ´ P n Pi and ˆ0 ´ ˆjP 0. If Xˆ0 D 0 then Xˆ D 0.

We are now ready to give the proof of Theorem 2.6 in the case where M is an
atoroidal Q-homology 3-sphere.

Theorem 2.16. Suppose that M is an atoroidal Q-homology 3-sphere with
�2.M/ D 0. Then the conclusion of Theorem 2.6 is true forM .

Proof. Let f W L1 ! A be a framed singular link invariant satisfying (3) of the
statement of Theorem 2.6 and let ˆ W P � S1 ! M be a framing preserving self-
homotopy of a framed link L W P ! M . We have to show that

Xˆ D 0;

where Xˆ is the signed sum of values of f around ˆ defined in (6).
First suppose that �1.M/ is finite. Then, by Lemma 2.8, �1.M

L.P;M/;L/ is
finite. Since A is torsion free the homomorphism  of Lemma 2.14 must be the
trivial one. Thus, in particular, Xˆ D 0.

Now suppose that �1.M/ is infinite. If the link L to begin with contains no
homotopically trivial components, then since M is atoroidal, Lemma 2.13 applies
to conclude that X@ ẑ D aXˆ, for a map ẑ W P � D2 ! M . By Lemma 2.9,
X@ ẑ D aXˆ D 0 and thus, since A is torsion free, Xˆ D 0.

Next suppose that all the components ofL are homotopically trivial; that isai D 1,
for i D 1; : : : ; m. Then, by Lemma 2.8,

�1.M
L.P;M/;L/ Š

mL
i

�1.M;L.pi //:

SinceH1.M/ is finite the above equality implies that the abelianization of the group
�1.M

L.P;M/;L/ is a finite group. By Lemma 2.14 we have a homomorphism
 W �1.M

L.P;M/;L/ ! A with  .Œˆ�/ D Xˆ. Since A is abelian  factors
through the abelianization of �1.M

L.P;M/;L/; a finite group. But since A is
torsion free  is the trivial homomorphism. Thus Xˆ D 0.

To handle the general case let h.L/ denote the number of components of L that
are homotopically trivial. The proof is by induction on h.L/. In the light of our
discussion above, the conclusion is true if h.L/ D 0 or h.L/ D m. Thus we may
assume that h.L/ ¤ 0;m. Let Li � L be a component that is homotopically trivial
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and let L0 ´ L n Li . Also let ˆ be a self-homotopy of L and let ˆ0 denote the
restriction of ˆ on P 0, where P 0 ´ P n Pi . Since h.L0/ < h.L/, by induction,
Xˆ0 D 0. Then, by Lemma 2.15, Xˆ D 0. �

3. Integration of invariants in toroidal 3-manifolds

To study the question of integrability of singular link invariants in toroidal 3-manifolds
we need several results from the theory of the characteristic submanifold of Jaco–
Shalen [10] and Johannson [11]. The statements of the results from these theories, in
the form needed in our setting, are summarized in Section 2 of [14] and in Section 2
of [16]. It will be convenient for us to recall the statements we need below from
therein, instead from the original references. In particular we will need the Enclosing
Theorem and the Torus Theorem both stated on p. 679 of [14]. The later, in the form
needed for our purposes, follows from work of Scott, Casson–Jungreis and Gabai.

Theorem 3.1. Let M be a Z-homology 3-sphere with �2.M/ D 0 and let A be
a torsion free abelian group. Suppose that a map f W L.1/ ! A satisfies (3) of
Theorem 2.6. Then there exists a framed link invariant F such that f is derived from
F via equation (1).

Remark 3.2. The restriction to Z-homology 3-spheres in Theorem 3.1 is necessary.
As explained in Remark 3.13 of [14] and the discussion at the end of Section 3 in
[16], in general, local conditions are not sufficient for the integration of singular link
invariants. When the characteristic submanifold contains Seifert fibered components
over non-orientable surfaces one needs to impose extra non-local conditions. Specific
constructions demonstrating these phenomena are given by Kirk and Livingston in
[19]. The necessity of working with irreducible 3-manifolds is demonstrated by [19]
as well as the work of Eisermann [7].

The proof of Theorem 2.6 will be completed once we have proved Theorem 3.1.
For the proof of Theorem 3.1 we will need the following:

Lemma 3.3. Let M be a Z-homology 3-sphere with �2.M/ D 0. Suppose that
ˆ W T D S1 � S1 ! M is an essential map. Then there exists a map ‰ W T ! M

homotopic to ˆ and such that one of the following holds:

(1) ‰.T / lies on an essential embedded torus inM .

(2) There exists an oriented surface F with @F ¤ ;, and a trivial fiber bundle
Y D S1 � F with the following property: ‰ extends to a map y‰ W Y ! M so
that the image y‰.@Y n T / is contained on a collection of embedded tori inM .

Proof. By the Torus Theorem and the discussion at the end of Section 2 of [16], either
M is Haken or it is a Seifert fibered 3-manifold that fibers over S2 with three or less
exceptional fibers.
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First suppose thatM is Haken. Then by the Enclosing Theorem there is a Seifert
fibered submanifold S � M and a homotopy ˆ0

t W T ! M such that ˆ0
0 D ˆ and

ˆ0
1.T / � S . If ˆ0

1.T / can be further homotoped in S so that it lies on a component
of @S then we have conclusion (1). Otherwise, by the classification of essential tori
in Haken Seifert fibered spaces (Proposition 2.11 of [14]) we can homotope ˆ0

1 in S
to a map ‰ W T ! S which is vertical with respect to the fibration.

Next suppose thatM is a Seifert fibered space. By Proposition 2.2.5 of [16],ˆ is
homotopic to a map‰ W T ! M which is vertical with respect to the fibration ofM .

Thus, in both cases, either (1) holds or we have a Seifert fibered manifold S �
M , with orbit space B and fiber projection p, such that ˆ is homotopic to a map
‰ W T ! M that is vertical with respect to the fibration of S . This means that ‰
is a composition ˆ1 B q, where q is a covering map from the torus T to itself and
ˆ1 W T ! S is an immersion without triple points. Then there exists a decomposition
T D S1 � S1 such that

a) ˆ1.S
1 � f�g/ maps onto a regular fiber h of S ;

b) we have p.ˆ1.f�g � S1// D p.ˆ1.T // on the orbit surface B of S .
Let H (resp. Q) denote the curve S1 � f�g (resp. f�g � S1) on T . Now

˛ ´ p.ˆ1.T // is an immersed closed curve on B with singularities finitely many
transverse double points. A neighborhood N ´ N.˛/ � B of ˛ on B is an ori-
ented planar surface. Choose N small enough so that Y ´ p�1.N / contains no
exceptional fibers of S . Now p W Y ! N is an S1-bundle and since H 2.N / D 0

this bundle is trivial. Choose a trivialization Y Š S1 � N so that N is embedded
as a cross-section. Pick a base point b 2 N and arcs from b to the components of
@N whose homotopy classes freely generate �1.N /; we pick one arc for each such
component. Assume that these arcs intersect ˛ only at its double points; let x1; : : : ; xs

denote the resulting generators of �1.N; b/. Write ˛ as a word in these generators,
say

Œ˛� D x
k1

i1
x

k2

i2
: : : x

kr

ir
:

We can extend the restriction ‰jf�g � S1 to a map y‰ W .F; @F / ! .N; @N /, where
F is a planar surface, such that

(i) the induced map y‰� W �1.F / ! �1.N / is onto,
(ii) �1.F / is freely generated by elements a1

1; : : : ; a
1
k1
; a2

1; : : : ; a
2
k2
; ar

1; : : : ; a
r
kr

,

(iii) y‰�.ŒQ�/ D x
k1

i1
x

k2

i2
: : : x

kr

ir
(see proof of Lemma 3.11 of [14]).

We pull back the fiber bundle structure by y‰ to obtain a fiber bundle y‰�.Y / ! F

over F . The pull-back of the cross-section ˛ is a cross-section of y‰�.Y /. Extending
this cross-section over F , we obtain the conclusion. �

We now recall that the proof of Theorem 3.1 is reduced to showing (6) for every
framing preserving self-homotopy of L. Using Lemmas 2.8, 2.14, and 2.15 we will
see that the general case is essentially reduced to the case of knots. Before we continue
with the proof Theorem 3.1 some remarks are in order.
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Remark 3.4. Let ˆ W P � S1 ! M denote a framing preserving self-homotopy of
a framed link L and let ˆ0 be obtained by a free homotopy of ˆ in M . Consider
the homotopy from ˆ to ˆ0 as a map H W P � S1 � Œ0; 1� ! M . We can smoothly
approximate H by a homotopy in general position as in the proof of Lemma 2.9
(see Remark 2.11). Then we can view H as a family of smooth framed immersions
S1 ! M parametrized by an annulus. We note that the closed homotopy ˆ0 is not
necessarily framing preserving.

Remark 3.5. Suppose that we have a map ˆ W Y ´ S1 �F ! M , such that F is a
planar surface so that there is a component ˛ � @F such that the restrictionˆjS1 �˛
is a loop in ML.P;M/. We can view ˆ as a family of framed immersions in M ,
parametrized by F . We can cut Y ´ S1 � F ! M along a collection of properly
embedded annuli (the projection of which on F decomposes F into a disc) into a
product S1 �D2. By considering the pull back ofˆ on S1 �D2 we obtain a family
of framed immersions in M parametrized by D2.

In the next lemma we treat homotopies that involve essential tori. The proof treats
separately the case of knots and that of links. In the case of knots (m D 1 below) the
proof is very similar to that of case 1 of Lemma 3.3.3 in [16]. The starting ingredient
in the proof of [16] is Lemma 3.3.2 therein. Here we replace that ingredient with
Lemma 3.3 and we outline the argument below.

Lemma 3.6. Let M be a Z-homology 3-sphere with �2.M/ D 0 and let ˆ W P �
S1 ! M be a framing preserving self-homotopy of a framed link L. Suppose that
ˆi ´ ˆjPi � S1 is an essential map, for some i D 1; : : : ; m. Suppose, moreover,
that ˆi cannot be homotoped so that its image lies on an essential embedded torus
inM . Then we have Xˆ D 0.

Proof. Letm be the number of components ofL. We distinguish two cases according
to whether m D 1 or m > 1.

We have m D 1: Since ˆ is framing preserving, relation (2) implies that the
total contribution of the inadmissible singular links along ˆ to Xˆ is zero (proof of
Lemma 2.9). Thus, without loss of generality, we can assume that no inadmissible
crossing changes occur along ˆ. Now let ‰ W P � S1 ! M be a map that is freely
homotopic to ˆ in M . By Lemma 2.14, and our earlier assumption on ˆ, we have
xX‰ D Xˆ.

Set T ´ P �S1, l ´ P �f�g andm ´ f�g�S1. By assumptionˆjP �S1 !
M is an essential map and it cannot be homotoped so that its image lies on an essential
embedded torus inM . By Lemma 3.3 we can homotopeˆ to a map‰ W P �S1 ! M

so that: There is a trivial fiber bundle Y D S1 �F , over a planar surface F , such that
‰ extends to a map y‰ W S1 � F ! M and the image y‰.@Y n T / is contained on a
collection of embedded tori inM . LetH denote a simple closed curve T representing
a fiber of Y and let Q denote the component of @F (embedded as a cross-section of
the bundle) on T . In �1.T / we have Œl � D aŒH�C bŒQ�, for some a; b 2 Z.
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First suppose that a D 0. Then Lemma 3.12 of [14] (or Lemma 3.3.1 of [16])
applies to conclude that xX‰ D 0. By our discussion above, Xˆ D xX‰ D 0 and the
conclusion in this case follows.

Suppose now that a ¤ 0. Let q W zY ! Y be the covering of Y corresponding to
the subgroup aZ ��1.F / of �1.Y / D Z ��1.F /. Lift l ,H , andQ to curves Ql , zH ,
zQ, respectively, on the torus zT ´ q�1.T /. Now zY is a trivial fiber bundle over a

surface zF with fiber Ql ; we will write zY D Ql� zF . Consider the composition z‰ ´ y‰Bq
and its restriction on zT Š Ql � zQ. Since z‰. Ql � fxg/ D ‰.l � q.fxg//, for all x 2 zQ,
the restriction z‰j Ql� zQ is a self-homotopy of a framed knot; the parameter space is zQ.
As in Remark 3.5 we will think of z‰ as a family of framed immersions parametrized
by a disc D2. Then we can consider X@ Q‰. As in the proof of Lemma 3.14 of [14]
we obtain that X@ Q‰ D cX‰, for some c 2 Z. Since, as discussed at the beginning
of this proof we have xX‰ D Xˆ, it follows that xX@ Q‰ D cXˆ. By Remark 2.10, we
have xX@ Q‰ D 0. Hence we conclude that we have cXˆ D 0 for some c 2 Z. Since
A is torsion free this implies that Xˆ D 0; finishing thereby the proof of the Lemma
in the case m D 1.

We have m > 1: By Lemma 2.8, �1.M
L.P;M/;L/ is isomorphic to a direct

product of the groups �1.M
L.Pi ;M/;Li / for i D 1; : : : ; m. By Lemma 2.14 it is

enough to verify (6) only for homotopies ˆ that are fixed on all but one component
of L. To that end, let ‰ be a homotopy in general position that only moves one
component, say L1. Suppose, without loss of generality, that ‰jP1 � S1 ! M

is an essential map that cannot be homotoped so that its image lies on an essential
embedded torus in M . By (3), we may decompose ‰ into two homotopies ‰1 and
‰2 such that during ‰1 we only have self-crossing changes on L1, while during ‰2

we only have crossing changes between L1 and the rest of the components. The
argument of case 1 applies to ‰1 to conclude that X‰1

D 0. Since the restriction of
‰2 on P 0 �S1, where P 0 D P nP1, is constant; it extends to a map P 0 �D2 ! M .
Then by Lemma 2.12 we have X‰2

D 0. �

3.1. The completion of the proof of Theorem 3.1. Let ˆ be a framing preserving
loop in ML.P;M/. Suppose that ˆjPi � S1 ! M represents an essential torus for
some i D 1; : : : ; m. First suppose that some component, sayˆi ´ ˆjPi �S1 ! M ,
can be homotoped to lie on an embedded essential torus in M . Then a theorem of
Nielsen ([9], Theorem 13.1) implies that after further homotopy, we may assume that
ˆi is a covering map of an embedded torus. It follows that the contribution of ˆi to
Xˆ is zero. Thus, for our purposes, we can assume that ifˆi induces an injection on
�1 then it cannot be homotoped to lie on an embedded torus. Then by Lemma 3.6
we obtain Xˆ D 0.

As in the proof of Lemma 3.6 we may assume thatˆ fixes all but one component
of L, say L1. If ˆ W P1 � S1 ! M is inessential the argument in the proof of
Theorem 2.16 applies to conclude that Xˆ D 0. Assume that ˆ W P1 � S1 ! M is
essential. Then Xˆ D 0 by Lemma 3.6.
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4. Kauffman power series

4.1. Links in oriented Q-homology 3-spheres. For framed links in S3 the Kauff-
man polynomial is equivalent to a sequence of 1-variable Laurent polynomials
fRn D Rn.t/gn2Z determined by relations

Rn.U / D 1;

Rn.Lr/ D t�.nC1/Rn.L/;

Rn.Ll/ D t .nC1/Rn.L/;

Rn.LC/ �Rn.L�/ D .t � t�1/ŒRn.Lo/ �Rn.L1/�;

where LC, L�, Lo, L1 are as in Figure 1 and Lr ; Ll are as in Figure 2. Notice that
the initial value Rn.U / D 1 is just a normalization. Any choice of the initial value
together with the rest of the relations will determine a unique Rn. Set

un.t/ ´ tnC1 � t�.nC1/

t � t�1
C 1: (10)

By the relations above one obtains Rn.L t U/ D un.t/ Rn.L/, where the link
L t U is obtained from L by adding an unknotted and unlinked component U . The
coefficients of the power seriesRn.x/ obtained fromRn.t/ by substituting t D ex are
invariants of finite type [1], [2]. In the theorem below we reverse this procedure and
guided by the axioms above we will construct power series invariants generalizing the
Rn.x/’s: Suppose thatM is a Q-homology sphere with �2.M/ D 0 and such that if
H1.M/ ¤ 0 then M is atoroidal. For every n 2 Z we will construct a sequence of
framed link invariants fvm

n j m 2 Ng such that the formal power series

RfM;ng D
1P

mD0

vm
n x

m

satisfy the axioms above under the change of variable t D ex: We will construct our
invariants inductively (induction onm) by using Theorem 2.6. Each vm

n is going to be
obtained by integrating a suitable singular link invariant determined by the vj

n ’s with
j < m. Although the resulting invariants will be invariants of unoriented framed
links, for their construction we need to work with oriented links. The reason is that
Theorem 2.6 applies to oriented framed links. Recall that L (resp. xL) denotes the
set of isotopy classes of framed oriented (resp. unoriented) links in M . Also recall
the set of oriented initial links CL ´ o�1.CL� [ fU g/, defined in the beginning of
subsection 	2:3. By Theorem 2.6 and its proof the invariant vm

n is unique once the
values on the set CL are specified.

Theorem 4.1. Assume thatM is a Q-homology 3-sphere with �2.M/ D 0 and such
that if H1.M;Z/ ¤ 0 then M is atoroidal. Fix n 2 Z. Given maps Vm

n W CL� [
fU g ! C, m 2 N, there exists a unique sequence of complex valued link invariants
fvm

n j m 2 Ng with the following properties:
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(1) vm
n .CL/ D Vm

n .o.CL// for all CL 2 CL and m 2 N.

(2) vm
n .L/ D vm

n .o.L// for allL 2 L andm 2 N. Thus the values of the invariants
are independent of the link orientation.

(3) If we define a formal power series

Rn ´ RfM;ng.L/ D
1P

mD0

vm
n .L/x

m

then we have

Rn.U / D 1; (11)

Rn.Lr/ D t�.nC1/Rn.L/; (12)

Rn.Ll/ D t .nC1/Rn.L/; (13)

Rn.LC/ �Rn.L�/ D .t � t�1/ŒRn.Lo/ �Rn.L1/�; (14)

where t ´ ex D 1C x C x2

2
C � � � .

Proof. Define vm
n .CL/ D Vm

n .o.CL// for all CL 2 CL and m 2 N. Now we can
form the power series Rn.CL/. Guided by (12)–(13) we define

Rn.CLr/ D t�.nC1/Rn.CL/ and Rn.CLl/ D t .nC1/Rn.CL/: (15)

Now guided by these we can define the values of Rn on all framed links whose
underlying unframed isotopy class is CL. To explain this suppose that CL has s
components. Let CL.f / be a framed link in the same (unframed) isotopy class with
CL with framing unordered sequence f (see Definition 2.2 and preceding discussion).
Then define

Rn.CL.f // D t .nC1/�Rn.CL/;

where � ´ �.CL.f // is the total framing of CL.f /. Using (14)–(15), and inducting
on k, we can check that

Rn.CL t U k/ D Œun.t/�
k�1 Rn.CL/; (16)

where un.t/ is given by (10). Now Rn has been defined on all framed links in the
unframed isotopy classes of the links in CL.

To continue for every L.f / 2 L with framing sequence f we define

v0
n.L.f// D v0

n.CL.f //;

where CL is the initial link homotopic to L. Inductively, suppose that the invariants
v0

n; v
1
n; : : : ; v

m�1
n have been defined such that if we let

R.m�1/
n .L/ ´

m�1P
iD1

vi
n.L/x

i ;
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then we have

R.m�1/
n .Lr/ D t�.nC1/R.m�1/

n .L/ mod xm; (17)

R.m�1/
n .Ll/ D t .nC1/R.m�1/

n .L/ mod xm; (18)

R.m�1/
n .L t U/ D un.t/ Rn.L/ mod xm; (19)

and

R.m�1/
n .LC/ �R.m�1/

n .L�/ D .t � t�1/ŒR.m�1/
n .Lo/ �R.m�1/

n .L1/� mod xm:

Furthermore, suppose that these invariants do not depend on the orientation of the
links. The last equation leads us to define

R.m/
n .L�/ ´ .t � t�1/ŒR.m�1/

n .Lo/ �R.m�1/
n .L1/� mod xm: (20)

We want to define the invariant vn
m: Recall that it is already defined on the initial

links. Next we examine the right-hand side of (20). It is a polynomial of degree m
such that the coefficient of xm comes from

.t � t�1/ŒR.m�1/
n .Lo/ �R.m�1/

n .L1/�:

The expression above has no constant term and thus the coefficient of xm depends on
the inductively well-defined invariants vi

n, i D 1; 2; : : : ; m � 1. Thus the coefficient
of xm in (20) is a “new” framed singular link invariant. We are going to prove that
it is derived from a framed link invariant by using Theorem 2.6. For that we need to
check that condition (3) in Theorem 2.6 is satisfied. It is enough to check it modulo
xmC1. In what follows the symbol “�” will denote calculation modulo xmC1.

Let L�C and L�� 2 L.1/ be two singular framed links as in the left-hand side of
(3) in Theorem 2.6. From (20) we have

R.m/
n .L�C/ �R.m/

n .L��/ � .t � t�1/ŒR.m�1/
n .LoC/ �R.m�1/

n .L1C/�
� .t � t�1/ŒR.m�1/

n .Lo�/ �R.m�1/
n .L1�/�

� .t � t�1/ŒR.m�1/
n .LoC/ �R.m�1/

n .Lo�/�
� .t � t�1/ŒR.m�1/

n .L1C/ �R.m�1/
n .L1�/�

� .t � t�1/
2
ŒR.m�1/

n .Loo/ �R.m�1/
n .Lo1/�

� .t � t�1/2ŒR.m�1/
n .L1o/ �R.m�1/

n .L11/�
� .t � t�1/2ŒR.m�1/

n .Loo/CR.m�1/
n .L11/�

� .t � t�1/2ŒR.m�1/
n .L1o/CR.m�1/

n .Lo1/�:

Since the result is symmetric with respect to the two double points we deduce that

R.m/
n .L�C/ �R.m/

n .L��/ � R.m/
n .LC�/ �R.m/

n .L��/:
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Thus the framed singular link invariant defined above is induced by a framed link
invariant. Recall that we have already defined the values of vm

n on all framed links
with unframed underlying isotopy classes in CL. Using this values we can define a
link invariant vm

n for all links in L such that if we let

R.m/
n .L/ D

mP
iD1

vm
n .L/x

i

we have
R.m/

n .LC/ �R.m/
n .L�/ D R.m/

n .L�/ (21)

for every L� 2 L.1/. Now it is a straightforward calculation to check that the
inductive hypotheses hold mod xmC1. For example let us check (18); the others are
similar. Consider a framed link Lr . Keeping the kink intact in a small 3-ball, make
a sequence of crossing changes to transform Ll to an initial link say CLl . Over all
such sequences of crossing changes, and initial links CLl , choose one that minimizes
the number of the required crossing changes. Suppose, without loss of generality,
that the first crossing to be changed in that sequence is a positive crossing. By (20)
and (21) we have

R.m/
n .LlC/ � R.m/

n .Ll�/C .t � t�1/ŒR.m�1/
n .Llo/ �R.m�1/

n .Ll1/� mod xmC1:

By (15) and induction on the number of crossing changes needed to go from LlC to
CLl we can assume that

R.m/
n .Ll�/ � t .nC1/R.m/

n .L/:

By (18) we have

R.m�1/
n .Llo/ D t .nC1/R.m�1/

n .Lo/ mod xm

and
R.m�1/

n .Ll1/ D t .nC1/R.m�1/
n .L1/ mod xm:

Combining the last four equations we have

R.m/
n .LlC/ � t .nC1/R.m/

n .LC/;

as desired. To finish the proof we need to show that vm
n is independent of the link

orientation. Inductively, we assume that v0
n; v

1
n; : : : ; v

m�1
n are uniquely determined

by their values on CL and independent of the (singular) link orientation. We have
that

vm
n .L/ D vm

n .CL/C
sP

iD1

˙vm
n .Li /;

where L1; : : : ; Ls 2 L.1/ are singular links appearing in a homotopy from L to CL,
where CL is the representative of L in CL (compare relation (5)). Recall that we
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defined vm
n .CL/ to be independent of the orientation for CL. The proof of Theorem 2.6

establishes that vm
n .L/ does not depend on the homotopy from L to CL chosen. By

induction v0
n; v

1
n; : : : ; v

m�1
n do not depend on orientations. It follows that vm

n .L/ is
unique once vm

n .CL/ is chosen and independent on link orientation. �

Theorem 1.6 stated in the Introduction is obtained from Theorem 4.1 if we set
z ´ i t � .i t/�1 D iex C ie�x and a ´ iey , where y D .nC 1/x. Now we derive
Theorem 1.5 stated in the Introduction.

Proof of Theorem 1.5. The elements in the set CL� [ fU g are in one-to-one cor-
respondence with a basis of S. O�/. An element R 2 F�.M/ gives rise to one in
S�. O�/ by restriction on the set CL� [ fU g. Thus one direction of the theorem
follows. For the other direction, we note that an element in S�. O�/ defines a map
RM W CL� [ fU g ! Oƒ. Then by Theorem 1.6 there is a unique map RM W xL ! Oƒ
with properties (1)–(3). These properties guarantee that RM factors through the
Kauffman module F.M/ to give an element in F�.M/ (see Definition 1.2). �

4.2. Links in S 3. Links in S3 are studied via projections on a sphere S2 � S3.
Let Um denote the standard m-component unlink and Um.f / denote the one with
framing f . Every m-component link projection L � S2 is transformed to a framed
unlink by finitely many crossing changes and regular isotopy moves on S2 (i.e.
isotopy using the Reidemeister moves of type II and III only). For a link projection
L � S2, we define a complexity

s.L/ ´ .u.L/; c.L//

as follows: c.L/ is the number of crossings ofL andu.L/ is the number of admissible
crossing changes required to transform L into a diagram of the unlink that admits a
type I Reidemeister move that reduces its crossing number. We order the complexities
lexicographically. Let R ´ RS3 W L ! Oƒ be a map constructed as in Theorem 1.6
and recall that ƒ ´ CŒa˙1; z˙1�. Note that the complexity s.L/ defined above has
the properties that s.Lr/; s.L1/ > s.L/.

Proposition 4.2. Define R.U.f // D a�� .a C a�1/z�1 C 1, where � ´ Pm
iD1 fi.

ThenR.L/ 2 ƒ for every link. In fact,R.L/ is the two variableKauffmanpolynomial.

Proof. Given a diagram L we can first perform all type I Reidemeister moves that
reduce the number of crossings of L. If there are no such moves, and L is not the
unlink, then there is a crossing change such that three of the terms s.L�/, s.Lo/,
s.L1/, s.LC/ are strictly less that the remaining fourth one. Thus the skein relations

R.LC/ �R.L�/ D zŒR.Lo/ �R.L1/�;
R.Lr/ D aR.L/;

R.Ll/ D a�1R.L/
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allow us to write the invariant R.L/ of every link L as a finite sum of the invariants
of links of strictly less complexity than s.L/ and with coefficients in ƒ. The result
follows by induction on s.L/ and the observation that R.U.f // 2 ƒ. The last claim
follows by the uniqueness properties of R. �
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