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1. Introduction

We study moduli spaces of curves that admit an e�ective action by a given �nite

group G. �ese moduli spaces can be seen as closed algebraic subsets Mg.G/

of Mg , the moduli space of smooth curves of genus g > 1. We are mainly inter-

ested in understanding which are the irreducible components of Mg .G/.

To a curve C of genus g with an action by G, we can associate several discrete

invariants that are constant under deformation.

On one hand, the topological type of the G-action is a homomorphism

� W G ! Mapg well-de�ned up to inner conjugation induced by di�erent choices

of an isomorphism Map.C / Š Mapg , see Section 2.

It turns out that the locusMg;�.G/ of curves admitting aG-action of topologi-

cal type � is a closed irreducible subset of Mg , (see �eorem 2.3).

On the other hand the action of G on C gives rise to a morphism

p W C ! C=G DW C 0, a G-cover, and the geometry of p encodes several nu-

merical invariants that are constant on Mg;�.G/: the genus g0 of C 0, the number

d of branch points y1; : : : ; yd 2 C
0 and the orders m1 � � � � � md of the local

monodromies. �ese numbers g0; d; m1 � � � � � md form the primary numerical
type.

A second numerical invariant is obtained from the monodromy

� W �1.C
0 n ¹y1; : : : ; ydº/ ! G of the restriction of p to p�1.C 0 n ¹y1; : : : ; yd º/,

and is called the �-type or Nielsen function. It is a class function � which, for each

conjugacy class C in G, counts the number of local monodromies which belong

to C.

Observe that the irreducible closed algebraic sets Mg;�.G/ depend only upon

what we call the ‘unmarked topological type’, which is de�ned as the conjugacy

class of the subgroup �.G/ inside Mapg .

�e following observation is immediate by Riemann’s existence theorem and

the irreducibility of the moduli spaceMg0;d of d -pointed curves of genusg0. Given

g0 and d , the unmarked topological types whose primary numerical type is of the

form g0; d; m1; : : : ; md are in bijection with the quotient of the set of the corre-

sponding monodromies �modulo the actions by Aut.G/ and by Map.g0; d /. Here

Map.g0; d / is the full mapping class group of genus g0 and d unordered points.

�us a �rst step toward the general problem consists in �nding a �ne invariant that

distinguishes these orbits.

In this paper we introduce a new invariant O" for G-actions on smooth curves.

In the case where G is the dihedral group Dn of order 2n, we show that O"

distinguishes the di�erent unmarked topological types, and therefore O" is a �ne

invariant in the dihedral case.
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Our invariant includes and extends two well known invariants that have been

studied in the literature: the �-type (or Nielsen type) of the cover (also called

shape in [21], cf. De�nition 3.9) and the class in the second homology group

H2.G=H;Z/ (modulo the action of Aut.G=H/) corresponding to the unrami�ed

cover p0 W C=H ! C 0, where H is the minimal normal subgroup of G generated

by the local monodromies.

�ese invariants, which re�ne the primary numerical type, provide a �ne in-

variant under some restrictions, for instance when G is abelian or when G acts

freely and is the semi-direct product of two �nite cyclic groups (as it follows by

combining results from [7], [9], [18], and [19]). However, in general, they are

not enough to distinguish unmarked topological types, as one can see already for

non-free Dn-actions (see Lemma 5.9).

�e construction of O" is similar in spirit to the procedure that, using Hopf’s

theorem, associates an element in H2.G;Z/ to any free G-action on a smooth

curve. So much cannot be achieved in the ‘branched’ case of a non-free action.

In this case we are only able to associate to two given actions with the same

�-type, an invariant in a quotient group of H2.G;Z/ which is the ‘di�erence’

of the respective O"- invariants. Here is the way we do it. For any �nite group G,

let F be the free group generated by the elements of G and let R E F be the

subgroup of relations, that is G D F=R. For any � � G, union of non trivial

conjugacy classes, let G� be the quotient group of F by the minimal normal sub-

group generated by ŒF; R� and by the elements Oa Ob Oc
�1 Ob�1 2 F , for any a; c 2 �,

b 2 G, such that b�1ab D c. Here we denote by Og 2 F the generator correspond-

ing to g 2 G. To a given G-cover p W C ! C 0 we associate the set � of local

monodromies, i.e., of elements which i) stabilize some point x of C and ii) act

on the tangent space at x by a rotation of angle 2�
m

where m is the order of the

stabilizer at x. Upon the choice of a geometric basis for the fundamental group

of the complement C 0 n ¹y1; : : : ; yd º of the branch set, our cover is given by an

element v D .c1; : : : ; cd I a1; b1; : : : ; ag0 ; bg0/ 2 GdC2g0

satisfying certain condi-

tions (a Hurwitz generating system), where the �rst entries correspond to the local

monodromies. �ereby � D �v is the union of the conjugacy classes of the ci ’s.

�e tautological lift Ov of v is .bc1; : : : ; bcd I ba1; bb1; : : : ; cag0 ; cbg0/. Finally, de�ne ".v/

as the class in G� of
dY

1

bcj �
g0Y

1

Œbai ;bbi �:

It turns out that the image of ".v/ inG� is invariant under the action of Map.g0; d /,

as shown in Proposition 3.6. Moreover the �-type of v can be deduced from ".v/,

as it is essentially the image of ".v/ in the abelianized group Gab
� (see the Remark

after De�ninition 3.9).
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In order to take into account also the automorphism group Aut.G/, we de�ne

G[ WD
a

�
G� ;

the disjoint union of all the G� ’s. Now, the group Aut.G/ acts on G[ and we get

a map

O" W .HS.GI g0; d /=Aut.G//=Map.g0;d/ �! .G[/=Aut.G/;

which is induced by v 7! ".v/. Here we denote by HS.GI g0; d / the set of all

Hurwitz generating systems of length d C 2g0.

Finally, we prove that the map O" is injective in the case G D Dn and we de-

termine the image of O", (�eorem 5.1), thus the invariant O" is a �ne invariant for

Dn-actions. �is completes the classi�cation of the unmarked topological types

for G D Dn, begun in [10].

We �nally show how this classi�cation entails the classi�cation of the irre-

ducible components of the loci Mg .Dn/.

When g0 D 0 our G� is related to the group bG de�ned in [21] (Appendix),

where the authors give a proof of a theorem by Conway and Parker. Roughly

speaking the theorem says that: if the Schur multiplier M.G/ (which is isomor-

phic to H2.G;Z)) is generated by commutators, then the �-type is a �ne stable

invariant, when g0 D 0.

Results of this kind, when g0 > 0 but for freeG-actions and any �nite groupG,

have been proved in [29] and [17]. �is time the �ne stable invariant lives in

H2.G;Z/=Aut.G/.

�e natural question whether our O"-invariant is a �ne stable invariant for any

�nite groupG and any e�ectiveG-action on compact curves has been solved in [11]

for genus stabilisation.

�e structure of the paper is the following. In Section 2 we introduce the mod-

uli spacesMg .G/ and the subsetsMg;�.G/. Using Riemann’s existence theorem,

we reduce the problem of the determination of the loci Mg;�.G/ to a combinato-

rial one. �is leads to the concept of topological type and of Hurwitz generating

system. In Section 3 we de�ne the map O", the groupsH2;�.G/ and we prove some

properties. �e object of Section 4 is the computation of H2;�.Dn/. �ese re-

sults are all used in Section 5 where we prove the injectivity of O" when G D Dn.

In Appendix A we collect some results about mapping class groups and their ac-

tion on fundamental groups. We use these results in the proof of �eorem 5.1.

Appendix B describes the case (see especially �eorem B.8) where two irre-

ducible loci Mg;�.Dn/ coincide.
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2. Moduli spaces of G -covers

�roughout this section, g is an integer, g > 1. �e moduli space of curves

of genus g is denoted by Mg . For any �nite group G, Mg .G/ is the locus of

ŒC � 2 Mg such that there exists an e�ective action of G on C . For any

ŒC � 2 Mg .G/, the quotient morphism p W C ! C=G D C 0 is a Galois cover

with group G, a G-cover, well de�ned up to isomorphisms.

Riemann’s existence theorem allows us to use combinatorial methods to study

G-covers, since p determines and is determined by its restriction to C 0 nB, where

B D ¹y1; : : : ; ydº � C
0 is the branch locus of p.

Fix a base point y0 2 C
0 n B and a point x0 2 p

�1.y0/. Monodromy gives a

surjective group-homomorphism

� W �1.C
0 nB; y0/ �! G (1)

that characterizes p up to isomorphism.

Let us recall that a geometric basis of �1.C
0 n B; y0/ consists of simple non-

intersecting geometric loops based at y0

1; : : : ; d ; ˛1; ˇ1; : : : ; ˛g0 ; ˇg0

such that we get the presentation

�1.C
0 nB; y0/ D

D
1; : : : ; d I ˛1; ˇ1; : : : ; ˛g0 ; ˇg0

ˇ̌
ˇ

dY

1

j �

g0Y

1

Œ˛i ; ˇi � D 1
E
:

Varying a covering in a �at family with connected base, there are some numer-

ical invariants which remain unchanged, the �rst ones being the respective genera

g; g0 of the curves C , C 0, which are related by the Hurwitz formula:

2.g � 1/ D jGj
h
2.g0 � 1/C

X

i

�
1�

1

mi

�i
; mi WD ord.�.i//: (2)

Observe moreover that a di�erent choice of the geometric basis changes the gen-

erators i , but does not change their conjugacy classes (up to permutation), hence

another numerical invariant is provided by the number of elements �.i / which

belong to a �xed conjugacy class in the group G.

We formalize these invariants through the following de�nition.
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De�nition 2.1. Let G be a �nite group, and g0; d 2 N. A .g0; d /-Hurwitz vector
in G is an element v 2 GdC2g0

, the Cartesian product of G .d C 2g0/-times.

A .g0; d /-Hurwitz vector in G will also be denoted by

v D .c1; : : : ; cd I a1; b1; : : : ; ag0 ; bg0/:

For any i 2 ¹1; : : : ; d C 2g0º, the i-th component vi of v is de�ned as usual. �e

evaluation of v is the element

ev.v/ D

dY

1

cj �

g0Y

1

Œai ; bi � 2 G:

A Hurwitz generating system of length dC2g0 inG is a .g0; d /-Hurwitz vector

v in G such that the following conditions hold:

(i) ci 6D 1 for all i ;

(ii) G is generated by the components vi of v;

(iii) ev.v/ D 1.

We denote by HS.GI g0; d / � GdC2g0

the set of all Hurwitz generating systems

in G of length d C 2g0.

De�nition 2.2. �e condition ev.v/ D
Qd

1 cj �
Qg0

1 Œai ; bi � D 1 immediately im-

plies that the product
Qd

1 cj has trivial image in the abelianization Gab of G. Ob-

serve that the image of cj insideGab only depends on the conjugacy class Cj of cj .

Denote by ŒC�, for each conjugacy class C in G, its image inside Gab.

One de�nes the Nielsen class function of v as the function which, on each

conjugacy class C in G, takes the value

�.v/.C/ WD j¹j jcj 2 Cºj:

We shall say that a class function � W ¹Cº ! N is admissible if it satis�es

X

C

�.C/ŒC� D 0 2 Gab:

Notice that, once we �x a base point y0 2 C
0 n B and a geometric basis of

�1.C
0 n B; y0/, there is a one-to-one correspondence between the set of Hurwitz

generating systems of length dC2g0 in G and the set of monodromies � as in (1).
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Topological type. We recall a result contained in [7], see also [8].

De�ne the orbifold fundamental group �orb
1 .C 0nB; y0Im1; : : :md / as the quo-

tient of �1.C
0 n B; y0/ by the minimal normal subgroup generated by the ele-

ments .i /
mi . If p W C ! C 0 is a G-covering as above, then its restriction to

C 0 n B is a regular topological cover with short exact homotopy sequence

1 �! �1.C n p
�1

B; x0/ �! �1.C
0 n B; y0/ �! G �! 1:

�e corresponding exact sequence in orbifold covering theory is

1 �! �1.C; x0/ �! �orb
1 .C 0 nB; y0Im1; : : :md / �! G �! 1

which is completely determined by the monodromy. In turn the exact sequence

determines, via conjugation, a homomorphism

� W G �! OutC.�1.C; x0// D Map.C / WD Di�C.C /=Di�0.C /

which is fully equivalent to the topological action of G on C .

Here the superscript C denotes orientation-preserving, and the superscript 0

denotes ‘isotopic to the identity’. �e image is contained in the index two subgroup

of outer automorphisms corresponding to orientation preserving mapping classes

under the Dehn–Nielsen–Baer theorem, cf. [20, �eorem 8.1].

By Lemma 4.12 of [7], all the curves C of a �xed genus g which admit a given

topological action � of the group G are parametrized by a connected complex

manifold; arguing as in �eorem 2.4 of [9] we get

�eorem 2.3. �e triples .C;G; �/whereC is a complex projective curve of genus
g � 2, and G is a �nite group acting e�ectively on C with a topological action
of type � are parametrized by a connected complex manifold TgIG;� of dimension
3.g0 � 1/C d , where g0 is the genus of C 0 D C=G, and d is the cardinality of the
branch locus B.

�e image Mg;�.G/ of TgIG;� inside the moduli space Mg is an irreducible
closed subset of the same dimension 3.g0 � 1/C d .

Obviously, composing � with an automorphism ' 2 Aut.G/, i.e. replacing

� with � ı ', does not change the subgroup �.G/ � Map.C /. In particular,

Mg;�.G/ DMg;�ı'.G/, and similarly TgIG;� D TgIG;�ı' .
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Notice that Mg .G/ D
S

�Mg;�.G/, hence the components of Mg .G/ are in

one-to-one correspondence with a subset of the di�erent unmarked topological

types. So, the next question which the above result motivates is: when do two

monodromies �1; �2 W �1.C
0 n B; y0/! G have the same unmarked topological

type?

�e answer is theoretically easy: the two covering spaces have the same un-

marked topological type if and only if they are homeomorphic, hence if and only

if �1 and �2 di�er by:

� an automorphism of G;

� and a di�erent choice of a geometric basis. �is is realized by the action of

a mapping class in

Map.g0; d / WD
Di�C.C 0;B/

Di�0.C 0;B/
:

To reformulate these conditions in terms of Hurwitz generating systems, no-

tice that Aut.G/ acts on HS.GI g0; d / componentwise, and Map.g0; d / acts on

HS.GI g0; d /=Aut.G/. �e latter action is given by the group homomorphism

Map.g0; d /! Out.�1.C
0 n B; y0// and the identi�cation between monodromies

� and Hurwitz generating systems. �eorem 2.3 then implies that there is a bijec-

tion between the set of unmarked topological types Œ�� with g0 and d �xed, and

the following orbit space

¹Œ��º  ! .HS.GI g0; d /=Aut.G//=Map.g0;d/:

In the next sections, we will also use the action of the unpermuted mapping

class group

Mapu.g0; d C 1/ WD Mapu.C 0;B[ ¹y0º/ (3)

on HS.GI g0; d /, where Mapu.g0; dC1/ consists of di�eomorphisms in Di�C.C 0/

which are the identity on B[¹y0º, modulo isotopy. For any v1; v2 2 HS.GI g0; d /,

we write v1 � v2 when they are in the same Mapu.g0; dC1/-orbit. While v1 � v2

means that they represent the same class in .HS.GI g0; d /=Aut.G//=Map.g0;d/.

Clearly v1 � v2 implies v1 � v2.

�e mapping class group Map.g0; d / acts on HS.GI g0; d / only up to conjuga-

tion, but, since we are interested in classifying Hurwitz generating systems up to

Aut.G/, we will also use the notation ' � v, meaning ' � Œv�, with ' 2 Map.g0; d /

and Œv� 2 HS.GI g0; d /=Aut.G/.
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3. �e tautological lift

In this section we give the construction of our invariant in several steps. Having

de�ned a suitable groupG� , for any� � G union of non-trivial conjugacy classes,

we go on to a map ", which associates to each Hurwitz vector v (with ci 2 �) an

element ".v/ 2 G� . Any automorphism f 2 Aut.G/ induces an isomorphism

f� W G� ! Gf .�/;

hence Aut.G/ acts on the disjoint union

G[ D
a

�

G� :

We show two key properties of ":

� it is Aut.G/-equivariant (Lemma 3.5), hence it descends to a map

Q" W HS.GI g0; d /=Aut.G/ �! G[=Aut.G/I

� Q" is constant on the orbits of the mapping class group Map.g0; d / (Proposi-

tion 3.6).

�erefore " descends to our invariant O" which is formalized as the map

O" W
�
HS.GI g0; d /=Aut.G/

�
=Map.g0;d/ �! G[=Aut.G/; for all g0; d;

induced by ". We conclude the section with the study of general properties of the

invariant that are relevant to this work.

Since our construction is inspired by Hopf’s description of the second homo-

logy group H2.G;Z/ [24], we begin by recalling this. For a �nite group G, �x a

presentation of G:

1 �! R �! F �! G �! 1;

where F is a free group. �en there is a group isomorphism (cf. [5]):

H2.G;Z/ Š
R \ ŒF; F �

ŒF; R�
: (4)

If v D .a1; b1; : : : ; ag0 ; bg0/ 2 G2g0

satis�es
Qg0

1 Œai ; bi � D 1, then we can as-

sociate a class in H2.G;Z/ in the following way: choose liftings bai ;bbi 2 F of

ai ; bi , then
Qg0

1 Œ
bai ;bbi � 2 R \ ŒF; F � and its class in R\ŒF;F �

ŒF;R�
gives an element of

H2.G;Z/, according to (4). Clearly, this element does not depend on the choices

of lifts, moreover it is constant on the equivalence class of v modulo simultane-

ous conjugation and under the action of the mapping class group, thus giving a

topological invariant of v.
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�e topological meaning of this invariant is the following. If theG-action onC

is free, the covering p W C ! C 0 is étale, and hence it corresponds to a continu-

ous function Bp W C 0 ! BG, up to homotopy. Here BG is the classifying space

of G. �e topological invariant is simply the image Bp�.ŒC
0�/ 2 H2.BG;Z/ D

H2.G;Z/ of the fundamental class ŒC 0� 2 H2.C
0;Z/ of C 0 under the homomor-

phism Bp� W H2.C
0;Z/! H2.BG;Z/ induced by Bp. Now, if we view C 0 as an

Eilenberg-Mac Lane spaceK.�1.C
0/; 1/, then the fundamental class ŒC 0� is given

by
g0Y

1

Œb̨i ; b̌
i � 2 H2.�1.C

0/;Z/;

where as usual ˛1; ˇ1; : : : ; ˛g0 ; ˇg0 is a geometric basis of �1.C
0/ and b̨

i ; b̌
i are

liftings to the free group of a presentation of �1.C
0/. So,

Bp�.ŒC
0�/ D

g0Y

1

Œbai ; bbi � 2 H2.G;Z/;

where ai D �.˛i /, bi D �.ˇi/ and � W �1.C
0/ ! G is the monodromy of

p W C ! C 0.

From now on, F D h Og j g 2 Gi is the free group generated by the elements

ofG. LetR E F be the minimal normal subgroup generated by the relations, that

is G D F
R

.

De�nition 3.1. Let G be a �nite group and let F , R be as above. For any union

of non-trivial conjugacy classes � � G, de�ne

R� D hhŒF; R�; Oa Ob Oc
�1 Ob�1 j for all a 2 �; ab D bcii

and

G� D
F

R�

:

�e map Oa 7! a, for all a 2 G, induces a group homomorphism ˛ W G� ! G.

Set K� D ker.˛/.

Lemma 3.2. With the notation as before, the following holds. R� � R and
K� D

R
R�

. In particular K� is contained in the center of G� and the short exact
sequence

1 �!
R

R�

�! G�

˛
�! G �! 1

is a central extension.
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Proof. ŒF; R� � R because R is normal in F and moreover Oa Ob Oc
�1 Ob�1 2 R for

any a; b; c 2 G with ab D bc, therefore R� � R. By the de�nition of ˛ we have

that K� D
R

R�
. Finally, K� is in the center of G� because ŒF; R� � R� .

�e morphism ˛ W G� ! G has a tautological section G ! G� , a 7! Oa. �is

map is not a group homomorphism in general, but every element � 2 G� can be

written as Ogz D z Og, with g D ˛.�/ 2 G and z 2 K� . Here, by abuse of notation,

Oa denotes also the class of Oa 2 F in G� D F=R� .

Lemma 3.3. Let Oa; � 2 G� . Suppose that Oa is conjugate to � inG� and that a 2 �.
�en � D b̨.�/.

Proof. Let Obz be a conjugating element, that is Oa Obz D Obz�. As z 2 K� , it com-

mutes with any element, hence

Oa Ob D Ob�: (5)

Now apply ˛ and obtain: ab D b˛.�/. By assumption a 2 �, hence by de�nition

of G� we have that Oa Ob D Ob b̨.�/. Now using (5) we deduce � D b̨.�/.

De�nition 3.4. Given a .g0; d /-Hurwitz vector

v D .c1; : : : ; cd I a1; b1; : : : ; ag0 ; bg0/

in G, cf. De�nition 2.1, its tautological lift Ov is the .g0; d /-Hurwitz vector in G�

de�ned by

Ov D .bc1; : : : ; bcd I ba1; bb1; : : : ; cag0 ; cbg0/

where the factors are the tautological lifts of the factors of v.

Given a .g0; d /-Hurwitz vector v in G with ci 6D 1, for all i , we denote by �v

the union of all conjugacy classes of G containing at least one ci .

For any v as before, let

".v/ D

dY

1

bcj �
g0Y

1

Œbai ;bbi � 2 G�v
;

be the evaluation of the tautological lift Ov of v inG�v
, in analogy to De�nition 2.1.



1196 F. Catanese, M. Lönne, and F. Perroni

Lemma 3.5. LetG be any �nite group, and let � � G be any union of non trivial
conjugacy classes. �en

i) any f 2 Aut.G/ induces an isomorphism f� W G� ! Gf .�/;

ii) ".f .v// D f�.".v//, for all f 2 Aut.G/ and for all v a .g0; d /-Hurwitz
vector with ci 6D 1, for all i , where � D �v .

Proof. i) f 2 Aut.G/ lifts to an automorphism Of 2 Aut.F / de�ned by

Of W Oa 7�! bf .a/:

We have Of .R/ � R, and moreover

Of . Oa Ob Oc
�1 Ob�1/ D bf .a/bf .b/bf .c/�1 bf .b/�1;

for any a; b; c 2 G. If a 2 �, then f .a/ 2 f .�/ and hence

bf .a/bf .b/bf .c/�1 bf .b/�1 2 Rf .�/:

ii) ".f .v// D ".f .c1/; : : : ; f .cd /I f .a1/; : : : ; f .bg0//

D

dY

1

1f .ci / �

g0Y

1

Œ1f .aj /; 1f .bj /�

D

dY

1

Of .bci / �

g0Y

1

Œ Of .baj /; Of .bbj /�

D f�.".v//:

Now, we de�ne

G[ WD
a

�
G� ;

and regard " as a map " W HS.GI g0; d /! G[, v 7! ".v/ 2 G�v
. �en the previous

lemma means that " induces a map

Q" W HS.GI g0; d /=Aut.G/ �! .G[/=Aut.G/:

We have the following

Proposition 3.6. For any g0; d 2 N, Q" is Map.g0; d /-invariant, hence it induces
a map

O" W .HS.GI g0; d /=Aut.G//=Map.g0;d/ �! .G[/=Aut.G/:
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To prove this proposition we need some preliminary results.

Lemma 3.7. Let �v be associated to a .g0; d /-Hurwitz vector v as in De�ni-
tion 3.4. If the Hurwitz vector v0 is related to v by an elementary braid move, then
".v/ D ".v0/.

Proof. It su�ces to consider the case g D 0, d D 2 and the elementary braid

move

�1 W v D .c1; c2/ 7�! v0 D .c2; c
�1
2 c1c2/:

In G�v
we have, thanks to c1 2 �v , c1c2 D c2.c

�1
2 c1c2/, and the relations of G�v

:

".v/ D bc1 bc2 D bc2
2c�1
2 c1c2 D ".v

0/:

Lemma 3.8. If �; � 2 G� , then

Œ�; �� D Œ b̨.�/; b̨.�/�:

Proof. Write � D b̨.�/z and � D b̨.�/z0 with z; z0 in K� , hence central (see

Lemma 3.2). �en the conclusion is immediate.

Proof of Proposition 3.6. �anks to Lemma 3.7 it su�ces to consider the invari-

ance under the action of pure mapping classes, i.e. classes that do not permute

the conjugacy classes associated to the local monodromies. Hence to prove the

invariance of Q" under the action of Map.g0; d / it su�ces to prove the invariance

of " under the action on HS.GI g0; d / by any ' 2 Mapu.g0; d C 1/, see (3).

Since ' is a pure mapping class, the components of v, ' � v are conjugate to

each other, vi � .' � v/i for i D 1; : : : ; d , and where � denotes conjugation

equivalence. For the components of Ov; ' � Ov the same is true, Ovi � .' �bv/i for

i D 1; : : : ; d . By Lemma 3.3 we thus have

. Ov/i � .' � Ov/i H) .' � Ov/i D 4˛..' � Ov/
i
/:

Now notice that the homomorphism ˛ of De�nition 3.1 induces a map

˛.dC2g0/ W HS.G� I g
0; d / �! HS.GI g0; d /;

which is equivariant under the action of the mapping class group in the following

sense: consider the factorizations as a map from the free group on d C 2g0 gener-

ators to G� , resp. G, and the mapping class group as a group of automorphisms
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of this free group. �en ˛.dC2g0/ is equivariant, since such automorphisms act by

pre-composition. Hence by the equivariance of ˛.dC2g0/

˛..' � Ov/i / D .' � v/i

and therefore, for i D 1; : : : ; d ,

.' � Ov/i D 4˛..' � Ov/
i
/ D2.' � v/i D .b' � v/i :

By Lemma 3.8 we may change also the entries .' � Ov/i , i > d in the commu-

tators to 4˛..' � Ov/
i
/ D .b' � v/i without changing the value of the commutators.

Hence

ev.' � Ov/ D ev.b' � v/ D ".' � v/:

By the invariance of the evaluation under the mapping class

".v/ D ev. Ov/ D ev.' � Ov/ D ".' � v/

and we have proved our claim.

De�nition 3.9. Let v 2 HS.GI g0; d / and let �.v/ 2
L

C
ZhCi (C runs over the

set of conjugacy classes of G) be the vector whose C-component is the number of

vj , j � d , which belong to C (�.v/ is also called the shape of v in [21]).

�e map

� W HS.GI g0; d / �!
M

C

ZhCi

obtained in this way induces a map

Q� W HS.GI g0; d /=Aut.G/ �!
� M

C

ZhCi
�
=Aut.G/

which is Map.g0; d /-invariant, therefore we get a map

O� W
�
HS.GI g0; d /=Aut.G/

�
=Map.g0;d/ �!

� M

C

ZhCi
�
=Aut.G/:

For any v 2 HS.GI g0; d /, we call O�.v/ the �-type of v.

Remark 3.10. Let v 2 HS.GI g0; d / and let �v � G be the union of the conjugacy

classes of vj , j � d . �e abelianization Gab
�v

of G�v
can be described as follows:

Gab
�v
Š

M

C��v

ZhCi ˚
M

g2Gn�v

Zhgi;

where C denotes a conjugacy class of G.

Observe that �.v/ 2
L

C��v
ZhCi � Gab

�v
coincides with the vector which is

the image in Gab
�v

of ".v/ 2 G�v
under the natural homomorphism G�v

! Gab
�v

.
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De�nition 3.11. Let � � G be a union of non-trivial conjugacy classes of G.

We de�ne

H2;�.G/ D ker.G� �! G �Gab
� /;

where G� ! G � Gab
� is the morphism with �rst component ˛ (de�ned in De�-

nition 3.1) and second component the natural morphism G� ! Gab
� .

Notice that

H2.G;Z/ Š
R \ ŒF; F �

ŒF; R�
Š ker

� F

ŒF;R�
! G �Gab

;

�
:

In particular, when � D ;, H2;�.G/ Š H2.G;Z/.

�e next result gives a precise relation between H2.G;Z/ and H2;�.G/.

Lemma 3.12. Let G be a �nite group and let � � G be a union of nontrivial
conjugacy classes. Write G D F

R
and G� D

F
R�

. �en, there is a short exact
sequence

1 �!
R� \ ŒF; F �

ŒF; R�
�! H2.G;Z/ �! H2;�.G/ �! 1:

In particular H2;�.G/ is abelian.

Proof. We �rst de�ne the morphism H2.G;Z/! H2;�.G/.

By Hopf’s �eorem we identifyH2.G;Z/ with R\ŒF;F �
ŒF;R�

(cf. [5]). On the other

hand we have:

H2;�.G/ D ker.G� ! G/ \ ker.G� ! Gab
� / D

R

R�

\ ŒG� ; G� �:

By Lemma 3.2, R� � R. �e homomorphism R \ ŒF; F � ! R
R�

, r 7! rR� ,

takes values in H2;�.G/. Moreover it descends to a group homomorphism

H2.G;Z/! H2;�.G/ because ŒF; R� � R� .

To prove the surjectivity, let

aR� 2
R

R�

\ ŒG� ; G� �:

Since aR� 2 ŒG� ; G� � D
ŒF;F ��R�

R�
, we may assume a 2 ŒF; F �. From aR� 2

R
R�

,

we have aR� D rR� , for some r 2 R. Since R� � R, we deduce that a 2 R and

so the surjectivity follows.

�e kernel of the morphism so de�ned is R� \ŒF;F �
ŒF;R�

.

Since H2.G;Z/ is abelian, so is H2;�.G/.
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Proposition 3.13. Let v1; v2 2 HS.GI g0; d / be two Hurwitz generating systems in
G with the same �-type. �en�v1

D �v2
DW �. Moreover, if ev.v1/ D ev.v2/ 2 G,

then the element

".v1/
�1 � ".v2/ 2 H2;�.G/

is invariant under the group eMap.g0; d / of isotopy classes of orientation-preserv-
ing di�eomorphisms of the pair .C 0;B/ that �x y0. In particular,

(1) if v1and v2 are equivalent then the element is trivial;

(2) if the element is non-trivial, then v1 and v2 are inequivalent.

4. Computation of H2;�.Dn/

In this section we derive a complete description of H2;�.G/ in the special case

that G is equal to the dihedral group

Dn D hx; y j x
n D 1; y2 D 1; xy D yx�1i

D ¹xiyj j 0 � i < n; 0 � j < 2º:

Proposition 4.1. Let n 2 N, n � 3. �en

(i) H2.Dn;Z/ is trivial if n is odd and it is isomorphic to Z=2Z if n is even;

(ii) the natural action of Aut.Dn/ on H2.Dn;Z/ is trivial.

Proof. (ii) �is claim follows directly from (i) and from the fact that the neutral

element of H2.Dn;Z/ is �xed by the action of Aut.Dn/.

(i) Identify Dn with the subgroup of SO.3/ generated by

x WD

0
BBBBB@

cos
2�

n
� sin

2�

n
0

sin
2�

n
cos

2�

n
0

0 0 1

1
CCCCCA

and y WD

0
B@
�1 0 0

0 1 0

0 0 �1

1
CA :

Let u W SU.2/! SO.3/ be the homomorphism q 7! Rq, where we identify SU.2/

with the quaternions q 2 H of norm 1, R3 with ImH, andRq.x/ D qx Nq. Consider

the binary dihedral group zDn D u�1.Dn/. It �ts in the following short exact

sequence:

1 �! Z=2Z �! zDn �! Dn �! 1; (6)
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from which we get the 5-term exact sequence (see e.g. [5] p. 47, Exercise 6):

H2. zDn/ �! H2.Dn/ �! .H1.Z=2Z//Dn
�! H1. zDn/ �! H1.Dn/ �! 0;

(7)

where all the coe�cients are in Z and .H1.Z=2Z//Dn
is the group of co-invariants

under the Dn-action on Z=2Z induced by conjugation by zDn, hence we deduce

.H1.Z=2Z//Dn
D H1.Z=2Z/ since Z=2Z is in the center of zDn.

We have that H2. zDn/ D ¹0º, since zDn is a �nite subgroup of SU.2/ Š S3

(see [5] p. 47 , Exercise 7). Next, recall that, for any group G, H1.G;Z/ is

isomorphic to the abelianization Gab (see [5] p. 36), hence (7) reduces to

0 �! H2.Dn/ �! Z=2Z �! zDab
n �! Dab

n �! 0:

To conclude we show that ker. zDab
n ! Dab

n / D ¹0º if and only if n is even. With

the imaginary units i ; j ; k 2 H let

� D cos
��
n

�
C k � sin

��
n

�
2 u�1.x/ and � D j 2 u�1.y/:

Since Œ�`; �� D �2`, for all `, we see that, if n is odd, �n 62 Œ zDn; zDn�, but u.�n/ D 1

and hence ker. zDab
n ! Dab

n / 6D ¹0º. When n is even, zDab
n Š Z=2Z � Z=2Z and

the map zDab
n ! Dab

n is an isomorphism.

Using Lemma 3.2 from [40], we deduce the following

Corollary 4.2. Let n 2 N, n � 4 even. �en, the binary dihedral group zDn is a
Schur cover ofDn and the exact sequence (6) identi�es Z=2Z withH2.Dn;Z/. In
particular, for any .a1; b1; : : : ; ag0 ; bg0/ 2 .Dn/

2g0

with
Qg0

1 Œai ; bi � D 1, the image

of
Qg0

1 Œbai ;bbi � 2 R\ŒF; F � inH2.Dn;Z/ D
R\ŒF;F �

ŒR;F �
is given by

Qg0

1 Œ Qai ; Qbi �, where

Qai ; Qbi 2 zDn are liftings of ai ; bi .

Next the union � of non-trivial conjugacy classes comes into play. Recall that

the set of re�ections ¹xiy j 0 � i < nº is a single conjugacy class in case n is

odd, and splits into two conjugacy classes in case n even according to the parity

of i .

�e conjugacy classes in the set of rotations ¹xi j 0 � i < nº are of the kind

¹xi ; xn�iº and contain two elements except for i D 0 and i D n
2

in case n is even.

Corollary 4.3. Let � � Dn be a union of non-trivial conjugacy classes, � 6D ;.
�en H2;�.Dn/ D ¹0º in the following cases: n is odd; n is even and � contains
some re�ection; n is even and � contains the non-trivial central element. In the
remaining case,H2;�.Dn/ D Z=2Z.
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Proof. If n is odd, then H2.Dn;Z/ D ¹0º and hence H2;�.Dn/ D ¹0º for any �

(Lemma 3.12).

If n D 2k and � contains some re�ection, say y 2 �, then Oycxk Oy�1.cxk/�1 is

in R� \ ŒF; F �. But the image of this element in H2.Dn;Z/ is not trivial (Corol-

lary 4.2), hence H2;�.Dn/ D ¹0º (Lemma 3.12). �e same argument works if

xy 2 �.

Assume now n D 2k and xk 2 �. �en cxk Oy.cxk/�1 Oy�1 2 R� \ ŒF; F � and its

image in H2.Dn;Z/ is not trivial, hence H2;�.Dn/ D ¹0º also in this case.

Finally, if n D 2k and � � Z=nZ n ¹xkº, then

R� D hhŒF; R�;
c
x˛c
xˇ .

c
x˛/�1.

c
xˇ /�1;

c
x˛ bxˇy.

1
xn�˛/�1.

b
xˇy/�1 j x˛ 2 �ii:

First we note that the image of cx˛ cxˇ .cx˛/�1.cxˇ /�1 in H2.Dn;Z/ is 0. Second,

the elements cx˛ bxˇy.1xn�˛/�1.bxˇy/�1 generate an abelian group modulo ŒF; R�.

Last, the intersection of this subgroup with ŒF; F �=ŒF; R� is generated by elements

represented by

c
x˛ bxˇy.

1
xn�˛/�1 bxˇy�1 �

1
xn�˛ bxy

c
x˛�1.

b
xy/�1:

It remains to show that these are trivial modulo ŒF; R�, in fact

.
b
xˇy/�1c

x˛ bxˇy.
1
xn�˛/�1 �

1
xn�˛ bxy.

c
x˛/�1.

b
xy/�1

� .
b
xˇy/�1c

x˛ bxˇy
b
xy.cx˛/�1.

b
xy/�1

� .
b
xˇy/�1cx˛ b

xˇy
b
xy

1
x�ˇ

„ ƒ‚ …
2R

.
1
x�ˇ /�1 .

c
x˛/�1.bxy/�1

� .
b
xˇy/�1 b

xˇy
b
xy

1
x�ˇ c

x˛ 1
x�ˇ �1 .

c
x˛/�1.

b
xy/�1

� bxy
1
x�ˇ c

x˛ .
1
x�ˇ �1/ .

c
x˛/�1.

b
xy/�1

�
1
x�ˇ c

x˛ .
1
x�ˇ /�1c

x˛�1:

�is last element is trivial modulo ŒF; R� as noted �rst. We deduce R� \ŒF;F �
ŒF;R�

D ¹0º

and henceH2;�.Dn/ Š H2.Dn;Z/ Š Z=2Z, by Lemma 3.12.
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5. �e injectivity of O" when G D Dn

Recall the following

Notation. For any Hurwitz vector v D .c1; : : : ; cd I a1; b1; : : : ; ag0 ; bg0/ 2 GdC2g0

,

ev.v/ D

dY

iD1

ci �

g0Y

j D1

Œaj ; bj � 2 G;

while, if ci 6D 1, for all i , ".v/ D ev. Ov/ 2 G�v
, where Ov 2 .G�v

/dC2g0

is the

tautological lifting (De�nition 3.4).

In this section we prove the following

�eorem 5.1. Let G D Dn, the dihedral group of order 2n. For all g0; d , the
following results hold.

(i) �e map

O" W .HS.GI g0; d /=Aut.G//=Map.g0;d/ �! .G[/=Aut.G/ WD
�a

�
G�

�
=Aut.G/

is injective.

(ii) �e image Im. O"/ is the inverse image of Im. O�/ in .
`

�K�/=Aut.G/, where K�

is de�ned in De�nition 3.1. In other words, for any � � G, union of non
trivial conjugacy classes, Im."/ \ G� D H2;�.G/ � .Im."/ \G�/.

(iii) For g0 � 2, Im. O�/ is just the set of admissible class functions �. For
g0 D 1, Im. O�/ is the union of the set of admissible class functions � for
which � contains some re�ection, together with a subset S of those for which
� generates a subgroupH of index at most 2 in the subgroup R of rotations,
S contains the subset for which H D R.

To prove (i), let Œv1��; Œv2�� 2 .HS/=� be equivalence classes up to the com-

bined action of Aut.G/ and the mapping class group such that O".Œv1��/ D O".Œv2��/.

�en there exists an automorphism f 2 Aut.G/ such that f .�v1
/ D �v2

and

f .".v1// D ".v2/. Hence, by Lemma 3.5, we assume without loss of generality

�v1
D �v2

D � and ".v1/ D ".v2/, in particular

".v1/ � ".v2/
�1 D 0 2 H2;�.G/:
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�e outline of the proof is now the following. We address the following mutu-

ally exclusive cases: � D ; (the étale case); � 6D ; and contains some re�ection;

� 6D ; and does not contain re�ections. In the �rst case, for each element of HS,

we determine a normal form with respect to �, then we show that two di�erent

normal forms are distinguished byH2.Dn;Z/ (recall that Aut.Dn/ acts trivially on

H2.Dn;Z/). In the second case we will show that all Hurwitz generating systems

with the same numerical invariants (n, g0 and �-type) are equivalent with respect

to � (this agrees with the fact H2;�.Dn/ D ¹0º in this case). In the last case, for

every v 2 HS, we determine a normal form v0 with respect to �. We see that two

di�erent normal forms v0
1 and v0

2 have di�erent invariants, ".v0
1/ 6D ".v0

2/ 2 G� .

Finally we prove that v1 � v2 if and only if there exists f 2 Aut.Dn/ such that

f .�/ D � and f .".v0
1// D ".v0

2/. From this (i) follows. We refer to [10] for a

useful description of Aut.Dn/.

To prove claim (ii), we observe that for any v 2 HS.DnI g
0; d / the orbit

�.v/ �H2;�v
.Dn/ is either ¹".v/º or ¹".v/;�".v/º (cf. Corollary 4.3). In the proof

of (i) we list all possible normal forms for Hurwitz generating systems and we

will see that, in the case where H2;�v
.Dn/ Š Z=2Z D ¹˙1º, there exists

v0 2 HS.DnI g
0; d / with �v0 D �v and ".v0/ � ".v/�1 D �1.

To prove (iii), observe that, given an admissible class function �, and elements

c1; : : : ; cd which yield the given function �, the product c1 � � � � � cd WD c is in

the commutator subgroup. However, in the dihedral group the commutator sub-

group is equal to the set of commutators. Hence we may �nd a1; b1 such that

c�1 D Œa1; b1�, it su�ces, if c D x2ı , to take a1 D x
my; b1 D x

mCıy.

If some cj is a re�ection, without loss of generality, we may assume that

cj D y, hence, choosing m D 1, we obtain that

v WD .c1; : : : cd I xy; x
1Cıy; 1; : : : ; 1/

is a Hurwitz generating system. If g0 � 2, we can just take the Hurwitz generating

system

v WD .c1; : : : cd I y; x
ıy; x; 1; : : : ; 1/:

In the case where g0 D 1 and all the cj are rotations, observe that

v WD .c1; : : : cd I x
my; xmCıy/

is a Hurwitz generating system if the dihedral group is generated by H (the sub-

group generated by the cj ’s), together with xmy and xı . �is amounts to the con-

dition that H and xı generate the subgroup R of rotations. Since c D x2ı 2 H ,

we see that a necessary condition is thatH has index at most two in the group R of

rotations, and a su�cient one is thatH D R. In the case where the index is exactly
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two, so that n D 2h is even, the condition is that ı is an odd number. Observe that

in this case if we replace some cj D x2i by its inverse, the number ı is replaced

by ı � 2i , so that condition is indeed a condition on the class function �.

Remark 5.2. For the case g0 D 0 we defer to our previous article [10], where all

the normal forms were given.

But we can give a direct description as follows.

For g0 D 0, Im. O�/ is just the set of admissible class functions � satisfying one

of the following conditions:

(R) there are only two re�ection classes, and the subgroup generated by the ro-

tation classes is the whole R;

(O) n is odd and the class function � takes value at least 4 on the re�ection class;

(E) n is even, there are at least four re�ection classes and either the class function

� takes positive value on both re�ection classes, or there exists a rotation class

with odd exponent.

In fact, since we want a Hurwitz generating system, it is a necessary condition

that there must be at least one re�ection (and indeed an even number of re�ections

by admissibility). Take now an admissible class satisfying this restriction, and take

c1; : : : ; cd realizing the admissible class. �en their product c is in the commutator

subgroup, so it is any rotation in case n is odd and a rotation of type x2i in case n

is even.

Since there is a re�ection, we replace the last re�ection, say ci , by cic
�1, and

obtain thus an admissible Hurwitz system without changing the class function.

We must however have an admissible Hurwitz generating system, and we recall

that there is an even number of re�ections among the ci ’s.

Up to automorphisms ofDn, we have re�ections y and xmy in the components

of the Hurwitz vector.

If we have only two re�ections y; xmy, we are done if and only if the subgroup

generated by the rotations is the whole subgroup R, since x�m 2 R.

Assume that n is odd and there are 4 re�ections: assume that the �rst four are

y; xm1y; xm2y; xm3y: then we can replace these (without changing the class func-

tion) by the following re�ections y; xy; xm2�m1C1y; xm3y and we have obtained

a Hurwitz generating system.
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Assume that n is even and there are at least four re�ections:

y; xm1y; xm2y; xm3y; : : : :

We can change the rotations by adding to mi an even integer 2hi , in such a way

that the sum �h1 C h2 � h3 � � � � 0. Hence if some mi is odd, we obtain y and

xy, and we have a generating system. If instead allmi ’s are even, we obtain y and

x2y, hence we are �nally done if and only if there is a rotation with odd exponent.

Case 1: � D ; (the étale case). Here H2;�.Dn/ D H2.Dn;Z/, so v 2 HS.Dn/

implies ".v/ 2 H2.Dn;Z/. In the following, we identifyH2.Dn;Z/ Š Z=2Zwith

¹0; 1º, when n is even. �en we have the following result.

Proposition 5.3. Let n; g0 2 N with n � 3, g0 > 0. �en, for any v 2 HS.DnI g
0/,

(i) v � .y; 1; x; 1; : : : ; 1/, if n is odd or if n is even and ".v/ D 0;

(ii) v � .y; xn=2; x; 1; : : : ; 1/, if n is even and ".v/ D 1.

Proof. Let

Nv D v(mod Z=nZ) 2 .Z=2Z/2g0

:

Notice that Nv 2 HS.Z=2ZI g0/. Since the parameter space for étale Z=2Z-cov-

erings of curves of a �xed genus is irreducible (see e.g. [16] Lemma 5.16, or [3],

or [14], or [9], �eorem 2.4), there exists ' 2 Mapg0 such that ' � Nv D .1; 0; : : : ; 0/.

Hence

' � v D .x`1y; xm1 ; : : : ; x`g0 ; xmg0 /:

�e condition ev.' � v/ D 1 implies that 2m1 D 0 (mod n). Hence m1 D 0 or

m1 D
n
2

(mod n).

In the �rst case, which is the only possible if n is odd,

' � v D .x`1y; 1; x`2; : : : ; x`g0 ; xmg0 /:

Consider now v0 WD .x`2 ; xm2 ; : : : ; x`g0 ; xmg0 /. As v0 2 HS.Z=nZI g0 � 1/,

from the irreducibility of the parameter space of étale Z=nZ-coverings of

curves of a �xed genus we deduce that there exists '0 2 Mapg0�1 such that

'0 � v0 D .x�; 1; : : : ; 1/, with .�; n/ D 1 (see e.g. [16] Lemma 5.16, or [3], or [14],

or [9], �eorem 2.4). Now, from Proposition A.3 it follows that there exists

 2 Mapg0 such that

 � v D .x`1y; 1; x�; 1; : : : ; 1/:
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We obtain the normal form (i) after operating with Aut.Dn/. �e fact that ".v/ D 0

follows from a standard computation (cf. Corollary 4.2).

Ifm1 D
n
2

(mod n), we have two subcases: hx`2 ; xm2 ; : : : ; x`g0 ; xmg0 i D Z=nZ

(which is the case when n=2 is even), or hx`2 ; xm2 ; : : : ; x`g0 ; xmg0 i D hx2i. Pro-

ceeding as in the case m1 D 0 we reach the normal form (ii) in the �rst subcase,

otherwise we obtain .x`1y; x
n
2 ; x2; 1; : : : ; 1/. In the latter case, consider the trans-

formation

.a1; b1; a2; b2/ 7�! .a2a1; b1; b1a2b
�1
1 ; a2b2a2b

�1
1 /; (8)

which is realized by Map2 as it preserves the relation
Q2

1Œ˛i ; ˇi � D 1. �en ex-

tend it to …g0 using Proposition A.3 and apply the transformation so obtained to

.x`1y; x
n
2 ; x2; 1; : : : ; 1/. We obtain:

v � .x`1C2y; x
n
2 ; x2; x4C n

2 ; 1; : : : ; 1/:

Since Z=nZ D hx
n
2 ; x2i, there exists  2 Mapg0 such that  applied to the right

hand side is .x`1C2y; x
n
2 ; x; 1; : : : ; 1/, therefore we obtain the normal form (ii). In

both of these subcases we have ".v/ D 1 (cf. Corollary 4.2).

Case 2: � 6D ; and contains some re�ection. Let v be a Hurwitz generating

system, v D .c1; : : : ; cd I a1; b1; : : : ; ag0 ; bg0/, such that ¹c1; : : : ; cd º contains some

re�ection, actually an even number because any product of commutators in Dn is

a rotation. If n is odd, all the re�ections belong to the same conjugacy class, while

when n D 2k they are divided into two classes. Denote by �y (resp. �xy) the

number of ci ’s in the class of y (resp. xy). As the pair .�y; �xy/ is not Aut.Dn/-

invariant, we de�ne �1; �2 by the property that ¹�1; �2º D ¹�y; �xyº, �1 � �2

(in [10] we used the notation h for �1, k for �2). Recall that, under the above

hypotheses, H2;�.Dn/ D ¹0º (Corollary 4.3). Indeed we prove that all the v’s

with �xed g0; d , n and �-type are equivalent each other.

Proposition 5.4. Let n; g0; d 2 N with n � 3, g0; d > 0. �en, for any
v 2 HS.DnI g

0; d / such that �v contains some re�ection,

(i) v � .xr ; x1�jrjy; xy; y; : : : ; yI x; 1; : : : ; 1; 1/, if n is odd;

(ii) v � .xr ; x"�jrjy; xy; : : : ; xy„ ƒ‚ …
�2

; y; : : : ; y„ ƒ‚ …
�1

I x; 1; : : : ; 1; 1/, if n is even.

Here r D .r1; : : : ; rR/, where R C �y D d in case (i), R C �y C �xy D d in
case (ii), 0 < ri � riC1 �

n
2
, xr D .xr1 ; : : : ; xrR/, jr j D

P
ri mod n, ¹�1; �2º D

¹�y; �xyº, �1 � �2, " 2 ¹0; 1º, "C �2 � 1 mod 2.
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�e idea of the proof is the following. Using the action of the unpermuted

mapping class group Mapu.g0; dC1/ and the fact that at least one ci is a re�ection,

we prove that v � . Qc1; : : : ; Qcd I Qa1; Qb1; : : : ; Qag0 ; Qbg0/, with Qai ; Qbi 2 Z=nZ, for any i .

We collect in Appendix A the relevant facts that will be used about the action

of Mapu.g0; d C 1/ on the fundamental group. �en, using results about étale

Z=nZ-covers, we deduce that v � v0 WD .c0
1; : : : ; c

0
d
I x; 1; : : : ; 1/ (Lemma 5.5).

At this point we can apply the main theorem of [10] to deduce that, acting with

the braid group, it is possible to transform v0 to the corresponding normal form.

However, we will see that using the entry x in v0, the results in Appendix A and

Lemma 2.1 of [10], we can transform directly v0 in one of the above forms without

using the normal forms for the g0 D 0 case.

Lemma 5.5. Let v be as in Proposition 5.4. �en

v � v0 WD .c0
1; : : : ; c

0
d I x; 1; : : : ; 1; 1/:

Proof. Without loss of generality assume that cd is a re�ection (otherwise act

with the braid group). �en, if a1 is a re�ection, by Proposition A.2 (i), there

exists ' 2 Mapu.g0; d C 1/ such that

' � v D .c1; : : : ; cd�1; .cda1b1a
�1
1 /cd .cda1b1a

�1
1 /�1I cda1; b1; : : : ; ag0 ; bg0/:

While, if a1 is a rotation and b1 is a re�ection, by Proposition A.2 (ii) we have

that there exists ' 2 Mapu.g0; d C 1/ such that

' � v D .c1; : : : ; .cd Œa1; b1�a
�1
1 /cd .cd Œa1; b1�a

�1
1 /�1I a1; .a

�1
1 cda1/b1; : : : ; bg0/:

Notice that in both cases the d -th entry of ' � v is a re�ection and that cda1,

.a�1
1 cda1/b1 2 Z=nZ. Proceeding in this way we get  2 Mapu.g0; d C 1/ such

that . � v/i 2 Z=nZ, i D d C 1; : : : ; 2g0.

Next, by the main theorem in [9], we conclude that

 � v � . Qc1; : : : ; Qcd I x
˛; 1; : : : ; 1/:

We can further assume .˛; n/ D 1. Otherwise, sinceDn D hx
˛; Qc1; : : : ; Qcd i, there

exists xˇ 2 h Qc1; : : : ; Qcd i such that Z=nZ D hx˛Cˇ i. Using Proposition A.2 (i) and

the braid group, we can multiply x˛ by any element of h Qc1; : : : ; Qcd i. �e claim now

follows by applying Aut.Dn/.
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We now complete the proof of Proposition 5.4. Let v0 be as in Lemma 5.5 and

let 2N be the number of re�ections in ¹c0
1; : : : ; c

0
d
º. Applying Lemma 2.1 of [10]

we have

v0 � .xr ; xˇy; x˛y; xjN�1y; xjN�1y; : : : ; xj1y; xj1yI x; 1; : : : ; 1/; (9)

where r D .r1; : : : ; rR/, 0 < ri � riC1 �
n
2
, xr D .xr1 ; : : : ; xrR/.

If N D 1 the result is clear. Otherwise we conjugate by x simultaneously the

entries of each pair .xjky; xjky/ in (9) without changing the other components,

hence we obtain

v0 � .xr ; xˇy; x˛y; xjN�1C2`N�1y; xjN�1C2`N�1y; : : : ;

xj1C2`1y; xj1C2`1yI x; 1; : : : ; 1/
(10)

for any `1; : : : ; `N �1 2 Z.

�e equivalence (10) can be proven as follows. We have

v0 � .xr ; xˇy; : : : ; xj1y; .xj1yx�1/xj1y.xj1yx�1/�1I x; x�1xj1yx; 1; : : : ; 1/

� .xr ; xˇy; : : : ; .x�1/xj1y.x/; xj1yI x; x�1xj1yx; 1; : : : ; 1/

� .xr ; xˇy; : : : ; .x�1/xj1y.x/; .x�1/xj1y.x/I x; 1; : : : ; 1/;

where the �rst and the third equivalences are given by �-twists as in Proposi-

tion A.2 (ii), while the second is a braid twist between the last two components.

Iterating these steps we can conjugate by any power of x the entries of .xj1y; xj1y/

simultaneously. By Lemma 2.3 in [10] we can move .xjky; xjky/ to the right and

then conjugate its entries by any power of x as before. �is proves (10).

If n is odd, choose `i in (10) such that ji C 2`i D ˛ � 1 (mod n), then apply

the automorphism x˛�1y 7! y; x 7! x to obtain (i).

Assume now that n is even. Without loss of generality we have that �1 D �y �

�xy D �2 (otherwise apply Aut.Dn/). Assume further that xˇy in (9) is conjugate

to xy.

If x˛y is conjugate to xy, choose `i such that ji C2`i D ˛ or jiC2`i D ˛�1

(mod n), so (10) becomes:

v0 � .xr ; xˇy; x˛y; x˛y; : : : ; x˛y; x˛�1y; : : : ; x˛�1yI x; 1; : : : ; 1/:

We obtain the normal form (ii) after applying the automorphism

x˛y 7�! xy; x 7! x:

�e remaining case, where x˛y is conjugate to y, is similar.

Notice that (10) follows also from Lemma 2.1 in [27] (see also [23]), which

applies to a more general situation. Since we don’t need the whole strength of that

result, we preferred to give a complete proof in our case.
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Case 3: � 6D ; and does not contain re�ections. We prove the following

Proposition 5.6. Let v; v0 2 HS.DnI g
0; d / with �v; �v0 � Z=nZ. �en v � v0 if

and only if there exists f 2 Aut.Dn/ such that f .�v/ D �v0 and f .".v// D ".v0/.

�e “only if” part is clear. So assume �v D �v0 DW � and the existence of

f as in the statement. We prove that v � v0. �is is achieved after considering

three cases: n is odd; n D 2k and xk 2 �, n D 2k and xk 62 �. In the �rst

two cases we determine a normal form, with respect to �, for each such element

of HS.DnI g
0; d /, and then we show that two such elements are equivalent if and

only if they have the same normal form. Notice that in both casesH2;�.Dn/ D ¹0º

(Corollary 4.3). In the last case, for any such v 2 HS.DnI g
0; d /, we determine

a normal form v0, with respect to the action of Map.g0; d / and then we show

that v1 � v2 if and only if there exists f 2 Aut.Dn/ such that f .�/ D � and

f .".v0
1// D ".v

0
2/. Notice that, in this case H2;�.Dn/ Š Z=2Z (Corollary 4.3).

Notation. Let v D .c1; : : : ; cd I a1; b1; : : : ; ag0; bg0/ 2 D
dC2g0

n be a Hurwitz gen-

erating system such that �v � Z=nZ, i.e. ci 2 Z=nZ, for all i . We denote by

H D hc1; : : : ; cd i � Dn the subgroup generated by the ci ’s. Note that, under the

above hypotheses, H is normal and it is contained in Z=nZ. Set G0 WD Dn=H .

�en G0 is a dihedral group Dm, m � 3, or is isomorphic to Z=2Z � Z=2Z, or to

Z=2Z.

Lemma 5.7. Let n 2 N, n � 3 odd. Let v 2 HS.DnI g
0; d / with �v � Z=nZ.

�en
v � .xr I y; xh; x; 1; : : : ; 1/;

where r D .r1; : : : ; rd /, xr D .xr1 ; : : : ; xrd /, r1 � � � � � rd < n
2

and

2h D
Pd

1 ri ; mod n.

Proof. Let us consider

Nv WD .a1; b1; : : : ; ag0 ; bg0/ 2 HS.G0I g0; 0/;

where ai D ai (mod H ), bi D bi (mod H ). By Proposition 5.3 and by the

analogous results for cyclic and (Z=2Z � Z=2Z)-covers, there exists ' 2 Mapg0

such that

' � Nv D . Ny; 1; Nx; 1; : : : ; 1/:

By Proposition A.3, there exists Q' 2 Map.g0; d / with

Q' � v D .c1; : : : ; cd I x
`1y; xm1 ; x`2 ; : : : ; xmg0 /;

where xmi 2 H , for all i , x`2 D x (mod H ) and x`i 2 H , for all i > 2.
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We now apply the �-twists as in Proposition A.2 (i) with ` D 2; 3; : : : ; g0 and

we deduce that we can multiply all the x`i , i > 1, by any element of H . Hence

there exists  2Mapu.g0; d C 1/ such that

 � Q' � v D .c1; : : : ; cd I x
`1y; xm1 ; x; xm2 ; 1; xm3; : : : ; 1; xmg0 /:

Similarly, using Proposition A.2 (ii), we get:

v � .c1; : : : ; cd I x
`1y; xm1 ; x; 1; : : : ; 1; 1/:

Now, for any i D 1; : : : ; d , consider ci D xsi . If si <
n
2
, set ri D si , other-

wise use the braid group to move ci to the d -th position and then apply Proposi-

tion A.2 (ii) with ` D 1. After this, ci becomes c�1
i D x

n�si , then set ri D n� si .

Finally, using the braid group, we can order the ci ’s such that ri � riC1.

So, we have proved that

v � .xr I x�1y; x�1; x; 1; : : : ; 1/;

with r1 � � � � � rd <
n
2
. Now the condition ev.v/ D 1 implies that 2�1 D

Pd
1 ri

(mod n), therefore set h WD �1 (mod n).

We reach the normal form after applying the automorphism x�1y 7! y,

x 7! x.

Lemma 5.8. Let n D 2k 2 N and let v 2 HS.DnI g
0; d / with xk 2 �v � Z=nZ.

�en
v � .xr I y; xh; x; 1; : : : ; 1/;

where r D .r1; : : : ; rd /, xr D .xr1 ; : : : ; xrd /, r1 � � � � � rd D k, 2h D
Pd

1 ri

(mod n) and h < k.

Proof. Proceeding as in the proof of Lemma 5.7, there exists ' 2 Map.g0; d / such

that

' � v D .c1; : : : ; cd I x
`1y; xm1 ; x`2 ; : : : ; xmg0 /;

where xmi 2 H , for all i > 1, x`2 D x (mod H ) and x`i 2 H , for all i > 2.

Since we can multiply all the x`i , i > 1, by any element ofH (apply Proposi-

tion A.2 (i) with ` D 2; 3; : : : ; g0), we have that there exists  2Mapu.g0; d C 1/

such that

 � ' � v D .c1; : : : ; cd I x
`1y; xm1 ; x; xm2 ; 1; xm3; : : : ; 1; xmg0 /:

Similarly, using Proposition A.2 (ii), we get

v � .c1; : : : ; cd I x
`1y; xm1 ; x; 1; : : : ; 1; 1/:
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Now, for any i D 1; : : : ; d , consider ci D xsi . If si � k, set ri D si , other-

wise use the braid group to move ci to the d -th position and then apply Proposi-

tion A.2 (ii) with ` D 1. In this way ci becomes c�1
i and so set ri D 2k � si .

So, we have proved that

v � .xr I x�1y; x�1; x; 1; : : : ; 1/;

with ri � k, for all i . Now the condition ev.v/ D 1 implies that 2�1 D
Pd

1 ri

(mod n). If �1 < k, set h D �1. Otherwise, apply braid group transformations

to achieve the ordering ri � riC1, for all i � d � 1. By hypotheses rd D k and

we apply Proposition A.2 with ` D 1. Since xk is central, this operation does not

change rd , while x�1 becomes x�1Ck . Set h D �1 C k (mod n).

Finally apply the appropriate element of Aut.Dn/ to reach the normal form.

We now consider the last case.

Lemma 5.9. Let n D 2k 2 N and let v 2 HS.DnI g
0; d / with � � Z=nZ n ¹xkº.

(i) �ere is an equivalence

v � v0 WD .xr I y; xh; x; 1; : : : ; 1/;

where r D .r1; : : : ; rd /, xr D .xr1 ; : : : ; xrd /, r1 � � � � � rd < k, and
2h D

Pd
1 ri mod n.

(ii) Let v0
1 D .xr I y; xh; x; 1; : : : ; 1/ and v0

2 D .xr I y; xhCk; x; 1; : : : ; 1/, then
".v0

1/ 6D ".v
0
2/ 2 .Dn/� .

(iii) v0
1 � v0

2 if and only if there exists f 2 Aut.Dn/ such that f .�/ D � and
f .".v0

1// D ".v
0
2/.

Proof. �e proof of (i) is the same as that of the previous lemma. Since in this

case xk 62 �, we can not achieve h � k.

To prove (ii) recall that ".v/ WD ev. Ov/ 2 .Dn/� . So, if ev.bv0
1/ D ev.bv0

2/, then

ev.bv0
2/

�1 � ev.bv0
1/ D 0 2 H2;�.Dn/. But now a direct computation shows that

ev.bv0
2/

�1 � ev.bv0
1/ 6D 0 (Corollary 4.2), a contradiction.

(iii) �e “only if” part is clear. So, assume that there exists f 2 Aut.Dn/

such that f .�/ D � and f .".v0
1// D ".v0

2/. Since f .".v0
1// D ".f .v0

1//, we

have ".f .v0
1// D ".v

0
2/ and so v0

2 and f .v0
1/ have the same �-type (Remark 3.10).

From (i) and (ii) we deduce that

f .v0
1/ � .x

r I x�1y; xhCk; x; 1; : : : ; 1/:
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Hence, using the automorphism x�1y 7! y, x 7! x, we have that f .v0
1/ � v

0
2 and

so the claim follows.

Appendixes

A. Automorphisms of surface-groups

We collect in this appendix some facts about mapping class groups and their action

on fundamental groups. �ey should be well known to experts, we include them

here for completeness.

Let Y be a compact Riemann surface of genusg0 and letB D ¹y1; : : : ; yd º � Y

be a �nite subset of cardinality d . After the choice of a geometric basis of Y nB,

we have the following presentation of the fundamental group:

�1.Y n B; y0/ D h1; : : : ; d ; ˛1; ˇ1; : : : ; ˛g0 ; ˇg0 j1 � � � � � d �…
g0

iD1Œ˛i ; ˇi � D 1i:

Following [4], there is a short exact sequence

1 �! �1.Y nB; y0/
„
�!Mapu.Y; ¹y0; y1; : : : ; yd º/ �!Mapu.Y;B/ �! 1 (11)

which induces an injective group homomorphism

Mapu.Y;B/ �! Out.�1.Y n B; y0//

([4], �eorem 4). �e map „ is de�ned as follows. Let Œc� 2 �1.Y n B; y0/ be an

element of the geometric basis and let

c W Œ0; 2�� �! Y nB

be a simple, smooth loop based at y0, representing Œc�. Let „.Œc�/ be the isotopy

class of the �-twist, �c . �en extend „ to the whole group as an homomorphism.

Recall that the �-twist, �c , can be de�ned as follows. Let N � Y nB be a tubular

neighborhood of c and let e W A ! N be a di�eomorphism between the annulus

A D ¹z D rei� 2 Cj1 � r � 2º and N such that e.3
2
; �/ D c.�/. De�ne

h W A �! A

as follows:

h.r; �/ D

8
<̂

:̂

.r; � C 4�.r � 1//; 1 � r �
3

2
I

.r; � C 4�.2� r//;
3

2
� r � 2:
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r

�

1 3
2

2

2�

h.¹� D 0º/

�en h is a di�eomorphism which is the identity when r D 1; 3
2
; 2. Finally,

de�ne �c W Y ! Y as the identity on Y nN and as e ı h ı e�1 on N .

From the sequence (11), it follows that �1.Y n B; y0/ is isomorphic through

„ to a normal subgroup of Mapu.Y; ¹y0; y1; : : : ; yd º/, hence we get an action by

conjugation of Mapu.Y; ¹y0; y1; : : : ; ydº/ on �1.Y nB; y0/:

Œf � � Œ�c � D Œf ı �c ı f
�1�:

We have:

Lemma A.1. For any Œf � 2 Mapu.Y; ¹y0; y1; : : : ; yd º/ and Œc� 2 �1.Y n B; y0/,

Œf � � Œ�c � D Œ�f#.c/�;

where f#.c/.�/ D .f ı c/.�/.

Proof. Observe

f ı �c ı f
�1 D

8
<
:
.f ı e/ ı h ı .f ı e/�1 on N ,

Id on Y nN .

�e result then follows because f ı e W A! Y is a tubular neighborhood of f#.c/.

One can de�ne, in the same way, �-twists with respect to loops that are not

based at y0 and Lemma A.1 is still valid. In the following result we give the

action of �-twists around certain loops in terms of a given geometric basis of

�1.Y nB; y0/.
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Proposition A.2. Let 1; : : : ; d ; ˛1; ˇ1; : : : ; ˛g0 ; ˇg0 be a �xed geometric basis of
�1.Y nB; y0/.

(i) Let c � Y n B be the loop in Figure 1, image of the two sides of the angle
inside the polygon with vertex yd . Set

u D

`�1Y

kD1

Œ˛k ; ˇk�:

�en

.�c/�.˛`/ D u
�1du˛`I

.�c/�.d / D .du˛`ˇ`˛
�1
` u�1/d .du˛`ˇ`˛

�1
` u�1/�1I

.�c/�.˛i / D ˛i .i 6D `/I

.�c/�.ˇi / D ˇi .for all i/I

.�c/�.j / D j .j 6D d/:

(ii) Let c � Y n B be the loop in Figure 2, image of the two sides of the angle
inside the polygon with vertex yd . Set

u D

`�1Y

kD1

Œ˛k ; ˇk�:

�en

.�c/�.ˇ`/ D ˛
�1
` u�1du˛`ˇ`I

.�c/�.d / D .duŒ˛`; ˇ`�˛
�1
` u�1/d .duŒ˛`; ˇ`�˛

�1
` u�1/�1I

.�c/�.ˇi / D ˇi .i 6D `/I

.�c/�.˛i / D ˛i .for all i/I

.�c/�.j / D j .j 6D d/:

Proof. (i) �e image of ˛` under �c is drawn in Figure 3. From this it follows the

formula for .�c/�.˛`/. Since �c is the identity outside a small tubular neighborhood

of c,

.�c/�.˛i / D ˛i .i 6D `/;

.�c/�.ˇi / D ˇi (for all i),

.�c/�.j / D j .j 6D d/:



1216 F. Catanese, M. Lönne, and F. Perroni

�e formula for .�c/�.d / is now a consequence of 1 � � � � � d

Qg0

iD1Œ˛i ; ˇi � D 1,

since the product 1 � � � � � d

Qg0

iD1Œ˛i ; ˇi � must be left �xed.

�e proof of (ii) is similar.

˛1

ˇg0

˛`

ˇ`
˛`

ˇ`

y0

�yd

c

d

Figure 1.

˛1

ˇg0

˛`

ˇ`
˛`

ˇ`

y0

�yd

c

d

Figure 2.

˛1

.�c/�.˛`/

ˇg0

˛`

ˇ`
˛`

ˇ`

y0

�

Figure 3.
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Proposition A.3. Let

…g0 D
D
˛1; : : : ; ˇg0

ˇ̌
ˇ

g0Y

1

Œ˛i ; ˇi �
E

and

…g0�1 D
D
˛2; : : : ; ˇg0

ˇ̌
ˇ

g0Y

2

Œ˛i ; ˇi �
E
:

�en, for any ' 2 Aut0.…g0�1/, there exist  2 Aut0.…g0/ and ı 2 …g0 such that

 .˛1/ D ˛1;

 .ˇ1/ D ˇ1;

and, for i > 1,

 .˛i / D ı'.˛i /ı
�1;

 .ˇi / D ı'.ˇi /ı
�1:

Proof. We �rst extend ' to an automorphism

Q' 2 Aut
�
h˛2; : : : ; ˇg0;  j �

g0Y

2

Œ˛i ; ˇi �i
�

such that Q'.˛i / D '.˛i /, Q'.ˇi / D '.ˇi / and Q'./ D ı�1ı, i > 1. Geometrically

this corresponds to representing ' as composition of Dehn twists along curves

contained in the complement Yg0�1 nD of a closed disk D in a Riemann surface

Yg0�1 of genus g0 � 1, where D does not intersect ˛i and ˇi .

Now simply de�ne

 .˛1/ D ˛1;

 .ˇ1/ D ˇ1;

 .˛i / D ı Q'.˛i /ı
�1;

 .ˇi / D ı Q'.ˇi /ı
�1;

for i > 1.
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B. Loci and topological types

In this appendix we show that, up to essentially only one exception, the loci

Mg;�.Dn/ are in bijection with the unmarked topological types of Dn-actions.

In general, thanks to the work of of Singerman, Ries, and Magaard–Shaska–

Shpectorov–Völklein (see [34], [32], and [30]), this is true more generally for the

irreducible components of the loci Mg .G/; with a �nite number of exceptions,

they correspond bijectively to the unmarked topological types of G-actions. �at

there are indeed groups G and di�erent unmarked topological types of G-actions

which yield the same component was already shown by Ries ([32]).

To have a simple notation, assume in this appendix thatH;H 0 are distinct �nite

subgroups of the mapping class group Mapg , and denote by

Z WD Fix.H/; Z0 WD Fix.H 0/

the corresponding irreducible analytic subsets of Teichmüller space Tg . We al-

ready observed that, if we denote by

� W H �!Mapg ; �0 W H 0 �!Mapg

the inclusion homomorphisms, these analytic subsets map to irreducible closed

algebraic sets Mg;�.H/, respectively Mg;�0.H 0/.

We de�ne the generic group of automorphisms of a curve in Z as

G WD GH WD
\

C2Z

StabC .Aut.C / Š StabC �Mapg/:

We refer to lemma 4.1 of [30] for the proof of the following result.

�eorem B.1. (MSSV) Suppose H � G and Z are as above, with H a proper
subgroup of G and C 2 Z. �en

ı WD dim.Z/ � 3:

I) if ı D 3, thenH has index 2 inG, andC ! C=G is covering ofP1 branched
on six points, P1; : : : ; P6, and with branching indices all equal to 2. Moreover the
subgroup H corresponds to the unique genus two double cover of P1 branched
on the six points, P1; : : : ; P6 (by Galois theory, intermediate covers correspond
to subgroups of G bijectively).

II) If ı D 2, then H has index 2 in G, and C ! C=G is covering of P1

branched on �ve points, P1; : : : ; P5, and with branching indices 2; 2; 2; 2; c5.
Moreover the subgroupH corresponds to a genus one double cover ofP1 branched
on four of the points P1; : : : ; P4; P5 which have branching index 2.
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III) If ı D 1, then there are three possibilities.

III-a) H has index 2 in G, and C ! C=G is covering of P1 branched on four
points, P1; : : : ; P4, with branching indices 2; 2; 2; 2d4, where d4 > 1. Moreover
the subgroupH corresponds to the unique genus one double cover of P1 branched
on the four points, P1; : : : ; P4.

III-b) H has index 2 in G, and C ! C=G is covering of P1 branched on four
points, P1; : : : ; P4, with branching indices 2; 2; c3; c4, where c3 � c4 > 2. More-
over the subgroup H corresponds to a genus zero double cover of P1 branched
on two points whose branching index equals 2.

III-c) H is normal in G, G=H Š .Z=2/2, moreover C ! C=G is covering of
P

1 branched on four points, P1; : : : ; P4, with branching indices 2; 2; 2; c4, where
c4 > 2. Moreover the subgroupH corresponds to the unique genus zero cover of
P

1 with group .Z=2/2 branched on the three points P1; P2; P3 whose branching
index equals 2.

Corollary B.2. Assume that

Z WD Fix.H/ D Z0 WD Fix.H 0/; (�)

where H ¤ H 0 ( hence, in the previous notation, H is a proper subgroup of G).
�en ı WD dim.Z/ � 2. Moreover, if ı D 2, then necessarily all the �ve

branching indices are equal to 2 (c5 D 2) .
Assume further that H;H 0 have the same cardinality.
�en G WD GH WD \C2Z StabC induces a sequence of coverings

C �! C=H �! C=G

which is not of type III-c), and, if it is type III-b), then the branching indices
2; 2; c3; c4 must satisfy c3 D 2.

If C ! C=H ! C=G is of type III-a), then C ! C=H 0 ! C=G is of type
III-b) with branching indices 2; 2; 2; 2d4.

If moreover ı D 0, andH Š H 0 Š Dn, then necessarilyZ andZ0 are distinct
points.

Proof. We can apply the previous theorem to both H and H 0, which are proper

subgroups of the same group G.

In the case I) where ı D 3, then bothH andH 0 correspond to the unique genus

two cover branched on the six points, contradicting H ¤ H 0.

�e same argument applies in case II) when c5 > 2.
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In the case where the covering C ! C=H ! C=G is of type III-c), then the

index of H is four and, since jH j D jH 0j, the index of H 0 is also four, hence H 0

corresponds to the unique genus zero .Z=2/2-cover branched on the three points

P1; P2; P3; again we obtain the contradiction H D H 0.

If the sequence of coverings C ! C=H ! C=G is of type III-b), then the

intermediate genus zero covering is unique unless c3 D 2.

If the type is III-a), the type forH 0 cannot be the same, since we have a unique

intermediate genus one cover. Since ı D 1, the index of H 0 is also equal to two,

and the branching indices are 2; 2; 2; 2d4 the type of H 0 must be III-b).

Finally, if ı D 0 and H Š H 0 Š Dn, we have a dihedral covering of P
1

branched in three points, for which there is a unique topological type (see [10]),

corresponding to the monodromy factors y; yx; x�1.

Remark B.3. In the case whereH Š H 0 Š Dn, andH ¤ H 0 we have then ı D 1

or ı D 2. Moreover, both H;H 0 have index in G equal to 2.

If ı D 2, thenH;H 0 are both of type II), hence they correspond to intermediate

genus one covers branched on four of the �ve points P1; P2; : : : ; P5.

If ı D 1, eitherH;H 0 are both of type III-b) (with branching indices 2; 2; 2; c4)

hence they correspond to intermediate genus zero covers branched on two of the

three points P1; P2; P3; or, up to exchanging H with H 0, H is of type III-a) and

H 0 is of type III-b) with branching indices 2; 2; 2; 2d4.

�e investigation and detailed classi�cation of these coincidences (Z D Z0

and H Š H 0 Š Dn, with H ¤ H 0) is interesting, but shall not be fully pursued

here. We shall limit ourselves to show that it must be ı D 1, and that there is only

one exception, namely, the one where one group is of type III-a) and the other of

type III-b).

A common feature of all the cases is however the following situation. De�ning

K D H \H 0, we have an exact sequence

1 �! K �! G �! .Z=2/2 �! 1: (DD)

Proposition B.4. Assume that we have an exact sequence (DD) whereH Š H 0 Š

Dn. �en there are elements 1; 2 with 2
1 D 2

2 D 1, whose images generate
.Z=2/2, and such that

H D hK; 1i; H
0 D hK; 2i:

Moreover (DD) splits if and only if G Š Dn � Z=2, H corresponds to the
subgroupDn � ¹0º, and H 0 is the graph of a homomorphism � W Dn ! Z=2 with
kernel equal to K.
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If (DD) does not split, then n is even and either G Š D2n or n D 4h, where h
is odd , and G is the semidirect product of H Š Dn with h2i Š Z=2, such that
conjugation by 2 acts as follows:

y 7�! yx2; x 7�! x2h�1:

Remark B.5. �e condition that (DD) splits always holds, except possibly if

H;H 0 are of di�erent types III-a) and III-b).

Indeed ifH;H 0 Š Dn are both of type II), then the Hurwitz generating systems

of C ! C=H , C ! C=H 0 must be of the form

v D .c1; c2I a; b/; v0 D .c0
1; c

0
2I a

0; b0/ 2 HS.DnI 1; 2/;

where c2 is conjugate to c1 (resp. c0
2 is conjugate to c0

1) in G and c2
i D .c

0
i /

2 D 1,

i D 1; 2. From �eorem B.1 it follows that c1; c2; c
0
1; c

0
2 62 K D H \H

0, therefore

c1; c2 (resp. c0
1; c

0
2) are re�ections in H (resp. H 0).

Since otherwise one of them must be the unique central element of H (resp.

ofH 0); but the unique central element ofH is then central in G (H being normal

in G), hence it equals the unique central element of H 0 by the same argument:

hence it lies in K and we derive a contradiction.

From this we deduce that the numerical type of v is the same as that of v0, up

to automorphisms, and hence using Proposition 5.4 it follows thatH andH 0 have

the same unmarked topological type.

Assume that H;H 0 Š Dn are both of type III-b). Let v D .v1; v2; v3; v4/ in

HS.GI 0; 4/ be the Hurwitz generating system of C ! C=G. By Corollary B.2

we have

v2
1 D v

2
2 D v

2
3 D 1 6D v

2
4 :

Moreover, by �eorem B.1, v4 2 H \H
0 D K. Since v2

4 ¤ 1, v4 is a rotation inH

and in H 0. Now consider the Hurwitz systems of C ! C=H and of C ! C=H 0,

which are of the following forms:

u D .u1; u2; v4; v
0
4/; u0 D .u0

1; u
0
2; v4; v

00
4/;

where v0
4 is conjugate to v4 in G. Notice that each of them contains only two

re�ections, hence by Remark 5.2 (R) v4 must generate the subgroup of rotations

in H (resp. in H 0). But v4 2 K and the subgroup of rotations of K have index 2

in the subgroup of rotations of H (resp. of H 0) if G is not the direct product of

Dn with Z=2.
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Proof of Proposition B.4. K is an index two subgroup in Dn. If n is odd, then

necessarily K D R, the subgroup of rotations.

1) More generally, if K D R, any element in H n K has order two and splits

the exact sequence 1 ! K ! H ! .Z=2/ ! 1, and the same holds for H 0.

�erefore we �nd elements 1; 2 as desired, and such that their conjugation action

on K is the same, xi 7! x�i .

Now,  WD 12 centralizes K D R and 2 2 K. Let x be generator of R.

Hence

1212 D x
r :

Replacing 2 with 2x
a, we replace r by r C 2a. If n is odd, then we may

assume r D 0, whereas if n is even, we also have the case r D 1. Observe that

r D 0 implies the splitting of the above sequence (DD), moreover  centralizesK.

2) Assume that (DD) splits and  D 12 centralizes K. �en

1212 D 1 ! 1 D 1;

which amounts to  being in the centre of G. Hence

G Š H � hi Š H � Z=2:

Moreover, H 0 D hK; 2i D hK; 1i which proves our assertion.

3) Assume now that K D R and that (DD) does not split: then we can only

achieve 2 D x: Observe now that

11 D 21 D 
�1;  i D 1 ! 2nji:

Since G is generated by ; 1, it follows that G Š D4m, n D 2m.

4) Assume now that n D 2m is even and K ¤ R. �en K Š Dm, and K is

generated, up to an automorphism, by x2 and y. �e element z WD yx has order

two and its action by conjugation is

x2 7�! x�2; y 7�! yx2:

In this way we construct also in this case the desired elements 1; 2 such that

 WD 12 centralizes K.

Now, 2 is in the centre of Dm, hence 2 D 1 if m is odd, or, if m D 2h, then

2 D x2h D xm.

If 2 D 1 we have the splitting and we can apply 2).

Otherwise, if h is even, replace 2 by 2x
h, which has again order equal to

two. �en  is replaced by � WD 12x
h. � has order two, since

�2 D 12x
h12x

h D 1212x
2h D 2xm D x2m D 1:
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Observe then that 12 D 21x
m.

We show that then � is in the centre:

1�1 WD 112x
h1 D 21x

�h D 12x
�m�h D 12x

h D �;

2�2 WD 212x
h2 D 221x

mCh2 D 1x
�h2 D 12x

h D �:

Assume instead that h is odd. �en we observe simply that G is generated by

H and by 2, and we set x WD y1 2 H , so that H is generated in the standard

way by y; x.

We have 2
2 D 1, moreover conjugation by 2 sends

x2 7�! x�2; y 7�! yx2; 1 7�! 1x
2h;

since 1212 D x
2h.

We conclude that

x WD y1 7! yx21x
2h D yx2yxx2h D x2h�1:

Proposition B.6. �e case ı D 2 cannot occur for the group Dn.

Proof. We have already shown that in case II) the �ve branching indices must all

be equal to 2.

By B.4 and B.5 the groupG generated byH;H 0 must beG D Dn�C2, where

C2 WD Z=2,H is the subgroupDn�¹0º , whileH 0 is the graph of a homomorphism

of H onto C2.

We consider �rst the case where four of the �ve elements have a re�exion

component. To have .y; 0/ in the group they generate, the second component of

one of these four elements must be trivial. We permute the other three into the

�rst three positions, apply Lemma 2.1 of [10] to make the �rst two equal. So after

a suitable automorphism of Dn the tuple is

.y; 1/.y; 1/.yx`; 1/.yx`Cm; 0/.xm; 1/

where m is an integer in ¹0; n
2
º.

In case n even and m D n=2 we may apply the following automorphism of G,

.x; 0/ 7! .x; 0/, .y; 0/ 7! .yxm; 0/, .e; 1/ 7! .xm; 1/.
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So we are left with the casem D 0, where we can apply another automorphism

to get

.y; 1/.y; 1/.yx; 1/.yx; 0/.e; 1/:

Since only one of these elements is in H 0, and H 0 ¤ H , H 0 is the graph of the

homomorphism which sends y to 0 and x to 1, in particular n must be even.

On the two intermediate covers, which are elliptic curves, we get the respective

Hurwitz vectors .yx; yxI x; 1/ and .yx0; yx0I x0; 1/, where x0 is a shorthand for

.x; 1/ 2 H 0. Obviously they are the same under the automorphism of G which

keeps .y; 0/ and .y; 1/ �xed and sends .x; 0/ to .x; 1/. �is means that H D H 0,

a contradiction.

�e analysis in the second case, where two of the �ve elements have a re�ection

component, is similar. Up to automorphisms and braid equivalence, there is only

one possible tuple and n must equal 2:

.x; 1/.0; 1/.x; 1/.y; 1/.y; 0/:

Here H 0 must be the graph of the homomorphism which sends y to 1 and x

to 0. And on the two intermediate covers we get the respective Hurwitz vectors

.y; yI x; x/ and .y0; y0I x; x/, where y0 is a shorthand for .y; 1/ 2 H 0. �ey are

in one orbit under the automorphism of G which keeps .x; 0/ and .x; 1/ �x and

which exchanges .y; 0/ with .y; 1/.

�eorem B.7. Assume that we have two distinct subgroups of Mapg ,H;H 0 Š Dn,
and that Z WD Fix.H/ D Fix.H 0/. �en ı WD dim.Z/ D 1, and the numerical
invariant g0 cannot be the same for both actions.

Proof. We have shown in Corollary B.2 that ı � 2; ı ¤ 0, and in Proposition B.6

that ı ¤ 2. Hence ı D 1.

By Remark B.3, if we make the assumption that g0 is the same, follows then

that H and H 0 are both of type III-b). By Proposition B.4 and Remark B.5,

the group is then G D Dn � C2,

H is Dn � ¹0º and H 0 is the graph of some homomorphism from Dn to C2.

By the last paragraph of Remark B.5, K coincides with the group of rotations of

H D Dn � ¹0º, hence H 0 D ker.f /, where

f W G D Dn � C2 ! C2

is given by

f .ybxi ; a/ D aC b:
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By Remark B.3, the branching indices of C ! C=G are 2; 2; 2; c4, therefore

up to a permutation we get the sequences

a D 1; 1; 0; 0; aC b D 0; 1; 1; 0; b D 1; 0; 1; 0:

Hence we get that the �rst coordinates of the second and of the last element

are rotations of respective orders d2, c4, where d2 D 1 or d2 D 2.

�ere is surjectionG ! Dn with the second element in the kernel. Now, ifDn

is generated by two re�ections �1; �2 then the rotation �1�2 generates the group

R of rotations. We conclude that the order c4 D n.

We may assume, up to an automorphism ofDn, that the last element is .x; 0/,

and the �rst one is .y; 1/.

�en the 4-tuple is

.y; 1/.xh; 1/.yxh�1; 0/.x; 0/;

where h D 0 or h D n=2.

�e respective subgroups are generated by 3, 4, 131 DW 
0
3, 141 DW 

0
4

in one case, by 4, �
1 WD 

�1
1 , 242, 2

�
1 2 in the other.

We get the corresponding length four Hurwitz vectors,

.yxh�1; x; yxhC1; x�1/; .x; y; x; y/:

�e corresponding two Nielsen functions are equal for n odd (h D 0), distinct for

n even, but in the same orbit under the group Aut.Dn/.

By [10], �eorem 2,H;H 0 correspond then to the same unmarked topological

type.

�eorem B.8. Assume that we have two distinct subgroups of Mapg ,H;H 0 Š Dn,
and that Z WD Fix.H/ D Fix.H 0/. �en ı WD dim.Z/ D 1, and case III-a) holds
for H , case III-b) holds for H 0.

�is case actually occurs.

Proof. �at the only possible case is the one described follows by theorem B.7

and the previous discussion. It su�ces thus to give a concrete example.

We have a polygonal group T .2; 2; 2; 2d/, generated by elements 1, 2, 3,

4 whose orders are respectively 2; 2; 2; 2d and whose product 1234 is the

identity.
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�e elliptic induced covering is generated by

a WD 12; b WD 23; c WD .141/
2

which satisfy the usual presentation Œa; b� D c.

Whereas for the genus zero induced covering, since we have a double cover

branched on the �rst two points, we get generators

3; 4;  0
3 WD 131;  0

4 WD 141;

which satisfy the usual presentation

34
0
3

0
4 D 1:

�ese elements have respective orders 2; 2d; 2; 2d , so we guess that 4 should

map to a generator of the rotation group, say 4 7! x, and 3 should map to a

re�ection, say 3 7! y.

We make the following assumption: since 1 normalizesH 0, let us just assume

that 1 centralizes H 0.

�en we have a direct product G D H 0 � C2 Š Dn � C2, where n D 2d , and

the cyclic group C2 of order 2is generated by 1.

We take as Hurwitz vector for G (images of 1; 2; 3; 4)

.0; 1/.yx; 1/.y; 0/.x; 0/:

Clearly these four elements generate then G.

Now 3; 4; 
0
3; 

0
4 are respectively sent to .y; 0/.x; 0/.y; 0/.x; 0/, and they gen-

erate the group H 0 Š Dn.

On the other hand

a 7�! .yx; 0/; b 7�! .x�1; 1/; c 7�! .x2; 0/

and clearly Œa; b� 7! .x2; 0/.

Moreover, the image group H projects, under the �rst coordinate, onto the

dihedral group Dn:
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Communications in arithmetic fundamental groups (Kyoto, 1999/2001). MR 1954371

[31] R. Pardini, Abelian covers of algebraic varieties. J. Reine Angew. Math. 417 (1991),

191–213. Zbl 0721.14009 MR 1103912

[32] J. F. X. Ries, Subvarieties of moduli space determined by �nite groups acting

on surfaces. Trans. Amer. Math. Soc. 335 (1993), no. 1, 385–406. Zbl 0784.32017

MR 1097170

http://zbmath.org/?q=an:1150.14003
http://www.ams.org/mathscinet-getitem?mr=2346015
http://zbmath.org/?q=an:0181.48803
http://www.ams.org/mathscinet-getitem?mr=0262240
http://zbmath.org/?q=an:1111.57013
http://www.ams.org/mathscinet-getitem?mr=2257389
http://zbmath.org/?q=an:0511.57025
http://www.ams.org/mathscinet-getitem?mr=0654478
http://zbmath.org/?q=an:0562.57016
http://www.ams.org/mathscinet-getitem?mr=0718259
http://zbmath.org/?q=an:1245.57002
http://www.ams.org/mathscinet-getitem?mr=2850125
http://zbmath.org/?q=an:0763.12004
http://www.ams.org/mathscinet-getitem?mr=1119950
http://zbmath.org/?q=an:0194.21901
http://www.ams.org/mathscinet-getitem?mr=0260752
http://arxiv.org/abs/math.AG/0205056
http://zbmath.org/?q=an:0027.09503
http://zbmath.org/?q=an:68.0503.01
http://www.ams.org/mathscinet-getitem?mr=0006510
http://zbmath.org/?q=an:1118.14034
http://www.ams.org/mathscinet-getitem?mr=2264138
http://arxiv.org/abs/math.AG/0509154
http://zbmath.org/?q=an:0975086
http://www.ams.org/mathscinet-getitem?mr=0701.20019
http://zbmath.org/?q=an:0586.57021
http://www.ams.org/mathscinet-getitem?mr=0783579
http://www.ams.org/mathscinet-getitem?mr=1954371
http://zbmath.org/?q=an:0721.14009
http://www.ams.org/mathscinet-getitem?mr=1103912
http://zbmath.org/?q=an:0784.32017
http://www.ams.org/mathscinet-getitem?mr=1097170


Dihedral covers of algebraic curves 1229

[33] C. Sia, Hurwitz equivalence in tuples of dihedral groups, dicyclic groups, and semidi-

hedral groups. Electron. J. Combin. 16 (2009), no. 1, Research Paper 95, 17 pp.

Zbl 1191.20035 MR 2529804

[34] D. Singerman, Finitely maximal Fuchsian groups. J. London Math. Soc. (2) 6 (1972),

29–38. Zbl 0251.20052 MR 0322165

[35] F. Vetro, Irreducibility of Hurwitz spaces of coverings with one special �ber. Indag.
Math. (N.S.) 17 (2006), no. 1, 115–127. Zbl 1101.14040 MR 2337168

[36] F. Vetro, Irreducibility of Hurwitz spaces of coverings with monodromy groups Weyl

groups of type W.Bd /. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10 (2007),

no. 2, 405–431. Zbl 1178.14029 MR 2339450

[37] F. Vetro, Irreducibility of Hurwitz spaces of coverings with one special �ber and

monodromy group a Weyl group of type Dd . Manuscripta Math. 125 (2008), no. 3,

353–368. Zbl 1139.14023 MR 2373066

[38] B. Wajnryb, Orbits of Hurwitz action for coverings of a sphere with two special �bers.

Indag. Math. (N.S.) 7 (1996), no. 4, 549–558. Zbl 0881.57001 MR 1620132

[39] B. Wajnryb, An elementary approach to the mapping class group of a surface. Geom.
Topol. 3 (1999), 405–466. Zbl 0947.57015 MR 1726532

[40] J. Wiegold, �e Schur multiplier: an elementary approach. In C. M. Campbell and

E. F. Robertson (eds.), Groups – St. Andrews 1981. London Mathematical Society

Lecture Note Series, 71. Cambridge University Press, Cambridge and New York, 1982,

137–154. Zbl 0502.20003 MR 0679156

Received February 9, 2014

Fabrizio Catanese, Lehrstuhl Mathematik VIII,

Mathematisches Institut der Universität Bayreuth, NW II, Universitätsstr. 30,

95447 Bayreuth, Deutschland

e-mail: fabrizio.catanese@uni-bayreuth.de

Michael Lönne, Lehrstuhl Mathematik VIII,

Mathematisches Institut der Universität Bayreuth, NW II, Universitätsstr. 30,

95447 Bayreuth, Deutschland

e-mail: michael.loenne@uni-bayreuth.de

Fabio Perroni, Dipartimento di Matematica e Geoscienze,

Università degli Studi di Trieste, Piazzale Europa 1, 34127 Trieste, Italia

e-mail: fperroni@units.it

http://zbmath.org/?q=an:1191.20035
http://www.ams.org/mathscinet-getitem?mr=2529804
http://zbmath.org/?q=an:0251.20052
http://www.ams.org/mathscinet-getitem?mr=0322165
http://zbmath.org/?q=an:1101.14040
http://www.ams.org/mathscinet-getitem?mr=2337168
http://zbmath.org/?q=an:1178.14029
http://www.ams.org/mathscinet-getitem?mr=2339450
http://zbmath.org/?q=an:1139.14023
http://www.ams.org/mathscinet-getitem?mr=2373066
http://zbmath.org/?q=an:0881.57001
http://www.ams.org/mathscinet-getitem?mr=1620132
http://zbmath.org/?q=an:0947.57015
http://www.ams.org/mathscinet-getitem?mr=1726532
http://zbmath.org/?q=an:0502.20003
http://www.ams.org/mathscinet-getitem?mr=0679156
mailto:fabrizio.catanese@uni-bayreuth.de
mailto:michael.loenne@uni-bayreuth.de
mailto:fperroni@units.it

	Introduction
	Moduli spaces of G-covers
	The tautological lift
	Computation of H_2,(D_n)
	The injectivity of  when G=D_n
	Automorphisms of surface-groups
	Loci and topological types
	References

