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Abstract. We restrict our discussion to the orientable category. For g > 1, let OEg be

the maximum order of a �nite group G acting on the closed surface †g of genus g which

extends over .S3; †g/, for all possible embeddings †g ,! S3. We will determine OEg

for each g, indeed the action realizing OEg .

In particular, with 23 exceptions, OEg is 4.g C 1/ if g ¤ k2 or 4.
p

g C 1/2 if g D k2,

and moreover OEg can be realized by unknotted embeddings for all g except for g D 21

and 481.
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1. Introduction

Surfaces belong to the most familiar topological subjects to us, mostly because we
can see them staying in our 3-space in various manners. �e symmetries of the
surfaces have been studied for a long time, and it will be natural to wonder when
these symmetries can be embedded into the symmetries of our 3-space (3-sphere).
In particular, what are the orders of the maximum symmetries of surfaces which
can be embedded into the symmetries of the 3-sphere S3? We will solve this
maximum order problem in this paper in the orientable category.

We use †g (Vg ) to denote the closed orientable surface (handlebody) of genus
g > 1, and G to denote a �nite group acting on †g or on an orientable 3-manifold.
�e actions we consider are always faithful and orientation-preserving on both
surfaces and 3-manifolds. We are always working in the smooth category. By the
geometrization of �nite group actions in dimension 3, for actions on the 3-sphere,
we can then restrict to orthogonal actions.

Let Og be the maximal order of all �nite groups which can act on †g .
A classical result of Hurwitz states that Og is at most 84.g � 1/; cf. [5]. How-
ever, to determine Og is still a hard and famous question in general, and there are
numerous interesting partial results.

Let OHg be the maximal order of all �nite groups which can act on Vg .
It is a result due to Zimmermann [12] that 4.g C 1/ � OHg � 12.g � 1/, see
also [6]. �ere are �ner results in this direction, however in general OHg are still
not determined either.

In [10], we started to consider �nite group actions on the pair .S3; †g/, with
respect to an embedding e W †g ,! S3. If G can act on the pair .S3; †g/ such that
its restriction on †g is the given G-action on †g , we call the action of G on †g

extendable (over S3 with respect to e).

Call an embedding e W †g ,! S3 unknotted, if each component of S3 n e.†g/

is a handlebody, otherwise it is knotted. Similarly, we de�ne an action of G on Vg

to be extendable and the embedding e W Vg ,! S3 to be unknotted or knotted. For
each g, the unknotted embedding is unique up to isotopy of S3 and automorphisms
of †g (resp. Vg).

Let OEg be the maximal order of all extendable �nite groups acting on †g . Let
OEu

g be the maximal order of all �nite group actions on †g which extend over S3

with respect to the unknotted embedding. �en we know that 4.g C 1/ � OEu
g �

OHg � 12.g � 1/, and there are only �nitely many g such that OEu
g D 12.g � 1/,

see [10].
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In this paper we will determine OEg for all g > 1 (�eorem 1.1). We can also
determine OEu

g and OEk
g (�eorem 1.2 and �eorem 1.3), where OEk

g denotes the
maximal order of �nite group actions on †g which extend over S3 with respect
to all possible knotted embeddings.

�eorem 1.1. �e maximal orders OEg are given in the following table:

OEg g

12.g � 1/ 2; 3; 4; 5; 6; 9; 11; 17; 25; 97; 121; 241; 601

8.g � 1/ 7; 49; 73

20.g � 1/=3 16; 19; 361

6.g � 1/ 21; 481

192 41

7200 1681

4.
p

g C 1/2 g D k2; k ¤ 3; 5; 7; 11; 19; 41

4.g C 1/ the remaining numbers

�eorem 1.2. �e maximal orders OEu
g are given in the following table:

OEu
g g

12.g � 1/ 2; 3; 4; 5; 6; 9; 11; 17; 25; 97; 121; 241; 601

8.g � 1/ 7; 49; 73

20.g � 1/=3 16; 19; 361

192 41

7200 1681

4.
p

g C 1/2 g D k2; k ¤ 3; 5; 7; 11; 19; 41

4.g C 1/ the remaining numbers

�eorem 1.3. �e maximal orders OEk
g are given in the following table:

OEk
g g

12.g � 1/ 9; 11; 121; 241

2400 361

6.g � 1/ 2; 3; 4; 5; 21; 25; 97; 481

4.g � 1/ the remaining numbers

In fact, we will do something more. We will classify all the �nite group actions
with order larger than 4.g �1/. And the statements above can be obtained directly
from the following theorem.

�eorem 1.4. For an extendable �nite group action G, if jGj > 4.g � 1/, all
possible relations between jGj and g are listed in the following table. �e foot
index ‘k’ means the action is realized only for a knotted embedding, ‘uk’ means
the action can be realized for both unknotted and knotted embeddings. If the action
is realized only for an unknotted embedding, there is no foot index.
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jGj g

12.g � 1/ 2; 3; 4; 5; 6; 9uk ; 11uk; 17; 25; 97; 121uk; 241uk; 601

8.g � 1/ 3; 7; 9; 49; 73

20.g � 1/=3 4; 16; 19; 361uk

6.g � 1/ I 2; 3; 4; 5; 9uk ; 11; 17; 25; 97; 121uk; 241uk

6.g � 1/ II ¹2; 3; 4; 5; 9; 11; 25; 97; 121; 241ºuk; 21k; 481k

24.g � 1/=5 6; 11; 41; 121

30.g � 1/=7 8; 29; 841; 1681

4n.g � 1/=.n � 2/ n � 1; .n � 1/2

Here the 6.g � 1/ case contains two types, “I” and “II,” we will explain them
in the next section.

�en some interesting phenomena appear: As expected, for all g with �nitely
many exceptions we have OEu

g > OEk
g ; indeed there are only �nitely many g such

that OEu
g D OEk

g and, a little bit surprising, OEu
g < OEk

g when g D 21 or 481.

Also for some g, OEk
g D 12.g � 1/.

Our approach relies on the orbifold theory which is founded and studied in [9],
[3], [4], [1] and [6]. More precisely, the proof of our main results translates into the
problem of �nding the so-called allowable 2-orbifolds (De�nition 4.1) in certain
spherical 3-orbifolds. �e strategy of such an approach will be given in Section 4.

In Section 2, after introducing some basic notions about orbifolds and �nite
group actions on manifolds, we present a sequence of observations concerning the
orbifold pair .S3; †g/=G on both the topological level and the group theoretical
level which are very useful for our later approach. In Section 3 we will describe
Dunbar’s list of spherical 3-orbifolds whose underlying space is S3. With the
material prepared in Sections 2 and 3, we will be able to explain why we can
transfer the problem of �nding OEg into the problem of �nding allowable 2-orb-
ifolds in certain spherical 3-orbifolds and, more importantly, to outline how to get
a practical method to �nd such 2-orbifolds. (Some people may prefer just read
the de�nitions in Section 4 and skip the remaining part). In Section 5 we will
give the list of 3-orbifolds containing allowable 2-suborbifolds which turns out to
be a small subset of Dunbar’s list where the singular sets are relatively simple.
In Section 6, we will �nd all allowable 2-orbifolds in the list of 3-orbifolds pro-
vided by Section 5, and then the main results are derived. Practically in Section 6,
after some general argument, we only give detailed argument for several repre-
sentative cases and the detailed argument of remaining cases can be found in the
arXiv version [11].
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Section 7 can be read directly after the introduction. �eorems 1.1 and 1.3 claim
that OEg is 4.g C 1/ if g ¤ k2 or 4.

p
g C 1/2 if g D k2 with 23 exceptions, and

OEk
g D 4.g � 1/ with 13 exceptions. Examples 7.1, 7.2 and 7.3 present †g � S3

to realize the maximal symmetries for those general g intuitively and then their
orbifolds are derived. Example 7.4 presents †g � S3 realizing OEk

g D 12.g � 1/

for g D 11.

Acknowledgements. We thank the referee for his sensitivity on orbifold theory
and his aesthetic view on the structure of the paper, which enhance the paper.
�e �rst three authors are supported by grant No.11371034 of the National Natural
Science Foundation of China and Beijing International Center for Mathematical
Research.

2. Orbifolds and �nite group actions

�e orbifolds we consider have the form M=H , where M is a n-manifold and H

is a �nite group acting faithfully and locally smooth on M . For each point x 2 M ,
denote its stable subgroup by St.x/, its image in M=H by x0. If jSt.x/j > 1, x0

is called a singular point and the singular index is jSt.x/j, otherwise it is called
a regular point. If we forget the singular set we get a topological space jM=H j
which is called underlying space. M=H is orientable if M is orientable and H

preserve the orientation; M=H is connected if jM=H j is connected.

We can also de�ne covering spaces and fundamental group for an orbifold.
�ere is a one to one correspondence between orbifold covering spaces and conju-
gacy classes of subgroup of the orbifold fundamental group, and regular covering
spaces correspond to normal subgroups. A Van Kampen theorem is also valid,
see [1]. In the following, covering space or fundamental group refers always to the
orbifold setting.

De�nition 2.1. A discal orbifold (spherical orbifold) has the form Bn=H .Sn=H/,
where Bn .Sn/ is the n-dimension ball (sphere) and H a �nite group acting ori-
entation-preservingly on the corresponding manifold. A handlebody orbifold has
the form Vg=H .

By a classical result for topological actions, jB2=H j is a disk, possibly with
one singular point. Since SO.3/ contains only �ve classes of �nite subgroups: the
order n cyclic group Cn, the order 2n dihedral group Dn, the order 12 tetrahedral
group T , the order 24 octahedral group O , and the order 60 icosahedral group J ,
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it is easy to see B3=H (S2=H ) belongs to one of the following �ve models.
�e underlying space jB3=H j (jS2=H j) is the 3-ball (the 2-sphere).

By the equivariant Dehn lemma, see [7], it is easy to see that a handlebody
orbifold is the result of gluing �nitely many discal 3-orbifolds along some discal
2-orbifolds. And such gluing respecting orientations always gives us a handlebody
orbifold.

Like in the manifold case we can say that an orientable separating 2-suborb-
ifold F in an orientable 3-orbifoldO is unknotted or knotted, depending on whether
it bounds handlebody orbifolds on both sides.

It is easy to see that if the underlying space of a handlebody orbifold is a ball,
then the singular set forms an unknotted tree in the ball, possibly disconnected.
Unknotted means the complement of the regular neighborhood of the singular set
is a handlebody. For more about handlebody orbifold theory one can see [6].

Suppose the action of G on †g is extendable with respect to some embedding

e W †g ,�! S3I

let

Q� D ¹x 2 S3 j there exists g 2 G; g ¤ id; s.t. gx D xº:

As locally there are only �ve kinds of model, Q� is a graph, possibly disconnected,
and S3=G is a 3-orbifold whose singular set � D Q�=G is a trivalent graph. Each
edge of � can be labeled by an integer n > 1 which indicates its singular index.
At each vertex the labels m, q, r of the three adjacent edges should satisfy

1=m C 1=q C 1=r > 1:

�e 2-orbifold †g=G maps to the 2-suborbifold e.†g/=G whose singular set
e.†g/=G \ � consists of isolated points.

We then have an orbifold covering

p W S3 �! S3=G

and an orbifold embedding

e=G W †g=G ,�! S3=G:

Conversely, if we have an orbifold embedding from a 2-orbifold to a spherical
orbifold and the preimage of the 2-suborbifold in S3 is connected then we �nd an
extendable action of G on some surface with respect to some embedding.
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De�nition 2.2. An orientable 2-suborbifold F in an orientable 3-orbifold O is
compressible if either F is spherical and bounds a discal 3-suborbifold in O, or
there is a simple closed curve in F (not meeting the singular set) which bounds a
discal 2-orbifold in O, but does not bound a discal 2-orbifold in F. Otherwise F

is called incompressible.

Lemma 2.3. Any orientable 2-suborbifoldF in a spherical orbifold S3=G is com-
pressible.

Proof. jFj is two sided in jS3=Gj. Since �1.S3=G/ D G is �nite, �1.jS3=Gj/
is also �nite. Hence F cuts S3=G into two parts O1, O2, and p�1.F/ cuts S3

into several components M1; M2; : : : ; Mk, each of which will be mapped by p to
one of the two parts, the components have common boundary will be mapped to
di�erent parts.

If F is spherical, p�1.F/ is a disjoint union of 2-spheres. By the irreducibility
of S3 and B3, one Mi must be a ball, hence one Oi is a discal 3-suborbifold and
we have the result by de�nition.

Otherwise, F D p�1.F/ is a disjoint union of homeomorphic closed surfaces
in S3 of genus g � 1. Since F is compressible in S3 we can �nd an innermost
compressing disk D. Suppose D is in Mi . By the equivariant Dehn Lemma we
can �nd equivariant compressing disks in Mi . Suppose one of them is D0, then
all the images of D0 under the G action will be disjoint in S3. �en it gives a
‘compressing disk’ of F in S3=G.

Lemma 2.4. Suppose F is a 2-suborbifold of a spherical orbifold S3=G and jFj
is homeomorphic to S2.

(1) If F has not more than three singular points, then F is spherical and bounds
a discal 3-orbifold.

(2) If F has precisely four singular points and its pre-image is connected, then
F bounds a handlebody orbifold in S3=G.

Proof. As a 2-suborbifold, F should be spherical or has ‘compressing disk’ by
Lemma 2.3.

(1) If F has no more than three singular points, every simple closed curve in
F bounds a discal orbifold in F. So F has no ‘compressing disk’ and hence is
spherical, and then bounds a discal 3-orbifold.

(2) If F has four singular points, F is not spherical and hence has a ‘compress-
ing disk’ D. �en @D separates F into two discal orbifolds D1; D2, each of which
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contains two singular points. Now D1 [ D and D2 [ D are 2-suborbifolds in
S3=G each of which contains no more than three singular points; by the above
argument each of them bounds a discal 3-orbifold.

�ere are two cases: the discal 3-orbifold bounded by D1 [ D (D2 [ D) does
not intersect the interior of D2 (D1). �en the two discal 3-orbifolds meet only
along D, and the result is clearly a handlebody orbifold; otherwise for example
the discal 3-orbifold, say V , bounded by D1 [ D intersects the interior of D2.
�en D2 is contained in V , which belongs to one of the �ve models in Figure 1.
�en we get a handlebody orbifold with singular set contains two arcs.

Figure 1

Proposition 2.5. Suppose G acts on .S3; †g/. If jGj > 4.g � 1/, then †g=G has
underlying space S2 with four singular points and bounds a handlebody orbifold,
and †g bounds a handlebody.

In conclusion
OEg � OHg � 12.g � 1/:

Proof. †g=G is a 2-suborbifold in S3=G whose singular set contains isolated
points a1; a2; � � � ; ak, with indices q1 � q2 � � � � � qk. Note that jS3=Gj and
j†g=Gj are both manifolds. Suppose the genus of j†g=Gj is Og. By the Riemann-
Hurwitz formula

2 � 2g D jGj
�

2 � 2 Og �
k

X

iD1

�

1 � 1

qi

��

we have

jGj D .2g � 2/=
�

k
X

iD1

�

1 � 1

qi

�

C 2 Og � 2
�

:

If Og � 1 or Og D 0, k � 5, then jGj � 4g�4. Hence Og D 0 and k � 4. If k � 3 then
†g=G bounds a discal orbifold by Lemma 2.4 (1), which leads to a contradiction
(since g > 1 by assumption). Hence k D 4, and by Lemma 2.4 (2) †g=G bounds
a handlebody orbifold. In this case †g bounds a handlebody in S3.



Embedding surfaces into S3 with maximum symmetry 1009

By [10], or Example 7.1 in this paper,

OEg � 4.g C 1/.> 4.g � 1//:

Hence each †g in S3 realizing OEg must bound a handlebody, and therefore
OEg � OHg � 12.g � 1/.

De�nition 2.6. Let F be a 2-suborbifold in a spherical orbifold S3=G, with jFj
homeomorphic to S2 and four singular points a1; a2; a3; a4. Supposing q1 � q2 �
q3 � q4 for their indices, we call .q1; q2; q3; q4/ the singular type of F.

Using the Riemann-Hurwitz formula, it is easy to see:

Lemma 2.7. If jGj > 4.g � 1/ then the singular type of †g=G is one of

.2; 2; 2; n/ .n � 3/;

.2; 2; 3; 3/;

.2; 2; 3; 4/;

.2; 2; 3; 5/:

Lemma 2.8. �e relation between the orders of extendable group actions and the
surface genus for a given singular type is given in the following table:

Type .2; 2; 2; n/.n � 3/ .2; 2; 3; 3/ .2; 2; 3; 4/ .2; 2; 3; 5/

Order 4n.g � 1/=.n � 2/ 6.g � 1/ 24.g � 1/=5 30.g � 1/=7

Lemma 2.9. If the singular type of †g=G is not .2; 2; 3; 3/, the handlebody orb-
ifold bounded by †g=G is as in Figure 2(a); if the singular type is .2; 2; 3; 3/,
there are the two possibilities in Figure 2(a) and (b) for this handlebody orbifold.

Proof. By the proof of Lemma 2.4, the handlebody orbifold bounded by †g=G

has underlying space B3 and singular set a tree like in Figure 2(a) or two arcs.
�e indices of the end points of an arc must be the same. Hence if the singular set
contains two arcs, the singular type must be .2; 2; 3; 3/.

Note that in the case of Figure 2(a) the handlebody orbifold is a regular neigh-
borhood of a singular edge. In the case of Figure 2(b) the handlebody orbifold is
a regular neighborhood of a dashed arc, and this dashed arc can be locally knotted
as in the �gure.
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Figure 2

Lemma 2.10. Suppose a �nite group G acts on .M; F /, where M is a 3-manifold,
with a surface embedding i W F ,! M , so we have diagrams:

F

p

��

i // M

p

��

�1.F /

p�

��

i� // �1.M/

p�

��
F=G

O{ // M=G �1.F=G/
O{� // �1.M=G/

Suppose F=G is connected. �en F is connected if and only if

O{�.�1.F=G// � p�.�1.M// D �1.M=G/:

Proof. “ H) ” Suppose

O{�.�1.F=G// � p�.�1.M// ¤ �1.M=G/:

We �nd an orbifold covering space yM corresponds to O{�.�1.F=G// � p�.�1.M//.
�en we have a diagram:

F

p

��

i // M

||②②
②②
②②
②②
②

p

��

yM
Op

""❉
❉❉

❉❉
❉❉

❉❉

F=G

==③
③

③
③

③
O{ // M=G

Since O{�.�1.F=G// � Op�.�1. yM //, F=G can lift to yM , and it lifts to a disjoint
union of copies. Hence F must be disconnected.
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“ (H ” Suppose F is not connected. Let F1 ¤ F be a component of F and
G1 its stabilizer in G, that is

G1 D ¹h 2 G j h.F1/ D F1º:

�en
F1=G1 D F=G:

Now
j�1.M=G/ W p�.�1.M//j D jGj;

and

jO{�.�1.F=G// � p�.�1.M// W p�.�1.M//j

D jO{�.�1.F=G// � p�.�1.M//=p�.�1.M//j

D jO{�.�1.F=G//=O{�.�1.F=G// \ p�.�1.M//j

� jO{�.�1.F=G// W O{�p�.�1.F1//j

D j�1.F=G/=ker O{� W p�.�1.F1// � ker O{�=ker O{�j

D j�1.F1=G1/ W p�.�1.F1// � ker O{�j

� j�1.F1=G1/ W p�.�1.F1//j

D jG1j < jGj:

Hence O{�.�1.F=G// � p�.�1.M// ¤ �1.M=G/.

Remark 2.11. (1) When F is connected, we have

O{�p�.�1.F // D O{�.�1.F=G// \ p�.�1.M//

and
ker.O{�/ � p�.�1.F //:

If M is simply connected, then F is connected if and only if O{� is surjective.

(2) If F=G � S3=G bounds handlebody orbifolds on both sides then clearly
O{� is surjective.

Corollary 2.12. Suppose F is a connected 2-suborbifold with an embedding
O{ W F ,! S3=G into a spherical orbifold S3=G. Let p�1.F/ D †; then † is
connected if and only if O{� is surjective.
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De�nition 2.13. Let .X; �/ be an orientable 3-orbifold with underlying space X
and singular set a trivalent graph �. An edge killing operation on a singular edge
is de�ned to be a sequence of operations.

� First remove the edge (replace its label by 1).

� �en replace the labels m and n of its two adjacent edges with a common
vertex by their greatest common divisor .m; n/, see Figure 3.

If .m; n/ D 1 we continue this operation on the adjacent edges.

For example, the orbifold 23 in Table III of Section 3 has singular set a tetra-
hedra with three label 2 edges and three label 3 edges. If we kill a label 2 edge,
we will get the orbifold 35 in Table III. If we kill a label 3 edge, then all the labels
should be replaced by 1 and we get the manifold S3.

Figure 3

Lemma 2.14 (Edge killing). Suppose .X; �/ is an orientable 3-orbifold with un-
derlying space X and singular set a trivalent graph �, and � 0 is obtained by an
edge killing operation from �. �en we have a surjection

�1.X; �/ �! �1.X; � 0/:

Proof. Denoting by N.�/ a regular neighborhood of � in X , there is a surjective
homomorphism from �1.X � N.�// to �1.X; �/, and we can compute �1.X; �/

from �.X � N.�// by adding relations like xr D 1 [1]. �e e�ect of an edge
killing operation on fundamental groups is just adding relations like x D 1, and
then we obtain a presentation of �.X; � 0/.

Remark 2.15. �is edge killing operation is just a way to get a quotient group.
Using it we can show some O{� is not surjective. �e orbifold .X; � 0/ may be not a
good one (be covered by a manifold).

Lemma 2.16. Let G be an extendable �nite group action with respect to some
embedding e W †g ,! S3. If je.†g/=Gj is homeomorphic to S2, then jS3=Gj is
homeomorphic to S3.
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Proof. By Corollary 2.12 the homomorphism .e=G/� W �1.†g=G/ ! �1.S3=G/

is surjective. By Lemma 2.14, if we kill all the singular edges we get a surjection
�1.j†g=Gj/ ! �1.jS3=Gj/. Hence �1.jS3=Gj/ is trivial and jS3=Gj is homeo-
morphic to S3.

3. Dunbar’s list of spherical 3-orbifolds

In [3], [4] Dunbar lists all spherical orbifolds with underlying space S3. We list
these pictures in Tables I, II, and III, and give a brief explanation such that one
can check graphs conveniently. For more information, one should see the original
papers.

Table I. Fibred case with base S2.
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Table II. Fibred case with base D2.
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Table III. Non-�bred case.
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Since the underlying space is S3, all the information is contained in the triva-
lent graphs of the singular sets. Each edge in a graph is labeled by an integer
indicating the singular index of the edge, with the convention that each unlabeled
edge has index 2. If a graph has a vertex such that the incident edges have labels

.2; 3; 3/; .2; 3; 4/; .2; 3; 5/;

the orbifold is non-�bred. All the non-�bred spherical orbifolds have underlying
space S3 and are listed in Table III. Otherwise the orbifolds are Seifert �bred and
are listed in Table I (the basis of the �bration is a 2-sphere) and Table II (the basis
is a disk with mirror boundary and corners).

In Table I and Table II many graphs have some free or undetermined parame-
ters (just called parameters in the following). �ese parameters should satisfy

n > 1; 3 � a � 5; f � 1; g � 1;

and in Table I we require

k ¤ 0:

�e letter ‘@’ means amphicheiral (there exists an orientation-reversing homeo-
morphism of the orbifold). If an orbifold is non-amphicheiral, as in the original
paper its mirror image is not presented.

A box with an integer k indicates two parallel arcs with k-half twists, the over-
crossings from lower left to upper right if k > 0, and upper left to lower right
if k < 0. A box with two integers m; n stands for a picture as in Figure 4 and
Figure 5; it satis�es

j2mj � n:

All the crossing numbers of the horizontal and vertical parts are determined by
the unique continued fraction presentation of jmj=n, such that all ki are positive
and kl � 2. All the over-crossings are from lower left to upper right if m > 0, and
from upper left to lower right if m < 0. If the greatest common divisor .jmj; n/ D
d > 1, we add a ‘strut’ labeled d in the kl twist as shown in the picture. If m D 0,
we add a ‘strut’ labeled n between two parallel lines.

Figure 4
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jmj
n

D
1

k1 C
1

k2 C
1

: : : C
1

kl

Figure 5

4. Strategy and outline of �nding OEg

1. Obtain OEg from allowable 2-suborbifolds in spherical 3-orbifolds. We
know OEg � 4.g C 1/ by Example 7.1, see also [10], hence to determine OEg we
can assume

jGj > 4.g � 1/:

De�nition 4.1. A 2-suborbifold F in a spherical 3-orbifold S3=G, with

jGj > 4.g � 1/;

is called allowable if its preimage in S3 is a closed connected surface †g .
A singular edge/dashed arc is called allowable if the boundary of its neighbor-
hood is allowable.
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�erefore if G acts on .S3; †g/ and realizes OEg then

F D †g=G � S3=G

must be an allowable 2-suborbifold. We intend to �nd extendable actions from
allowable 2-suborbifolds in spherical 3-orbifolds and, more weakly, to �nd the
maximum orders of extendable actions from certain information about such al-
lowable 2-suborbifolds.

Suppose we have a spherical 3-orbifold O and an allowable 2-suborbifold
F � O. By Proposition 2.5, F has underlying space S2 with four singular points,
and moreover F has a singular type as in the list of Lemma 2.7. Once we know
the singular type of F and the order of the orbifold fundamental group �1.O/, we
know the genus of the corresponding closed connected surface †g � S3 such
that .S3; †g/=G D .O;F/ by Lemma 2.8. So if we know the singular types of all
allowable 2-orbifolds in O, then we know all †g which admit an extendable action
of the group G Š �1.O/ with jGj > 4.g�1/; in other words, for a �xed g we know
if †g admits an extendable action of the group G Š �1.O/ with jGj > 4.g � 1/.
Hence if we know the singular types of all allowable 2-orbifolds in all spherical
3-orbifolds O, then for a �xed g we know all �nite groups �1.O/ � SO.4/ such
that †g admits an extendable action of the group �1.O/ with jGj > 4.g � 1/, and
consequently OEg can be determined.

2. List all allowable 2-suborbifolds in spherical 3-orbifolds

De�nition 4.2. A 2-sphere in a spherical 3-orbifold S3=G is called candidacy if
it intersects the singular graph of S3=G in exactly four singular points of one of
the types listed in Lemma 2.7.

Clearly for each allowable 2-suborbifold F � S3=G, jFj � jS3=Gj is a can-
didacy 2-sphere. On the other hand, each candidacy 2-sphere is the underlying
space of a non-spherical 2-orbifold F, and we will denote this candidacy 2-sphere
by jFj.

We say that a 2-orbifold

O{ W F � S3=G

is �1-surjective if the induced map on the orbifold fundamental groups is surjec-
tive.

�e process of listing all allowable 2-suborbifolds in spherical 3-orbifolds is
divided into two steps.
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(i) List all spherical 3-orbifolds containing allowable 2-suborbifolds.

Suppose O{ W F � S3=G is an allowable 2-suborbifold in a spherical 3-orbifold.
�en the preimage of F must be connected, and by Lemma 2.16 the underlying
space of S3=G is S3. All spherical 3-orbifolds with underlying space S3 are listed
in Dunbar’s list provided in Section 3. Below we will denote spherical 3-orbifolds
with underline space S3 by .S3; �/, where � is the singular set.

Since O{ W F � .S3; �/ is allowable, the preimage of F is connected, and by
Corollary 2.12, O{ is �1-surjective. Let .S3; �/ be a spherical 3-orbifolds with pa-
rameters; we will show that, for each 2-suborbifold O{ W F ,! .S3; �/ such that jFj
is a candidacy 2-sphere and O{ is �1-surjective, the parameters must satisfy certain
equations. �en we can determine the parameters and get a list of spherical 3-orb-
ifolds containing allowable 2-suborbifolds which is a small subset of Dunbar’s list
where the singular sets are relatively simple. Step (i) will be carried in Section 5.

(ii) List all allowable 2-suborbifolds in each spherical 3-orbifold obtained in
Step (i).

How to �nd such 2-suborbifolds? Indeed this is already the question we must
face in Step (i). Precisely, this question divides into two subquestions.

(a) How to �nd candidacy 2-spheres jFj in a given spherical 3-orbifold .S3; �/?

(b) For each candidacy 2-sphere jFj we �nd, how to verify if O{ is �1-surjective?

A simple and crucial fact in solving Question (a) is provided by Proposition 2.5.
For each candidacy 2-sphere jFj, the 2-orbifold F must bound a handlebody orb-
ifold V ; moreover the shape of V is given in Lemma 2.9.

If the singular type is not .2; 2; 3; 3/, then V is a regular neighborhood of a
singular edge. In this case we can check all the edges to see whether the corre-
sponding singular type is contained in the list of Lemma 2.7.

If the singular type is .2; 2; 3; 3/, there are two possibilities for the shape of V .
�e new one can be thought of as a neighborhood of a regular arc with its two ends
on singular edges labeled 2 and 3 which will be presented by a dashed arc. If there
is such a dashed arc then we can locally knot this arc in an arbitrary way and obtain
in�nitely many candidacy 2-spheres, see Figure 6; in this case we only give one
such dashed arc, and this will be the unknotted one if it exists (here “unknotted”
means that the boundary of a regular neighborhood of the dashed arc bounds a
handlebody orbifold also on the outer side).
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Figure 6

For Question (b), if F � .S3; �/ bounds handlebody orbifolds on both sides
then O{� is surjective (Remark 2.11 (2)). To verify the �1-surjectivity of O{ W F �
.S3; �/ for the knotted cases, we are still lucky, all �1-surjective cases of O{ W F �
.S3; �/ can be veri�ed by the so-called coset enumeration method, and all non-�1-
surjective cases can be veri�ed by the edge killing method of Lemma 2.14, with
three exceptions where Lemma 6.6 will be applied.

5. Fibred 3-orbifolds containing allowable 2-suborbifolds

Note �rst all graphs having parameters are contained in Table I and Table II, which
are �bred 3-orbifolds.

We will establish the equations (and inequalities) which the parameters in
Table I and Table II of Dunbar’s list must satisfy in order to contain allowable
2-suborbifolds. We will solve these equations to get all solutions and redrew the
pictures of the corresponding 3-orbifolds. Since di�erent solutions often give the
same orbifold up to the automorphisms of the orbifold, we will only draw the
graphs of non-homeomorphic orbifolds.

�e idea to establish those equations is as below. Suppose F � .S3; �/ is
allowable. Perform suitable edge killings on � to get � 0 a Montesinos knot and
�1.F0/ D Z2. Now the double branched covering N of S3 over � 0 is a Seifert
manifold, and �1.N / can be presented by its Seifert invariants, which are derived
from those parameters of �. On the other hand F

0 � .S3; � 0/ is still �1-surjective,
as suggested in the last section, which forces �1.N / D ¹1º, and then the equations
are derived. Solving those equations is an elementary but technique job.

Suppose jFj � j.S3; �/j is a candidacy 2-sphere. �en F � .S3; �/ bounds
a handlebody orbifold V of given singular type by the discussion in last section.
We divide the discussion into two cases.

Case 1. �e singular type is not .2; 2; 3; 3/; then V is as in Figure 2(a).

Case 2. �e singular type is .2; 2; 3; 3/, and V is as in Figure 2(a) or as in Fig-
ure 2(b).
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5.1. �e discussion of Case 1. In Case 1, � \ V has two degree 3 vertices, and
F D @V has singular type .2; 2; 2; n/; n � 3; .2; 2; 3; 4/ or .2; 2; 3; 5/. Hence
� \ V must be a label 2 arc adding two ‘strut segments’ with di�erent labels, see
Figure 7; .r; s/ is either .2; n/, or .3; 4/, or .3; 5/.

Only graphs 15, 19, 20, 21, 22 in Table II have more than one strut. So we need
only to deal with these �ve graphs in Case 1.

Figure 7

Suppose O{ W F � .S3; �/ is �1-surjective. If we kill these two ‘strut
segments,’ we obtain O{ W F0 � .S3; � 0/ which is also �1-surjective. Since
�1.F0/ D Z2, it follows j�1.S3; � 0/j � 2, therefore � 0 contains no other ‘strut’
(otherwise �1..S3; � 0// would not be cyclic), and hence � 0 is a Montesinos link
labeled by 2. �e double branched cover of S3 over � 0 must be a 3-manifold N

with trivial �1.N / and hence N D S3, that is to say � 0 is a trivial knot by the pos-
itive solution of the Smith conjecture. We use the parameters to compute �1.N /

and then determine the parameters.
For short we present the graphs 15, 19, 20, 21, 22 by a single graph in Figure 8;

the �ve graphs correspond to the choices .n; n; 1/, .2; 2; n/, .2; 3; 3/, .2; 3; 4/ and
.2; 3; 5/ for .n1; n2; n3/ (n > 1). Since j2mi j � ni and � contains exactly two
‘struts’ with di�erent labels, we have condition

j2mi j � ni , at least one mi is zero and at least one mi is nonzero. (*)

Let .jmi j; ni / D di be the greatest common divisor of jmi j and ni , by the
singular type restrictions we have

¹d1; d2; d3º D ¹1; 2; dº; .d > 2/, or ¹1; 3; 4º or ¹1; 3; 5º. (**)

Figure 8
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Write mi D m0
i di , ni D n0

idi , then � 0 is the Montesinos link presented by
Figure 8, with each .mi ; ni / replaced by .m0

i ; n0
i /. By a theorem of Montesinos [2,

Proposition 12.30], the double branched cover of S3 over � 0 is a Seifert manifold
N whose fundamental group has the following presentation:

�1.N / D hx; y; z; t jxn0
1 tm0

1 D yn0
2 tm0

2 D zn0
3 tm0

3 D 1;

xyzt�k D 1;

Œx; t � D Œy; t � D Œz; t � D 1i:

If mi D 0 for some i , then n0
i D 1 by de�nition, and it is easy to see �1.N /

is an abelian group. Now �1.N / is trivial if and only if the determinant of the
presentation matrix is ˙1. Hence we have

kn0
1n0

2n0
3 C m0

1n0
2n0

3 C n0
1m0

2n0
3 C n0

1n0
2m0

3 D 1; (1)

or
kn0

1n0
2n0

3 C m0
1n0

2n0
3 C n0

1m0
2n0

3 C n0
1n0

2m0
3 D �1: (1)0

Dividing n0
1n0

2n0
3 on both sides and using the facts that j2m0

i j � n0
i and m0

i D 0 for
some i , we have

jkj � 1=n0
1n0

2n0
3 C jm0

1j=n0
1 C jm0

2j=n0
2 C jm0

3j=n0
3 < 2

and then k D 0; ˙1.
Noticing that solutions of .1/ and .1/0 have a one to one correspondence if we

change the signs of k and m0
i simultaneously. And the corresponding knot of one

solution is the mirror image of the other. Hence we need only deal with .1/.
In .1/ since j2m0

i j � n0
i and one m0

i is zero, k can not be �1. For example
assume m0

1 D 0 and k D �1, then n0
1 D 1 and .1/ becomes

�n0
2n0

3 C m0
2n0

3 C n0
2m0

3 D 1:

But since j2m0
i j � n0

i ,

�2n0
2n0

3 C 2m0
2n0

3 C 2n0
2m0

3 � �2n0
2n0

3 C n0
2n0

3 C n0
2n0

3 D 0:

Now for a given choice of .n1; n2; n3/, we will �nd all possible solutions
.k; m1; m2; m3/ or .k; m1; m2; m3; n/ satisfying .�/; .��/ and .1/ (or .1/0). Chang-
ing signs of a solution will give us a mirror image. Moreover a picture of a solution
with k D 1 always isomorphic to a picture of solution with k D 0 (an illustration is
given in Figure 10, the illustrations of remaining cases are similar). We only draw
the graphs of the non-homeomorphic orbifolds. We further divide the discussion
into three subcases.
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(i) Solutions for .n1; n2; n3/ D .2 ; 3; 3/; .2 ; 3; 4/; .2 ; 3; 5/. It is easy to get
those solutions directly.

If .n1; n2; n3/ D .2; 3; 3/, then

.k; m1; m2; m3/ D .0; 0; ˙1; 0/;

.0; 0; 0; ˙1/:

We present the picture for the case of .0; 0; 0; 1/.

Figure 9

If .n1; n2; n3/ D .2; 3; 4/ then

.k; m1; m2; m3/ D .0; 0; 0; ˙1/;

.0; 0; ˙1; 0/;

.0; ˙1; 0; 0/;

.˙1; �1; 0; 0/:

We present .0; 0; 0; 1/, .0; 0; 1; 0/, .0; 1; 0; 0/ and .1; 1; 0; 0/. It is clear the last two
pictures are homeomorphic.

Figure 10
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If .n1; n2; n3/ D .2; 3; 5/ then

.k; m1; m2; m3/ D .0; 0; 0; ˙1/;

.0; 0; ˙1; 0/;

.0; ˙1; 0; 0/;

.˙1; �1; 0; 0/:

We present .0; 0; 0; 1/, .0; 0; 1; 0/ and .0; 1; 0; 0/.

Figure 11

(ii) Solution for .n1; n2; n3/ D .2 ; 2 ; n/. Since m1 and m2 are symmetry,
by .�/ and .��/ we can assume jm1j D 1 and m2 D 0. �en n0

1 D 2; n0
2 D 1,

m0
1 D m1; m0

2 D 0, d1 D 1; d2 D 2. (1) becomes to

2kn0
3 C m1n0

3 C 2m0
3 D 1: (2)

If k D 0, by .�/ we have m1 D 1; n0
3 D 1 � 2m0

3. Let m D jm0
3j; d D d3.

We have
.k; m1; m2; m3; n/ D .0; 1; 0; �md; .1 C 2m/d/;

hence also
.k; m1; m2; m3; n/ D .0; �1; 0; md; .1 C 2m/d/:

If k D 1, by .�/ we have m1 D �1; n0
3 D 1 � 2m0

3. Let m D jm0
3j; d D d3.

We have
.k; m1; m2; m3; n/ D .1; �1; 0; �md; .1 C 2m/d/;

hence also
.k; m1; m2; m3; n/ D .�1; 1; 0; md; .1 C 2m/d/:

Hence by symmetry and signs changing we have all the solutions:

.k; m1; m2; m3; n/ D .0; ˙1; 0; �md; .1 C 2m/d/;

.˙1; �1; 0; �md; .1 C 2m/d/;

.0; 0; ˙1; �md; .1 C 2m/d/;

.˙1; 0; �1; �md; .1 C 2m/d/;

with n > 1. We present .0; 1; 0; �md; .1 C 2m/d/, m ¤ 0, and .0; 1; 0; 0; n/.
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Denote by O the orbifold presented by the left graph in Figure 12. If we kill
the edge which is labeled by d , we obtain an orbifold which is �bred over
D2.2; 2; 1 C 2m/ with 1 C 2m � 3 [3] (the 2-orbifold with base D2 and three
corner points with labels .2; 2; 1C2m/). �en after killing the element presenting
the �ber, we obtain a surjection

�1.O/ �! �1.D2.2; 2; 1 C 2m//:

�e latter group is non-abelian. But the fundamental group of our 2-suborbifold,
if it exists, would be Z2 � Z2 after killing; this means that we cannot �nd an
allowable 2-suborbifold in O.

Figure 12

(iii) Solution for .n1; n2; n3/ D .n; n; 1/: Now let n0
3 D n3 D 1, m0

3 D m3 D 0,
and d3 D 1. (1) becomes

kn0
1n0

2 C n0
1m0

2 C n0
2m0

1 D 1: (3)

If k D 0, we have
nm2 C nm1 D d1d2: (4)

By .��/, ¹d1; d2º D ¹2; dº .d > 2/, ¹3; 4º or ¹3; 5º. By symmetry we can
assume d1 < d2.

When d1 D 2; d2 D d > 2, by .4/ we have n D d or n D 2d .
If n D d , then n0

2 D 1; m2 D m0
2 D 0, hence by .4/ we have m1 D 2 and

n D d is an even number 2n0, here n0 D n0
1 > 1. We have

.k; m1; m2; n/ D .0; 2; 0; 2n0/; n0 > 1:

If n D 2d , then n0
2 D 2; jm0

2j D 1, hence by .3/ we have m0
2 D 1; m2 D d ,

d D n0
1 D 1 � 2m0

1. Let m D jm0
1j, we have

.k; m1; m2; n/ D .0; �2m; 1 C 2m; 2.1 C 2m//; m > 0:
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When ¹d1; d2º D ¹3; 4º or ¹3; 5º, by a similar way one can get

.k; m1; m2; n/ D .0; �3; 4; 12/;

.0; 6; �5; 15/:

If k D 1, by .3/ and .�/ we have

2 D n0
1.n0

2 C 2m0
2/ C n0

2.n0
1 C 2m0

1/ � 0:

If none of .n0
i C2m0

i /.i D 1; 2/ is zero, then n0
1 D n0

2 D 1 and d1 D d2 which is
a contradiction. By symmetry we can assume n0

1 C2m0
1 D 0, then we have n0

1 > 1

and n0
1.n0

2 C 2m0
2/ D 2. Hence we have n0

1 D 2; m0
1 D �1 and n0

2 D 1 � 2m0
2.

By .��/ if we let m D jm0
2j, we have

.k; m1; m2; n/ D .1; �2; 0; 4/

or
.1; �1 � 2m; �2m; 2.1 C 2m//.m > 0/:

By symmetry and signs changing we list all the solutions when .n1; n2; n3/ D
.n; n; 1/.

First the solutions we get above adding signs changing solutions:

.k; m1; m2; n/ D .0; ˙2; 0; 2n0/;

.0; ˙2m; �.1 C 2m/; 2.1 C 2m//;

.0; ˙3; �4; 12/;

.0; ˙6; �5; 15/;

.˙1; �2; 0; 4/;

.˙1; �.1 C 2m/; �2m; 2.1 C 2m//:

�en the symmetry solutions:

.k; m1; m2; n/ D .0; 0; ˙2; 2n0/;

.0; �.1 C 2m/; ˙2m; 2.1 C 2m//;

.0; ˙4; �3; 12/;

.0; ˙5; �6; 15/;

.˙1; 0; �2; 4/

.˙1; �2m; �.1 C 2m/; 2.1 C 2m//:
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Here the parameters satis�es n0 > 1; m > 0. Symmetry solutions give us the
same picture, signs changing solutions give us the mirror picture, and a solution
with k D 1 always has the same picture of a solution with k D 0. We present

.0; �1 � 2m; 2m; 2 C 4m/ .m > 0/;

.0; 0; 2; 2n0/ .n0 > 1/;

.0; 4; �3; 12/;

.0; 5; �6; 15/:

Note that each of the corresponding graphs is isotopic to a simple one as indicated
in Figure 13.

�is �nishes the discussion for Case 1.

Figure 13

5.2. �e discussion of Case 2. For Case 2, by the same discussion as in Case 1,
the graphs we �nd have the property that if we kill the label 3 ‘struts’ or a label 3

singular edge, then we get a trivial knot labeled by 2.
By this property, the link cases (no vertices or struts), including Table I now

and also the graphs 14 and 16 in Table II, are easy to handle. Graphs 04, 08, 10,
12, 13 and 14 are ruled out since each of them has only one index. Graphs 03 and
09 are ruled out since after killing an index 3 component (intersecting V ), the
remaining is not a trivial knot.

In Table II, there are two further graphs which possibly contain exactly one
‘strut,’ the graphs 17 and 18. Now 17 is ruled out since after killing the possible
index 3 ‘strut’ (intersecting V ), the remaining is not a trivial knot. Concerning 18,
the only possible graph is the link on the upper right hand side of Figure 14 which
presents all possible labeled links; the graph on the lower left hand side come from
02, 05 and 16, and the the remaining four graphs are come from 01, 06, 07 and 11.
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Figure 14

Concerning the possible ‘strut’ cases, we still have to consider the �ve graphs
discussed in Case 1, but the case here is much simpler since the possible ‘strut’ can
only label 3. We list the solutions and pictures below as in Case 1. Since most of
the solutions present the same graph or a mirror image we only picture the graphs
of non-homeomorphic orbifolds.

If .n1; n2; n3/ D .2; 3; 3/ then

.k; m1; m2; m3/ D .0; ˙1; 0; 0/;

.˙1; �1; 0; 0/;

.˙1; �1; 0; �1/;

.0; ˙1; 0; �1/;

.˙1; �1; �1; 0/;

.0; ˙1; �1; 0/:

We present .0; 1; 0; 0/ and .0; �1; 0; 1/.

Figure 15

If .n1; n2; n3/ D .2; 3; 4/, there is no solution.
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If .n1; n2; n3/ D .2; 3; 5/ then

.k; m1; m2; m3/ D .˙1; �1; 0; �2/;

.0; ˙1; 0; �2/:

We picture .0; �1; 0; 2/.

Figure 16

If .n1; n2; n3/ D .2; 2; n/, there is no solution.

Notice that when .n1; n2; n3/ D .n; n; 1/, we must have ¹d1; d2º D ¹1; 3º or
¹3; 3º. By a similar way as above we have

.k; m1; m2; n/ D .˙1; 0; 0; 3/;

.0; ˙1; 0; 3/;

.0; 0; ˙1; 3/:

We picture .1; 0; 0; 3/ and .0; 0; 1; 3/.

Figure 17

�is �nishes also the possible ‘strut’ cases. And we �nished the discussion of
Case 2.

Concluding, we have found all spherical �bred 3-orbifolds in which an allow-
able 2-suborbifold might exist. Up to automorphism of orbifolds, they are pictured
in Figures 9–17, except the left one in Figure 12. �ose �bred 3-orbifolds and the
3-orbifolds in Table III (non-�bred case) provides the list in the next section (note
that the �rst two orbifolds in Figure 13 are recorded as the orbifold 15E in Table V).
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6. List of allowable 2-suborbifolds

In this section our main result �eorem 6.1 will be presented and proved. We are
going to give some explanations and conventions before we state �eorem 6.1.

From now on, an edge always means an edge of �, the singular set of the
orbifold; and a dashed arc is always a regular arc with two ends at two edges of
indices 2 and 3.

�e primary part of �eorem 6.1 is the list of spherical 3-orbifolds which have
survived after the discussion in Section 5. For each 3-orbifold in the list, we �rst
give the order of its fundamental group. �en we use edges and dashed arcs
marked by letters a; b; c; : : : , to denote the allowable 2-suborbifolds which are
the boundaries of regular neighborhoods of these edges and arcs. Next we write
down the singular type of these allowable 2-suborbifold, followed by the corre-
sponding genus which can be computed by Lemma 2.8. When the singular type is
.2; 2; 3; 3/, there are two types denoted by I and II, corresponding to Figure 2(a)
and Figure 2(b), respectively. If the 2-suborbifold is a knotted one we give a foot
notation ‘k’ to this edge or dashed arc. In the type II cases, if a dashed arc can be
chosen as an unknotted one then it can also be chosen as a knotted one, and we
add a foot notation ‘uk’ to this arc. We �rst list the �bred cases of type I and II,
then the �bred cases not of type .2; 2; 3; 3/, and �nally the non-�bred cases.

�eorem 6.1. �e following table lists all allowable singular edges/dashed arcs
except those of type II. In the type II case, if there exists an allowable dashed
arc we give just one such dashed arc, and this will be unknotted if there exists an
unknotted one.

Remark 6.2. From the list it is easy to see when g D 21 or g D 481 the maximal
order can only be realized by a knotted embedding. �e orbifolds corresponding
to these situations are 28, 34 and 38.
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Table IV. Fibred case: type is .2; 2; 3; 3/.

jGj D 6

auk : II, g D 2

jGj D 18

auk : II, g D 4

jGj D 48

auk : II, g D 9

jGj D 144

auk : II, g D 25

jGj D 720

auk : II, g D 121

jGj D 6

a: I, g D 2

buk : II, g D 2

a

3

3 jGj D 18

a: I, g D 4

jGj D 144

a: I, g D 25

jGj D 48

a: I, g D 9

buk : II, g D 9

ck : I, g D 9

jGj D 720

a: I, g D 121

buk: II, g D 121

ck : I, g D 121

jGj D 144

auk : II, g D 25
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Table V. Fibred case: type is not .2; 2; 3; 3/.

jGj D 24

a:(2,2,3,4), g D 6

jGj D 30

a:(2,2,3,5), g D 8

jGj D 4n

a:(2,2,2,n)
g D n � 1

jGj D 4n2

a:(2,2,2,n)
g D .n � 1/2

jGj D 96

a:(2,2,2,3), g D 9

bk:(2,2,2,3), g D 9

jGj D 288

a:(2,2,2,3), g D 25

jGj D 384

a:(2,2,2,4), g D 49

jGj D 576

a:(2,2,3,4), g D 121

jGj D 1440

a:(2,2,2,3), g D 121

bk:(2,2,2,3), g D 121

jGj D 2400

a:(2,2,2,5), g D 361

bk :(2,2,2,5), g D 361

jGj D 3600

a:(2,2,3,5), g D 841
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Table VI. Non-�bred case (�rst part).

jGj D 96

a: I, g D 17

jGj D 60

a: I, g D 11

bk: II, g D 11

c:(2,2,2,3), g D 6

jGj D 576

a: I, g D 97

b:(2,2,2,4), g D 73

jGj D 24

a: I, g D 5

bk : II, g D 5

c:(2,2,2,3), g D 3

jGj D 48

a:(2,2,2,3), g D 5

b:(2,2,2,4), g D 7

c:(2,2,3,4), g D 11
d

5 ab
3

c jGj D 120

a:(2,2,2,3), g D 11

b:(2,2,2,5), g D 19

c:(2,2,3,5), g D 29

dk: II, g D 21

jGj D 192

a:(2,2,2,3), g D 17

b:(2,2,3,4), g D 41

jGj D 7200

a:(2,2,2,3), g D 601

b:(2,2,3,5), g D 1681
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Table VI. Non-�bred case (second part).

jGj D 288

No allowable
2-suborbifold

jGj D 24

a: I, g D 5

buk: II, g D 5

jGj D 1152

a:(2,2,2,3), g D 97

jGj D 120

ak : II, g D 21

b:(2,2,2,3), g D 11

ck :(2,2,2,3), g D 11

jGj D 12

a: I, g D 3

buk : II, g D 3

jGj D 24

a: I, g D 5

buk: II, g D 5

jGj D 60

a: I, g D 11

buk : II, g D 11

jGj D 2880

ak : II, g D 481

b; ck ; dk:(2,2,2,3)
g D 241

jGj D 576

a: I, g D 97

buk : II, g D 97

jGj D 1440

a: I, g D 241

bk : I, g D 241

cuk : II, g D 241

Proof. One can easily check that the list of 3-orbifolds in �eorem 6.1 contains
exactly those in Tables I and II which survive after Section 5, and those in Table III.
By the discussion of Section 5, all allowable 2-orbifolds are contained in one of
these 3-orbifolds.

�ere are two in�nity sequences of 3-orbifolds, 15E and 19 in the above list.
For these two sequences, we know the group actions on the pair .S3; †g/ clearly,
see Examples 7.1 and 7.2 in Section 7. �e other orders of the fundamental groups
can be calculated directly from their Wirtinger presentations of these graphs and
by using [13], see Example 6.3 for details. And for the non-�bred case, the group
order can also be got from the group structure, see [4].
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To �nish the proof of �eorem 6.1, we still need to answer questions below.

I. Why do those marked edges and the dashed arcs give allowable 2-suborb-
ifolds?

II. Why do those marked edges and the dashed arcs give all allowable 2-suborb-
ifolds (up to some equivalences)?

Concerning I, by direct inspections each marked edge and each dashed arc
gives a candidacy 2-sphere jFj (see De�nition 4.1). One can easily check that
all standard edges and dashed arcs (without subscript k) give rise to unknot-
ted 2-suborbifolds, and then the surjection condition is automatically satis�ed
(Remark 2.11). So one has to check only edges and dashed arcs which exist only
in a knotted version (i.e. with the subscript ‘k’).

�ere are 9 knotted marked edges which are c in 20B, 22A, 34, 38; b in 20C,
22B, 22C, 38, 40; and 5 knotted dashed arcs which are b in 24, 26; d in 28;
a in 34, 38. �e veri�cation of the surjectivity in these 14 cases is based on the
so-called coset enumeration method ([8], p. 351, Chapter 11).

To answer Question II, we divide the discussion into two cases.

Case 1. If an edge is not marked, then either

(i) the corresponding 2-suborbifold is not a candidacy 2-sphere, or

(ii) the corresponding 2-suborbifold can be mapped to a marked edge by an index
preserving automorphism of .S3; �/, or

(iii) the inclusion of F � .S3; �/ is not �1-surjective.

Case 2. If there is no dashed arc in a 3-orbifold .S3; �/ in the list, then for any
dashed arc in .S3; �/ giving a candidacy 2-sphere the corresponding 2-suborb-
ifold F � .S3; �/ is not �1-surjective.

�e veri�cation of Case 1 (i) and (ii) is just by a direct inspection. �e veri�-
cation of Case 1 (iii) and Case 2 will use Edge killing method (Lemma 2.14) and
Lemma 6.6 below.

Now we would like to prove three examples in detail. All the other cases can
be proved by the same arguments.

Example 6.3. �is is the orbifold 34 in the above list. We use this example to
explain two things: 1. How do we get the group order? 2. How do we �nd all
allowable singular edges and dashed arcs in such a 3-orbifold?
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Figure 18

Denote the corresponding 3-orbifold by O. From Figure 18 we obtain the fol-
lowing presentation of the orbifold fundamental group of O:

�1.O/ D hx; y; z j x2 D y3 D z2 D 1; .zy/2 D .yxz/2 D .yxzx/3 D 1i

We input these generators and relations into [13], and the computer uses the stan-
dard procedure (called coset enumeration) to show the group order is 120.

�en there are 6 singular edges in this orbifold, b; c; d; e; f; g. For each we
should consider if it is allowable. First, b and e are unknotted, because the bound-
ary of their neighborhoods are isotopic, so the corresponding 2-orbifold bounds
handlebody orbifolds on both sides. And for an unkontted 2-suborbifold, its fun-
damental group naturally surjectively mapped into �1.O/. So b and e are allow-
able. But since they give the same 2-orbifold, we only label b here. For c, its
fundamental group is generated by

�1.Fc/ D hyxz; x; zyi

also by [13], the computer can show that Œ�1.O/ W �1.Fc/� D 1, so c is allowable.
We can see there is an automorphism of O which changes c and d , so d is also
allowable and we only label c in the list. Furthermore, the boundary of the neigh-
borhood of c is not the boundary of the neighborhood of another singular edge,
so we get ck . �e type of g is .2; 3; 3; 3/, which is not in the list of Lemma 2.7 ,
so g is not allowable. f is also not allowable since Œ�1.O/ W �1.Ff /� > 1 (this can
be veri�ed by either coset enumeration method or edge killing method).

Now we consider dashed arcs in this orbifold. As in the �gure, we choose a
dashed arc a, its fundamental group is generated by

�1.Fa/ D hx; yi
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also by [13], the computer can show that Œ�1.O/ W �1.Fa/� D 1, so a is allowable.
So we already �nd an allowable dashed arc. �en since di�erent dashed arcs will
give surfaces with the same genus, we don’t need to �nd more dashed arcs. And in
this orbifold, out of the neighborhood of each dashed arc there must be 4 singular
edges, it can not be a handlebody orbifold, so each allowable dashed arc must be
knotted. So we have ak .

Example 6.4. �is orbifold is labeled with number 33 in the above list. We use this
example to explain: how do we proof a 3-orbifold contains no allowable dashed
arc?

If there is an allowable dashed arc corresponding to an allowable 2-orbifold F,
then one end of the dashed arc must lay on the edge e labeled 3. Kill the edge e,
then �1.F/ D Z2, but �1.S3; � 0/ D Z2 ˚ Z2. Hence the dashed arc can not be
allowable. �ere is no allowable dashed arc at all.

a

b

c

d

e

f

3

4

Figure 19

Example 6.5. �ere are three orbifolds 23, 29, 30 for which by the edge killing
method we do not get the non-�1-surjectivity of the inclusion corresponding to
the dashed arcs. We use Lemma 6.6 to deal with these three cases.

Lemma 6.6. Let S be one of the permutation groups A4, S4, A5. Let H be a
subgroup of S � S such that the restrictions to H of the two canonical projections
of S � S to S are both surjective. If H is not isomorphic to S then an order 2

element and an order 3 element in H cannot generate H .



1038 C. Wang, S. Wang, Y. Zhang, and B. Zimmermann

Proof. Let .x; x0/ and .y; y0/ be order 2 and order 3 elements in H which gener-
ate H . Since the two projections restricted to H are surjective, both x and x0 have
order 2, and both y and y0 have order 3; moreover the subgroups generated by x; y

and also by x0; y0 are both equal to S . One can check now by explicit computations
in each of the three groups that the map x 7! x0, y 7! y0 gives an isomorphism of
S to itself. Hence H is isomorphic to S .

Notice that T Š A4, O Š S4, J Š A5. We will use this lemma to some �nite
groups, with form S � S , in SO.3/ � SO.3/ which is 2-sheet covered by SO.4/.

In 23, 29 and 30 the fundamental groups of these orbifolds are the �nite groups

T �C3
T ; O �D3

O; J � J

of SO.4/, see [4] for the notations. �ey can map surjectively to T �C3
T , O�D3

O ,
J � J under the 2 to 1 map SO.4/ ! SO.3/ � SO.3/. For an allowable dashed
arc, the fundamental group of a regular neighborhood is generated by an order 2

element and an order 3 element. But by Lemma 6.6, any two such elements in the
groups T �C3

T , O �D3
O , J � J cannot generate the whole group.

Now we prove our main results.

�eorem 1.4 follows from �eorem 6.1; �eorem 1.1 and �eorem 1.2 follow
from �eorem 1.4, with some elementary arithmetic.

Note that 4n.g � 1/=.n � 2/ will be 12.g � 1/ when n D 3 and 8.g � 1/ when
n D 4; also, 4n.g �1/=.n�2/ will be 4.

p
g C1/2 when g D .n�1/2 and 4.g C1/

when g D n � 1.

Only the last two rows of the tables in �eorems 1.1 contain in�nitely many
genera, corresponding to the orbifolds 15E and 19 in �eorem 6.1.

To derive �eorem 1.3 we notice that by Example 7.3 we have OEk
g � 4.g �1/.

And by �eorem 1.4, we know all cases with jGj > 4.g � 1/. �en we reach
�eorem 1.3.

Comment. We de�ne two actions of a �nite group G to be equivalent if the cor-
responding groups of homeomorphisms of .S3; †g/ are conjugate (i.e., allowing
isomorphisms of G). By the proof of �eorem 6.1 and the tables above, there are
only �nitely many types of actions of G on .S3; †g/ such that jGj > 4.g � 1/

and the handlebody orbifold bounded by †g=G is not of type II. In particular
there are only �nitely many types of actions of G on .S3; †g/ realizing OEg for
g ¤ 21; 481.
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7. See the maximum symmetries of †g in S 3 for general g

Example 7.1. For every g > 1, we will construct a group G of order 4.g C 1/

which acts on S3 D Vg

S

V 0
g , the standard Heegaard splitting of S3. Let PgC1 be

the equator sphere S2 of S3 with g C 1 punctured holes, see Figure 20 for g D 4.
We choose the holes all on the equator S1 of S2, centered at the vertices of a
regular g C 1-polygon. �ere is a dihedral group DgC1 acting on .S3; S2/ which
keeps PgC1 invariant. And there is also a Z2 action on S3 changing the inner
and outer of S2, whose �xed point set is the equator of the 2-sphere in Figure 20.
So there is a DgC1 � Z2 action on PgC1, therefore on †g , the boundary of its
invariant regular neighborhood Vg . �is group has order 4.g C 1/.

Figure 21 shows how the orbifold 15E is obtained from this action. Note the
�rst branched covering of degree 2n is given by the action of ZgC1 ˚ Z2 for
ZgC1 � DgC1.

Figure 20

Figure 21
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Example 7.2. For each g D k2 > 1, we construct a group G of order 4.
p

g C 1/2

which acts on

S3 D Vg

[

V 0
g ;

where G is a semidirect product

.ZkC1 � ZkC1/ Ì' .Z2 � Z2/:

Writing

ZkC1 � ZkC1 D hx; y j xy D yx; xkC1 D ykC1 D 1i;

Z2 � Z2 D hs; t j st D t s; s2 D t2 D 1i;

the semidirect product is given by

' W sxs�1 D y; sys�1 D x; txt�1 D x�1; tyt�1 D y�1:

Consider S3 as the unit sphere in C
2

S3 D ¹.z1; z2/ 2 C
2 j jz1j2 C jz2j2 D 1º;

and let

aj D .e
2j�i
kC1 ; 0/; bj D .0; e

2j�i
kC1 /; j D 0; 1; : : : ; k:

�en the G-action on S3 is given by

x W .z1; z2/ 7�! .e
2�i
kC1 z1; z2/;

y W .z1; z2/ 7�! .z1; e
2�i
kC1 z2/;

s W .z1; z2/ 7�! .z2; z1/;

t W .z1; z2/ 7�! .z1; z2/:

It is easy to check this is a faithful orientation-preserving action.
Notice that this G-action keeps the set ¹ai ; bj º; i; j D 0; 1; : : : ; k, invariant.

If we join each ai and bj by a geodesic in S3, we get a complete bipartite graph
� � S3 with 2kC2 vertices and .kC1/2 edges. Hence �.�/ D �k2C1. Hence the
G-action maps � to itself, and induces an action on †g D @Vg , Vg is an invariant
neighborhood of � in S3 with k2 D g. Figure 22 gives the picture for g D 4. �is
gives an extendable group action of order 4.

p
g C 1/2, corresponding to orbifold

19 in the list of �eorem 6.1.
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Figure 22

Figure 23 shows how the orbifold 19 be obtained from this action.

Figure 23

Example 7.3. Denote the graph in Figure 24 by Cg�1 � S3, where g D 4 and “K”
is the connected sum of a knot “k”� S3 and its �-rotation. Imitate the argument of
Example 7.1, we can see that there is a .Dg�1˚Z2/-action on .S3; Cg�1/, therefore
on †g D @Vg for an invariant regular neighborhood of Cg�1. And †g � S3 is
knotted if k is knotted. Figure 25 gives its orbifold. �e blue lines with knots in
Figures 24 and 25 are dashed lines in previous sections and their preimages.
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Figure 24

Figure 25

Example 7.4. Figure 27 shows a knotted handlebody of genus g D 11 which is
invariant under a group action of order 120 of S3, corresponding to edge c in 34
(Table VI). All points are colored by their distance from the origin.

�e group is isomorphic to A5 � Z2, where we consider the alternating group
A5 as the orientation preserving symmetry group of the 4-dimensional regular
Euclidean simplex, and Z2 is generated by �id on E4. Let the 4-simplex be cen-
tered at the origin of E4 and inscribed in the unit sphere S3. �e radial projection
of its boundary to S3 gives a tessellation of S3 by 5 tetrahedra invariant under the
action of A5. We present one of these tetrahedron in Figure 26.
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Figure 26

Imagine the �gure has spherical geometry. O is the center of the tetrahedron,
F is the center of triangle 4BCD, E is the middle points of BC , M is the middle
points of BO , N is the middle points of EF . �e orbit of the geodesic MN under
the group action of A5 joins to a graph in S3; note that this graph is invariant also
under �id on S3. Projecting to E3, Figure 27 shows this graph and the boundary
surface of the regular neighborhood of the projected image(by [14]).

Figure 27
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