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Abstract. In this paper we study the residual nilpotence of groups defined by basic commu-
tators. We prove that the so-called Hydra groups as well as certain of their generalizations
and quotients are, in the main, residually torsion-free nilpotent. By way of contrast we give
an example of a group defined by two basic commutators which is not residually torsion-free
nilpotent.
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1. Introduction

Let P be a property or class of groups. Then a group G is termed residually P if
for each g 2 G; g ¤ 1, there exists a normal subgroup N of G such that g … N

and G=N 2 P . In 1935 Wilhelm Magnus [28] proved that free groups are residually
torsion-free-nilpotent and as a corollary that an n < 1 generator group with the same
lower central quotients as a free group of rank n is free. The genesis of this paper
is an earlier proof of ours, which we include here, that the so-called Hydra groups,
which are one-relator groups defined by basic commutators and recently introduced
by Dison and Riley [13], are residually torsion-free nilpotent. Whether all one-relator
groups defined by basic commutators are residually torsion-free nilpotent remains to
be determined. Here we prove that a number of one-relator groups defined by basic
commutators, and some of their generalizations, are residually torsion-free nilpotent.
Whether residual torsion-free nilpotence, can be used to further our understanding of
the isomorphism problem for one-relator groups seems worth exploring further.

1The research of the first author is supported by Grant CNS 111765.
2The research of the second author is supported by the Chebyshev Laboratory (Department of Mathe-

matics and Mechanics, St. Petersburg State University) under RF Government grant 11.G34.31.0026, and
by JSC “Gazprom Neft”, as well as by the RF Presidential grant MD-381.2014.1.
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A little history. There is now a large body of work devoted to residual properties
of groups and in particular, to residual nilpotence. Perhaps the first residual property
of free groups was obtained by F. W. Levi [25] in 1930 who proved in particular
that free groups are residually finite 2-groups. In 1935 W. Magnus [28] proved an
even stronger theorem, namely that free groups are residually torsion-free nilpotent.
Since K. W. Gruenberg [15] later proved that finitely generated torsion-free nilpotent
groups are residually finite p-groups for every prime p, Magnus’ theorem is indeed a
generalization of Levi’s theorem. A. I. Malcev [32] subsequently extended Magnus’
theorem to free products of torsion-free nilpotent groups by proving that the free
product of residually torsion-free nilpotent groups is again residually torsion-free
nilpotent. Proceeding in a different direction, A. I. Lichtman [26] has studied the
residual nilpotence of the multiplicative group of a skew field generated by universal
enveloping algebras. Much work has also focussed on the residual nilpotence of
groups which are free in certain solvable varieties of groups, including the variety of
all solvable groups of a given derived length [15]. The proof by B. Hartley [19] that
the wreath products of torsion-free abelian groups by torsion-free nilpotent groups
are residually torsion-free nilpotent touches on this work of Gruenberg [15]. The
techniques used by Gruenberg as well as that of Hartley [19] make use of basic
commutators, to be defined below, which go back to P. Hall’s fundamental work
on finite groups of prime power order [16] and his so-called collection process and
the work of M. Hall [18]. A key ingredient of this work is the introduction and
use of Lie and associative rings in furthering our understanding of the lower central
sequence of a group that goes back to P. Hall [16], and was developed among others
by M. Lazard [24] and W. Magnus (cf. [31]) and E. Witt [36] who proved that the
sub-Lie rings of a free Lie ring are again free. Here we will make much use of the
fundamental work of J. P. Labute [23] and his study of the Lie ring of a one-relator
group, which given the right hypothesis, turns out to be a one-relator Lie ring. A brief
survey of the residual nilpotence of a number of groups and some additional results
and references can be found in the work of the first author [6].

Much of the foregoing discussion has focussed on the purely combinatorial group
theoretic aspects of residually nilpotent groups. They arise naturally, not only in
combinatorial group theory but also in many geometric problems which involve knots
and links, arrangements of hyperplanes, homotopy theory, four manifolds and many
other parts of mathematics. In particular, J. R. Stallings [35] proved that the lower
central quotients of a fundamental group are invariant under homology cobordism
of manifolds. His result underpins Milnor and Massey product invariants of links,
which have analogues for knots in arbitrary 3-manifolds using suitable variations of
the lower central series. The homological properties of finitely generated parafree
groups, i.e., those finitely generated residually nilpotent groups with the same lower
central quotients as free groups, play an important role in low dimensional topology,
see, e.g., Cochran and Orr [12]. Finitely generated non-free parafree groups exist in
profusion [2] and the work of Bousfield [11] contains a large number of infinitely
generated examples.
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2. Our main results

2.1. The Hydra groups. In [13], Dison and Riley introduced a family of one-relator
groups

G.k; a; t / D ha; t j Œa; t; : : : ; t„ ƒ‚ …
k

� D 1i .k � 1/

which they termed Hydra groups. These groups are infinite cyclic extensions of
finitely generated free groups. Indeed if we put a0 D a, and ai D Œai�1; t � for
i D 1; : : : ; k � 1, then the subgroup H of G.k; a; t / generated by a0; : : : ; ak�1 is
a free normal subgroup of G.k; a; t / and G.k; a; t / is an infinite cyclic extension
of H . Dison and Riley [13] proved that the subgroup of G.k; a; t / generated by
a0t; : : : ; ak�1t when k > 1, has extremely large distortion, by contrast with the
finitely generated subgroups of free groups which have linear distortion. Here we
will prove the following theorem.

Theorem 1. The Hydra groups G.k; a; t / are residually torsion-free nilpotent.

So the Hydra groups like free groups are residually torsion-free nilpotent.

2.2. Generalizations of the Hydra groups. We shall use Theorem 1 in the proof
of the following two theorems, Theorem 2 and Theorem 3, which taken together and
given the right conditions, amount to a considerable generalization of Theorem 1.

Theorem 2. Let X and Y be disjoint sets of generators and let F be the free group
on Z D X [ Y . Let u be an element in the subgroup of F generated by X and v an
element in the subgroup of F generated by Y . If u and v are not proper powers, then
for every k > 1

G.k; u; v/ D hZ j r.u; v/ D 1i;
where r.u; v/ D Œu; v; : : : ; v„ ƒ‚ …

k

�, is residually a finite p-group for every prime p.

If we ally Theorem 2 with Theorem L (see below), a theorem of J. P. Labute [23],
which we will describe in due course, it is easy to deduce the following theorem,
where we adopt the notation used in the formulation of Theorem 2.

Theorem 3. Suppose that u and v are basic commutators and that k > 1. Then
G.k; u; v/ is residually torsion-free nilpotent.

Notice that we assume that k > 1. We will consider the case where k D 1

separately.



624 G. Baumslag and R. Mikhailov

2.3. Big power groups and residually torsion-free nilpotent groups defined by
simple commutators. Theorem 1 is at the heart of the proof of Theorem 2. Our first
proof of Theorem 3 made heavy use of a rather different result which depends on a
property of free groups now termed the big powers property. This property was used
initially to prove that certain HNN extensions of a very simple type called extensions
of centralizers, are residually free in Baumslag [1] and, as it turns out, a little earlier
by R. C. Lyndon [27].

Theorem 4. Suppose that

G D hx1; : : : ; xn; t j Œu; t � D 1i;

where u is a word in x1; : : : ; xn which is not a proper power. Then G is residually
free.

We will still avail ourselves use of this property, which was the genesis of our
next theorem, as well as some further results which are needed to prove Theorem 5.

Theorem 5. Let u be an element in the free group F on X and v be an element in
the free group E on Y . Suppose that u and v are not proper powers and that

G D hX [ Y j Œu; v� D 1i:

Then

(1) G is residually a finite p-group for every prime p.

(2) If u 2 �j .F /; u … �j C1.F / and if v 2 �k.E/; v … �kC1.E/ and if u is not a
proper power modulo �j C1.F / and v is not a proper power modulo �kC1.E/

then G is residually torsion-free nilpotent. In particular, if u and v are basic
commutators, then G is residually torsion-free nilpotent.

So for instance the one-relator groups

G.x1; : : : ; xn/ D hx1; : : : ; xn j Œx1; : : : ; xn� D 1i

and

G D ha; b; c; d j ŒŒa; b�; Œc; d; d �� D 1i
are residually torsion-free nilpotent. Actually more is true in some special instances
since the groups G.x1; : : : ; xn/ are even residually free.

Labute’s Theorem L, already cited above, adds to what is already known about
some residual properties of certain groups, termed cyclically pinched one-relator
groups, as detailed in Section 2.4 below.
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2.4. Cyclically pinched one-relator groups. A one-relator group G is termed cycli-
cally pinched if it is an amalgamated product of two free groups with a cyclic subgroup
amalgamated:

G D hx1; : : : ; xm; y1; : : : ; yn j u.x1; : : : ; xm/ D v.y1; : : : ; yn/i;
where here u D u.x1; : : : ; xm/ and v.y1; : : : ; yn/ are non-trivial elements respec-
tively in the free groups on X D ¹x1; : : : ; xmº and Y D ¹y1; : : : ; ynº. There has been
considerable attention paid to these cyclically pinched one-relator groups since they
are generalizations of the fundamental groups of surfaces. Here we will add a little
more to what is already known by invoking one of Labute’s fundamental theorems in
order to prove

Theorem 6. Let G be the amalgamated product

G D hx1; : : : ; xm; y1; : : : ; yn j u.x1; : : : ; xm/ D v.y1; : : : ; yn/i:
If u and v are basic commutators then G is residually torsion-free nilpotent.

So for example it follows that

G D hx1; x2; y1; y2 j Œx1; x2� D Œy1; y2; y2�i
is residually torsion-free nilpotent. In addition, it also follows that if u1; : : : ; uq are
basic commutators in disjoint sets of generators coming from the set ¹x1; : : : ; xnº
then the following variation of Theorem 4 holds: the group

hx1; : : : ; xn j Œu1; : : : ; uq� D 1i
is residually torsion-free nilpotent. These examples should be compared with a num-
ber of other related examples (cf., e.g., [3] and [8]).

2.5. Examples. In the closing sections of this paper, Sections 11 and 12, we will
discuss some examples defined by two basic commutators. They are all quotients of
the Hydra groups. Some of them are residually torsion-free nilpotent and some are
not. The most important and most difficult to prove example is the following, which
we record as our final theorem, in Section 11.

Theorem 7. The group

ha; t j Œa; t; t � D Œa; t; a; a; a� D 1i
is not residually torsion-free nilpotent.

We will discuss some additional examples in Section 12.
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3. The arrangement of this paper

We will introduce some of the notation to be used here in Section 4.1. In Section 4.2
we record a little of what we will need in order to use the Lie ring of a group and
we remind the reader of the definition of basic sequences and basic commutators
in Section 4.3. Section 4.4 records some of the work of Kim and McCarron that
we will need here, conveniently re-stated as Theorem KM, and Labute’s important
theorem is described in Section 4.5 as Theorem L. Finally we will need a theorem of
P. Hall which we describe in Section 4.6. The proofs of our theorems are given in the
subsequent sections labelled by the theorems being proved ending with Section 11
where Theorem 7 is proved, and Section 12, where some additional examples are
discussed.

4. Notation, definitions and some basic theorems
of Kim and McCarron, Labute and Philip Hall

4.1. Notation. As usual, if x; y; a1; : : : ; akC1 are elements of a group G we set
Œx; y� D x�1y�1xy, xy D y�1xy and define

Œa1; a2; : : : ; akC1� D ŒŒa1; : : : ; ak�; akC1� .k > 1/:

The lower central series ofG is defined inductively by setting �1 .G/ D G, �nC1.G/ D
ŒG; �n.G/�:

4.2. The Lie ring of a group. Each of the factor groups Ln D �n.G/=�nC1.G/ is
an abelian group and will often be written additively. We now put

L.G/ D
1M

nD1

Ln:

L.G/ can be turned into a Lie ring (over Z) by defining a binary operation, denoted
Œx; y�, first on the Ln and extended by linearity to all of L.G/, as follows:

Œa�iC1.G/; b�j C1.G/� D .a�1b�1ab/�iCj C1.G/ .a 2 �i .G/; b 2 �j .G//:

We term L.G/ the Lie ring of G. The following references can be consulted by a
reader interested in the construction of such Lie rings, see for example [16] and [31].

We will need also here the definition of a basic sequence and a basic commutator.
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4.3. Basic commutators. Let

X D ¹x1; : : : ; xqº
be a non-empty finite set and let G be the free groupoid generated by X . So the
elements of G are simply the bracketed products of the elements of X and two such
products are equal only is they are identical. The number of factors j g j in such a
product g is termed the length or weight of g. A sequence b1; b2; : : : of elements of
G is termed a basic sequence in X if

(1) every element of X occurs in the sequence;

(2) if j bi j<j bj j, then i < j ;

(3) if u D vw.v; w 2 G/ is an element of G of length at least 2, u occurs in the
above sequence if and only if v D bi ; w D bj and j < i and either j bi jD 1 or
bi D bkb` and ` � j .

The terms in a basic sequence are called basic commutators. The proof of the existence
of such basic sequences can be found for example in [18]. Now if F is a free group,
freely generated by the set X and if �n.F / denotes the nth term of the lower central
series of F then Wilhelm Magnus [28] proved that the basic commutators of weight
n freely generates modulo �nC1.F / the free abelian group �n.F /=�nC1.F /.

4.4. The theorems of Kim and McCarron. We will need special cases of Theo-
rems 3.4 and 4.2 in Kim and McCarron [22] which, for convenience, we record here
as Theorem KM. These theorems make use of what they call a p-preimage closed
subgroup of a group. Here we will use a more customary notation, namely that of a
p-group separated subgroup. This more directly reflects what is needed in the proof
that certain amalgamated products of residually finite p-groups are again residually
finite p-groups.

Definition. A subgroup H of a residually finite p-group G is termed p-group sepa-
rated in G if for each element g 2 G, g … H , there exists a homomorphism � from
G into a finite p-group such that �.g/ … �.H/.

We are now in position to formulate the following theorem.

Theorem KM. (1) If G is residually a finite p-group, if G0 is a copy of G and if
H 0 denotes the copy of H in G0, then the amalgamated product G �HDH 0 G0 is
residually a finite p-group if and only if H is p-group separated in G.

(2) Let p be a prime, A and B residually finite p-groups and let c 2 A, d 2 B

be elements of infinite order. If the subgroup of A generated by c is p-group
separated in A and if the subgroup of B generated by d is p-group separated in
B then the amalgamated product A �cDd B is residually a finite p-group.
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4.5. Labute’s theorem. The theorem of Labute mentioned above is then the fol-
lowing one.

Theorem L. Let F be a free group freely generated by X , let r be an element of F

and let G D hX j r D 1i. Suppose that r 2 �n.F /, r … �nC1.F / and that r�nC1.F /

is not a proper power (i.e., multiple) in Ln. Then the Lie ring of G is additively free
abelian. If G is residually nilpotent, then G is residually torsion-free nilpotent.

4.6. Hall’s theorem. There is yet another theorem that we will need in this paper,
due to Philip Hall [17]:

Theorem H. Let G be a group with a normal nilpotent subgroup H . Suppose that
G=ŒH; H� is nilpotent and that H=ŒH; H� is nilpotent. Then G is nilpotent.

5. The Hydra groups are residually torsion-free nilpotent

We begin with the proof of Proposition 1.

5.1. Proposition 1. We will show that the proof of Theorem 1 is a consequence
of the following proposition which is itself an easy consequence of Philip Hall’s
Theorem H.

Proposition 1. Let G be a group with a normal residually torsion-free nilpotent
subgroup H . If G=H is torsion-free nilpotent and if G=ŒH; H� is nilpotent, then G

is residually torsion-free nilpotent.

It suffices to prove that if g 2 H; g ¤ 1, then there is normal subgroup Kg

of G such that g … Kg with G=Kg torsion-free nilpotent. Since H is residually
torsion-free nilpotent, there is a characteristic subgroup Kg of H which does not
contain g with H=Kg torsion-free nilpotent. Moreover, since Kg is characteristic in
H , Kg is normal in G. So G=Kg is an extension of a torsion-free nilpotent group
H=Kg by a torsion-free nilpotent group G=H . Hence G=Kg is torsion-free. Now put
xG D G=Kg , xH D H=Kg . Then xG=Œ xH; xH� Š G=ŒH; H� is nilpotent by assumption
which by Hall’s Theorem H, implies that xG D G=Kg is nilpotent. Since g … Kg and
G=Kg is torsion-free nilpotent, this proves Proposition 1.

5.2. The proof of Theorem 1. We are now in a position to prove that the Hydra
groups

G.k; a; t / D ha; t j Œa; t; : : : ; t„ ƒ‚ …
k

� D 1i k � 1

are residually torsion-free nilpotent. Since G.1; a; t / is free abelian of rank 2, it
suffices to assume that k > 1. As we noted above, G D G.k; a; t / is an infinite cyclic
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extension of the free subgroup H generated by k elements a0 D a; ai D Œai�1; t � for
i D 1; : : : ; k � 1. Now free groups are residually torsion-free nilpotent. Moreover
G=�2.H/ is clearly nilpotent of class k. So it follows by Proposition 1 that G is
residually torsion-free nilpotent, as claimed.

6. The proof of Theorem 2

We turn now to the generalizations G.k; u; v/ of the Hydra groups discussed in
Section 2.2, where

G.k; u; v/ D hX; Y j r.u; v/ D 1i;
r.u; v/ D Œu; v; : : : ; v„ ƒ‚ …

k

� and neither u nor v is a proper power. Our objective is to

prove, given the appropriate hypothesis, that the G.k; u; v/ are residually torsion-free
nilpotent. The first step in the proof, which depends heavily on Theorem KM, which
is due to Kim and McCarron [22] and detailed in Section 4.4, is to prove that they are
residually finite p-groups for every prime p. The proof is divided up into a number
of steps which involve centralizers of elements and separation properties of various
subgroups.

6.1. Centralizers of elements in the Hydra groups. We will need some more
information about the Hydra groups:

Lemma 1. The centralizer of a in

G.k; a; t / D ha; t j Œa; t; : : : ; t„ ƒ‚ …
k

� D 1i .k > 1/

is generated by a.

Proof. Let H be the normal closure in G D G.k; a; t / of a. Then, adopting the
notation introduced in Section 5.2 in the course of the proof of Theorem 1, we have
already noted that H is free on the aj and that G is the semi-direct product of H and
the infinite cyclic group on t . In addition, t acts on H as follows:

t�1a0t D a0a1; : : : ; t�1ak�2t D ak�2ak�1; t�1ak�1t D ak�1:

Note that a D a0.
Suppose that g 2 G.k; t; a/ and that Œg; a� D 1. Since G.k; t; a/ D H Ì hti,

g D htn .h 2 H/. We can assume that n � 0. Then

a0 D g�1a0g D t�nh�1a0htn:
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Now working modulo �2.H/, we find a0 D t�na0tn. It follows, again working
modulo �2.H/, that

t�na0tn D a0an
1 : : : ;

where the terms following an
1 are words in a2; : : : ; ak�1. Hence these words are

trivial in H and n D 0. It follows that we have proved that

a0 D h�1a0h:

But H is free and therefore the centralizer of a0 in H is a power of a0. This completes
the proof.

Now denote the free group on Y by F.Y /. Then one of the consequences of
Lemma 1 is

Lemma 2. Let k � 2, let v 2 F.Y / be an element which is not a proper power in
F.Y / and let

J D hY; a; t j Œa; t; : : : ; t„ ƒ‚ …
k

� D 1; t D vi:

Then the centralizer of a in J is the cyclic subgroup hai.

Proof. Observe that J is an amalgamated product of G.k; t; a/ and F.Y /:

J D G.k; t; a/ �tDv F.Y /:

Suppose that g lies in the centralizer of a in J . Then g can be written in the form

g D e1 : : : en;

where each ei is from one of the factors F.Y / or G.k; a; t /, and successive ei ; eiC1

come from different factors. Since ag D ga and a does not belong to the subgroup
generated by t it is not hard to see that n D 1. In this case, we have ae1 D e1a. It
follows that e1 2 G.k; t; a/ in which case Lemma 1 applies which means that e1 is
a power of a as claimed.

6.2. p-group separated subgroups. We will need now to make use of the work of
Kim and McCarron on residually finite p-groups. Our objective is to use the fact that
G.k; u; v/ is an amalgamated product in which the amalgamated subgroups satisfy a
separation property. This is accomplished by the following lemma.

Lemma 3. The subgroup hti is p-group separated in G.k; a; t / for all primes p.

Proof. Finitely generated, residually torsion-free nilpotent groups are residually finite
p-groups for every choice of the prime p; see [15]. So G.k; a; t / is residually a
finite p-group by Theorem 1. Consequently, it follows from Kim and McCarron’s
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Theorem KM as described in Section 4.4, that hai is p-group separated in G.k; a; t /

if and only if the group

zG.k; a; t / WD ha; t; c j Œa; t; : : : ; t„ ƒ‚ …
k

� D Œc; t; : : : ; t„ ƒ‚ …
k

� D 1i

is residually a finite p-group. Now zG.k; a; t / is the middle of a short exact sequence

1 �! H2k �! zG.k; a; t / �! hti �! 1

where H2k is the free subgroup generated by ¹a; at ; : : : ; atk�1

; c; ct ; : : : ; ctk�1º;
and the quotient of zG.k; a; t / by H2k is cyclic and generated by the image of t .
It follows along the same lines as in the proof of Theorem 1 that the group zG.k; a; t /,
with a slight abuse of notation, is residually the semi-direct product of the groups
.H2k=�i .H2k/ Ì hti .i � 1/. Moreover, the groups H2k=�i .H2k/ Ì hti are finitely
generated, torsion-free nilpotent for all i � 1. Hence zG.k; a; t / is residually a finite
p-group and therefore hti is p-subgroup separated in G.k; a; t /, as claimed.

Next we have the following lemma.

Lemma 4. Let
J D hY; a j Œa; v; : : : ; v„ ƒ‚ …

k

� D 1i;

where v is not a proper power in F(Y). Then J is residually a finite p-group for every
prime p.

Proof. Observe that J is an amalgamated product:

J D F.Y / �vDt G.k; a; t /:

In order to prove that J is residually a finite p-group we again have to appeal to
Theorem KM. We have already proved that hti is p-subgroup separated in G.k; a; t /.
Now by Theorem 4, since v is not a proper power, L D hY; t j Œt; v� D 1i is residually
free. So the subgroup M of L generated by Y and t�1Y t is residually a finite
p-group. But M is an amalgamated product of two copies of gp.Y / amalgamating
gp.v/. Hence gp.v/ is p-group separated in gp.Y /. It follows that J is residually
a finite p-group by Theorem KM.

The last step before we come to the proof of Theorem 2 is the following lemma.

Lemma 5. The subgroup hai is p-subgroup separated in J .

Proof. Suppose that c 2 J is such that for every homomorphism � from J into a
finite p-group, �.c/ 2 �.hai/. It follows that Œc; a� lies in every normal subgroup
of J of index a power of p. Since J is residually a finite p-group, it follows that
Œc; a� D 1. So if k > 1, c is a power of a since the centralizer of a in J is generated
by a.
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We are now in position to complete the proof of Theorem 2. Present Gk.u; v/ as
an amalgamated product

G.k; u; v/ D J �aDu F.X/:

Since J is residually a finite p-group, hai is p-subgroup separated in J , and hui is
p-subgroup separated in F.X/, the group G.k; u; v/ is residually a finite p-group by
Theorem KM.

7. The proof of Theorem 3

The proof of Theorem 3 follows almost immediately from Labute’s Theorem L.
In order to explain why, suppose now that F is the free group on Z D X [Y . Because
u and v are basic commutators, say of weights m and n, respectively, in disjoint
sets of generators r.u; v/ is a basic commutator of weight m C kn. Consequently
r.u; v/ 2 �mCkn.F / and r.u; v/ … �mCknC1.F /. Moreover r.u; v/�mCknC1.F / is
an element in a basis for �mCkn.F /=�mCknC1.F / and hence is not a proper power.
Since G.k; u; v/ is residually a finite p-group, by Theorem 2, it follows by Theorem L,
that G.k; u; v/ is residually torsion-free nilpotent.

8. The proof of Theorem 4

Suppose that u is an element of a free group F that is not a proper power and that
G is the one-relator group on X [ ¹tº defined by the single relation Œu; t � D 1.
Then G is residually free by [2]. Now G.x1; : : : ; xn/ is simply obtained from the
free group on x1; : : : ; xn�1 by adding an additional generator xn and the relation
ŒŒx1; : : : ; xn�1�; xn� D 1. By a theorem of Magnus, Karrass, and Solitar [31] a non-
trivial commutator in a free group is not a proper power. Hence Theorem 4 is an
immediate consequence of [1].

9. The proof of Theorem 5

It turns out that the main step in the proof of Theorem 5 is the following lemma.

Lemma 6. Let G be the one-relator group

G D hX [ ¹tº j Œu; t � D 1i;
where u is an element in the free group E on X which is not a proper power. Then
the following hold:
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(1) G is residually a finite p-group for each prime p;

(2) the subgroup of G generated by t is finitely p-group separable in G.

That G is residually a finite p-group follows, as previously noted, because G

is even residually free. However in order to prove (2), we need some additional
information. To this end, notice that if A is the free abelian group on s and t , if H

is the subgroup of E generated by u, K is the subgroup of A generated by s, then G

can be viewed as an amalgamated product of E and A with H amalgamated with K

according to the the isomorphism � mapping u to s:

G D hE � A jH D� Ki:

Now free groups and free abelian groups are residually finite p-groups. Moreover,
H is finitely p-group separable in E since u generates its centralizer in E and K is
clearly finitely p-group separable in A. So it follows from Theorem KM that G is
residually a finite p-group. This again proves (1).

We are left with the proof of (2), that is if g 2 G and g … T D hti, then there is a
homomorphism �g of G into a finite p-group such that �g.g/ … �g.T /. The proof
will be divided up into a number of cases.

(1) g 2 H; g ¤ 1. Of course, g … T . Since E is residually a finite p-group, there
exists a normal subgroup I of E of index a power of p such that g … I . Define
�g W G �! E=I which maps E onto E=I and A onto E=I by sending s onto
uI and t to the identity. Then �g.g/ … �g.T /, as required.

(2) g 2 E, g … H . Then Œg; u� ¤ 1. Choose a normal subgroup I1 of E of index
a power of p such that Œg; u� … I1. Then gI1 … TI1 for otherwise Œg; u� 2 I1.
Then uI1 is a non-trivial element of E=I1 of order a power of p. �g W G ! E=I1

is defined first on E and then on A. We take it to be the canonical homomorphism
of E onto E=I1. Next we define �g to be the homomorphism of A to G=I1 which
maps s to uI1 and t to the identity. Let I be the kernel of �g . Then �g.g/ ¤ 1

and �g.T / D ¹1º. So �g.g/ … �g.T / as needed.

(3) g 2 A; g … T . Then g D skt` where k ¤ 0. Since E is residually a finite
p-group we can choose a homomorphism of E into a finite p-group so that the
image of uk has arbitrarily large order a power of p. In addition, there exists a
homomorphism of A into a finite group so that the image of s has arbitrarily large
finite order and the image of t is 1. It follows that there exists a homomorphism
�g of G into a finite p-group P which maps T to ¹1º and g to an element outside
the image of T .
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(4) g D f1a1 : : : fnan where the fj 2 E; fj … H , aj 2 A; aj … K. Notice that if
g … A, then

tg D tf1a1 : : : fnan ¤ f1a1 : : : fnant;

because f1 … A. Now G is residually a finite p-group and Œg; t � ¤ 1. Hence
there is a homomorphism �g of G into a finite p-group which maps Œg; t � to a
non-trivial element. So �g.g/ … �g.T / since this implies that �g.Œg; t �/ D 1.

Since G.u; v/ is an amalgamated product of two residually finite p-groups where
the amalgamated subgroups are cyclic and finitely p-group separable, G.u; v/ is
residually a finite p-group. Now suppose that u 2 �j .F /; u … �j C1.F /, u�j C1.F /

is not a proper power and that v 2 �k.F /; u … �kC1.F /, v�kC1.F / is not a proper
power, then it is not hard to prove that Œu; v� 2 �j Ck.F /; Œu; v� … �j CkC1.F / and that
Œu; v��j CkC1.F / is not a proper power. So Theorem L applies and therefore G.u; v/

is residually torsion-free nilpotent.

10. The proof of Theorem 6

Our objective now is prove Theorem 6, namely that if

G D hx1; : : : ; xm; y1; : : : ; yn j u.x1; : : : ; xm/ D v.y1; : : : ; yn/i
and if u and v are basic commutators, then G is residually torsion-free nilpotent.
Now Magnus, Karrass and Solitar [30] have proved that in a free group, a non-trivial
commutator is not a proper power. Consequently G is residually a finite p-group [3].
In addition, uv�1 is then a product of a basic commutator of weight k, say, and the
inverse of a second basic commutator of weight `, say, in a disjoint set of generators.
So if q is the minimum of k and `, then uv�1 2 �q.F /; uv�1 … �qC1.F /, where F is
the free group on x1; : : : ; xm; y1; : : : ; yn and uv�1�qC1.F / is not a proper power in
�q.F /=�qC1.F /. So by Labute’s Theorem L, G is residually torsion-free nilpotent.

11. The proof of Theorem 7

In this and the subsequent section we shall use Proposition 1 to define several examples
of quotients of the Hydra groups which are residually torsion-free nilpotent. We begin
first with the proof of Theorem 7, namely that the group

D D ha; t j Œa; t; t � D Œa; t; a; a; a� D 1i
is not residually a finite p-group if p ¤ 2. As noted previously, Gruenberg [15] proved
that finitely generated torsion-free nilpotent groups are residually finite p-groups for
all primes p. So D is not residually torsion-free nilpotent. The proof is complicated
and will be carried out by means of a series of lemmas.
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Our proof uses the well-known Hall–Witt identity several times. Recall it for
the readers convenience. For elements A; B; C of a group, the following identity is
satisfied:

ŒA; B�1; C �B ŒB; C �1; A�C ŒC; A�1; B�A D 1: (1)

In the rest of this section, we will use the notation w D Œa; t; a; a; t; a� . We will
show that w ¤ 1 is a generalized 2-torsion element of G. That is, for every n � 1,
the order of w is a power of 2 modulo �n.G/.

Lemma 7. For every c 2 ŒG; G� and n � 2,

Œa; t; a; a; t; c� 2 ŒhwiG ; G��n.G/;

where hwiG is the normal closure of w in G.

Proof. We will prove the statement for c D Œa; t �. The general case clearly will
follow, since the general element of ŒG; G� can be presented as a product

Y

j

Œa; t �˙a
lj qj ; lj 2 Z; qj 2 ŒG; G�:

Denote v WD Œa; t; a; a; t; Œa; t ��. The Hall–Witt identity (see (1) with A D
Œa; t; a; a�, B D t�1, and C D Œa; t �) implies that

Œa; t; a; a; t; Œa; t ��t
�1

Œt�1; Œt; a�; Œa; t; a; a��Œa;t�Œa; t; Œa; t; a; a��1; t�1�Œa;t;a;a� D 1:

The relation Œa; t; t � D 1 implies that Œt�1; Œt; a�� D 1 and therefore,

Œa; t; a; a; t; Œa; t �� D Œa; t; Œa; t; a; a��1; t�1��Œa;t;a;a�t : (2)

Applying the Hall–Witt identity one more time (see (1) with A D a; B D t�1, and
C D Œa; t; a; a��1), we get

Œa; t; Œa; t; a; a��1�t
�1

Œt�1; Œa; t; a; a�; a�Œa;t;a;a��1

ŒŒa; t; a; a��1; a�1; t�1�a D 1:

(3)
The relation Œa; t; a; a; a� D 1 together with (2) implies that

Œa; t; Œa; t; a; a��1� D Œt�1; Œa; t; a; a�; a��Œa;t;a;a��1t

D Œa; t; a; a; t; at��t�1Œa;t;a;a��1t

D Œa; t; a; a; t; aŒa; t ���t�1Œa;t;a;a��1t 2 hwiGhviG :

Now, identity (2) implies that

v 2 ŒhwiG ; G�ŒhviG; G�

and the needed statement follows by induction on n.
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Lemma 8. For every n � 2, Œa; t; a�1; Œa; t; a�� 2 ŒhwiG ; G��n.G/:

Proof. First observe that

Œa; t; a�1; Œa; t; a�� D ŒŒa; Œa; t ��a
�1

; Œa; t; a��

D Œa; Œa; t �; a�1; Œa; t; a��

D ŒŒa; t; a; a�a
�1

; Œa; t; a��Œa;Œa;t��

D ŒŒa; t; a; a�; Œa; t; a��Œa;Œa;t��:

(4)

Denote E D Œa; t; a; a�. The relation ŒE; a� D 1 implies that ŒE˙1; a˙1� D 1. The
Hall–Witt identity (see (1) with A D Œa; t �; B D a�1; C D E) implies that

Œa; t; a; E�a
�1

Œa�1; E�1; Œa; t ��E ŒE; Œt; a�; a�1�Œa;t� D 1:

Hence
ŒE; Œa; t; a�� D ŒE; Œt; a�; a�1�Œa;t�a:

Applying the Hall–Witt identity one more time, we get

ŒE; Œa; t; a�� D ŒŒE; t�1; a�1�ta; a�1�Œa;t�a D ŒŒt; E�t
�1

; a�1�ta; a�1�:

The needed statement follows from Lemma 7 and identity (4).

Lemma 9. For every n,

Œt; a; Œa; t; a��1; a� � w�1 mod ŒhwiG ; G��n.G/:

Proof. The Hall–Witt identity (see 1 with A D t; B D a�1; C D Œa; Œa; t ��) implies
that

Œt; a; Œa; Œa; t ���a
�1

Œa�1; Œa; t; a�; t �Œa;t;a��1

Œa; Œa; t �; t�1; a�1�t D 1: (5)

Since Œa; t; a; a; a� D 1; one has

Œa�1; Œa; t; a�; t � D Œa; t; a; a; t �:

By Lemma 7, for every n � 2,

ŒŒa; t; a; a; t �Œa;t;a��1

; a� � w mod ŒhwiG ; G��n.G/:

Now, identity (5) implies that the needed statement of the lemma is equivalent to the
statement that, for every n � 2,

ŒŒa; Œa; t �; t�1; a�1�t ; a� 2 ŒhwiG ; G��n.G/: (6)
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The Hall–Witt identity (see (1) with A D a; B D Œt; a�; C D t�1) and the relation
Œa; t; t � D 1 imply that

Œa; Œa; t �; t�1�Œt;a�Œt; a; a�1; Œt; a��t
�1a D 1:

We can rewrite the last identity as

Œa; t; a; t �d ŒŒa; t �; Œa; t; a��e D 1;

where d D t�1Œa; Œa; t ��Œt; a�; e D Œa; t; a�aŒt; a�2t�1a. The Hall–Witt identity
(see (1), with A D a, B D t�1, and C D Œa; t; a�) implies that

ŒŒa; t �; Œa; t; a��t
�1

Œt�1; Œa; t; a��1; a�Œa;t;a�Œa; t; a; a�1; t�1�a D 1:

Therefore, there exist elements c1; c2; c3 2 G, such that

Œa; t; a; t � D Œa; t; a; t; ac1��c2 Œa; t; a; a; t �c3: (7)

By Lemma 7, for every n � 2 and g1; g2 2 haiG ,

ŒŒa; t; a; a; t �; g1; g2� 2 ŒhwiG ; G��n.G/:

Now, identity (7) implies that, for every n � 2 and g1; g2 2 haiG ,

Œa; t; a; t; g1; g2� 2 ŒhwiG ; G��n.G/

and (6) follows.

We are now in a position to complete the proof of Theorem 7.

Proof of Theorem 7. We claim that if w D Œa; t; a; a; t; a�, then

w … �7.G/; w2 2 �7.G/:

This can be proved directly or by appealing to GAP, as the following GAP fragment
shows:

gap > F:=FreeGroup(2);;
a:=F.1;; t:=F.2;;
gap>G:=F/[LeftNormedComm([a,t,t]),

LeftNormedComm([a,t,a,a,a])];;
gap>phi:=NqEpimorphismNilpotentQuotient(G,6);;
gap>aa:=Image(phi,G.1);;
tt:=Image(phi,G.2);;
gap>xx:=LeftNormedComm([aa,tt,aa,aa,tt,aa]);;
gap>Order(xx);
2
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Now we will show that w is a generalized 2-torsion element. That is, for every n � 1,
the order of w is a power of 2 modulo �n.G/.

The Hall–Witt identity (see (1) with A D Œa; t; a; a�, B D t�1, and C D a)
together with the relation Œa; t; a; a; a� D 1 implies that

Œa; t; a; a; t; a�t
�1

Œt�1; a�1; Œa; t; a; a��a D 1:

Hence,
Œa; t; a; a; t; a�t

�1

ŒŒa; t�1�; Œa; t; a; a�� D 1: (8)

The relation Œa; t; t � D 1 implies that

Œa; t�1� D Œt; a�t
�1 D Œt; a�:

Identity (8) can be rewritten as

Œa; t; a; a; t; a�t
�1

ŒŒt; a�; Œa; t; a; a�� D 1: (9)

It follows from the Hall–Witt identity (see (1) with A D Œa; t; a�, B D a�1, and
C D Œt; a�) that

Œa; t; a; a; Œt; a��a
�1

Œa�1; Œa; t �; Œa; t; a��Œt;a�Œt; a; Œa; t; a��1; a�1�Œa;t;a� D 1: (10)

The second term of (10) lies in ŒhwiG ; G��n.G/ for every n � 2, by Lemma 8.
The third term of relation (10) is equivalent to w modulo ŒhwiG ; G��n.G/ for every
n � 2, by Lemma 9. Now relations (9) and (10) imply that, for every n,

w2 � ŒhwiG ; G��n.G/:

12. Two more examples

Example 1. Let

Gk D ha; t jŒa; t; : : : ; t„ ƒ‚ …
k

� D 1; Œa; t; : : : ; t„ ƒ‚ …
k�2

; e; : : : ; e„ ƒ‚ …
`

� D 1i;

where e D Œa; t; : : : ; t„ ƒ‚ …
k�1

�i. Then Gk is residually torsion-free nilpotent for every ` � 1.

It is worth noting that the simplest non-nilpotent group of such type is the follow-
ing:

ha; t j ŒŒa; t �; Œa; t; t �� D 1; Œa; t; t; t � D 1i:
To show that the above groups satisfy the hypothesis of Proposition 1, consider the
following generators of the normal closure of a:

c1 D a; c2 D Œa; t �; : : : ; cj D Œa; t; : : : ; t„ ƒ‚ …
j �1

�; j D 1; : : : ; k:
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The action of hti on these generators is given as already discussed in the proof of
Theorem 1. Writing the relator ŒŒa; t; : : : ; t„ ƒ‚ …

k�2

�; e; : : : ; e„ ƒ‚ …
`

� in terms of the generators

c1; : : : ; ck , we find that it is Œck�1; ck; : : : ; ck„ ƒ‚ …
`

�. Recall that a free product of residually

torsion-free nilpotent groups is residually torsion-free nilpotent [32]. The group
H D haiGk (using the notation in Proposition 1) is the free product

F.c1; : : : ; ck�2/ � hck�1; ck j Œck�1; ck; : : : ; ck„ ƒ‚ …
l

� D 1i

which is residually torsion-free nilpotent by Theorem 1. The group Gk is residually
torsion-free nilpotent by Proposition 1.

Next we have

Example 2. For k; s � 1, the group

ha; t j ŒŒa; t; : : : ; t„ ƒ‚ …
s

�; Œa; t; : : : ; t„ ƒ‚ …
k�1

�� D 1; Œa; t; : : : ; t„ ƒ‚ …
k

� D 1i: (11)

is residually torsion-free nilpotent.

Again, denoting the images of the ci -s as before simply as ci , we see that the
subgroup H which is the normal closure of the element a can be presented in the
form

hc1; : : : ; ck j Œci ; ck� D 1; i D s C 1; : : : ; k � 1i
which is isomorphic to the group F.c1 ; : : : ; cs/�.F.csC1; : : : ; ck�1/�hcki/, which is
clearly residually torsion-free nilpotent. Conditions of the Proposition 1 are satisfied,
hence the group defined by (11) is residually torsion-free nilpotent. A simple example
of a group of this kind is

ha; t j ŒŒa; t �; Œa; t; t; t �� D 1; Œa; t; t; t; t � D 1i:
Remark. Observe that, for k � 1, the groups

ha; t j Œa; t; : : : ; t„ ƒ‚ …
k�1

; a� D 1; Œa; t; : : : ; t„ ƒ‚ …
k

� D 1i

are residually nilpotent by the following result from [33]: any central extension of a
one-relator residually nilpotent group is residually nilpotent.

As we noted at the outset, we have been unable to determine whether a one-relator
group defined by a basic commutator is residually torsion-free nilpotent, or residually
a finite p-group or even residually finite. The best that we have managed to find is an
example of a group defined by two relations, which are basic commutators, which is
not even residually a finite p-group.
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Remark. For a free group on two generators, the seventh term of the lower cen-
tral series is the normal closure of all basic commutators of weight 7, 8, 9, and 10
(see [14]). It follows from the proof of Theorem 7 that the group

ha; t j Œa; t; t � D Œa; t; a; a; a� D 1; all basic commutators of weight 7,8,9,10i
has 2-torsion, namely

Œa; t; a; a; t; a�2 D 1; Œa; t; a; a; t; a� ¤ 1:
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