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1. Introduction

A classical result by Higman, Neumann, and Neumann [10] states that every countable
group imbeds in a finitely generated group. It was then shown that many properties
of the group can be inherited by the imbedding: in particular, solvability (Neumann
and Neumann [12]), torsion (Phillips [14]), residual finiteness (Wilson [15]), and
amenability (Olshansky and Osin [13]).

Seen the other way round, these results show that there is little restriction, apart
from being countable, on the subgroups of a finitely generated group.

A finitely generated groupG has polynomial growth if there is a polynomial func-
tion p.n/ bounding from above the number of group elements that are products of
at most n generators; it has subexponential growth if p.n/ may be chosen subexpo-
nential in n, and has intermediate growth ifG has subexponential but not polynomial
growth.

1This work is supported by the ERC starting grant 257110 “RaWG”, theANR “DiscGroup: facettes des
groupes discrets”, the Centre International de Mathématiques et Informatique, Toulouse, and the Institut
Henri Poincaré, Paris.
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By a theorem of Gromov [9], groups of polynomial growth are virtually nilpotent,
so all its subgroups are finitely generated (see e.g. Corollary 9.10 in [11]). On the
other hand, there are groups of intermediate growth such as the “first Grigorchuk
group” [6] with infinitely generated subgroups. We are therefore led to ask which
groups may appear as subgroups of a group of subexponential growth.

1.1. Main result. Let us say that a group has locally subexponential growth if all
of its finitely generated subgroups have subexponential growth. Clearly, if G has
subexponential growth then all its subgroups have locally subexponential growth.
Our main result shows that this is the only restriction:

Theorem A. Let B be a countable group of locally subexponential growth. Then
there exists a finitely generated group of subexponential growth in which B imbeds
as a subgroup.

Furthermore, this group may be assumed to have two generators, see Remark 6.5,
and to contain B in its derived subgroup.

In contrast, there exist nilpotent (and even abelian) countable groups that do not
imbed into finitely generated nilpotent groups. Gromov’s theorem mentioned above
has the consequence that there exist countable groups of locally polynomial growth
that do not imbed in groups of polynomial growth. Mann noted in Corollary 9.11
in [11] that torsion-free groups locally of polynomial growth of bounded degree are
also virtually nilpotent.

It is a tantalizing open question to understand which properties are shared by
groups of intermediate growth and by nilpotent and virtually nilpotent groups. It is
clear that a group of intermediate growth cannot contain non-abelian free subgroups
or even free subsemigroups. Groups of intermediate growth were constructed by
Grigorchuk in [6] and his first example, known as the “first Grigorchuk group,”
admits a pair of dilating endomorphisms with commuting images. This property can
be viewed as a higher dimensional analogue of groups with dilation; and any group
admitting a dilation has polynomial growth.

We may also ask which groups may appear as subgroups of a specific group of
intermediate growth such as the first Grigorchuk group G012. For example, G012 is
known to contain every finite2-group, and all its subgroups are countable, residually-2
and have locally smaller growth.

There are other restrictions, apart from these obvious ones, for a countable group
to be imbedded as a subgroup of a generalised Grigorchuk group. For example, only a
finite number of primes appears as exponents in a Grigorchuk group [7]; see also §3.6
of [2]. Extensions of Grigorchuk groups constructed by the authors in [3] admit a
larger class of possible subgroups, but some restrictions appear nevertheless. In
particular, Theorem A gives the first groups of subexponential growth containing Q.



Imbeddings into groups of intermediate growth 607

Acknowledgments. The authors are grateful to the anonymous referees for their
comments, which helped improve the presentation of the article.

2. Sketch of the proofs

The original imbedding result by Higman, Neumann, and Neumann [10] mentioned
in the introduction proceeds by a sequence of “HNN extensions.” We recall the later
construction by Neumann and Neumann [12], which uses wreath products rather than
HNN extensions. The unrestricted wreath products of two groupsH;G is the group
H ooG D HG Ì G, the split extension of the set of maps G ! H by G, where
the action of g 2 G on f WG ! H is gf .x/ D f .xg/. The Neumann–Neumann
construction proceeds in two steps.

(i) Starting with a countable group B , one imbeds it into a countable subgroup G
of the unrestricted wreath product B oo Z in such a way that B is imbedded into the
commutator group ŒG; G�. The group G is generated by Z and, for all b 2 B , the
function fbW Z ! B defined by fb.m/ D bm. Denoting by t the generator of Z, we
see that Œt; fb� is the constant function b; so B is in fact imbedded in Œt; G�.

(ii) Starting with a countable group G, one imbeds the commutator subgroup
ŒG; G� into a two-generated subgroupW of the unrestricted wreath product ofG oo Z.
More generally, one constructs imbeddings into G ooP for a finitely generated group
P . Denoting a generating set of G by ¹b1; b2; : : : º, the group W is generated by P
and f WP ! G with f .xi / D bi along a sparse-enough sequence .xi /i�1 of elements
of P . In fact, since it suffices in (i) to imbed Œt; G� in W , one sets f .1/ D t and
the exact requirement on the sequence .xi / is: xi ¤ 1 for all i ; all xi are distinct;
and xixj 62 ¹1; xkº for all i; j; k 2 N. One then sees that Œf; f x�1

i � is a function
supported only at 1, with value Œt; bi � there. This is the imbedding of Œt; G�.

The combination of both steps imbeds B into the finitely generated group W . If
B is solvable, then so are B oo Z and G; and similarly, if G is solvable, then so are
G oo Z and W .

This construction may be applied to an arbitrary countable group B , but some
properties of B , such as amenability, may be lost along the way. Olshansky and Osin
introduce in [13] the following slightly stronger condition on .xi /i�1: by definition,
a parallelogram in a sequence .xi /i�1 is a quadruple of elements p1 ¤ p2 ¤
p3 ¤ p4 ¤ p1, each belonging to ¹xiº, such that p1p

�1
2 p3p

�1
4 D 1. A sequence

is parallelogram-free if it contains no parallelogram. They show that, if .xi / is
parallelogram-free, then the group W is obtained from G and P by extensions,
subgroups, quotients and directed limits, so in particular is amenable as soon as G
and P are amenable.
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They also modify slightly step (i), by defining rather fb.m/ D b for m � 0 and
fb.m/ D 1 for m < 0; then Œt; fb� is the function supported at 0 with value b there,
and the group G D ht; fbW b 2 Bi is also obtained from B and Z by elementary
operations, so is amenable as soon as B is amenable.

Note that the groupW contains the standard wreath product B o Z, so always has
exponential growth.

2.1. Imbedding in groups of subexponential growth. Our goal is, starting from a
countable groupB of locally subexponential growth, to construct a finitely generated
group W of subexponential growth containing B . We exhibit analogues of steps (i)
and (ii) among permutational wreath products. Given groups H;G and an action of
G on a setX , the unrestricted permutational wreath product isH ooX G D HX ÌG,
and the restricted permutational wreath product is the extension of finitely supported
functions X ! H by G. We also introduce the finite-valued permutational wreath
product H of.v.

X G, defined as the extension of functions X ! H with finite image
by G. Clearly

H oX G � H of.v.
X G � H ooG:

Our previous work [3] gives a criterion, in terms of inverted orbits, that guarantees
that the restricted permutational wreath product W D H oX G has subexponential
growth as soon asH andG have subexponential growth. The inverted orbit of a point
x 2 X under a wordw D g1 : : : gn inG is the set ¹xg1 : : : gn; xg2 : : : gn; : : : ; xgn; xº.
If its cardinality may be bounded sublinearly in n, thenW has subexponential growth.
We compare subgroups hG; f i of the unrestricted wreath product with W to bound
its growth.

Ad step (i), we show in Proposition 3.1 that for every group B there exists a
group G that is a directed union of finite extensions of finite powers of B and such
that ŒG; G� contains B . In particular, if B has locally subexponential growth, so does
G, and if B is countable then G may be so chosen.

Ad step (ii), we consider separately the groupP and the setX on which it acts. As
a replacement for parallelogram-free sequences, we introduce rectifiable sequences,
which are sequences .xi / in X such that, for all i ¤ j , there exists g 2 P with
xig D xj and xkg ¤ x` for all ` ¤ k ¤ i . We show that such sequences exist in
the action of the first Grigorchuk group on the orbit of a ray, and more generally for
all “weakly branched” groups.

The next step in the proof is an argument controlling the growth of a subgroup
of the form W D hP; f i � G ooX P , for a function f WX ! G with sparse-enough
(but infinite!) support. The rectifiability of the sequence .xi / guarantees that func-
tions with singleton support and arbitrary values in ŒG; G� belong to W . Using the
sparseness of the support of f , we show that balls in W can be approximated by
balls in subgroups of restricted wreath products hSi oX f for finite subsets S of G.
By [3], these restricted wreath products have subexponential growth. We recall that,
in general, a limit in the Cayley topology of groups of subexponential growth may
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have exponential growth (see Theorem C in [5]); the Cayley topology on the space
of finitely generated groups is the topology in which groups are close if their labeled
Cayley graphs agree on a large ball. We control more precisely the approximation
of W so that the growth estimates pass to the limit. Finally, in contrast with stan-
dard wreath products, the space X is not homogeneous, so an extra condition of
stabilisation of balls around the xi is required (even to ensure that W be amenable).

3. Imbedding in the derived subgroup

Let B be a group. We call a group G hyper-B if it is a directed union of finite
extensions of finite powers of B . In this section, our goal is to prove the following
proposition.

Proposition 3.1. Let B be a countable group. Then there exists a hyper-B group G
such that ŒG; G� contains B as a subgroup. In particular, if B has locally subexpo-
nential growth, then so does G.

If B is infinite, thenG may furthermore be supposed to have the same cardinality
as B .

In order to prove Proposition 3.1, we first introduce the following notation. For
groups H;U we denote by

H of.v. U D ¹.�; u/ 2 HU � U W #�.U / < 1º
the subgroup of the unrestricted wreath product HU Ì U in which the function
U ! H takes finitely many values. Note that H of.v. U is a subgroup, because if
.�; u/�1.�0; u0/ D .�00; u�1u0/ then �00.U / � �.U /�1�0.U / is finite.

Lemma 3.2. Let G be a hyper-B group, and let H be a hyper-G group. Then H is
hyper-B .

Proof. Consider h 2 H ; then h belongs to a finite extension of a finite power of G,
which may be assumed of the form G o F for a finite group F . Let us write h D �f

with �WF ! G and f 2 F ; then �.f / belongs for all f 2 F to a finite extension of
a finite power of B , which can be assumed to be the same for all f . This extension
may be assumed to be of the formB oE for a finite groupE. It follows that h belongs
to B oE�F .E o F /, a finite extension of a finite power of B; so H is hyper-B .

Lemma 3.3. If H is a hyper-B group and U is locally finite, then H of.v. U is a
hyper-B group.

Proof. We first show that H of.v. U is hyper-H . By hypothesis, U is a directed union
of finite subgroups E. The partitions P0 of U into finitely many parts also form a
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directed poset; and for every such partition P0 and every finite subgroup E � U

there exists a finite partition P of U that is invariant under E and refines P0, namely
the wedge (= least upper bound) of all E-images of P0.

Consider now the directed poset of pairs .E;P / consisting of finite subgroups
E � U and E-invariant partitions of U . Consider the corresponding subgroups
HP Ì E of H of.v. U . If .E;P / � .E 0;P 0/ then HP Ì E is naturally contained
in HP 0 Ì E 0, so these subgroups of H of.v. U form a directed poset, which exhausts
H of.v. U .

It follows that H of.v. U is a hyper-H group, and we are done by Lemma 3.2.

Lemma 3.4. Let B be a group. Then there exists a subgroup C of B , containing
ŒB; B�, such that B=C is torsion and C=ŒB; B� is free abelian.

Proof. B=ŒB; B�˝Z Q is a Q-vector space, hence has a basis, call itX . It generates
a free abelian group ZX within B=ŒB; B�, whose full preimage inB we callC . Then
B=C ˝Z Q D 0 so B=C is torsion.

We set up the following notation for the proof of Proposition 3.1. We choose a
subgroup C � B as in Lemma 3.4 and write T WD B=C . We choose a basis X of
C=ŒB; B�, for every x 2 X we choose an element bx 2 C representing it, and we
define a homomorphism �xWC ! hbxi � B , trivial on ŒB; B�, by �x.bx/ D b�1

x and
�x.by/ D 1 for all y ¤ x 2 X . In particular, we have for all b 2 C

b �
Y
x2X

�x.b/ 2 ŒB; B�

and the product is finite.
We write � WB ! T the natural projection, and define inductively a set-theoretic

section � WT ! B as follows. Since T is torsion, it is locally finite, hence may be
written as a directed union T D S

˛2N T˛ of finite groups. Assume � has already
been defined on T 0̨ WD S

ˇ<˛ Tˇ . Choose a transversal T 00̨ of T 0̨ in T˛, namely a set
of coset representatives of T 0̨ in T˛, and define � on T 00̨ by choosing arbitrarily for
each t 00 2 T 00̨ a �-preimage in B . Extend then � to T˛ by �.t 00t 0/ D �.t 00/�.t 0/ for
t 00 2 T 00̨; t 0 2 T 0̨ .

Let F be a locally finite group of cardinality > #X , and fix an imbedding of X
in F n ¹1º. As a first step, we consider the group G0 D B of.v..T � F /, and define a
map ˆ0WB ! G0 as follows:

ˆ0.b/ D .�; �.b/; 1/ with �.t; f / D

8̂̂<
ˆ̂:
b if f D 1;

�f .�.t/b�.t�.b//
�1/ if f 2 X;

1 otherwise.

(1)
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Lemma 3.5. The mapˆ0 is well-defined and is an injective homomorphism intoG0.

Proof. To see that ˆ0 is well-defined, note that the argument �.t/b�.t�.b//�1 be-
longs to ker.�/ D C , so that �f may be applied to it.

We next show that the image ofˆ0 belongs toG0. Consider b 2 B . Let ˛ be such
that �.b/ belongs to the finite group T˛. Now given t 2 T , let ! 2 N be such that t 2
T! . Write t usingT˛ and transversal elements as t 00! : : : t

00
ˇ
uwith! > � � � > ˇ > ˛ and

t 00! 2 T 00
! ; : : : ; t

00
ˇ

2 T 00
ˇ
; u 2 T˛ . Then �.t/ D �.t 00!/ : : : �.t

00
ˇ
/�.u/ and �.t�.b// D

�.t 00!/ : : : �.t
00
ˇ
/�.u�.b//, so that�.t/b�.t�.b//�1 is conjugate to�.u/b�.u�.b//�1,

and therefore �f .�.t/b�.t�.b//�1/ D �f .�.u/b�.u�.b//
�1/ takes only finitely

many values because �f vanishes on ŒB; B�. Also, �f .�.t/b�.t�.b//�1/ D 1 except
for finitely many values of f 2 X . In summary, the function � 2 BT �F is such that
�.t; f / takes only finitely many values.

It is clear that ˆ0 is injective: if b ¤ 1 and ˆ0.b/ D .�; �.b/; 1/ then �.1; 1/ D
b ¤ 1. It is a homomorphism because all �f are homomorphisms.

Lemma 3.6. We have ˆ0.C / � ŒG0; G0�.

Proof. If b 2 ŒB; B� then clearly ˆ0.b/ 2 ŒG0; G0�. Since C is generated by
ŒB; B�[ ¹bxºx2X , it suffices to consider b D bx .

We define g 2 G0 by

g D . ; 1; 1/ with  .t; f / D
´
bx if f D 1;

1 otherwise:

Thenˆ0.bx/ D .�; 1; 1/with �.t; 1/ D bx and �.t; x/ D b�1
x , all other values being

trivial, according to (1); so, as was to be shown,

ˆ0.bx/ D .�; 1; 1/ D .x �1 �  ; 1; 1/ D Œ.1; 1; x�1/; g� 2 ŒG0; G0�:

We next define
G D G0 of.v..Q=Z/

and a map ˆWB ! G by

ˆ.b/ D .�; 0/ with �.r/ D ˆ0.b/ for all r 2 Q=Z:

Lemma 3.7. The map ˆ is an injective homomorphism, and ˆ.B/ � ŒG; G�.

Proof. Clearly ˆ is an injective homomorphism, since ˆ0 is an injective homomor-
phism by Lemma 3.5.

We identify Q=Z with Q\Œ0; 1/. For every n 2 N, consider the map‰nWB ! G

defined by
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‰n.b/ D .�; 0/ with �.r/ D
´
ˆ0.b/ if r 2 Œ0; 1=n/;
1 otherwise;

so ˆ D ‰1. We know from Lemma 3.6 that ‰n.C / is contained in ŒG; G�.
Consider now b 2 B . SinceB=C is torsion, there exists n 2 N such that bn 2 C .

We define g 2 G by

g D . ; 0/ with  .r/ D ˆ0.b/
brnc for r 2 Q \ Œ0; 1/:

Let us write h D ˆ0.b/, and consider the element Œ.1; 1=n/; g� � ‰n.b
n/ D .�; 0/.

If r 2 Œ0; 1=n/ then �.r/ D  .r � 1=n/�1 .r/hn D h, while if r 2 Œ1=n; 1/ then
�.r/ D  .r � 1=n/�1 .r/ D h; therefore

ˆ.b/ D Œ.1; 1=n/; g� � ‰n.b
n/ 2 ŒG; G�:

Proof of Proposition 3.1. The first assertion is simply Lemma 3.7.
Assume that B has locally subexponential growth, and consider a finite subset S

ofG. Then there exists a subgroup ofG that contains S and is virtually a finite power
ofB , hence has subexponential growth. This shows thatG has locally subexponential
growth.

For the last assertion: if B is infinite, we wish to find a subgroup H of G with
the same cardinality as B , such that ˆ maps into ŒH;H�. For each b 2 B , choose a
finite subset Sb of G such that ˆ.b/ 2 ŒhSbi; hSbi�, and a subgroup Gb , containing
Sb, that is virtually a finite power ofB . Consider the groupH generated by the union
of all the Gb . As soon as B is infinite, all Gb have the same cardinality as B , and so
does H .

4. Orbits and inverted orbits

LetP D hSi be a finitely generated group acting on the right on a setX . We consider
X as a the vertex set of a graph still denoted X , with for all x 2 X; s 2 S an edge
labelled s from x to xs. We denote by d the path metric on this graph.

Definition 4.1. A sequence .x0; x1; : : : / in X is spreading if for all R there exists N
such that if i; j � N and i ¤ j then d.xi ; xj / � R.

Example 4.2. If all xi lie in order on a geodesic ray starting from x0 (for example
if X itself is a ray starting from x0) and for all i we have d.x0; xiC1/ � 2d.x0; xi /,
then .xi / is spreading.

Lemma 4.3. Equivalently, a sequence .x0; x1; : : : / in X is spreading if and only if
for all R there exists N such that if i ¤ j and i � N then d.xi ; xj / � R.
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Proof. Assume the converse, namely d.xi ; xj / < R along a sequence with i ! 1
andj 6! 1. Then, up to passing to a subsequence, j may be assumed constant. There
are then i; i 0 ! 1 with i ¤ i 0 and d.xi ; xi 0/ < 2R, so .xi / is not spreading.

Definition 4.4. A sequence .xi / in X locally stabilises if for all R there exists N
such that if i; j � N then the S -labelled radius-R balls centered at xi and xj in X
are equal.

Definition 4.5. A sequence of points .xi / in X is rectifiable if for all i; j there exists
g 2 P with xig D xj and xkg ¤ x` for all k … ¹i; `º.

For example, ifX D Z andP D Z acting by translations, then† D ¹2i W i 2 Nº
is rectifiable, since 2j � 2i D 2` � 2k only has trivial solutions i D k; j D ` and
i D j; k D `.

Remark 4.6. The sequence † D .xi / � X is rectifiable if and only if for all i; j
there exists g 2 P with xig D xj and † \†g � ¹xj º [ fixed:points.g/.

The following property is closer to Olshansky-Osin’s notion of parallelogram-free
sequence, see Definition 2.3 in [13].

Definition 4.7. Fix a point z 2 X . A sequence .gi / in P is parallelogram-free
at z if, for all i; j; k; ` with i ¤ j and j ¤ k and k ¤ ` and ` ¤ i one has
zg�1

i gjg
�1
k
g` ¤ z.

Lemma 4.8. If z 2 X and .gi / is parallelogram-free at z, then .zg�1
i / is a rectifiable

sequence in X .

Proof. Set xi D zg�1
i for all i 2 N. Given i; j 2 N, consider g D gig

�1
j , so

xig D xj . If furthermore we have xkg D x`, then we have zg�1
k
gig

�1
j g` D z, so

either k D i , or i D j which implies k D `, or j D ` which implies k D i , or
` D k. In all cases k 2 ¹i; `º as was to be shown.

It is clear that, if P is finitely generated andX is infinite, then it admits spreading
and locally stabilizing sequences. Also, a subsequence of a spreading or locally
stabilizing sequence is again spreading, respectively locally stabilizing. We give in
the next section a general construction of rectifiable sequences, and in §4.2 a concrete
example in the first Grigorchuk group.

4.1. Separating actions. Consider a group P acting on a set X . We recall that the
fixator of the subset Y � X is the set Fix.Y / WD ¹g 2 P W yg D y for all y 2 Y º.

Definition 4.9 (Abért [1]). The groupP separatesX if for every finite subset Y � X

and every y0 … Y there exists g 2 Fix.Y / with y0g ¤ y0.



614 L. Bartholdi and A. Erschler

Lemma 4.10. LetP be a group acting on a non-empty setX and separating it. Then
there exists a rectifiable sequence .xi / in X .

Proof. We choose an arbitrary point z 2 X , and construct iteratively a parallelogram-
free sequence .gi / at z; by Lemma 4.8, this proves the lemma. Suppose that we have
already constructed gj for all j < i . For i � 0, we then construct gi in the following
way. We define

Xr
i WD ¹zgj1

� � �gjs
W s � r; 0 � j1; : : : ; js < iº n ¹zº for r D 1; 2; 3;

and choose an element gi 2 Fix.X3
i / that moves z. In particular, zg�1

i 62 X3
i [ ¹zº.

Let us suppose that we have zg�1
k
gig

�1
j g` D z with i ¤ j ¤ k ¤ ` ¤ i ,

and seek a contradiction. If needed, we switch i $ j and k $ ` and consider the
equivalent equality zg�1

`
gjg

�1
i gk D z, to reduce to the case k < `.

We note, first, u WD zg�1
k

2 X1
`

, because k < `. Next, we consider v WD
zg�1

k
gi D ugi and claim v 2 X2

`
. By assumption i ¤ k so v ¤ z; if i < `

then v 2 X2
`

by definition of X2
`

, while if i � ` then i > k so u 2 X1
i and

v D ugi D u 2 X1
`

� X2
`

. Finally, we consider w D zg�1
k
gig

�1
j D vg�1

j .
By assumption j ¤ `; if j < ` then w 2 X3

`
[ ¹zº by definition of X3

`
, while if

j > ` then v 2 X2
j so w D vg�1

j D v 2 X2
`

� X3
`

. We have in both cases reached
the contradiction w D zg�1

`
2 X3

`
[ ¹zº.

We quote from Proof of Corollary 1.4 in Abért [1] (see also Lemma 6.11 in [5])
that the action of weakly branch groups separates the boundary of their tree. Since the
first Grigorchuk group is weakly branched (see Theorem 1 in [8] or Proposition 1.25
in [2]), it provides by Lemma 4.10 an example of a group action with rectifiable
sequences. We also see it directly in the following section.

4.2. An orbit for the first Grigorchuk group. In this subsection, we consider the
first Grigorchuk group G012 D ha; b; c; d i. Recall that it acts on the set of infinite
sequences ¹0; 1º1 over a two-letter alphabet, which is naturally the boundary of a
binary rooted tree; the action may be found in [6] and in §1.6.1 of [2]. We denote by
X D 11G012 the orbit of the rightmost ray, and view it as a graph with vertex set X
and for each x 2 X and each generator s of G012 an edge labeled s from x to xs;
such graphs are called Schreier graphs. We construct explicitly a spreading, locally
stabilizing, rectifiable sequence for the action of G012 on X : for all i 2 N, let us
define

xi D 0i 11:

The geometric image of the Schreier graph X is that of a half-infinite line. The point
xi is at position 2i along this ray.
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Lemma 4.11. For all i; j 2 N,

(1) the marked balls of radius 2min.i;j / in X around xi and xj coincide;

(2) the distance d.xi ; xj / is j2i � 2j j;
(3) there exists gi;j 2 G012 of length j2i � 2j j with xigi;j D xj and xkgi;j ¤ x`

for all .k; `/ ¤ .i; j /.

Proof. (1, 2) Consider the map � W a 7! c; b 7! da; c 7! ba; d 7! ca. It defines a
self-map of X by sending 11g to 11�.g/. A direct calculation shows that it sends
x 2 X to 0x.

Since � is 2-Lipschitz on words of even length in ¹a; b; c; dº, it maps the ball of
radius n around x to the ball of radius 2n around 0x. Its image is in fact a net in the
ball of radius 2n: two points at distance 1 in the ball of radius n around x will be
mapped to points at distance 1 or 3 in the image, connected either by a path a or by
a segment a � b � a, a � c � a or a � d � a. In particular, the 2n-neighbourhoods
of the balls about the xm coincide for all m � n.

(3) Note, first, that there exists gi;j with xigi;j D xj , because the rays ending in
11 form a single orbit. Note, also, that we have xkgi;j D x` for either finitely many
.k; `/ ¤ .i; j / or for all but finitely many .k; `/, because there is a level N at which
the decomposition of gi;j consists entirely of generators; if the entry at 0N of gi;j

is trivial or ‘d ’ then all but finitely many of the xk are fixed; while otherwise (up to
increasing N by at most one) we may assume it is an ‘a’; then 0N C1gi;j D 0N 1, so
xk ¤ x` for all k > N C 1.

We use the following property of the Grigorchuk group: for every finite sequence
u 2 ¹0; 1º� there exists an element hu 2 G012 whose fixed points are precisely those
sequences in ¹0; 1º1 that do not start with u; see Proposition 1.25 in [2].

If the entry at 0N of gi;j is trivial, then we multiply gi;j with h0M for some
M > max.N; i/, so as to fall back to the second case.

Then, for each pair .k; `/ ¤ .i; j / with xkgi;j D x`, we multiply gi;j with h0`1,
so as to destroy the relation xkgi;j D x`.

The resulting element gi;j satisfies the required conditions.

5. Subexponential growth of wreath products

In this section, we show how some permutational wreath products have subexponen-
tial growth.

Definition 5.1. The group P acting onX has the subexponential wreathing property
if for any finitely generated group of subexponential growth H the restricted wreath
product H oX P has subexponential growth.
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Lemma 5.2. Let f be a positive sublinear function, namely f .n/=n ! 0 as n ! 1.
Then f is bounded from above by a concave sublinear function.

Proof. For every � 2 .0; 1/, let n� be such that f .n/� �n is maximal. Given n 2 R,
let � < � be such that n 2 Œn� ; n� � with maximal � and minimal � , and define Nf .n/
on Œn� ; n� � by linear interpolation between .n� ; f .n� // and .n� ; f .n�//. Clearly
Nf � f , and Nf .n/=n is decreasing and coincides infinitely often with f .n/=n, so it

converges to 0.

Lemma 5.3. Let the Schreier graph of X have linear growth, and assume that P
has sublinear inverted orbit growth on X . Assume also that P has subexponential
growth. Then P has the subexponential wreathing property.

Proof. We essentially follow Lemma 5.1 in [3].
Fix some x0 2 X and let �.n/ be the growth of inverted orbits starting from x0.

By assumption, �.n/=n ! 0, and there is a constant C such that the ball of radius n
around x0 has cardinality � Cn.

Let H be a group of subexponential growth, and choose a finite generating set
forH . By Lemma 5.2, there exists a log-concave subexponential function NvH bound-
ing the growth function vH .n/ of H .

We view H oX P as generated by the generating set of P and the imbedding of
the generating set of H as functions supported at ¹x0º.

Consider an element .c; g/ 2 H oXP of norm at mostR. The function cWX ! H

has support of cardinality k � �.R/, and this support is contained in the ball of radius
R around x0. Since the ball of radius R has cardinality at most CR, the number of
possible choices for this support is at most

�
CR

�.R/

�
. Let ¹z1; : : : ; zkº denote the support

of c. The values of c belong to H , and their total norm is � R, so the number of
choices for c is at most vH .n1/ � � �vH .nk/ subject to the constraint n1C� � �Cnk � R.
Since vH .ni / � NvH .ni / and NvH .ni / is log-concave, the number of choices for vH is
at most NvH .R=k/

k . On the other hand, the number of choices for g is at most vP .R/.
All in all, the cardinality of the ball of radius R in H oX P is bounded from above as

vH oXP .R/ � vP .R/

�
CR

�.R/

�
NvH

� R

�.R/

��.R/
:

Since it is a product of subexponential functions, it is itself subexponential.

We now quote Proposition 4.4 in [3]: the inverted orbit growth of the first Grig-
orchuk group G012 on X D 11G012 is sublinear (actually of the form n˛ for some
˛ < 1); therefore, by Lemma 5.3, the action of G012 on X has the subexponential
wreathing property. (It follows from [4] that all Grigorchuk groups G! also have
the subexponential wreathing property, as soon as ! 2 ¹0; 1; 2º1 contains infinitely
many copies of each symbol.)
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6. The construction of W

Using the results of the previous section, we select a finitely generated groupP acting
on a set X , and a rectifiable, spreading, locally stabilizing sequence .xi / of elements
of X .

Let .b1; b2; : : : / be a sequence inB . We will specify later a rapidly increasing se-
quence 0 � n.1/ < n.2/ < : : : ; assuming this sequence given, we define f WX ! B

by

f .xn.1// D b1; f .xn.2// D b2; : : : ; f .x/ D 1; for other x:

We then consider the subgroup W D hP; f i of the unrestricted wreath product
BX Ì P .

Lemma 6.1. Denote by B0 the subgroup of B generated by ¹b1; b2; : : : º. If the
sequence .xi / is rectifiable, then ŒW;W � contains ŒB0; B0� as a subgroup.

Proof. Without loss of generality and to lighten notation, we rename B0 into B . We
also denote by 	WB ! BX Ì P the imbedding of B mapping the element b 2 B to
the function X ! B with value b at x0 and 1 elsewhere. We shall show that ŒW;W �
contains 	.ŒB; B�/. For this, denote by H the subgroup 	.ŒB; B�/\ ŒW;W �.

We first consider an elementary commutator g D Œbi ; bj �. Let gi ; gj 2 P respec-
tively map xi ; xj to x0, and be such that gig

�1
j maps no xk to x` with k ¤ `, except

for xigig
�1
j D xj . Consider Œf gi ; f gj � 2 ŒW;W �; it belongs to BX , and has value

Œbi ; bj � at x0 and is trivial elsewhere, so equals 	.g/ and therefore 	.g/ 2 H .
We next show that H is normal in BX . For this, consider h 2 H . It suffices to

show that h�.bi / belongs toH for all i . Now h�.bi / D hf gi belongs toH , and we are
done.

Proposition 6.2. Let P be a finitely generated group acting on X . Let the sequence
.xi / in X be spreading and locally stabilizing. Let a sequence of elements .bi / be
given in the group B , all of the same order 2 N [ ¹1º.

Then for every increasing sequence .m.i// there is a choice of increasing sequence
.n.i// with the following property.

For all i 2 N, letfi be the finitely supported functionX ! B withfi .xn.j // D bj
for all j � i , all other values being trivial, and denote by Wi the group hP; fi i. Let
also f WX ! B be defined by f .xn.j // D bj for all j 2 N, all other values being
trivial, and write W D hP; f i.

Then the ball of radius m.i/ in W coincides with the ball of radius m.i/ in Wi ,
via the identification f $ fi .

Furthermore, the term n.i/ depends only on the previous terms n.1/; : : : ; n.i�1/,
on the initial termsm.1/; : : : ; m.i�1/, and on the ball of radiusm.i/ in the subgroup
hb1; : : : ; bi�1i of B .
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Proof. Choose n.i/ such that d.xj ; xk/ � m.i/ for all j ¤ k with k � n.i/, and
such that the balls of radius m.i/ around xn.i/ and xj coincide for all j > n.i/.

Consider then an element h 2 W in the ball of radiusm.i/, and write it in the form
h D .c; g/ with cWX ! B and g 2 P . The function c is a product of conjugates
of f by words of length < m.i/. Its support is therefore contained in the union of
balls of radius m.i/ � 1 around the xj , with j either � n.i/ or of the form n.k/ for
k < i . In particular, the entries of c are in hb1; : : : ; bi�1i [ S

j �i hbj i. For j > n.i/,
the restriction of c to the ball around xj is determined by the restriction of c to the
ball around xn.i/, via the identification bi 7! bj , because the neighbourhoods in X
coincide and all cyclic groups hbj i are isomorphic.

It follows that the element h 2 W is uniquely determined by the corresponding
element in Wi .

Corollary 6.3. Let P be a group acting on X with the subexponential wreathing
property, and let .xi / be a spreading and locally stabilizing sequence in X . Let B be
a group and let .bi / be a sequence in B .

If B has locally subexponential growth, then there exists a sequence .n.i// such
that the group W has subexponential growth.

Proof. Let Z D hzi be a cyclic group whose order (possibly 1) is divisible by the
order of the bi ’s. We replace B by B �Z and each bi by biz, so as to guarantee that
all generators in B have the same order.

Let 
i be a decreasing sequence tending to 1. We construct a sequence m.i/
inductively, and obtain the sequence n.i/ by Proposition 6.2, making always sure
that m.i/ depends only on m.j /; n.j / for j < i .

Denote by vi the growth function of the group Wi introduced in Proposition 6.2.
Since the group Wi is contained in B oX P and P has the subexponential wreathing
property, it has subexponential growth. Therefore, there exists m.i/ be such that

vi .m.i// � 

m.i/
i :

By Proposition 6.2, the terms n.i C 1/; n.i C 2/; : : : can be chosen in such a manner
that the balls of radius m.i/ coincide in W and Wi .

Denote now by w the growth function of W . We then have w.m.i// � 

m.i/
i .

Therefore,
w.R/ � 


RCm.i/
i for all R > m.i/;

so lim R
p
w.R/ � 
i . Since this holds for all i , the growth of W is subexponential.

Proof of Theorem A. By Proposition 3.1, the countable, locally subexponentially
growing groupB imbeds in ŒG; G� for a countable, locally subexponentially growing
group G. Let .b1; b2; : : : / be a generating set for G. By Lemma 6.1, the derived
subgroup ŒG; G� imbeds in ŒW;W �, and by Corollary 6.3, the finitely generated group
W has subexponential growth.
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Remark 6.4. If the sequence .xi / is only spreading, or only stabilizing, then it may
happen thatW have exponential growth, even if the sequence .n.i// grows arbitrarily
fast.

Proof. We first consider an example where the sequence .xi / is spreading but not
stabilizing. ConsiderP D G012 acting onX D 11P , and letQ denote the stabilizer
of 11 so that X D QnP . Since the action is faithful, we have

T
g2P Q

g D 1, and
in fact

T
g2T Q

g D 1 for a sequence T in P such that .11t W t 2 T / is spreading.
Take B D hzi Š Z and define f WX ! B by f .11t / D z for all t 2 T , all other
values being 1. Then hP; f i Š Z o P has exponential growth.

We next consider an example where the sequence .xi / is stabilizing but not spread-
ing. Again, consider P D G012 acting on X , and consider a spreading, stabilizing
sequence .x2i / in X . Set x2iC1 D x2ia. Consider B D G012, and note that, since
P does not satisfy any law, there are sequences .g0; h0/; .g1; h1/; : : : of pairs of
elements of P such that the groups hgi ; hi i converge to a free group of rank 2 in the
Cayley topology. Set then f .x2i / D gi and f .x2iC1/ D hi , and note that hP; f i
contains the free group hf; f ai.

Remark 6.5. If B has locally subexponential growth, then it may be imbedded in a
2-generator group of subexponential growth.

Proof. We make the following general claim about finitely generated groups: if W
is finitely generated, then there exists a 2-generated hyper-W group in which ŒW;W �
imbeds. Since the imbedding given by Theorem A is actually into ŒW;W �, this is
sufficient to prove the remark.

Let us now turn to the claim, and consider a group W generated by a set S D
¹s1; : : : ; snº. Let C D ht j t2ni be a cyclic group, and consider the subgroup

xW D hx; ti � W o C;

with xWC ! W defined by x.t2
i�1
/ D si for all i 2 ¹1; : : : ; nº, all other values being

trivial. The imbedding of ŒW;W � into xW is as functions xWC ! W whose support
is contained in ¹tº. Indeed, given w 2 ŒW;W �, write it as a balanced word (i.e. with

exponent sum zero in each variable)w over S , and replace each si by Nsi WD xt1�2i�1

,
yielding Nw 2 Œ xW ; xW �. The functions Nsi WC ! W all have disjoint supports, except
at t where their respective values are si . Therefore, xw is supported only at t and has
value w there.
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