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Abstract. We study the asymptotic growth of Betti numbers in tower of finite covers and
provide simple proofs of approximation results, which were previously obtained by Calegari
and Emerton, in the generality of arbitrary p-adic analytic towers of covers. Further, we also
obtain partial results about arbitrary pro-p towers.
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1. Introduction and statement of results

This paper is mainly concerned with the asymptotic growth of Betti numbers in a
tower of finite covers of a compact space X associated to a chain of subgroups of
the fundamental group of X which gives rise to a p-adic analytic group. Both Betti
numbers with coefficients in Q and Fp are considered. Especially the case of Fp-
coefficients received a lot of attention in recent years. We only name here the work
of Calegari–Emerton [5], [6], which is motivated by the p-adic Langlands program,
and the work of Lackenby [21], [22] in group theory, which is connected to property
� and 3-manifold theory.

1.1. Global setup. With the exception of Section 4, we retain the following setup
throughout this paper. LetX be a connected compact CW-complex with fundamental
group � . Let p be a prime, let n be a positive integer, and let � W � ! GLn.Zp/ be a
homomorphism. The closure of the image of �, which is denoted by G, is a p-adic
analytic group admitting an exhausting filtration by open normal subgroups:

Gi D ker
�
G ! GLn.Z=p

iZ/
�
:

Set �i D ��1.Gi /, and let Xi be the corresponding finite cover of X . Let xX be the
cover of X corresponding to the kernel of � and x� D �=Ker.�/; note that x� acts
properly and freely on xX with quotient x�n xX D X . Our main concern is the growth
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of the Betti numbers

bk.Xi / D dimQHk.Xi ;Q/I
bk.Xi ;Fp/ D dimFp

Hk.Xi ;Fp/;

with coefficients in Q and Fp as functions of i .

1.2. Growth of Betti numbers in a p-adic analytic tower. W. Lück proved that
for each integer k the sequence bk.Xi /=Œ� W �i � always converges as i ! 1, and
the limit equals the k-th L2-Betti number ˇk. xX; x�/ of the action of x� on xX . In
that context we obtain the following result on the rate of convergence in terms of the
dimension ofG as a p-adic analytic group. We refer to [12], Theorem 8.36 on p. 201,
for equivalent characterizations of the dimension of G.

Theorem 1.1. Let d D dim.G/. Then, for any integer k and as i tends to infinity,
we have

bk.Xi / D ˇk. xX; x�/Œ� W �i �CO.Œ� W �i �
1�1=d /:

The novelty of Theorem 1.1 is obviously the error term. For more general covers,
this has already been studied by Sarnak and Xue [28] and by Clair and Whyte [8]
but they obtain much weaker results, in particular their results do not apply when 0
occurs in the L2-spectrum of xX .1

Theorem 1.1 generalizes in the case of trivial coefficients the main theorem of
Calegari–Emerton [5] which deals with arithmetic locally symmetric spaces. After
this paper had been put on theArXiv Frank Calegari informed us that Theorem 1.1 can
be deduced from the method of [5]. In fact both proofs rest on a theorem of Harris,
see Theorem 2.1 below, but we believe that our method of proof is somewhat simpler.
We refer to Section 3 for more details on the relation to the work of Calegari–Emerton.

1.3. Growth of Fp-Betti numbers in a p-adic analytic tower. Homological alge-
bra over Iwasawa algebras and the theory ofp-adic analytic groups provide important
tools to study the asymptotic growth of Betti numbers in a p-adic analytic tower of
covers. Whilst Iwasawa algebras are hidden in the proof of Theorem 1.1, they are
essential even in the formulation of a corresponding result for Fp-Betti numbers.
The Iwasawa algebra of G over R D Fp or Zp is the completion of the group
algebra RŒG�:

RŒŒG�� D lim �RŒG=Gi �:

The Iwasawa algebra is a right and left Noetherian domain. Further, if G is torsion-
free, then RŒŒG�� does not contain zero divisors and its non-zero elements satisfy the
Ore condition, see §6 of [16]. This means that the ring of fractions Q.RŒŒG��/ is a
skew field, the Ore localization of RŒŒG��. Hence there is a notion of rank:

1We should note however that in the special case of lattices in SU.2; 1/ Sarnak and Xue produce a
better exponent of 7

12
in the error term for the first Betti number.
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Definition 1.2. IfG is torsion-free, we define the rank of a leftRŒŒG��-moduleM as

rankRŒŒG��.M/ D dimQ.RŒŒG��/

�
Q.RŒŒG��/˝RŒŒG�� M

�
:

For general G we define the rank of M as

rankRŒŒG��.M/ D 1

ŒG W G0�
rankRŒŒG0��.M/;

where G0 < G is any uniform, hence torsion-free, subgroup, and M is regarded as
an RŒŒG0��-module by restriction.

Using the above rank, we define an analog ofL2-Betti numbers in characteristicp.
For a CW-complex Y the cellular chain complex will always be denoted by C�.Y /.
It is a consequence of the proof of Theorem 1.1 (see (2.10)) that, if you replace Fp

by Zp in the definition below, you obtain the L2-Betti numbers of xX .

Definition 1.3. The mod p L2-Betti numbers of the x�-space xX are defined as

ˇk. xX; x�IFp/ D rankFpŒŒG��.Hk.FpŒŒG��˝FpŒx�� C�. xX;Fp///;

where FpŒŒG�� is regarded as a right FpŒŒx���-module via � W � ! G.

For these characteristic p analogs of L2-Betti numbers there is an approximation
result similar to Theorem 1.1:

Theorem 1.4. Let d D dim.G/. Then for any integer k and as i tends to infinity, we
have

bk.Xi IFp/ D ˇk. xX; x�IFp/Œ� W �i �CO.Œ� W �i �
1�1=d /:

In particular, the limit of the sequence bk.Xi IFp/=Œ� W �i � exists and is equal to
ˇk. xX; x�IFp/.

Here again Calegari informed us that Theorem 1.4 can be deduced from his joint
ongoing work with Emerton on completed cohomology. In fact one key feature of
their theory is to set up the right framework to determine the growth rate of (mod p)
Betti numbers even if the corresponding (mod p)L2-Betti number vanishes. Proving
unconditional results seems difficult; we nevertheless point out that when X is 3-
dimensional the main result of [6] implies in particular that the error term in Theo-
rem 1.4 is the best possible in general. We also note that – in his PhD-thesis [30],
Theorem 5.3.1 – Liam Wall had first constructed examples of p-adic analytic towers
of covers of a finite volume hyperbolic 3-manifold which shows that one cannot
replace the error term O.Œ� W �i �

1�1=d / by O.Œ� W �i �
1�1=d��/ for some � > 0.

We may have ˇk. xX; x�/ ¤ ˇk. xX; x�IFp/. An example is given in [23] (Exam-
ple 6.2). One can even construct an example withX being a manifold (see Section 5):
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Proposition 1.5. There exists a link complement X and a sequence of p-covers Xi

of X such that

lim
i!C1

dimH1.Xi ;Fp/

Œ� W �i �
¤ lim

i!C1
dimH1.Xi ;Q/

Œ� W �i �
:

We don’t know of any example with xX being aspherical.

1.4. Beyond p-adic analytic groups. The following theorem about arbitrary pro-p
towers is certainly known to some experts but we could find no proof in the literature
except in degree one.

Theorem 1.6. Let k be a field of characteristicp > 0. LetX be a compact connected
CW-complex with � as fundamental group. Let .�i /i�0 be a residual p-chain. We
denote the finite cover ofX associated to�i byXi . Then, for any n � 0, the sequence
of normalized Betti numbers with k-coefficients

�
bn.Xi I k/
Œ� W �i �

�
i�0

is monotone decreasing and converges as i !1.

We moreover prove that the limit is an integer in many situations, see Theorem 4.3
and the remark following it.

1.5. Acknowledgments. We thank the referee for a detailed and helpful report,
especially for spotting an error in a previous version of the proof of Theorem 2.1,
which is now corrected.

Work on this project was supported by the Leibniz Award of W.L. granted by the
DFG. N.B. is a member of the Institut Universitaire de France. P.L. was partially
supported by a grant from the NSA. R.S. thanks the Mittag-Leffler institute for its
hospitality during the final stage of this project and acknowledges support by grant
SA 1661/3-1 of the DFG.

2. Proof of Theorem 1.1 and 1.4

In the sequel we treat the cases R D Zp and R D Fp simultaneously. Depending
on which case, we denote by dimR.M/ either the dimension of a Fp-vector space
or the Zp-rank of a Zp-module, which equals the dimension of the Qp-vector space
Qp ˝Zp

M .
As in the work of Calegari–Emerton and Emerton [5], [6] the following result

of M. Harris ([18], Theorem 1.10) for which corrections appear in [19], is crucial.
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Although not explicitly stated as such, a proof is also contained in the work of Farkas–
Linnell [16]. We give a complete proof blending ideas from both Farkas–Linnell’s
and Harris’ papers.

Theorem 2.1 (Harris). Let R D Zp or R D Fp . Let M be a finitely generated
RŒŒG��-module. Then

dimR.R y̋RŒŒGi �� M/ D rankRŒŒG��.M/ŒG W Gi �CO.ŒG W Gi �
1�1=d /: (2.1)

Here y̋ denotes the completed tensor product.

Proof. Passing to a finite index subgroup of G we may, and shall, assume that G is
uniform and torsion-free. The proof then proceeds through a sequence of reductions.

Reduction to the case of cokernels of elements inRŒŒG��. We first show that it suffices
to show the theorem for RŒŒG��-modules of the form

M D coker
�
RŒŒG��

_�a���! RŒŒG��
�
; (2.2)

with a 2 RŒŒG��. Let N be an arbitrary finitely generated RŒŒG��-module. Since
RŒŒG�� is Noetherian, N is finitely presented and we can find a matrix A 2 M.r �
s; RŒŒG��/ such that

N D coker
�
RŒŒG��r

rA��! RŒŒG��s
�
;

where rA denotes the right multiplication

rA.x1; : : : ; xr/ D .x1; : : : ; xr/ � A
with A. Since the Ore localization Q.RŒŒG��/ is a skew field, by row and column re-
duction inMr.Q.RŒŒG��// one can find invertible matricesB 2M.r � r;Q.RŒŒG��//
and C 2M.s � s;Q.RŒŒG��// such that D WD BAC is a block matrix of the form

D D
�

Iı 0ı;s�ı

0r�ı;ı 0r�ı�s�ı

�
2M.r � s; RŒŒG��/; (2.3)

where Iı 2M.ı � ı; RŒŒG��/ is the identity matrix with ı 2 f0; : : : ; sg and the other
blocks are suitable zero matrices. In other words, D describes the projection onto
the first ı coordinates .x1; x2; : : : ; xr/ 7! .x1; x2; : : : ; xı ; 0; 0; : : :/. Since B , C are
invertible, we have

rankRŒŒG��.N / D s � ı:
There are nonzero b; c 2 RŒŒG�� such that bB , Cc are matrices overRŒŒG��. We have

.bB/A.Cc/ D
�
bc � Iı 0ı;s�ı

0r�ı;ı 0ı�ı

�
: (2.4)
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LetAi ,Bi , andCi be the modGi reductions ofA, bB , andCc. Because of ker.rAi
/ �

ker.rCi
B rAi

/ D ker.rAi Ci
/ one obtains dimR ker.rAi

/ � dimR ker.rAi Ci
/. Be-

cause of im.rBi Ai Ci
/ D im.rAi Ci

B rBi
/ � im.rAi Ci

/ we have dimR ker.rAi Ci
/ �

dimR ker.rBi Ai Ci
/. Therefore: dimR ker.rAi

/ � dimR ker.rBi Ai Ci
/. Assuming the

theorem is proved for modules as in (2.2), this implies that

dimR.R y̋RŒŒGi �� N/ D dimR coker.rAi
/

D dimR ker.rAi
/ � .r � s/ŒG W Gi �

� dimR ker.rBi Ai Ci
/ � .r � s/ŒG W Gi �

D dimR coker.rBi Ai Ci
/

D .s � ı/ � ŒG W Gi �CO.ŒG W Gi �
1�1=d /:

(2.5)

To prove the assertion for N , under the assumption that it holds for modules as
in (2.2), it remains to show that

dimR coker.rAi
/ � .s � ı/ŒG W Gi � �O.ŒG W Gi �

1�1=d /: (2.6)

Let E 2M..r � ı/ � r; RŒŒG��/ be the matrix such that

RŒŒG��r�ı rE���! RŒŒG��r ; .y1; y2; : : : ; yr�ı/ �E D .0; : : : ; 0; y1; y2; : : : ; yr�ı/:

Let F 2M..r � ı/� r; RŒŒG��/ be the matrixE � .bB/. The same argument as before
leading to (2.5) but now applied to F shows

dimR coker.rFi
/ � ı � ŒG W Gi �CO.ŒG W Gi �

1�1=d /: (2.7)

We have 0 D rD B rE D rED , yielding ED D 0 and

FAC D E.bB/AC D E.bIr/BAC D .bIr/EBAC D .bIr�ı/ED D 0:
Note that we usedE.bIr/ D .bIr�ı/E here. As C is invertible this implies FA D 0
and rA B rF D rFA D 0. In particular, rAi

B rFi
D 0 and hence im.rFi

/ � ker.rAi
/.

So dimR im.rFi
/ � dimR ker.rAi

/. We compute

dimR coker.rAi
/C dimR coker.rFi

/

D s � ŒG W Gi � � dimR im.rAi
/C r � ŒG W Gi � � dimR im.rFi

/

� s � ŒG W Gi � � dimR im.rAi
/C r � ŒG W Gi � � dimR ker.rAi

/

D s � ŒG W Gi �:

Now (2.6) follows from (2.7).

Reduction to the case R D Fp . To prove the statement for a finitely generated
ZpŒŒG��-module M we may assume that rankZpŒŒG��.M/ D 0 due to the reduction
to the case (2.2) and the fact that ZpŒŒG�� has no zero-divisors. For the following
reason we may, in addition, assume that M has no p-torsion: Let T D fm 2 M j
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9d.m/2N pd.m/ �m D 0g be its p-torsion part. Obviously, T is a ZpŒŒG��-submodule
of M . One easily sees by additivity of dimension that

dimQp
.Qp y̋ZpŒŒGi �� M=T / D dimQp

.Qp y̋ZpŒŒGi �� M/

and

rankZpŒŒG��.M/ D rankZpŒŒG��.M=T /:

Hence we may assume that M has no p-torsion. We prove now that

rankFpŒŒG��.M=pM/ D rankZpŒŒG��.M/; (2.8)

hence both are zero. Since the ring ZpŒŒG�� has finite projective dimension ([3],
Section 5.1), and every projective ZpŒŒG��-module is free, see [32], Corollary 7.5.4 on
p. 127, and ZpŒŒG�� is Noetherian, the finitely generated ZpŒŒG��-moduleM possesses
a finite resolution by finitely generated free ZpŒŒG��-modules:

0! Fn ! Fn�1 ! � � � ! F0 !M ! 0:

Applying the functor N 7! Fp ˝Z N Š N=pN yields a resolution of M=pM by
finitely generated, free FpŒŒG��-modules since M has no p-torsion:

0! Fp ˝Z Fn ! � � � ! Fp ˝Z F0 !M=pM ! 0:

Now equation (2.8) follows since the rank functions over FpŒŒG�� and ZpŒŒG�� are
additive and the equation obviously holds for finitely generated free ZpŒŒG��-modules.

Let N D Zp y̋ZpŒŒGi �� M . Because of rankZpŒŒG��.M/ D 0 it is enough
to prove dimZp

.N / D O.ŒG W Gi �
1�1=d /. This follows from the FpŒŒG��-case,

rankFpŒŒG��.M=pM/ D 0, and the inequality

dimZp
.N / � dimFp

.N=pN/ D dimFp

�
Fp y̋ FpŒŒGi �� M=pM

�
:

So we reduced the proof of the theorem to the case R D Fp and henceforth assume
R D Fp .

Reduction to G being standard. We finally reduce the assertion to the case that G is
standard in the sense of [12], §8.4. Being a p-adic analytic group, G has an open
subgroup H which is standard with respect to the manifold structure induced from
G, see Theorem 8.29 of [12]. Since H is open, we have Gi < H for i greater than
some i0. Being standard H has a preferred collection of open normal subgroups Hi

which satisfy: Gi0Ci�1 � Hi � Gi (i � 1); see e.g., [12], Example 6, p. 168.
Recall that we may assume that rankFpŒŒG��.M/ D 0 due to the reduction to the

case (2.2) and the fact that FpŒŒG�� has no zero-divisors.
Now if the assertion holds forH with respect to theHi ’s, then it follows that for i >

i0 the left-hand side of (2.1) is bounded by a constant times dimR.R y̋RŒŒHi�i0C1��M/

and is therefore O.ŒH W Hi �
1�1=d / D O.ŒG W Gi �

1�1=d /, so the assertion holds for
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G as well. We assume from now on that G is standard and that Gi D  �1.piZd
p /

where  is the global atlas of G.

The remaining argument. Let M be as in (2.2). We may assume a ¤ 0. By a
fundamental result of Lazard, the graded ring gr FpŒŒG�� with respect to the filtration
.�n/n�0 by powers of the augmentation ideal � � FpŒŒG�� is a polynomial algebra
FpŒX1; : : : ; Xd � with indeterminates Xi D xi � 1 C �2 ([32], Theorem 8.7.10 on
p. 160) where fx1; : : : ; xd g � G is a minimal generating set. Let Ii � FpŒŒG�� be
the closure of the ideal generated by elements �.h � 1/ with h 2 Gi . Note that
N=IiN Š Fp y̋ FpŒŒGi �� N for any FpŒŒG��-module N . Since FpŒŒG�� is a domain,
rankFpŒŒG��.M/ D 0. Now for each integer i � 1 (if p > 2) or i � 2 (if p D 2),
the global atlas  of G induces an epimorphism Gi ! piZd

p =p
iC1Zd

p with kernel
GiC1. It therefore follows that ŒG W Gi � D Cpid for some rational constant C > 0

and we have to show that

dimFp
.M=IiM/ D O.p.d�1/i /: (2.9)

But it follows from Lemma 7.1 of [12] that there exists a positive integerm such that
�mpi � Ii for all i . It therefore suffices to show (2.9) with Ii replaced by�mpi

. Let
s � 0 be such that a 2 �sn�sC1. Let ai W FpŒŒG��=�

mpi ! FpŒŒG��=�
mpi

be the
map induced by right multiplication with a. We have

dimFp
.M=�mpi

M/ D dimFp
coker.ai /

D dimFp
ker.ai /

D dimFp
.�mpi �s=�mpi

/:

The last equality follows from the fact the graded ring is a polynomial ring. For the
same reason the last number equals the number of monomials in a polynomial ring
with d variables each of which has total degree in the interval Œmpi � s;mpi /. The

number of monomials of degree < k is
�

dCk�1
d

�
. Hence

dimFp
.M=�mpi

M/ D
�
d Cmpi � 1

d

�
�

�
d Cmpi � s � 1

d

�
:

As a polynomial in pi , each binomial coefficient has leading term .mpi /d . Their
difference is a polynomial in pi with degree at most d � 1. This implies (2.9).

Proofs of Theorems 1.1 and 1.4. We show for both cases R D Zp and R D Fp

simultaneously that

bk.Xi IR/ D rankRŒŒG��

�
Hk.RŒŒG��˝Rx� C�. xX//

� � Œ� W �i �CO
�
Œ� W �i �

1�1=d
�
:

(2.10)
The CW-structure on X lifts to a x�-equivariant CW-structure on xX and to �in�-
equivariant CW-structures on Xi . We may also view xX as a �-space via the quotient
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map � ! x� . Let C�. xX/ be the cellular chain complex of xX . Each chain module
Ck. xX/ is a finitely generated free ZŒx��-module. The differentials in the chain com-
plex C� D R˝Z C�. xX/ are denoted by @�. Note that R˝RŒ�i � C� is isomorphic to
the cellular chain complexR˝ZC�.Xi / as anRŒ�in��-chain complex. In particular,
we have

H�.Xi ; R/ Š H�.R˝RŒ�i � C�/: (2.11)

We write yC� and O@� short for RŒŒG�� ˝Rx� C� and its differentials. We denote the
cycles and boundaries in the chain complexes yC� and C� by yZ�, yB� and Z�, B�,
respectively. Let rn 2 N0 be the rank of the finitely generated free RŒŒG��-module
yCn. In each degree n we have the obvious exact sequence

0! yZn ! yCn

O@n��! yCn�1 ! coker.O@n/! 0:

By additivity of rankRŒŒG�� we obtain that

rankRŒŒG��

�
Hk. yC�/

� D rankRŒŒG��

� yZk= yBk

�
D rankRŒŒG��. yZk/ � rankRŒŒG��. yBk/

D rk � rk�1 C rankRŒŒG��

�
coker.O@k/

� � rankRŒŒG��. yBk/

D rk � rk�1 C rankRŒŒG��

�
coker.O@k/

�
(2.12)

� �
rk � rankRŒŒG��

�
coker.O@kC1/

��
D rankRŒŒG��

�
coker.O@k/

�C rankRŒŒG��

�
coker.O@kC1/

� � rk�1:

By (2.11), a similar argument as above, and right-exactness of the tensor product, we
obtain that

dimR

�
Hk.Xi ; R/

� D dimR

�
Hk.R˝RŒ�i � C�/

�
D dimR

�
coker.R˝RŒ�i � @k/

�
C dimR

�
coker.R˝RŒ�i � @kC1/

� � Œ� W �i � � rk�1

D dimR

�
R˝RŒ�i � coker.@k/

�
C dimR

�
R˝RŒ�i � coker.@kC1/

� � Œ� W �i � � rk�1:

Hence,

bk.Xi ; R/

Œ� W �i �
D dimR

�
R˝RŒ�i � coker.@k/

�
Œ� W �i �

C dimR

�
R˝RŒ�i � coker.@kC1/

�
Œ� W �i �

� rk�1:

(2.13)
The natural map

R˝RŒ�i � RŒ��
Š��! R y̋RŒŒGi �� RŒŒG��

induced by � W � ! G is a right RŒ��-module isomorphism (recall that we regard
RŒŒG�� as a right RŒ��-module via �). The inverse is obtained as follows: Since
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�in� Š GinG, there is a natural continuous homomorphism fromG to the invertible
elements of theR-algebraR˝RŒ�i �RŒ��. By the universal property of the completed
group algebra there is a continuous homomorphism RŒŒG��! R˝RŒ�i � RŒ�� which
descends to the desired inverse. As a consequence we get isomorphisms

R y̋RŒŒGi �� coker.O@k/ Š R˝RŒŒGi �� RŒŒG��˝RŒx�� coker.@k/

Š R˝RŒŒGi �� RŒŒG��˝RŒ�� coker.@k/

Š R˝RŒ�i � coker.@k/

and, thus,

bk.Xi ; R/

ŒG W Gi �
D dimR

�
R y̋RŒŒGi �� coker.O@k/

�
ŒG W Gi �

C dimR

�
R y̋RŒŒGi �� coker.O@kC1/

�
ŒG W Gi �

� rk�1:

(2.14)

Now (2.10) follows from (2.12), (2.14), and Theorem 2.1. Note that (2.10) is exactly
the statement of Theorem 1.4 in the caseR D Fp . Next we explain how Theorem 1.1
follows from (2.10) when R D Zp . Since Qp has characteristic zero, we have
bk.Xi / D bk.Xi ;Qp/ D bk.Xi ;Zp/. Since bk.Xi /=Œ� W �i � ! ˇk. xX; x�/ as
i !1 [24], we conclude

ˇk. xX; x�/ D rankZpŒŒG��

�
Hk.ZpŒŒG��˝Zp

x� C�/
�
:

3. Relation with the completed homology

Calegari and Emerton [7], [6] have introduced the completed homology groups:

zHk D lim �Hk.Xi ;Zp/ and zHk.Fp/ D lim �Hk.Xi ;Fp/:

These modules carry continuous actions of G and may therefore be considered as
ZpŒŒG��-modules or FpŒŒG��-modules, respectively. In this section we want to clarify
the relation of completed cohomology to (mod p) L2-Betti numbers.

Proposition 3.1. Retaining the setup in Section 1.1 we have

ˇk. xX; x�IFp/ D rankFpŒŒG��. zHk.Fp//:

Proof. Here again we may reduce to the case where G is torsion-free. Write C� D
C�. xX IFp/. The claim is equivalent to

zHk.Fp/ D lim �Hk.Fp ˝FpŒ�i � C�/



On the growth of Betti numbers in p-adic analytic towers 321

and
Hk.FpŒŒG��˝Fp

x� C�/ D Hk.lim �.Fp ˝FpŒ�i � C�//

having the same FpŒŒG��-rank. So the statement is equivalent to:

Q.FpŒŒG��/˝FpŒŒ��� Hk.lim �.Fp ˝FpŒ�i � C�//

Š Q.FpŒŒG��/˝FpŒŒ���

�
lim �Hk.Fp ˝FpŒ�i � C�/

�
:

Since Fp ˝ZpŒ�i � C� is a tower of chain complexes of abelian groups satisfying the
Mittag-Leffler condition, by Theorem 3.5.8 of [31] there is a short exact sequence

0! lim �
1HkC1.Fp ˝FpŒ�i � C�/! Hk.lim �.Fp ˝FpŒ�i � C�//
! lim �Hk.Fp ˝FpŒ�i � C�/! 0:

Moreover, since towers of finite dimensional vector spaces over a field satisfy the
Mittag-Leffler condition, we conclude that

lim �
1HkC1.Fp ˝FpŒ�i � C�/ D 0;

which yields the proposition.

It follows from works of Calegari and Emerton that a similar result with Fp

replaced by Zp holds as well, that is,

ˇk. xX; x�IZp/ D rankZpŒŒG��. zHk/; (3.1)

and we want to indicate why. In [5], Theorem 3.2, it is shown for arithmetic congru-
ence covers Xi of symmetric spaces that the so-called co-rank rk of the completed
cohomology zH k satisfies the equality in Theorem 1.1 with ˇk. xX; x�/ replaced by rk .
The proof in [5] is a consequence of a general result of Emerton [14], Theorem 2.1.5,
and their Lemma 2.2. Both these results hold not only for arithmetic congruence
covers but in our generality. Since the co-rank of zH k is the same as the rank of zHk ,
see [7], Theorem 1.1 (3), this implies (3.1).

It is somewhat harder to work with completed homology, see [5], [6]. We never-
theless want to emphasize that the latter contains a lot more information. It should
be the right framework to determine the growth rate of (mod p) Betti numbers even
if the corresponding (mod p) L2-Betti number vanishes. However it seems hard to
extract the necessary information from completed homology, the only exception that
we are aware of is in case X is 3-dimensional, see [6].

4. Approximation results for pro-p towers that are not p-adic analytic

The proof of Theorem 1.6 relies on the following well-known lemma (see also [15]
for a proof).
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Lemma 4.1. Let k be a field of characteristic p > 0. Let ƒ be a normal subgroup
in a group � whose index is a p-power. Then

dimk.k ˝kŒƒ� M/ � Œ� W ƒ� � dimk.k ˝kŒ�� M/:

Proof. Because of the isomorphism

k ˝kŒ�� M Š k ˝kŒ�=ƒ� .k ˝kŒƒ� M/

it suffices to prove the case where ƒ is trivial and � is a finite p-group. Let

kŒ��m
f�! kŒ��n !M ! 0

be a presentation ofM . Then Nf D k˝kŒ�� f is a presentation of k˝kŒ�� M . Since
dimk.M/ D j�j � n� dimk.im.f // and dimk.k˝kŒ�� M/ D n� dimk.im. Nf //, we
have to show that

dimk.im.f // � j�j � dimk.im. Nf //:
Extend a k-basis fu1; : : : ; usg of im. Nf / to a k-basis fu1; : : : ; ung of kn D k ˝kŒ��

kŒ��n. Let x1; : : : ; xn be lifts of the ui to kŒ��n such that fx1; : : : ; xsg � im.f /.
Since kŒ�� is a local ring with the augmentation ideal as the unique maximal ideal
([32], Proposition 7.5.3), Nakayama’s lemma implies that fx1; : : : ; xng generates
kŒ��n as a kŒ��-module. Since the k-dimension of the kŒ��-submodule generated
by xi is at most j�j and dimk kŒ��

n D j�j � n, the k-dimension of the kŒ��-module
generated by fx1; : : : ; xig is i j�j. Because of fx1; : : : ; xsg � im.f /,

dimk.im.f // � j�j � s D j�j � dimk.im. Nf //
follows.

Proof of Theorem 1.6. It follows from Lemma 4.1 that, for any finitely presented
kŒ��-module M , the sequence .dimk.k ˝kŒ�i � M/=Œ� W �i �/i�0 is monotone de-
creasing. Let rn be the number of n-cells in X . Let @� denote the differentials in the
kŒ��-complex C�. zX I k/. Exactly as in (2.13), one has

bn.Xi I k/
Œ� W �i �

D dimk.k ˝kŒ�i � coker.@n//

Œ� W �i �
C dimk.k ˝kŒ�i � coker.@nC1//

Œ� W �i �
� rn�1;

from which monotonicity follows. Since Betti numbers are non-negative, the se-
quence converges.

In the remainder of this section we study the question how we can express the
limit �

bn.Xi I k/
Œ� W �i �

�
i�0

by some algebraic expression in very specific situations. For that we recall the notions
of ordered group, the Malcev–Neumann power series ring, and the division closure.
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An ordered group is a group with a strict total ordering of its elements which
is invariant under left and right translations. A group which has such an ordering is
called orderable. For example, residually torsion-free nilpotent groups are orderable,
see [10], Proposition 1.2 on p. 274.

If � is an ordered group, then the set of formal power series
P

�2� a�	 with
coefficients a� in a skew field k whose support f	 2 � j a� ¤ 0g is well-ordered
becomes a skew field with the obvious ring structure extending the one of the group
ring kŒ�� (Corollary 15.10 on p. 95 of [9]) which is called the Malcev–Neumann
power series ring. We denote it by k..�//2.

SupposeR is a subring of a skew fieldK. ThenD.R;K/will denote the division
closure of R inK, that is the smallest skew subfield ofK that contains R. IfM1 and
M2 are the Malcev–Neumann power series rings of kŒ��with respect to two different
orders and D1, D2 the division closures of kŒ�� in M1, M2, respectively, then there
is a ring isomorphismD1 Š D2 which is the identity on kŒ��. This follows from the
next theorem. As a consequence, the dimension of the k..�//-vector space

k..�//˝kŒ�� M Š k..�//˝D.kŒ��;k..�///

�
D.kŒ��; k..�///˝kŒ�� M

�
for a kŒ��-module M does not depend on the choice of the order on � .

Theorem 4.2. Let k be a skew field, let � be an orderable group, and let M1, M2

be Malcev–Neumann power series rings for kŒ��. Set D1 D D.kŒ��;M1/ and
D2 D D.kŒ��;M2/. Then there is a ring isomorphism 
 W D1 ! D2 such that 
 is
the identity on kŒ��.

Proof. Recall [26], Corollary 1.4, that, being orderable, the group � is locally indi-
cable, i.e., each finitely generated subgroup H surjects onto Z. Let J C H be the
kernel of this surjection and pick t 2 H so that H D hJ; ti. Let N1 and N2 denote
the subrings of M1 and M2 respectively consisting of power series with supports in
J . Then D.kJ;D1/ � N1 and D.kJ;D2/ � N2. Clearly ftn j n 2 Ng is linearly
independent overNi inMi for i D 1; 2. Theorem 4.2 therefore follows from a slight
generalization of Hughes’ theorem [11], 7.1 Theorem; all that one needs to do is
to modify the proof of 7.2 Lemma in [11]; this is done explicitly in [27], Hughes’
Theorem I 6.3.

Theorem 4.3. Let k be a field of characteristic p > 0. Let � be a finitely generated
group, and let � D �0 > �1 > � � � be a descending sequence of normal subgroups
such that

T
i �i D f1g and each �=�i is torsion-free nilpotent. Set Hi D �i�

pi

(thus �=Hi is a finite p-group). If X is a compact connected CW-complex with
fundamental group � andXi the finite cover corresponding toHi , then3, for every n,

dimk..�//

�
Hn.k..�//˝kŒ�� C�. zX; k//

� D lim
i!1

bn.Xi I k/
Œ� W Hi �

: (4.1)

2We suppress the order in the notation for reasons to be seen below.
3Recall that the left-hand side of (4.1) does not depend on the order we choose to define k..�//.
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In particular, the limit on the right-hand side is an integer.

Remark 4.4. A large collection of groups are known to be residually torsion-free
nilpotent (RTFN): Carl Droms has proved in his PhD thesis [13] (Theorem 1.1 in
Chapter III on page 58; see also [1]) that graph groups are RTFN. But this property is
inherited by subgroups. It therefore follows from [17] and [4] that free groups, sur-
face groups, reflection groups, right-angled Artin groups and arithmetic hyperbolic
groups defined by quadratic forms are virtually RTFN. It follows from the recent
breakthrough of Agol [2] and Wise [33] that the fundamental group of a closed hy-
perbolic 3-manifold is virtually RTFN.We finally note that the proof of Corollary 2.3
in [1] implies that direct and free products of RTFN groups are RTFN.

One deduces the preceding theorem from the following Proposition 4.5 by a simi-
lar, even easier, argument as used in the deduction of Theorem 1.1 from Theorem 2.1.
More precisely: Similarly as in (2.12) and (2.13) one expresses the left- and right-
hand side of (4.1) by the cokernels of the n-th and .n C 1/-th differential of the
complexes k..�//˝kŒ�� C�. zX; k/ and C�.Xi ; k/, respectively; then one applies the
proposition below.

Proposition 4.5. Let k be a field of characteristicp > 0. Let� be a finitely generated
group, and let � D �0 > �1 > � � � be a descending sequence of normal subgroups
such that

T
i �i D f1g and each �=�i is torsion-free nilpotent. SetHi D �i�

pi
. If

M is a finitely presented kŒ��-module, then

dimk..�//.k..�//˝kŒ�� M/ D lim
i!1

dimk.k ˝kŒHi � M/

Œ� W Hi �
:

In particular, the limit on the right-hand side is an integer.

A free group is residually torsion-free nilpotent. But even for a free group we
cannot say anything for arbitrary residual p-chains. In particular, the following
question remains open.

Question 4.6. LetF be a finitely generated free group, let k be a field of characteristic
p > 0, and let F D F0 > F1 > � � � be a descending sequence of normal subgroups
with F=Fi a finite p-group for all i and

T
i2N Fi D 1. LetM be a finitely presented

kG-module. Can limi!1 jF=Fi j�1 dimk.k ˝kŒFi � M/ be transcendental?

In the remainder of this section we are concerned with the proof of Proposition 4.5
for which we need the following lemma.

Lemma 4.7. Let k be an arbitrary skew field, let M be a finitely presented kŒ��-
module, and let � D �0 > �1 > � � � be a descending sequence of normal subgroups
with �=�i torsion-free nilpotent for all i with

T
i2N �i D 1. LetDi denote the skew
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field of fractions of kŒ�=�i �, which is an Ore localization. Then there exists m 2 N
such that

dimDi
.Di ˝kŒ�� M/ D dimk..�//.k..�//˝kŒ�� M/ for all i � m:

Proof. Choose a nonprincipal ultrafilter ! on N and letD denote the ultraproduct of
theDi with respect to the ultrafilter !. ThenD is a skew field and kŒ�� embeds inD.
Consider a nontrivial finitely generated subgroupH of � . Let n be the least positive
integer such that H is not contained in �n. Then H=H \ �n is a nontrivial finitely
generated torsion-free nilpotent group, so there exists N C H such that H=N is
infinite cyclic. Choose t 2 H nN so that H D hN; ti. Then ft i j i 2 Ng is linearly
independent over k..N // and it follows that ft i j i 2 Ng is linearly independent over
D.kŒN �; k..�///. Next letEi denote the skew field of fractions of kŒN=N \�i � and
form the ultraproductE of theEi with respect to !. ThenE is a skew field contained
in D, and ft i j i 2 Ng is linearly independent over E. Therefore ft i j i 2 Ng is
linearly independent over D.kŒN �;D/ and we deduce from [27], Hughes’ Theorem
I 6.3, that there is an isomorphism 
 W D.kŒ��; k..�/// ! D.kŒ��;D/ such that 

is the identity on kŒ��. Therefore dimk..�// k..�//˝kŒ�� M D dimD D ˝kŒ�� M .
Also dimD D ˝kŒ�� M D lim! dimDi

Di ˝kŒ�� M and the result follows.

Proof of Proposition 4.5. For each i 2 N, let Di denote the skew field of fractions
of kŒ�=�i �. By Lemma 4.7, there exists m0 2 N such that dimDm

Dm ˝kŒ�� M D
dimk..�// k..�//˝kŒ�� M for all m � m0. For i; m � m0, set Km

i D �m�
pi

. For
any m � m0 we have

lim
i!1 j�=K

m
i j�1 dimk.k ˝kŒKm

i
� M/ D dimDm

.Dm ˝kŒ�� M/

D dimk..�// k..�//˝kŒ�� M

by Theorem 6.3 of [23]. The result follows from the monotonicity Lemma 4.1.

5. Link complements

Suppose that � � Zd . We embed Zd ,! Zd
p DW G and consider the homomor-

phism � W � ! G. The ZŒZd �-module H1. xX;Z/ is the Alexander invariant of X .
There is a natural map ZŒZd � ! FpŒŒZd

p ��. Since Zd is amenable, the group ring
FpŒZd � is an Ore domain and it follows from [23] that

ˇk. xX; x�IFp/ D rankFpŒŒZd
p ��Hk. xX;FpŒŒZ

d
p ��/

D rankFpŒZd �Hk. xX;FpŒZ
d �/

D rank
FpŒt˙1

1
;:::;t˙1

d
�
Hk. xX;FpŒt

˙1
1 ; : : : ; t˙1

d �/:
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This last expression is zero if and only if the (first) Alexander polynomial � of X is
non zero modulo p.

The above remark in particular applies when X is a 3-manifold with boundary
a union of d tori. If X is knot complement (in which case d D 1) the Alexander
polynomial � is nonzero and its coefficients are relatively prime. Hence

ˇ1. xX; x�IFp/ D rankFpŒŒZd
p ��H1. xX;FpŒŒZ

d
p ��/ D 0 (5.1)

and (see also [29], Corollary 4.4)

lim
i!C1

dimH1.Xi ;Fp/

Œ� W �i �
D 0:

In that case one may even deduce from (5.1) that H1.Xi ;Fp/ D Fp for all i , see
Lemma 5.4 of [6].

We may as well consider the case of a link complement l D l1 [ � � � [ ld in S3.
Recall that, in the case d D 2, �.1/ is equal to the linking number Lk.l1; l2/ of the
two components of the link. The same proof as in the knot case then shows that if p
is a prime that does not divide Lk.l1; l2/, then

lim
i!C1

dimH1.Xi ;Fp/

Œ� W �i �
D 0:

One may wonder if the proof may be extended to show thatH1.Xi ;Fp/ D F2
p for all

i as is true according to [29], Theorem 5.11.
We conclude this note by the proof of Proposition 1.5.

Proof of Proposition 1.5. It follows from [20] that there exists a link l with 2 compo-
nents such that�.t; t/ D p. Now note that�.t; t/ is theAlexander polynomial associ-
ated to the abelian cover ofX corresponding to the map� ! Z2 ! Z2=ha�bi Š Z.
Since �.t; t/ is non zero,

lim
i!C1

dimH1.Xi ;Q/

Œ� W �i �
D 0:

But since �.t; t/ is zero modulo p, we have

lim
i!C1

dimH1.Xi ;Fp/

Œ� W �i �
¤ 0:

Other examples of closed finite CW -complexes with a chain

�1.X/ D �0 	 �1 	 �2 	 � � �
of normal subgroups of finite index in �1.X/ such that limi!C1 dim H1.Xi ;Fp/

Œ�W�i �
¤

limi!C1 dim H1.Xi ;Q/
Œ�W�i �

holds can be found in [15] and [25]. One can additionally
arrange X D B� or

T
i�0 �i D f1g. However, the problem is still open to find an

example with both X D B� and
T

i�0 �i D f1g.
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