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Abstract. We define a family of groups that generalises Thompson’s groups T and G, and
also those of Higman, Stein and Brin. For groups in this family we describe centralisers of
finite subgroups and show that for a given finite subgroup Q there are finitely many conjugacy
classes of finite subgroups isomorphic to Q. We consider groups of type quasi-F1. This is a
property slightly weaker than possessing a finite type model for the classifying space of proper
actions EG. We give criteria for the T -versions of our groups to be of type quasi-F1. We
also generalise some well-known properties of ordinary cohomology to Bredon cohomology.

Mathematics Subject Classification (2010). 20J05.

Keywords. Bredon cohomology, Thompson groups, finiteness properties.

1. Introduction

Thompson’s groups F , T and G (also denoted by V ), which can be defined as certain
homeomorphism groups of the unit interval, the circle and the Cantor-set, respectively,
have received a large amount of attention in recent years. There are many interesting
generalisations of these groups, such as the Higman–Thompson groups Fn;r , Tn;r ,
Gn;r (recall that T D T2;1 and G D G2;1), the T - and G-groups defined by Stein
[24] and the higher dimensional Thompson groups sV D sG2;1 defined by Brin [4].
All these groups contain free abelian groups of infinite rank, are finitely presented
and with the exception of sV for s � 4 are known to be of type FP1 ([5], [24], [12],
[9]).1 Furthermore, the G- and T -groups contain finite groups of arbitrarily large
orders. In this paper we consider automorphism groups of certain Cantor algebras
which include Higman–Thompson, Stein and Brin’s groups.

As in the original exposition by Higman [10] and in Brown’s proof [5] that Fn;r ,
Tn;r and Gn;r are of type FP1, we consider a Cantor algebra Ur.†/ on a so-called

�The first named author was partially supported by BFM2010-19938-C03-03, Gobierno de Aragón and
European Union’s ERDF funds.

1Note added in proof. The groups sV have now been shown to be of type FP1 by Fluch, Schwandt,
Witzel and Zaremsky, arXiv:1207.4832.
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valid set of relations † and define groups Gr.†/ as follows: the elements of Gr.†/

are bijections between certain subsets of Ur.†/, which we call admissible. One can
show that these groups are finitely generated, see [18]. Provided that the relations
in † are order-preserving we can also define the groups Tr.†/, which are given by
cyclic order-preserving bijections. One can also define generalisations of Fn;r .

The admissible subsets of Ur.†/ form a poset, and the groups Tr.†/ and Gr.†/

act on the geometric realisation jAr.†/j of this poset (for the original Higman–
Thompson algebras this was already used by Brown in [5]).

Let G be either Tr.†/ or Gr.†/. For every finite subgroup Q we consider the fixed
point sets Ar.†/Q. The Q-set structure of every admissible subset Y 2 Ar.†/Q

is determined by its decomposition into transitive Q-sets. We show (Theorem 4.3)
that there are finitely many conjugacy classes in G of subgroups isomorphic to Q.
Furthermore we show (Theorem 4.4) that there is an extension

K � CGr .†/.Q/ � Gr1
.†/ � � � � �Grt

.†/

with locally finite kernel, where the r1; : : : ; rt are integers uniquely determined by
Q. We also get the analogous result (Theorem 4.8) for the groups Tr.†/ (if defined)
that, for a certain l also determined by Q, there is a central extension

Q � CTr .†/.Q/ � Tl.†/:

This generalises a result of Matucci [19], Theorem 7.1.5, for the original Thompson
group T .

Recently a variant of the Eilenberg–Mac Lane space, the classifying space with
respect to a family X of subgroups, has been well researched. Let X be a G-CW-
complex. X is said to be a model for EXG, the classifying space with isotropy in
the family X if XK is contractible for K 2 X and XK is empty otherwise. The
classifying space X for a family satisfies the following universal property: whenever
there is a G-CW-complex Y with isotropy lying in the family X, there is a G-map
Y ! X , which is unique up to G-homotopy. In particular, EXG is unique up to
G-homotopy equivalence.

For the family F of finite subgroups we denote EFG by EG, the classifying
space for proper actions. We say a group is of type F1 if it admits a finite type model
for EG. We show:

Theorem 3.1. jAr.†/j is a model for EGr.†/.

Obviously, this model has infinite dimension. Since these groups contain free
abelian groups of infinite rank, they cannot possess any finite dimensional model.
Exactly as ordinary classifying spaces yield free resolutions which can be used to de-
fine ordinary group cohomology, classifying spaces with isotropy in a family produce
free resolutions in a functor category, which are used to define Bredon cohomology.
We shall review properties of Bredon cohomology in Section 2. Many notions from
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ordinary cohomology have a Bredon analogue. For example, we say a group G is of
type Bredon-FP1 if there is a Bredon-projective resolution of the constant Bredon-
module Z.�/ by finitely generated Bredon-projective modules. The connection to
classifying spaces and to ordinary cohomology is given by the following two results:

Theorem 1.1 ([17], Theorem 0.1). A group G has a finite type model for a classifying
space with isotropy in a family if and only if the group is of type Bredon-FP1 and
there is a model for the classifying space with finite 2-skeleton.

In particular we say a group is of type FP1 if it is of type Bredon-FP1 for the
family of finite subgroups.

Theorem 1.2 ([16], Theorem 4.2). A group G admits a finite type model for EG if
and only G has finitely many conjugacy classes of finite subgroups and for each finite
subgroup K of G the centraliser CG.K/ is of type FP1 and finitely presented.

Equivalently, G admits a finite type model for EG if and only it is of type FP1
and centralisers of finite subgroups are finitely presented. The purpose of this paper
is to study the possible finiteness conditions a model for EG for the groups Gr.†/

and Tr.†/ can satisfy. Since the groups we are considering do not have a bound on
the orders of their finite subgroups, we need to weaken the condition on the number
of conjugacy classes. We consider the property quasi-FP1, which has the same
condition on the centralisers of finite subgroups as FP1 but just requires that for each
finite subgroup Q of G, there are only finitely many conjugacy classes of subgroups
isomorphic to Q. Note that for groups with a bound on the orders of their finite
subgroups both properties coincide. In [14] it was shown that there are examples of
groups of type FP1, which have a bound on the orders of the finite subgroups, yet are
not of type FP1. These examples are virtually torsion free, admit a finite dimensional
model for EG and can be constructed to have either infinitely many conjugacy classes
of finite subgroups, or to have centralisers of finite subgroups not of type FP1. There
are a number of classes of groups of type FP1 admitting cocompact models for EG

including Gromov hyperbolic groups ([20]), Out.Fn/ ([25]) or elementary amenable
groups of type FP1 ([13]).

Using our results on centralisers and conjugacy classes of finite subgroups we
show:

Theorem 7.2. Tr.†/ is of type quasi-FP1 if and only if Tl.†/ is of type FP1 for
any 1 � l � d such that gcd.l; d/jr .

We also consider the geometric analogue, to be of type quasi-F1, and the corre-
sponding version of Theorem 7.2. We conjecture that similar results hold true for the
groups Gr.†/.

The paper is structured as follows: In Section 2 we define the Cantor algebras
and the corresponding generalisations of Thompson’s groups G and T . We then use
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this Cantor algebra to build a model for EG in Section 3. In Section 4 we prove
the results on centralisers and conjugacy classes of finite subgroups that will be used
later.

In Section 5 we collect all necessary background on Bredon cohomology with
respect to an arbitrary family, and on Bredon cohomological finiteness conditions for
modules. We prove an analogue to the Bieri–Eckmann criterion for property FPn for
modules. In Section 6 we specialise to the case of the family of finite subgroups and
define what it means for a group to be quasi-FP1 and quasi-F1. Finally, the main
results are proven in Section 7.

Acknowledgements. The authors wish to thank D. H. Kochloukova for very fruitful
discussions, without which, in fact, this work probably would not have happened. We
also thank F. Matucci for a conversation, which led us to discover a gap in a previous
version of this paper.

2. Generalisations of Higman–Thompson groups

As mentioned in the introduction, the generalised Higman–Thompson groups can
be viewed as certain automorphisms groups of Cantor algebras. We shall begin by
defining these algebras. We use the notation of [12], Section 2. In particular, we
consider a finite set f1; : : : ; sg whose elements are called colours. To each colour i

we associate an integer ni > 1 which is called its arity. We say that U is an �-algebra
if, for each colour i , the following operations (we let all operations act on the right)
are defined in U (for detail, see [7] and [12]):

i) One ni -ary operation �i ,
�i W U ni ! U:

We call these operations ascending operations or contractions.
ii) ni 1-ary operations ˛1

i ; : : : ; ˛
ni

i ,

˛
j
i W U ! U:

We call these operations 1-ary descending operations.

We write � D f�i ; ˛
j
i gi;j . For each colour i we also consider the map ˛i W U !

U ni given by
v˛i ´ .v˛1

i ; v˛2
i ; : : : ; v˛

ni

i /

for any v 2 U . These maps are called descending operations or expansions. For any
subset Y of U , a simple expansion of colour i of Y is obtained by substituting some
element y 2 Y by the ni elements of the tuple y˛i . A simple contraction of colour i

of Y is the set obtained by substituting a certain collection of ni distinct elements of
Y , say fa1; : : : ; ani

g, by .a1; : : : ; ani
/�i . We also use the term operation to refer to

the effect of a simple expansion, respectively contraction on a set.
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For any set X there is an �-algebra, free on X , which is called the �-word algebra
on X and is denoted by W�.X/. An admissible subset A � W�.X/ is a subset that
can be obtained after finitely many expansions or contractions from the set X .

Descending operations can be visualised by tree diagrams, see the following
example with X D fxg, s D 1 and n1 D 2.

α1 α2

α2α1

x

The set A D fx˛1˛1; x˛1˛2; x˛2g is an admissible subset. In pictures we often
omit the maps and label the nodes by positive integers as follows.

1 2

3

From now on we fix the set X and assume it is finite. We consider the variety of
�-algebras satisfying a certain set of identities as follows.

Definition 2.1. Let † be the following set of laws in the alphabet X .

i) For any u 2 W�.X/, any colour i , and any ni -tuple .u1; : : : ; uni
/ 2 W�.X/ni ,

u˛i�i D u; .u1; : : : ; uni
/�i˛i D .u1; : : : ; uni

/:

The set of all these relations is denoted by †1.
ii) A certain set

†2 D
[

1�i<i 0�s

†
i;i 0

2

such that each †
i;i 0

2 is either empty or consists of all the laws of the following
form: Consider first i and fix a map f W f1; : : : ; nig ! f1; : : : ; sg. For each
1 � j � ni , we regard ˛

j
i f̨ .j / as a set of length 2 sequences of descending

operations and let ƒi D [ni

j D1˛
j
i f̨ .j /. Do the same for i 0 (with a corresponding

map f 0) to get ƒi 0 and now fix a bijection � W ƒi ! ƒi 0 . Then †
i;i 0

2 is the set
of laws

u� D u�.�/; � 2 ƒi ; u 2 W�.X/:
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(Note that by an abuse of notation we omit the u 2 W�.X/ when we specify
†2 in the examples below.)

When factoring out the fully invariant congruence q generated by †, we obtain
an �-algebra W�.X/=q satisfying the identities in †. For details of the construction
the reader is referred to [12], Section 2.

Definition2.2. Let r D jX j and † as in Definition 2.1. Then the algebra W�.X/=q D
Ur.†/ is called a Cantor algebra.

Moreover, there is an epimorphism of �-algebras

W�.X/ � Ur.†/; A 7! xA:

As in [12] we say that † is valid if for any admissible Y � W�.X/, we have
jY j D j xY j. This condition implies that Ur.†/ is a free object on X in the class of
those �-algebras which satisfy the identities † above.

If the set † used to define Ur.†/ is valid, we also say that Ur.†/ is valid.

Example 2.3. Higman [10] defined an algebra Vn;r with jX j D r , s D 1 and arity n

as above with †2 being empty. This algebra, which we call Higman algebra, is used
in the original construction of the Higman–Thompson-groups Gn;r . For details see
also [5]. In particular, these algebras are valid ([10], Section 2).

Example 2.4. Higman’s construction for arity n D 2 can be generalised as follows
([12], Section 2): Let s � 1 and ni D 2 for all 1 � i � s. Hence we consider
the set of s colours f1; : : : ; sg, all of which have arity 2, together with the relations
†´ †1 [†2 with

†2 ´ f˛l
i ˛t

j D ˛t
j ˛l

i j 1 � i 6D j � s; l; t D 1; 2g:
Then † is valid (see [12], Lemma 2.9).

Furthermore one can also consider s colours, all of arity ni D n, for all 1 � i � s.
Let

†2 ´ f˛l
i ˛t

j D ˛t
j ˛l

i j 1 � i 6D j � s; 1 � l; t � ng:
Using the same arguments as in [12], Section 2, one can show that the † obtained in
this way is also valid.

We call the resulting Cantor algebras Ur.†/ Brin algebras.
The tree diagram below visualises the relations in †2. Here r D 1, s D 2 and

n D 2. We express an expansion of colour 1 with dotted lines and an expansion of
colour 2 by solid lines. The leaves with the same label are identified.

Definition 2.5. Let † be valid and consider Y; Z � Ur.†/. If Z can be obtained
from Y by a finite number of simple expansions then we say that Z is a descendant
of Y and write

Y � Z:
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x

1 2 3 4

x

1 3 2 4

Conversely, Y is called an ascendant of Z and can be obtained after a finite number
of simple contractions. Note that this implies that if either of the sets Y or Z is
admissible, then so is the other. In fact, the set of admissible subsets of Ur.†/ is a
poset with respect to the partial order �. This poset is denoted by Ar.†/.

It is easy to prove that any admissible subset is a basis of Ur.†/ (see [12],
Lemma 2.5).

Remark 2.6. Let † be valid and assume that we have s colours of arities fn1; : : : ; nsg.
Let r be a positive integer. Observe that the cardinality of any admissible subset of
Ur.†/ must be of the form m � r mod d for

d ´ gcdfni � 1 j i D 1; : : : ; sg:
Moreover, for any m � r mod d , there is some admissible subset of cardinality m.
And as admissible subsets are bases, we get Ur.†/ D Um.†/.

Definition 2.7. Let B , C be admissible subsets of Ur.†/. We say that T is the unique
least upper bound of B and C if B � T , C � T and for all admissible sets S such
that B � S and C � S we have T � S .

We say, by abusing notation a little, that Ur.†/ is bounded if for all admissible
subsets B , C such that there is some admissible A with A � B; C there is a unique
least upper bound of B and C .

One can also define greatest lower bounds, but this places a stronger restriction
on the algebra, see [12]. Moreover, note that a priori we require the existence of an
upper bound only when our sets have a lower bound A, but this turns out to be not
too restrictive:

Lemma 2.8. Let Ur.†/ be valid and bounded. Then any two admissible subsets
have some (possibly not unique) common upper bound.

Proof. Use the same proof as in [12], Proposition 3.4.

Example 2.9. The Brin algebras defined in Example 2.4 are valid and bounded. The
existence of a unique least upper bound for n D 2 is shown in [12], Lemma 3.2. The
general case is analogous.
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Example 2.10. Let P � Q>0 be a finitely generated multiplicative group. Then by a
result of Brown ([24], Proposition 1.1), P has a basis of the form fn1; : : : ; nsgwith all
ni � 0 (i D 1; : : : ; s). Now consider �-algebras on s colours of arities fn1; : : : ; nsg
and let † D †1 [ †2 with †2 the set of identities given by the following order-
preserving identification:

f˛1
i ˛1

j ; : : : ; ˛1
i ˛

nj

j ; ˛2
i ˛1

j ; : : : ; ˛2
i ˛

nj

j ; : : : ; ˛
ni

i ˛1
j ; : : : ; ˛

ni

i ˛
nj

j g
D f˛1

j ˛1
i ; : : : ; ˛1

j ˛
ni

i ; ˛2
j ˛1

i ; : : : ; ˛2
j ˛

ni

i ; : : : ; ˛
nj

j ˛1
i ; : : : ; ˛

nj

j ˛
ni

i g:
Here i ¤ j and i; j 2 f1; : : : ; sg.

The Cantor algebras Ur.†/ thus obtained will be called Brown–Stein algebras.

Note that, as fn1; : : : ; nsg is a basis for P , the ni are all distinct. Hence, when
visualising the identities in †2 for the Brown–Stein algebra, it suffices to only use one
colour, as the arity of an expansion already determines the colour. In the following
example let r D 1, s D 2, n1 D 2 and n2 D 3.

1 2 3 4 5 6 1 2 3 4 5 6

Lemma 2.11. The Brown–Stein algebras are valid and bounded.

Proof. This is Proposition 1.2 (due to K. Brown) in [24].

In fact, in [24] Lemma 2.8 is proven directly, i.e., any two admissible subsets have
some common upper bound.

We can now define the generalised Higman–Thompson groups. Recall that in a
valid Cantor algebra Ur.†/ admissible subsets are bases.

Definition 2.12. Let Ur.†/ be a valid Cantor algebra. We define Gr.†/ to be the
group of those �-algebra automorphisms of Ur.†/ which are induced by a map
V ! W , where V and W are admissible subsets of the same cardinality.

Example 2.13. If Ur.†/ is a Higman algebra as in Example 2.3, we retrieve the
original Higman–Thompson-groups Gn;r . Let Ur.†/ be a Brin algebra on s colours of
arity 2 as in Example 2.4. Then the groups constructed are Brin’s ([4]) generalisations
sV of Thompson’s group V D G2;1. The description of sV as automorphism groups
of a Cantor algebra can be found in [12]. Finally, the groups Gr.†/ when Ur.†/ is
a Brown–Stein algebra as in Example 2.10 were considered in [24].
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Remark 2.14. It is conceivable that in fact Gr.†/ equals the full group of �-algebra
automorphisms of Ur.†/. This would follow if one could prove that any finite basis
of Ur.†/ is an admissible subset (this is the case for the Higman algebra, see [10]
Corollary 1).

We go back to the case of an arbitrary valid Cantor algebra Ur.†/ and assume that
the set X is ordered. It can be seen that this order is inherited by certain subsets of
W�.X/ including all admissible subsets, see for example [5] or [10]. If the relations
in †2 preserve that ordering, in the sense that the bijection � in Definition 2.1 does,
then we also have an inherited order on the admissible subsets of Ur.†/. We shall
call this the induced ordering.

Definition 2.15. Suppose that we have a Cantor algebra Ur.†/ where † preserves
the induced ordering. We may define subgroups Fr.†/ and Tr.†/ of Gr.†/ as
follows. We let Fr.†/ be the group of order-preserving automorphisms between
ordered admissible subsets of the same cardinality and Tr.†/ the group of cyclic
order-preserving automorphisms between ordered admissible subsets of the same
cardinality.

Example 2.16. For Ur.†/ a Higman algebra of Example 2.3 the definition above
yields the groups Fn;r and Tn;r as in [5]. Recall that Thompson’s groups are F D F2;1

and T D T2;1.
Let Ur.†/ be a Brown–Stein algebra as in Example 2.10. In this case, † is order-

preserving, so we may define the groups Fr.†/ and Tr.†/, which are considered in
[24].

Since †2 in the definition of the Brin algebra of Example 2.4 is not order-
preserving, there is no obvious way to define the groups Fr.†/ or Tr.†/ for this
algebra.

Remark 2.17. Note that if definable, the groups Fr.†/ are torsion-free. In both
cases mentioned in Example 2.16 the resulting groups Fr.†/ are known to be of type
FP1 and finitely presented ([5], [24]).

Since for torsion-free groups ordinary and Bredon cohomological finiteness con-
ditions are identical we will not consider these groups further.

3. A model for EG for generalised Thompson groups

From now on we fix a valid † and a finite positive integer r . Also assume that the
Cantor algebra Ur.†/ is bounded. In this section we give a quite elementary proof
of the following result.

Theorem 3.1. The geometric realisation of the poset of admissible subsets is a model
for EGr.†/.
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We fix an admissible subset X � Ur.†/ of cardinality r .

Lemma 3.2. For any finite Q � Gr.†/ there exists some admissible subset Z such
that ZQ D Z. Moreover we may assume X � Z.

Proof. For every q 2 Q choose a common upper bound Tq of X and Xq. Then put
Zq ´ Tqq�1 and let Y be an upper bound of

fZq j q 2 Qg:
Note that X � Z1 D T1 and for any q 2 Q,

X � Tq D Zqq � Yq:

Therefore we may choose Z the least upper bound of fYq j q 2 Qg. By definition
of unique least upper bound we get ZQ D Z.

Proposition 3.3. Any two elements in Ar.†/Q have an upper bound in Ar.†/Q.

Proof. Let Y; Z 2 Ar.†/Q. We begin by showing that there are admissible sets
Y1; Z1 2 Ar.†/Q such that Y1 is an upper bound of X and Y and Z1 is an upper
bound of X and Z. It suffices to prove the existence of Y1. Take an upper bound
Y2 2 Ar.†/ of X and Y and consider

fY2q�1 j q 2 Qg:
Let Y3 2 Ar.†/ be an upper bound of this set. Then, for any q 2 Q,

Y2 � Y3q:

Therefore X � Y3q. This implies that we may choose Y1 to be the least upper bound
of

fY3q j q 2 Qg:
Clearly, Y; X � Y1. Again, the definition of least upper bound implies that Y1 2
Ar.†/Q.

Now let T be the least upper bound of Y1 and Z1. Then for any q 2 Q,

Y1 D Y1q � T q; Z1 D Z1q � T q;

so we get T 2 Ar.†/Q.

Proof of Theorem 3.1. Lemmas 3.2 and 3.3 imply that for any finite subgroup
Q � Gr.†/ the poset Ar.†/Q is non-empty and directed, thus jAr.†/jQ D
jAr.†/Qj ' 	. Moreover for any V 2 Ar.†/,

StabGr .†/.V / D fg 2 Gr.†/ j Vg D V g
is contained in the group of permutations of the finite set V , thus it is finite. This
implies that for any H � Gr.†/, Ar.†/H D ¿ unless H is finite.
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This model is not of finite type, but there is a filtration of jAr.†/Qj by finite type
subcomplexes, exactly as in the construction in [5], Theorem 4.17:

Proposition 3.4. For any finite Q � Gr.†/ there is a filtration of jAr.†/Qj,
� � � 
 jAr.†/Qjh�1 
 jAr.†/Qjh 
 jAr.†/QjhC1 
 � � � ;

such that each jAr.†/Qjh=CGr .†/.Q/ is finite.

Proof. Let
jAr.†/Qjh ´ fY 2 Ar.†/Q j jY j � hg:

Consider Y; Z 2 Ar.†/Q with jY j D jZj and isomorphic as Q-sets. This means
that there is a Q-bijection

� W Y ! Z:

Let g 2 Gr.†/ be the element given by yg D y� for each y 2 Y . Then for
any q 2 Q, .yq/g D .yq/� D y�q D ygq. This means that the commutator
Œg; q� acts as the identity on the admissible set Y and therefore Œg; q� D 1. Hence
g 2 CGr .†/.Q/. As for any m � h there are finitely many possible Q-sets of
cardinality m, the result follows.

Remark 3.5. Provided that † is order-preserving, Theorem 3.1 and Proposition 3.4
can be restated replacing Gr.†/ with Tr.†/.

Remark 3.6. The filtration of Proposition 3.4 is used by Brown [5], Theorem 4.17,
with Q D 1, to show that the Higman–Thompson groups Gn;r , Tn;r and Fn;r are of
type FP1. The approach used by Brown is as follows: Fix an admissible subset Y .
Show that if jAn;r j<Y denotes the set of admissible subsets which are contractions
of Y , then the connectivity of jAn;r j<Y grows with the cardinality of Y . Then,
show that this implies that the connectivity of the pair .jAr;njhC1; jAr;njh/ tends to
1, which in turn yields that Gn;r , Tn;r and Fn;r are all of type FP1. Key to this
approach is understanding the complex jAn;r j<Y . In the case of the Higman algebra,
Brown shows ([5], Lemmas 4.18, 4.19) that any two simple contractions Y1, Y2 of Y

have a common lower bound if and only if the contracted vertices are disjoint, which
allows him to show that jAn;r j<Y is homotopy equivalent to a much simpler complex.
However, this is no longer true if we work with a more general Cantor algebra Ur.†/:
Consider for example a Brown–Stein algebra as in Example 2.10 with arities 2 and 3.
Let Y be any admissible set with 6 elements labeled 1, 2, 3, 4, 5 and 6. Let Y1 be the
simple contraction of arity 2 of the elements 3 and 4 and Y2 the simple contraction
of arity 3 of the elements 1, 2 and 3. Then the sets of contracted vertices are not
disjoint, however there is a common lower bound Z � Y1; Y2 as the picture before
Lemma 2.11 shows. Stein used a different method to the one described here to prove
that the groups of [24] are of type FP1.
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Similar problems were encountered when Kochloukova and the authors consid-
ered Brin’s groups [12]. In general, the same difficulty applies to the groups Gr.†/,
as well as to Tr.†/, Fr.†/ where definable. It is conceivable, however, that Brown’s
approach can be applied more generally using an analogue of Brown’s connectivity
result, see for example [12] where it is used to show that Brin’s groups for r D 1,
s D 2; 3 are of type FP1.

4. Centralisers and conjugacy classes of finite subgroups for Gr.†/ and Tr.†/

Let Q � Gr.†/ be a finite subgroup. In this section we give a more detailed
analysis of the poset Ar.†/Q to describe CGr .†/.Q/ and the number of conjugacy
classes of subgroups isomorphic to Q. In case Tr.†/ is defined, we also derive the
corresponding results. This will be used later when we prove our main result on the
cohomological finiteness properties of these groups.

Let fw1; : : : ; wtg be the set of lengths of all the possible transitive permutation
representations of Q. Any Y 2 Ar.†/Q is a finite Q-set so it is determined by
its decomposition into transitive Q-sets. If we take one of those sets and apply the
operation ˛i for a fixed colour i to each of its elements, we obtain a new admissible
subset which is also fixed by Q. We say that this is a simple Q-expansion of Y . More
explicitly, the admissible set obtained from Y is:

Y X fyq j q 2 Qg [ fyq˛
j
i j q 2 Q; 1 � j � nig

for a certain y 2 Y . We also use the term Q-expansion to refer to a chain of simple
Q-expansions.

Conversely, if we choose ni different orbits of the same type (i.e., corresponding
to the same permutation representation) in Y , then we may contract them to a single
orbit (of the same type). We call this a simple Q-contraction. Simple Q-contractions
are more complicated to handle than simple Q-expansions: we may contract an
element of the first of the orbits with any of the elements on the others. Hence, even
if the orbits to be contracted are determined, there are many possibilities to perform
the explicit contraction. Note that the admissible subsets obtained this way will lie
in Ar.†/Q.

Large parts of the next three results can be found in [10], Section 6. We shall, for
the reader’s convenience, recall the arguments.

Lemma 4.1. Let Y; Z 2 Ar.†/Q with Y < Z and assume there is no admissible
subset C 2 Ar.†/Q with Y � C � Z. Then Z is a simple Q-expansion of Y .
Hence Y is a simple Q-contraction of Z.

Proof. We may choose a chain of simple expansions

Y < Y1 < � � � < Yr < Z:
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Let w 2 Y be the vertex expanded in the first simple expansion Y < Y1 and W � Y

be the Q-orbit with w 2 W . Assume also that this first expansion corresponds to
the colour i . Then as Z contains certain descendants of fw˛ig and it is Q-invariant
it must also contain the analogous descendants of fu˛i j u 2 W g. Therefore if C

denotes the simple Q-expansion consisting of expanding W by ˛i , then Y < C � Z.
As C 2 Ar.†/Q, we deduce by the hypothesis that C D Z.

Proposition 4.2. For any finite subgroup Q � Gr.†/, there is a uniquely determined
set of integers �.Q/´ fr1; : : : ; rtg with 0 � rj � d and

tX
j D1

rj wj � r mod d

such that there is an admissible subset Y 2 Ar.†/Q with jY j DPt
j D1 rj wj .

Moreover, any other element in Ar.†/Q can be obtained from Y by a finite
sequence of simple Q-expansions or Q-contractions.

Proof. First, note that by Lemma 3.2, Ar.†/Q ¤ ¿. Now choose some Z 2
Ar.†/Q and decompose it as a disjoint union of transitive Q-sets. Let kj be the
number of transitive sets in this decomposition which are of type j , i.e., which
correspond to the same permutation representation. Observe that whenever we apply
simple Q-contractions or Q-expansions to Z, if the set thus obtained has mj transitive
Q-sets of type j , then mj � kj mod d . Note also that

jZj D
tX

j D1

kj wj � r mod d:

Let

rj D

8̂<
:̂

0 if kj D 0;

d if 0 ¤ kj � 0 mod d;

l with 0 < l < d and l � kj mod d otherwise.

By successively performing simple Q-contractions or Q-expansions of Z we may
get an admissible set Y such that the number of transitive Q-sets of type j in Y is
exactly rj . Observe that the rj are uniquely determined, whereas Y is not. Finally,
Proposition 3.3 implies that for any other C 2 Ar.†/Q there is an upper bound, say
D, of Y and C with D 2 Ar.†/Q which means that

Y � D � C:

By Lemma 4.1 we may choose chains

Y D D0 < D1 < � � � < Dl1
D D D C0 > C1 > � � � > Cl2

D C

such that each step consists of a simple Q-expansion/Q-contraction, and we are done.
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Theorem 4.3. Let Q1; Q2 � Gr.†/ be finite subgroups with Q1 Š Q2. Then Q1

and Q2 are conjugate in Gr.†/ if and only if �.Q1/ D �.Q2/.
In particular, there are only finitely many conjugacy classes of subgroups isomor-

phic to Q1.

Proof. Fix an isomorphism � W Q1 ! Q2. Assume first that �.Q1/ D �.Q2/. Then
there are admissible subsets V1, V2 with Vi 2 Ar.†/Qi having the same number of
elements and moreover the same structure as Qi -sets, which means that there is a
bijection between them which we denote by g such that for any q 2 Q1 and v 2 V1,
.vq/g D vgq� . This yields an element g 2 Gr.†/ with g�1qg D q� .

Conversely, assume Q2 D g�1Q1g with g 2 Gr.†/. Then for any V1 2
Ar.†/Q1 , V1g 2 Ar.†/Q2 . Moreover, g induces an isomorphism as Qi -sets so the
orbit structure of the minimal elements of Ar.†/Q1 and Ar.†/Q1 has to be the same.

Theorem 4.4. Let Q � Gr.†/ be a finite subgroup and �.Q/ D fr1; : : : ; rtg as in
Proposition 4.2. Then CGr .†/.Q/ Š Hr1

� � � � �Hrt
where each of the Hri

fits into
the following split group extension

Ki � Hri
� Gri

.†/

with Ki locally finite.

Proof. Choose an admissible Y 2 Ar.†/Q as in Proposition 4.2. We begin by
proving the result in the special case when there are exactly l Q-orbits all of the
same type in the Q-set Y . In other words, we assume that in Proposition 4.2 for
some k, l ´ rk and all the others rj D 0. Let w ´ wk be the length of those
Q-orbits, and for each i D 1; : : : ; l , choose an orbit representative yi . We call the
subset fy1; : : : ; ylg � Y thus obtained the set of marked elements. We consider
any Q-expansion of Y as marked, by marking precisely the descendants of marked
elements in Y . And we say that a Q-contraction is marked if marked elements are
contracted only with marked elements and result in the marked elements of the new
subset. Note that this implies that elements of the form yq with q 2 Q and y marked
can only be contracted with elements y0q for the same q 2 Q and y0 marked. We
now define

M D fM jM 2 Ar.†/Qadmissible and obtained from Y by marked

Q-expansions and marked Q-contractionsg:

M is the set of marked admissible subsets of Ar.†/Q and can also be seen as the
diagonal subposet:

M � Al.†/ � � � � �Al.†/„ ƒ‚ …
w

:
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Now fix an admissible subset X D fx1; : : : ; xlg 2 Al.†/ and fix a bijection
	X;Y W xi 7! yi from X to the marked elements of Y . From X 7! Y we get a poset
map

	A W Al.†/! Ar.†/Q;

which commutes with expansions and contractions in Al.†/, and with Q-expansions
and marked Q-contractions in Ar.†/Q. This is well defined since X is a basis of
the algebra used to construct Al.†/. The fact that we only contract marked elements
allows us to avoid ambiguities. Observe that im.	A/ D M. Moreover, whenever
	A.X1/ D Y1, there is a well-defined bijection 	X1;Y1

between X1 and the set of
marked elements in Y1. For convenience we let 	X;Y act on the right. We use this to
define a group homomorphism

	 W Gl.†/! CGr .†/.Q/;

as follows: Let g be given by a map g W X1 ! X2 for X1; X2 2 Ar.†/ and put Y1 D
	A.X1/, Y2 D 	A.X2/. Then 	.g/ W Y1 ! Y2 is the unique map which commutes with
the Q-action and such that g	X2;Y2

D 	X1;Y1
	.g/ (recall that the marked elements are

representatives of the Q-orbits). Obviously 	.g/ 2 CGr .†/.Q/.
Next we define a second poset map


A W Ar.†/Q ! Al.†/

such that 
A	A D idAl .†/. To do this, put 
A.Y / D X , identify all the elements in
the Q-orbit of each yi with xi and extend using the corresponding operations on both
sides. Proposition 4.2 and the fact that Y is admissible, imply that Ar.†/Q is also
free on Y , hence 
A is well defined. In an analogous way as before, there is also an
explicit bijection between the Q-orbits in any Y1 and the elements of 
A.Y1/ which
can be used to define a group homomorphism


 W CGr .†/.Q/! Gl.†/:

Observe that whenever g 2 CGr .†/.Q/ and Y1 2 Ar.†/Q, then Y1g 2 Ar.†/Q.
In particular, 
	 D idGl .†/, giving us the desired split group extension. We now

proceed to describe K ´ ker 
 . To begin we observe that K consists precisely of
those h 2 CGr .†/.Q/ such that for any A 2 Ar.†/Q, 
A.Ah/ D 
A.A/ and h fixes
the Q-orbits of A setwise.

We claim that for any h 2 K there is some Q-expansion of Y , Z 2 Ar.†/Q with
Zh D Z. To see this, using Proposition 3.3, take Z 2 Ar.†/Q to be an upper bound
of Y , Y h�1. Then Lemma 4.1 implies that Z and Zh are both Q-expansions of Y

and therefore they are marked. Thus Z; Zh 2M D im 	A. As h lies in K, we have

A.Z/ D 
A.Zh/. So the fact that 
A is injective when restricted to im 	A implies
the claim. In particular, K is the union of its subgroups of the form

KZ ´ fh 2 CGr .†/.Q/ j Zh D Z; h fixes the Q-orbits setwiseg;
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where Z is a Q-expansion of Y . As each KZ is finite, using Proposition 3.3 we see
that K is locally finite, thus proving the special case.

To finish our proof, we now prove the general case when Y has Q orbits of
different types. Let �.Q/ D fr1; : : : ; rtg and w1; : : : ; wt be as in Proposition 4.2.
Let Y D St

iD1 Yi with Yi the union of the ri Q-orbits of type i in Y . Then Q acts
on each Yi . Note that a single action might not be faithful, but the intersection of
the kernels must be trivial. Also note that in Ar.†/Q, Q-contractions can not mix
elements belonging to orbits of different type. This implies that we have a direct
product of posets

Ar.†/Q Š Aw1r1
.†/Q � � � � �Awt rt

.†/Q;

where we let the group Q act on each poset Awi ri
.†/ using its action on Yi and extend-

ing via extensions and contractions. This action yields also a group homomorphism
�i W Q ! Gwi ri

.†/. The direct product of posets above implies that CGr .†/.Q/

decomposes as the direct product of the centralisers of �i .Q/ � Gwi ri
.†/. For each

of these we can apply the case of a single type of orbit, and we are done.

Remark 4.5. In an analogous way, one can prove that there is also a group epimor-
phism

NGr .†/.Q/ � Gr1
.†/ � � � � �Grt

.†/

with locally finite kernel.

Remark 4.6. In [3], there is a description of centralisers of elements g in the Higman
groups Gn;1 associated to Ur.†/ D Vn;1. Whenever Q D hgi has finite order in
those groups, this coincides with ours.

Remark 4.7. With little more effort we can give a description of the kernel K ap-
pearing in the single type of orbit case in the proof of Theorem 4.4: Let Sw be the
symmetric group of degree w and choose a permutation representation � W Q! Sw

associated to the Q action on the orbits of Y . Denote L´ CSw
.�.Q//. Then if Z

is a Q-expansion of Y with jZj D mw, we have the following isomorphism:

fh 2 CGr .†/.Q/ j Zh D Z; h fixes the Q-orbits setwiseg Š Lm ´ L � � � � � L„ ƒ‚ …
m

:

Consider now a simple Q-expansion Z � Z1 with jZ1j D m1w, consisting of
applying a descending operation of arity nj to a vertex z0. We get a group homo-
morphism Lm ! Lm1 given by mapping the copy of L corresponding to z0 to the
product of copies of L corresponding to the descendants of z0 via the diagonal map
L! Lnj , and leaving the remaining factors intact. This gives, in an obvious way, a
direct system of groups and hence K is the directed limit of the system thus obtained.
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We shall now consider the groups Tr.†/ whenever they are defined, i.e., whenever
† preserves the induced order in the admissible subsets of our Cantor algebra Ur.†/.
In this case, centralisers of finite subgroups have an easier structure.

A first observation is that any finite subgroup Q � Tr.†/ is cyclic. Moreover
following the argument of Proposition 4.2 we see that by writing the transitive per-
mutation representations of Q to have the faithful representation first, i.e., w1 D jQj,
we obtain �.Q/ D fr1; 0; : : : ; 0/ and r1w1 � r mod d . To see this, take for example
Y 2 Ar.†/Q the admissible subset obtained following the argument of Proposi-
tion 4.2 and assume that certain g 2 Q fixes some y0 2 Y . The condition that g

preserves cyclically the order, implies that g fixes Y pointwise, thus g D 1. As a
consequence, jY j D r1w1.

Theorem 4.8. Let Ur.†/ be a Cantor algebra with order-preserving † and Q �
Tr.†/ a finite subgroup. Then there is only one conjugacy class of finite subgroups
of order jQj and for a certain 0 < l � d depending on Q there is a central extension

Q � CTr .†/.Q/ � Tl.†/:

Proof. For the first assertion observe that any two cyclic groups of the same order
are isomorphic and they only have one faithful permutation representation. Hence it
suffices to choose a cyclic order-preserving h between the corresponding admissible
subsets Y . Note that they have the same cardinality.

For the second assertion, embed Tr.†/ in Gr.†/ and let 	; 
 be the group homo-
morphisms of Theorem 4.4, we use the same notation as there. The result will follow
once we check that 
.CTr .†/.Q// D Tl.†/ and that Q D ker 
 \ Tr.†/.

Note first that we may choose the map 	X;Y to be order-preserving. The fact that
the action of Q cyclically preserves the order on Y , implies that we may assume that
if for any basis Y1 the marked elements are fy1; : : : ; ymg, then the elements of Y1 are
ordered as

y1 < � � � < ym < y1q < � � � < ymq < � � � < y1qi < : : : ymqi < � � � ;
for certain (fixed) q generating Q (note that the marked elements of elements of Y

can be chosen so that Y is ordered this way). If g 2 CTr .†/.Q/ represents a map
between two such sets cyclically preserving that ordering, then it is obvious that
the corresponding map 
.g/ also does. In fact, write y0

1 < � � � < y0
m < y0

1q <

� � � < y0
mq < � � � < y0

1qi < : : : y0
mqi < � � � for the elements of Y1g and choose the

index j such that yj g D y0
mqa. Then if j < m, yj C1g D y0

1qaC1 and if j D m,
y1g D y0

1qa. Here 0 � a � jQj � 1. This implies 
.CTr .†/.Q// � Tl.†/.
Conversely, take g 2 Tl.†/. Then g is determined by its action on a pair of

ordered admissible subsets X1 W x1 < � � � < xm, X2 D X1g W x0
1 < � � � < x0

m. Put
Y1 ´ 	A.X1/, Y2 ´ 	A.X2/ and denote their elements as before. Now, 	.g/ as
defined in Theorem 4.4 does not cyclically preserve the order between Y1 and Y2.
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Let j be the subindex such that x1g D x0
j . We construct k 2 K D ker 
 as follows:

y0
iq

ak D
´

y0
iq

aC1 for 1 � i < j;

y0
iq

a for j � i � m;

where, as before, 0 � a � jQj � 1. A routine check shows that this is well defined
and 	.g/k W Y1 ! Y2 cyclically preserves the order between Y1 and Y2; in other
words, 	.g/k 2 Tr.†/. From this we deduce that 
 W CTr .Q/.Q/ � Tl.†/ is an
epimorphism.

Finally, recall that by the proof of Theorem 4.4 and Remark 4.7, ker 
 is the union
of its subgroups of the form

KZ D fh 2 CGr .†/.Q/ j Zh D Z and h fixes the Q-orbits setwiseg Š Lm

for each Q-expansion Z of Y . Moreover, as Q is transitive and regular, L D
CSw1

.�.Q// Š Q. The observation before this theorem implies that the finite group
KZ \ Tr.†/ must in fact act in the same way as Q acts on Z. Hence

KZ \ Tr.†/ D Q:

Note that under the isomorphism KZ Š Qm, this corresponds to the diagonal sub-
group of Qm. That the extension is central now follows immediately.

Remark 4.9. For the Higman algebra Ur.†/ D V2;1 and Tr.†/ D T , the original
Thompson group T , this reproves [19], Theorem 7.1.5.

5. Finiteness conditions in Bredon cohomology

In this section we collect all necessary background on Bredon cohomological finite-
ness conditions and also prove an analogue to Bieri’s criterion for FPn.

Let X denote a family of subgroups of a given group G. In Bredon cohomology,
the group G is replaced by the orbit category OXG. The category OXG has as
objects the transitive G-sets with stabilisers in X. Morphisms in OXG are G-maps
between those G-sets. Modules over the orbit category, called OXG-modules, are
contravariant functors from the orbit category to the category of abelian groups.
Exactness is defined pointwise: a sequence

A! B ! C

of OXG-modules is exact at B if and only if

A.�/! B.�/! C.�/

is exact at B.�/ for every transitive G-set �.
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The category OXG-Mod of OXG-modules has enough projectives, which are
constructed as follows: For any G-sets � and �, denote by Œ�; �� the set of G-maps
from � to �. Let ZŒ�; �� be the free abelian group on Œ�; ��. One now obtains
an OXG-module ZŒ�; �� by fixing � and letting � range over the transitive G-sets
with stabilisers in X. A Yoneda-type argument, see [21], yields that these modules
are free. In particular, the modules P K.�/ D ZŒ�; G=K� for K 2 X are free and
can be viewed as the building blocks for free OXG-modules. Projective modules are
now defined analogously to the ordinary case. The trivial OXG-module, denoted by
Z.�/, is the constant functor Z from OXG to the category of abelian groups.

Bieri [1] gives criteria for a ZG-module to be of type FPn involving certain Ext-
and Tor-functors commuting with exact colimits and direct products respectively. In
this section we prove that those criteria can also be used for Bredon cohomology.
The Bredon cohomology functors Ext�

X.M;�/ are defined as derived functors of
HomX.M;�/. In particular, let M.�/ 2 OXG-Mod be a contravariant OF G-
module admitting a projective resolution P�.�/ � M.�/. Then, for each N.�/ 2
OXG-Mod,

Ext�
X.M; N / D H�.Mor.P�; N //:

One can also define Bredon homology functors TorX� .�; M/. In particular, by
analogy with the contravariant case, one can define covariant OXG-modules, or just
comodules for short. The category of covariant OXG-modules, denoted by Mod-
OXG, behaves just as expected. For example, we have short exact sequences and
enough projectives as above. In particular, the building blocks for projective modules
in Mod-OXG are the covariant functors PK.�/ D ZŒG=K;�� for subgroups K 2 X.
Let M.�/ 2 OXG-Mod be as before. Then Bredon homology functors are the
derived functors of �˝X M , i.e., for any L.�/ 2Mod-OXG,

TorX� .L; M/ D H�.L˝X P�/:

For details on these definitions including the categorical tensor product andYone-
da-type isomorphism the reader is referred to [22]. In particular, TorX� .�; M/ can be
calculated using flat resolutions of M.�/.

The category of OXG-modules, as an abelian category, has well-defined colimits
and limits and in particular coproducts and products. We say a functor

T W OXG-Mod! Ab

commutes with exact colimits, denoted here by lim�!, if, for every directed system
.M�/�2ƒ of OXG-modules, the natural map

lim�!T .M�/! T .lim�!M�/

is an isomorphism. Analogously, we say a functor

S W Mod-OXG ! Ab
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commutes with exact limits, denoted here by lim �, if, for every inverse system .N�/�2ƒ

of OXG-comodules, the natural map

S.lim �N�/! lim �S.N�/

is an isomorphism.
We say an OXG-module M.�/ is finitely generated if there is a finitely generated

free module mapping onto it. In particular, there is a G-finite G-set � such that
ZŒ�; �� � M.�/ (here we are extending the notation ZŒ�; �� to non-transitive sets
in the obvious way).

Lemma 5.1. Let M be an OXG-module. Then M is the direct colimit of its finitely
generated submodules.

Proof. This follows from [15], §9.19.

The notions of type Bredon-FP, Bredon-FPn and Bredon-FP1 are defined in terms
of projective resolutions over OXG analogously to the classical notions of type FP,
FPn and FP1.

Proposition 5.2. Let A be an OXG-module of type Bredon-FPn, 0 � n � 1. Then:

(i) For every exact limit, the natural homomorphism

TorX
k .lim �N�; A/! lim �TorX

k .N�; A/

is an isomorphism for all k � n � 1 and an epimorphism for k D n.

(ii) For every exact colimit, the natural homomorphism

lim�!Extk
X.A; M�/! Extk

X.A; lim�!M�/

is an isomorphism for all k � n � 1 and a monomorphism for k D n.

Proof. The proof goes completely analogously to that of Bieri [1], Proposition 1.2.
It relies on the Yoneda isomorphisms, i.e., that N ˝X ZŒ�; G=K� Š N.G=K/ and
HomX.ZŒ�; G=K�; M/ Š M.G=K/, the fact that lim � and HomX.�; M/ commute
with finite direct sums and that lim � and lim�! are exact and hence commute with the
homology functor.

Bieri’s argument can be carried through completely for Bredon-Ext and Bredon-
Tor functors.

Theorem 5.3. Let A be an OXG-module. Then the following are equivalent:

(i) A is of type Bredon-FPn.
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(ii) For every exact colimit, the natural homomorphism

lim�!Extk
X.A; M�/! Extk

X.A; lim�!M�/

is an isomorphism for all k � n � 1 and a monomorphism for k D n.

(iii) For the direct limit of any directed system of OXG-modules M� with lim�!M� D
0, one has lim�!Extk

X.A; M�/ D 0 for all k � n.

Proof. The implications (i) H) (ii) H) (iii) are either obvious or follow from Propo-
sition 5.2. Every OXG-module is the directed colimit of finitely generated submod-
ules, Lemma 5.1, and hence (iii) H) (i) is proved completely analogously to [1],
Theorem 1.3 (iiib) H) (i).

Theorem 5.4. Let A be an OXG-module. Then the following are equivalent:

(i) A is of type Bredon-FPn.

(ii) For every exact limit, the natural homomorphism

TorX
k .lim �N�; A/! lim �TorX

k .N�; A/

is an isomorphism for all k � n � 1 and an epimorphism for k D n.

(iii) For any K 2 X consider any arbitrary direct product
Q

ƒK
ZŒG=K;��. Then

the natural map

TorX
k

� Q
K2X

Q
ƒK

ZŒG=K;��; A
�!Q

K2X

Q
ƒK

TorX
k

.ZŒG=K;��; A/

is an isomorphism for all k � n � 1 and an epimorphism for k D n.

Proof. The implications (i) H) (ii) H) (iii) are again either obvious or consequence
of Proposition 5.2.

(iii) H) (i): The proof is in the same spirit as Bieri’s proof. We begin by letting
n D 0 and claim that A is finitely generated as an OXG-module. As an index set
we take

Q
K2X A.G=K/ and consider

Q
K2X

Q
a2A.G=K/ ZŒG=K;��. By (iii), the

natural map

� W � Q
K2X

Q
A.G=K/ ZŒG=K;��

�˝X A.�/!Q
A.G=K/ A.G=K/

is an epimorphism. Let c be the element with �.c/ D Q
K2X

Q
a2A.G=K/ a. Then c

is of the form

c D
lX

iD1

� Q
K2X

Q
A.G=K/ f

a;K
i

�˝ bi

for certain subgroups H1; : : : ; Hl 2 X and elements bi 2 A.G=Hi /. Here, f
a;K

i 2
ZŒG=K; G=Hi �. Now we claim that there is an epimorphism


 W
lM

iD1

ZŒ�; G=Hi � � A
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given by 
.f /´ f �.bi / 2 A.G=K/ whenever f 2 ZŒG=K; G=Hi �. Observe that
this is well defined. In particular it is functorial. To prove the claim, take any K 2 X
and any a 2 A.G=K/. Note that

�.c/ D
lX

iD1

Y
K2X

Y
a2A.G=K/

.f
a;K

i /�.bi / D
Y

K2X

Y
a2A.G=K/

lX
iD1

.f
a;K

i /�.bi /

so the fact that c maps onto the diagonal means that

a DPl
iD1.f

a;K
i /�.bi / D 


� Pl
iD1 f

a;K
i

�
:

The case n � 1 is now done analogously to [1], Theorem 1.3, using a diagram
chase.

Remark 5.5. For n � 1, condition (iii) is equivalent to the following, which in
ordinary homology is often referred to as the Bieri–Eckmann criterion for FPn: For
every subgroup K 2 X consider an arbitrary direct product

Q
ƒK

ZŒG=K;��. Then
the natural map� Q

K2X

Q
ƒK

ZŒG=K;��
�˝X A.�/!Q

K2X

Q
ƒK

A.G=K/

is an isomorphism and TorX
k

.
Q

K2X

Q
ƒK

ZŒG=K;��; A/ D 0, for all 1 � k � n�1.
We call this condition the global Bieri–Eckmann criterion for Bredon homology.

We say a group satisfies the local Bieri–Eckmann criterion for Bredon cohomology
if, for any K and direct product as before, the natural map� Q

ƒK
ZŒG=K;��

�˝X A.�/!Q
ƒK

A.G=K/

is an isomorphism and TorX
k

.
Q

ƒK
ZŒG=K;��; A/ D 0 for all 1 � k � n � 1.

6. Classifying spaces with finite isotropy

In this section we shall restrict ourselves to the family F of all the finite subgroups
of G.

To stay in line with notation previously used, we say a module is of type FP1 if
it is of type Bredon-FP1 with respect to F . The notions of FPn and FP are defined
analogously. For Bredon cohomology with respect to F there is a good algebraic
description for modules of type FPn. For the original approach via classifying spaces,
see [16].

Theorem 6.1 ([13]). Let G be a group having finitely many conjugacy classes of
finite subgroups. Then an OF G-module M.�/ is of type FPn if and only if M.G=K/

is of type FPn as a Z.WK/-module for each finite subgroup K of G.
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It was also shown ([13]) that a group G is of type FP0 if and only if G has finitely
many conjugacy classes of finite subgroups. Hence we have the following corollary:

Corollary 6.2 ([13]). A group G is of type FPn if and only if G has finitely many
conjugacy classes of finite subgroups and CG.K/ is of type FPn for every finite
subgroup K of G.

Recall that we say a group G is of Bredon type FPn if the trivial module Z.�/ is
of type FPn as an OXG-module. We can, of course rephrase Theorems 5.3 and 5.4
in terms of Bredon cohomology and Bredon homology replacing the module A.�/

with Z.�/, Ext�
X.A;�/ with H�

X.G;�/ and TorX� .�; A/ with HX� .G;�/.
We shall now weaken the hypothesis on the conjugacy classes of finite subgroups.

Definition 6.3. We say a group is of type quasi-FPn if, for each finite subgroup K of
G there are finitely many conjugacy classes of subgroups isomorphic to K and the
Weyl groups WK ´ NG.K/=K are of type FPn.

Note that a group of type quasi-FPn with a bound on the orders of the finite
subgroups is of type FPn.

Let k be a positive integer. We denote by Zk.�/ the OF G-module defined by

Zk.G=H/ D
´

Z if jH j � k;

0 otherwise,

together with the obvious morphisms.

Lemma 6.4. A group G is of type quasi-FP0 if and only if, for each k � 1, the
module Zk.�/ is finitely generated. Moreover, in that case, the finite G-set �k with
ZŒ�; �k� � Zk.�/ can be chosen to have stabilisers of order bounded by k.

Proof. Suppose that G is of type quasi-FP0. Take

�k D
G

jH j�k;up to G-conj.

G=H:

This is a G-finite G-set with stabilisers of order bounded by k and ZŒ�; �k� �
Zk.�/.

For the converse, we need to show that, for each finite subgroup K, there are only
finitely many conjugacy classes of subgroups of order bounded by k D jKj. Let �k

be the finite G-set with ZŒ�; �k� � Zk.�/ and take any finite subgroup H of G with
jH j � k. Hence Zk.G=H/ Š Z ¤ 0. Since the map ZŒG=H; �� � Zk.G=H/ is
onto, it follows that ZŒG=H; �� ¤ 0 and hence H has to be subconjugated to one of
the finitely many stabilisers of �.
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Note that finitely generated OF G-modules are precisely those of type FP0. Fix an
integer k � 1 and let Mk.�/ be an OF G-module such that Mk.G=L/ D 0 whenever
jLj > k. Suppose that Mk.�/ is finitely generated. Then there exists a G-finite
G-set � with stabilisers of order � k and a short exact sequence of OF G-modules

Nk.�/ � ZŒ�; �� � Mk.�/

with the property that Nk.G=L/ D 0 for all finite subgroups L with jLj > k.

Proposition 6.5. A group G is of type quasi-FPn if and only if the OF G-module
Zk.�/ is of type FPn for each integer k � 1.

Proof. The “if”-direction follows from Lemma 6.4, Theorem 6.1, and the definition
as ZjKj.G=H/ is of type FPn as a WH -module for each jH j � jKj.

Now suppose that G is of type quasi-FPn. For each k � 1 we construct a projective
resolution of Zk.�/ which is finitely generated in dimensions up to n; note that we
may assume n > 0. By Lemma 6.4 and the above remark we have a short exact
sequence

C0.�/ � ZŒ�; �0� � Zk.�/

with �0 a G-finite G-set and C0.G=L/ D 0 for all jLj > k. We claim that C0.�/ is
a finitely generated OF G-module.

We know that there are finitely many conjugacy classes of subgroups of or-
der bounded by k. Let H be one of those. As �0 is G-finite, the WH -module
ZŒG=H; �0� is of type FP1. This is a consequence of the fact that for any K,
ZŒG=H; G=K� is a sum of exactly jfx 2 NG.H/nG=K j H x�1 � Kgj WH -
modules, which are of type FP1. As K is finite, this sum must also be finite. So
evaluating the previous short exact sequence at G=H , we see that the WH -module
C0.G=H/ is of type FPn�1 and in particular, finitely generated. Fix a finite WH -
generating set XH for C0.G=H/. Then the OF G-set formed by the union of all those
XH where H 2 Stab �0, generates C0.

We can now proceed to construct the desired resolution by using the remark before
Proposition 6.5.

Theorem 6.6. Let G be of type quasi-FPn, where n � 1. Then G satisfies the local
Bieri–Eckmann criterion for Bredon homology.

Proof. It follows from the definition of the modules Zk.�/ that

Z.�/ D lim�!
k2N

Zk.�/:

In the category of OF G-modules the construction of a free module mapping onto
a given one is functorial. Hence, we can get a direct colimit of free resolutions



Bredon cohomological finiteness conditions for generalisations of Thompson groups 955

lim�!k2N
.F�;k.�/ � Zk.�// D F�.�/ � Z.�/, which gives us a flat resolution of

Z.�/. For details the reader is referred to [22], Lemma 3.4. Hence

HF
k

�
G;

Q
ƒ ZŒG=K;��

� D Hk

� Q
ƒ ZŒG=K;��˝F F�.�/

�
D Hk

� Q
ƒ ZŒG=K;��˝F lim�!k2N

F�;k.�/
�

D lim�!
k2N

Hk

� Q
ƒ ZŒG=K;��˝F F�;k.�/

�
D lim�!

k2N

Tork

� Q
ƒ ZŒG=K;��; Zk.�/

� D 0;

where the last line follows from Proposition 6.5 and Theorem 5.4. The first assertion
follows by a similar argument.

For each k � 1 we consider the family Fk and the orbit category OFk
G. For a

given positive integer k the family Fk consists of all subgroups H of G with jH j � k.
By using the arguments of the proofs of Lemma 6.4 and Proposition 6.5 we can show:

Proposition 6.7. A group is of type quasi-FPn if and only if it is of type Bredon-FPn

over OFk
G for each k.

We can also rephrase Theorems and 5.3 and 5.4:

Corollary 6.8. Let G be a group. Then the following are equivalent:

(i) G is of type quasi-FPn.

(ii) For every exact colimit and any k, the natural homomorphism

lim�!Hl
Fk

.G; M�/! Hl
Fk

.G; lim�!M�/

is an isomorphism for all l � n � 1, and a monomorphism for l D n.

(iii) Foranyk andanyK 2Fk consider anarbitrary direct product
Q

ƒK
ZŒG=K;��.

Then the natural map

HFk

l

� Q
K2Fk

Q
ƒK

ZŒG=K;��; A
�!Q

K2Fk

Q
ƒK

HFk

l
.ZŒG=K;��; A/

is an isomorphism for all l � n � 1 and an epimorphism for l D n.

One may also add the statements analogous to Theorems 5.3 (ii) and 5.4 (ii). Note
also that for n � 1 the above is equivalent to:

(iv) For any k, any K 2 Fk and any arbitrary direct product
Q

ƒK
ZŒG=K;��, the

natural map

Zk.�/˝Fk

Q
K2Fk

Q
ƒK

ZŒG=H;��!Q
K2Fk

Q
ƒK

Zk

is an isomorphism and HFk

l

�
G;

Q
K2Fk

Q
ƒK

ZŒG=H;��
� D 0 for all 1 � l �

n � 1.
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Definition 6.9. We say a group G is of type quasi-F1 if for all positive integers k,
G admits a finite type model for EFk

G.

Analogously to the algebraic case, any group of type quasi-F1, which has a bound
on the orders of the finite subgroups, is of type F1.

Lück’s Theorem [16], Theorem 4.2 (Theorem 1.2) goes through for arbitrary
families of finite subgroups. Hence combining Theorems 1.1 and 1.2 yields:

Proposition 6.10. A group G is of type quasi-F1 if and only if G is of type quasi-FP1
and G and all centralisers CG.K/ of finite subgroups are finitely presented.

We can now prove what is largely equivalent to Proposition 6.7:

Theorem 6.11. A group G is of type quasi-F1 if and only if it admits a model for
EG, which is the mapping telescope of finite type models for EFk

G for each K 2 F .

Proof. The “if”-direction follows directly from the definition. Now suppose we have
finite type models XK for EFk

G for all K 2 F . For each H � K the universal
property for classifying spaces for a family yields G-maps �K

H W XH ! XK . Now
the mapping telescope yields a G-CW-complex X, for which XK is contractible for
all K 2 F and empty otherwise.

7. Bredon cohomological finiteness properties for generalised
Higman–Thompson groups

We can now prove

Theorem 7.1. Let Ur.†/ be a Cantor algebra with order-preserving †. Then the
following conditions are equivalent for 1 � r � d :

(i) Tr.†/ is quasi-FP1.

(ii) Tl.†/ is of (ordinary) type FP1 for any 1 � l � d such that gcd.l; d/jr .

Proof. Assume that (i) holds and take 1 � l � d with gcd.l; d/ jr . This condition
implies that there is some positive integer w with lw � r mod d . Then we may
choose an admissible subset A � Ur.†/ of cardinality lw and consider the subgroup
Q of Tr.†/ defined by cyclic permutations of A on l orbits all of length w. By
Theorem 4.8, CTr .†/.Q/ is an extension of a finite group by Tl.†/ so this last group
must be of type FP1.

Now assume (ii). Observe that for any finite subgroup Q of cardinality w and
any admissible subset Y1 fixed by Q, the observation before Theorem 4.8 implies
that jY1j D lw � r mod d for certain l , thus gcd.l; d/ jdr . This together with
Theorem 4.8 implies that Tr.†/ is quasi-FP1.
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We also have the same result for finiteness conditions on classifying spaces.

Theorem 7.2. Let Ur.†/ be a Cantor algebra with order-preserving †. Then the
following conditions are equivalent:

(i) Tr.†/ is quasi-F1.

(ii) Tl.†/ is of (ordinary) type F1 for any 1 � l � d such that gcd.l; d/jr .

Proof. This follows from Theorem 4.8 exactly as Theorem 7.1.

Corollary 7.3. Let Ur.†/ be a Higman algebra. Then Tn;r D Tr.†/ is quasi-F1.

Proof. This follows directly from [5] and Theorem 7.2.

Corollary 7.4. Let Ur.†/ be a Brown–Stein algebra. Then T D Tr.†/ is quasi-F1.

Proof. This is a consequence of Theorem 7.2 and [24], Theorem 2.5, where it is
proven that Fr.†/ is finitely presented and of type FP1 for any r . Stein’s argument
carries over to G and T , see [24].

Conjecture 7.5. Let Ur.†/ be a Cantor-algebra. Then:

(i) Gr.†/ is quasi-FP1 if and only if Gl.†/ is of (ordinary) type FP1 for any
1 � l � d .

(ii) Gr.†/ is quasi-F1 if and only if Gl.†/ is of (ordinary) type F1 for any 1 �
l � d .

Remark 7.6. Our description of centralisers of finite subgroups implies the “only
if” part of this conjecture. To see this, assume that Gr.†/ is of type quasi-FP1 and
choose for any 1 � l � d positive integers n; s with n � 3 such that ln C s � r

mod d . Then there is some admissible subset Y 2 Ar.†/ of cardinality precisely
lnC s and we may consider the finite group Q Š Sn � Gr.†/ defined by the action
on l orbits of n elements as the natural representation of Sn and acting trivially on
the remaining s elements of Y . Then Theorem 4.4 implies, using the same notation
here, that

CGr .†/.Q/ Š Hl �Hs:

Hence both Hl and Hs are of type FP1. Moreover, Hl is an extension

K1 � Hl � Gl.†/;

where by Remark 4.7 K1 is a direct limit of products of L D CSn
.Sn/ D 1. Thus, in

this case, L D K1 D 1 implying that Gl.†/ is of type FP1.

Remark 7.7. By [5], Proposition 4.1, Fn;r Š Fn;s , for any r; s. However, this is
false for the groups G, in fact Gn;r Š Gn;s implies that gcd.n�1; r/ D gcd.n�1; s/

([10], Theorem 6.4). Recently, Pardo [23] observed that the converse also holds true
(see also [8]).
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