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Isometric group actions and the cohomology of flat fiber bundles
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Abstract. Using methods originating in the theory of intersection spaces, specifically a de
Rham type description of the real cohomology of these spaces by a complex of global differen-
tial forms, we show that the Leray–Serre spectral sequence with real coefficients of a flat fiber
bundle of smooth manifolds collapses if the fiber is Riemannian and the structure group acts
isometrically. The proof is largely topological and does not need a metric on the base or total
space. We use this result to show further that if the fundamental group of a smooth aspherical
manifold acts isometrically on a Riemannian manifold, then the equivariant real cohomology
of the Riemannian manifold can be computed as a direct sum over the cohomology of the group
with coefficients in the (generally twisted) cohomology modules of the manifold. Our results
have consequences for the Euler class of flat sphere bundles. Several examples are discussed
in detail.
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1. Introduction

A fiber bundle with given structure group is flat if the transition functions into the
structure group are locally constant. We show that the method of intersection spaces
introduced in [2], specifically the de Rham description of intersection space coho-
mology given in [3], implies the following result, by a concise and topological proof:

Theorem (Theorem 5.2). Let B , E and F be closed, smooth manifolds with F

oriented. Let � W E ! B be a flat, smooth fiber bundle with structure group H . If

(1) H is a Lie group acting properly (and smoothly) on F ( for example H compact),
or
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(2) F isRiemannianand the images of themonodromyhomomorphisms�1.B; b/ !
H act by isometries on F , where the base-point b ranges over the connected
components of B ,

then the cohomological Leray–Serre spectral sequence of � for real coefficients col-
lapses at the E2-term. In particular, the formula

H k.EI R/ Š L
pCqDk

H p.BI H q.F I R//

holds, where the H q.F I R/ are local coefficient systems on B induced by � , whose
groups are the real cohomology groups of the fiber.

By a result of R. Palais ([15]), condition (1) implies that F can be endowed with
a Riemannian metric such that (2) holds. The isometry group of an m-dimensional,
compact, Riemannian manifold is a compact Lie group of dimension at most
1
2
m.m C 1/. Thus (2) implies (1) by taking H to be the isometry group of F .

In Section 6, we provide an example of a flat, smooth fiber bundle whose structure
group does not act isometrically for any Riemann metric on the fiber, and whose
spectral sequence does not collapse at E2. Hence, conditions (1), (2) in the theorem
cannot be deleted without substitution.

Let us indicate two immediate consequences of the theorem. Let � W E ! B

be an oriented, flat sphere bundle with structure group SO.n/ over a closed, smooth
manifold B . The transgression

dn W E0;n�1
n D H 0.BI H n�1.Sn�1I R// D H n�1.Sn�1I R/

�! En;0
n D H n.BI H 0.Sn�1I R// D H n.BI R/

sends a certain element in E
0;n�1
1 , which corresponds to local angular forms on the

sphere bundle, and which survives to En, to the Euler class of the sphere bundle.
Since SO.n/ is compact, the spectral sequence of the bundle collapses at E2, by the
theorem. Thus dn D 0 and we obtain the following corollary.

Corollary. The real Euler class of an oriented, flat, linear sphere bundle (structure
group SO.n/) over a closed, smooth manifold is zero.

We thus obtain a topological proof, without using the Chern–Weil theory of cur-
vature forms, of a result closely related to the results of [12], Section 4, which do rely
on Chern–Weil theory.

By [16], there is a manifold M 2n with flat tangent bundle and nonzero Euler
characteristic for every n > 1. If the associated tangent sphere bundle of M , with
structure group SO.2n/, were flat, then the Euler class of such a sphere bundle would
vanish according to the above corollary. We arrive at:
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Corollary. For every n > 1, there is a manifold M 2n with flat tangent bundle, whose
linear tangent sphere bundle is not flat.

For the tangent bundles of these manifolds M 2n, the structure group GLC.2n; R/

can be reduced to GLC.2n; R/ with the discrete topology and can also be reduced to
SO.2n/ (by using a metric), but there are no further reductions to SO.2n/ with the
discrete topology.

Our theorem may be applied to the equivariant cohomology H
�

G.�I R/ of certain
discrete groups G:

Theorem (Theorem 7.1). Let F be an oriented, closed, smooth manifold and G

a discrete group, whose Eilenberg–MacLane space K.G; 1/ may be taken to be a
closed, smooth manifold. If for a smooth action of G on F ,

(1) the action factors through a proper, smooth Lie group action, or

(2) F is Riemannian and G acts isometrically on F ,

then there is a decomposition

H k
G.F I R/ Š L

pCqDk

H p.GI H q.F I R//;

where the H q.F I R/ are G-modules determined by the action.

The assumption on G can be paraphrased as requiring G to be the fundamental
group of a closed, (smooth) aspherical manifold. Examples of such groups include
finitely generated free abelian groups, the fundamental groups of closed manifolds
with non-positive sectional curvature, the fundamental groups of surfaces other than
the real projective plane, infinite fundamental groups of irreducible, closed, orientable
3-manifolds, torsion-free discrete subgroups of almost connected Lie groups, and
certain groups arising from Gromov’s hyperbolization technique. Only torsion-free
G can satisfy the hypothesis of the above theorem. Note that in (1) we do not assume
that the image of G is closed in the intermediary Lie group, nor that one can identify
G with a subgroup of the intermediary group, and in (2) we do not assume that the
image of G is closed in the isometry group of F , nor that one can identify G with a
subgroup of the isometries. For instance, the integers G D Z with K.Z; 1/ D S1,
the circle, act isometrically and freely (and ergodically) on the unit circle by powers
of a rotation by an angle which is an irrational multiple of 2� . Theorem 7.1 thus
emphasizes the discrete dynamical systems viewpoint. This example also satisfies
(1), since the powers of the irrational rotation are a subgroup (which is not closed) of
the compact Lie group S1 which acts on itself by (e.g. left) multiplication. The actions
to which the theorem applies need not be proper, nor need our G-spaces be G-CW
complexes, but in many geometric situations, nonproper actions factor through proper
actions in a natural way. (The above Z-action on the circle is not proper, since e.g.
the orbit space is not Hausdorff and orbits are not closed in S1.) Section 7 contains
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a number of corollaries to, applications of, and examples illustrating Theorem 7.1.
For instance, if an integral Heisenberg group Hn acts isometrically on an oriented,
closed, connected, Riemannian manifold F , then

rk H k
Hn

.F / � 2; k D 1; 2;

and H 3
Hn

.F I R/ does not vanish (Corollary 7.8).
In Section 8, we illustrate the use of our results by calculating explicitly an equiv-

ariant cohomology group of a certain action of a free abelian group on the 4-manifold
F D S2 � S2. The action in this example does not factor through a finite group.

The proof of Theorem 5.2 relies on the complex of multiplicatively structured
forms constructed in [3], and the fact that fiberwise truncation in both directions,
yielding a subcomplex in both cases (and not a quotient complex in one case), can
be performed on the multiplicatively structured forms. Such truncations, carried out
homotopy theoretically on the space level (generally a much harder problem), are also
required to build the intersection space I NpX of a stratified pseudomanifold X . The
only analytic tool we need to prove the theorem is the classical Hodge decomposition
– hence the assumption that the fiber must be closed, oriented and Riemannian.
Otherwise, our argument is purely topological in nature, using Čech complexes. No
connections, tensor fields, etc. are used on the base or total space; in particular we
need not assume that B and E are Riemannian. The combinatorial nature of our
proof may lend itself to an extension of our theorem to non-smoothable PL manifolds
B and E and flat PL bundles � W E ! B . In this situation, smooth forms have to
be replaced by Sullivan’s complex zA�

.K/ of piecewise C 1-forms on a simplicial
complex K. We may also recall at this point that there are closed, aspherical PL
manifolds which are not homotopy equivalent to closed, smooth manifolds, [7].

Our Theorem 5.2 is closely related to results of [6] and [14]. Dai and Müller
work with Riemannian E, B and a Riemannian submersion � W E ! B . Using Dai’s
spectral sequence degeneration result from [6], Müller proves that if a flat Riemannian
submersion � has totally geodesic fibers, then the spectral sequence of � collapses at
E2. Let us put this into perspective. A Riemannian submersion whose total space is
complete is a locally trivial fiber bundle. The geometry of a Riemannian submersion
is largely governed by two tensor fields T and A. Let V and H denote the vertical
and horizontal distributions, respectively, that is, at each point x 2 E there is an
orthogonal decomposition Vx ˚ Hx D TxE of the tangent space and Vx is tangent
to the fiber over �.x/. Let V and H also denote the projection of a vector onto Vx

and Hx , respectively. With r the Levi-Civita connection of the metric on E, one sets
for vector fields V , W on E,

TV W D HrVV VW C VrVV HW

and

AV W D HrHV VW C VrHV HW:
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If V , W are vertical, then TV W is the second fundamental form of each fiber. The
identical vanishing T D 0 is equivalent to each fiber being totally geodesic, that
is, geodesics in the fibers are also geodesics for E. This implies that all fibers are
isometric and the holonomy group (which agrees with the structure group of � , at
least when E is complete) is a subgroup of the isometry group of the fiber. The
identical vanishing A D 0 is equivalent to the integrability of H . If H is integrable,
then E is locally isometric to B � F with a metric gB C gF;b , where gB is a metric
on B and fgF;bgb2B is a smooth family of metrics on F . In this situation, the
horizontal foliation yields a flat (Ehresmann) connection for � . For a flat connection,
the holonomy along a path depends only on the homotopy class of the path. Indeed, for
path-connected B , flat bundles with structure group G acting effectively on a fiber F

are in one-to-one correspondence with homomorphisms �1.B/ ! G. In particular,
one may take G to be discrete. A warped product is a Riemannian manifold B � F ,
whose metric has the form gB CfgF , where gF is a fixed metric on F and f W B ! R
is a positive function. If the Riemannian submersion � is locally a warped product,
then H is integrable. When T � 0 and A � 0, the total space E is locally a product
gB C gF , where gF does not depend on points in the base. From [6], Müller isolates
a technical condition, called condition “(B)” in [14], Section 2.3, which for a flat
Riemannian submersion implies collapse of the spectral sequence at E2. He shows
that this condition is satisfied for warped products as well as for totally geodesic
fibers, while Dai shows that collapse at E2 happens for flat Riemannian submersions
satisfying (B).

2. A complex of multiplicatively structured forms on flat bundles

This section reviews the multiplicatively structured form model introduced in [3].
The proofs of the cited results can be found in that paper. For a smooth manifold
M , �

�
.M/ denotes the de Rham complex of smooth differential forms on M . Let

F be a closed, oriented, Riemannian manifold and � W E ! B a flat, smooth fiber
bundle over the closed, smooth n-dimensional base manifold B with fiber F and
structure group the isometries of F . An open cover of an n-manifold is called good if
all nonempty finite intersections of sets in the cover are diffeomorphic to Rn. Every
smooth manifold has a good cover and if the manifold is compact, then the cover can
be chosen to be finite. Let U D fU˛g be a finite good open cover of the base B such
that � trivializes with respect to U. Let f�˛g be a system of local trivializations, that
is, the �˛ are diffeomorphisms such that

��1.U˛/
�˛ ��

�j
�����������

U˛ � F

�1
����

��
��

��
�

U˛
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commutes for every ˛. Flatness implies that the transition functions

�ˇ˛ D �ˇ j B �˛j�1 W .U˛ \ Uˇ / � F ! ��1.U˛ \ Uˇ / ! .U˛ \ Uˇ / � F

are of the form
�ˇ˛.t; x/ D .t; gˇ˛.x//:

The maps gˇ˛ W F ! F are isometries.
If X is a topological space, let �2 W X � F ! F denote the second-factor projec-

tion. Let V � B be a U-small open subset and suppose that V � U˛ .

Definition 2.1. A differential form ! 2 �q.��1.V // is called ˛-multiplicatively
structured if it has the form

! D ��̨ X
j

��
1 �j ^ ��

2 �j ; �j 2 �
�

.V /; �j 2 �
�

.F /

(finite sums).

Flatness is crucial for the following basic lemma.

Lemma 2.2. Suppose that V � U˛ \ Uˇ . Then ! is ˛-multiplicatively structured if,
and only if, ! is ˇ-multiplicatively structured.

The lemma follows from the transformation law

��̨ X
j

��
1 �j ^ ��

2 �j D ��
ˇ

X
j

��
1 �j ^ ��

2 .g�
˛ˇ �j /: (1)

The lemma shows that the property of being multiplicatively structured over V is
invariantly defined, independent of the choice of ˛ such that V � U˛ . We will use
the shorthand notation

U˛0:::˛p
D U˛0

\ � � � \ U˛p

for multiple intersections. (Repetitions of indices are allowed.) Since U is a good
cover, every U˛0:::˛p

is diffeomorphic to Rn, n D dim B . A linear subspace, the
subspace of multiplicatively structured forms, of �q.E/ is obtained by setting

�
q

M�
.B/ D f! 2 �q.E/ j !j��1U˛

is ˛-multiplicatively structured for all ˛g:
The exterior derivative d W �q.E/ ! �qC1.E/ restricts to a differential

d W �
q

M�
.B/ ! �

qC1

M�
.B/:

Thus �
�

M�
.B/ � �

�
.E/ is a subcomplex. We shall eventually see that this inclusion

is a quasi-isomorphism, that is, induces isomorphisms on cohomology. For any ˛,
set

�
�

M� .U˛/ D f! 2 �
�

.��1U˛/ j ! is ˛-multiplicatively structuredg:
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Let r denote the obvious restriction map

r W �
�

M� .B/ !
Y

˛

�
�

M� .U˛/:

If p is positive, then we set

�
�

M� .U˛0:::˛p
/ D f! 2 �

�

.��1U˛0:::˛p
/ j ! is ˛0-multiplicatively structured g:

Lemma 2.2 implies that for any 1 � j � p,

�
�

M� .U˛0:::˛p
/ D f! 2 �

�

.��1U˛0:::˛p
/ j ! is j̨ -multiplicatively structured g:

In particular, if � is any permutation of 0; 1; : : : ; p, then

�
�

M� .U˛�.0/:::˛�.p/
/ D �

�

M� .U˛0:::˛p
/:

The components of an element

	 2
Y

˛0;:::;˛p

�
�

M� .U˛0:::˛p
/

will be written as
	˛0:::˛p

2 �
�

M� .U˛0:::˛p
/:

We impose the antisymmetry restriction 	:::˛i ::: j̨ ::: D �	::: j̨ :::˛i ::: upon interchange
of two indices. In particular, if ˛0; : : : ; ˛k contains a repetition, then 	˛0:::˛k

D 0.
The difference operator

ı W
Y

�
�

.��1U˛0:::˛p
/ !

Y
�

�

.��1U˛0:::˛pC1
/;

defined by

.ı	/˛0:::˛pC1
D

pC1X
j D0

.�1/j 	˛0::: Ǫj :::˛pC1
j��1U˛0:::˛pC1

and satisfying ı2 D 0, restricts to a difference operator

ı W
Y

�
�

M� .U˛0:::˛p
/ !

Y
�

�

M� .U˛0:::˛pC1
/:

Since the de Rham differential d commutes with restriction to open subsets, we have
dı D ıd . Thus

C p.UI �
q

M�
/ D

Y
�

q

M�
.U˛0:::˛p

/

is a double complex with horizontal differential ı and vertical differential d . The
associated simple complex C

�

M�
.U/ has groups

C
j

M�
.U/ D L

pCqDj

C p.UI �
q

M�
/
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in degree j and differential D D ı C .�1/pd on C p.UI �
q

M�
/. We shall refer to

the double complex .C
�
.UI �

�

M�
/; ı; d/ as the multiplicatively structured Čech–de

Rham complex.

Lemma 2.3 (Generalized Mayer–Vietoris sequence). The sequence

0 ! �
�

M� .B/
r�! C 0.UI �

�

M� /
ı�! C 1.UI �

�

M� /
ı�! C 2.UI �

�

M� /
ı�! � � �

is exact.

Let us recall a fundamental fact about double complexes.

Proposition 2.4. If all the rows of an augmented double complex are exact, then the
augmentation map induces an isomorphism from the cohomology of the augmentation
column to the cohomology of the simple complex associated to the double complex.

This fact is applied in showing:

Proposition 2.5. The restriction map r W �
�

M�
.B/ ! C 0.UI �

�

M�
/ induces an iso-

morphism
r� W H

�

.�
�

M� .B// ��!Š H
�

.C
�

M� .U/; D/:

The double complex .C
�
.��1UI �

�
/; ı; d/ given by

C p.��1UI �q/ D
Y

�q.��1U˛0:::˛p
/

can be used to compute the cohomology of the total space E. The restriction map

Nr W �
�

.E/ !
Y

˛

�
�

.��1U˛/ D C 0.��1UI �
�

/

makes C
�
.��1UI �

�
/ into an augmented double complex. By the generalized Mayer–

Vietoris sequence, Proposition 8.5 of [4], the rows of this augmented double complex
are exact. From Proposition 2.4, we thus deduce:

Proposition 2.6. The restriction map Nr W �
�
.E/ ! C 0.��1UI �

�
/ induces an iso-

morphism
Nr� W H

�

.E/ D H
�

.�
�

.E// ��!Š H
�

.C
�

.��1U/; D/;

where .C
�
.��1U/; D/ is the simple complex of .C

�
.��1UI �

�
/; ı; d/.

Regarding Rn � F as a trivial fiber bundle over Rn with projection �1, the mul-
tiplicatively structured complex �

�

M�
.Rn/ is defined by

�
�

M� .Rn/ D f! 2 �
�

.Rn�F / j ! D P
j ��

1 �j ^��
2 �j ; �j 2 �

�
.Rn/; �j 2 �

�
.F /g:
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Let s W Rn�1 ,! R�Rn�1 D Rn be the standard inclusion s.u/ D .0; u/, u 2 Rn�1.
Let q W Rn D R � Rn�1 ! Rn�1 be the standard projection q.t; u/ D u, so that
qs D idRn�1 . Set

S D s � idF W Rn�1 � F ,! Rn � F; Q D q � idF W Rn � F ! Rn�1 � F

so that QS D idRn�1�F . The induced map S� W �
�
.Rn � F / ! �

�
.Rn�1 � F /

restricts to a map
S� W �

�

M� .Rn/ ! �
�

M� .Rn�1/:

The induced map Q� W �
�
.Rn�1 � F / ! �

�
.Rn � F / restricts to a map

Q� W �
�

M� .Rn�1/ ! �
�

M� .Rn/:

Proposition 2.7. The maps

�
�

M�
.Rn/ �

�

M�
.Rn�1/

Q�
��

S�
��

are chain homotopy inverses of each other and thus induce mutually inverse isomor-
phisms

H
�
.�

�

M�
.Rn// H

�
.�

�

M�
.Rn�1//

Q�
��

S�
��

on cohomology.

Let S0 W F D f0g � F ,! Rn � F be the inclusion at 0, inducing a map
S�

0 W �
�

M�
.Rn/ ! �

�
.F /. The map ��

2 W �
�
.F / ! �

�
.Rn � F / restricts to a

map ��
2 W �

�
.F / ! �

�

M�
.Rn/. An induction on n using Proposition 2.7 shows:

Proposition 2.8 (Poincaré lemma for multiplicatively structured forms). The maps

�
�

M�
.Rn/ �

�
.F /

��
2

��

S�
0 ��

are chain homotopy inverses of each other and thus induce mutually inverse isomor-
phisms

H
�
.�

�

M�
.Rn// H

�
.F /

��
2

��

S�
0 ��

on cohomology.

Using the classical Poincaré lemma, this proposition readily implies:
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Proposition 2.9. The inclusion �
�

M�
.Rn/ � �

�
.Rn � F / induces an isomorphism

H
�

.�
�

M� .Rn// Š H
�

.Rn � F /

on cohomology.

Proposition 2.10. For any U˛0:::˛p
, the inclusion

�
�

M� .U˛0:::˛p
/ ,! �

�

.��1U˛0:::˛p
/

induces an isomorphism on cohomology (with respect to the de Rham differential d ).

Since d and ı on the double complex C
�
.UI �

�

M�
/ were obtained by restricting

d and ı on C
�
.��1UI �

�
/, the natural inclusion C

�
.UI �

�

M�
/ ,! C

�
.��1UI �

�
/

is a morphism of double complexes. It induces an isomorphism on vertical (that
is, d -)cohomology by Proposition 2.10. Whenever a morphism of double complexes
induces an isomorphism on vertical cohomology, then it also induces an isomorphism
on the D-cohomology of the respective simple complexes. Consequently, using
Propositions 2.5 and 2.6, one gets:

Theorem 2.11. The inclusion �
�

M�
.B/ ,! �

�
.E/ induces an isomorphism

H
�

.�
�

M� .B// ��!Š H
�

.E/

on cohomology.

3. Fiberwise truncation

Before we discuss fiberwise (co)truncation, we must first discuss (co)truncation over
a point. Again, we refer to [3] for complete proofs of the facts cited in this section.
We shall use the Riemannian metric on F to define truncation 
<k and cotruncation

�k of the complex �

�
.F /. The bilinear form

. � ; � / W �r.F / � �r.F / ! R; .!; �/ 7!
Z

F

! ^ 	�;

where 	 is the Hodge star, is symmetric and positive definite, thus defines an inner
product on �

�
.F /. The codifferential

d � D .�1/m.rC1/C1 	 d	W �r.F / ! �r�1.F /

is the adjoint of the differential d , .d!; �/ D .!; d ��/. The classical Hodge decom-
position theorem provides orthogonal splittings

�r.F / D im d � ˚ Harmr.F / ˚ im d;

ker d D Harmr.F / ˚ im d;

ker d � D im d � ˚ Harmr.F /;
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where Harmr.F / D ker d \ ker d � are the closed and coclosed, i.e. harmonic, forms
on F . In particular,

�r.F / D im d � ˚ ker d D ker d � ˚ im d:

Let k be a non-negative integer.

Definition 3.1. The truncation 
<k�
�
.F / of �

�
.F / is the complex


<k�
�

.F / D � � � ! �k�2.F / ! �k�1.F /
dk�1

���! im d k�1 ! 0 ! 0 ! � � � ;

where im d k�1 � �k.F / is placed in degree k.

The inclusion 
<k�
�
.F / � �

�
.F / is a morphism of complexes. The induced

map on cohomology, H r.
<k�
�
F / ! H r.F /, is an isomorphism for r < k, while

H r.
<k�
�
F / D 0 for r � k.

Definition 3.2. The cotruncation 
�k�
�
.F / of �

�
.F / is the complex


�k�
�

.F / D � � � ! 0 ! 0 ! ker d � dk j��! �kC1.F /
dkC1

���! �kC2.F / ! � � � ;

where ker d � � �k.F / is placed in degree k.

The inclusion 
�k�
�
.F / � �

�
.F / is a morphism of complexes. By construction,

we have H r.
�k�
�
F / D 0 for r < k and the inclusion 
�k�

�
.F / ,! �

�
.F / induces

an isomorphism H r.
�k�
�
F / ��!Š H r.F / in the range r � k. A key advantage of

cotruncation over truncation is that 
�k�
�
F is a subalgebra of .�

�
F; ^/, whereas


<k�
�
F is not.

Proposition 3.3. The isomorphism type of 
�k�
�
F in the category of cochain com-

plexes is independent of the Riemannian metric on F .

Lemma 3.4. Let f W F ! F be a smooth self-map.
(1) f induces an endomorphism f � of 
<k�

�
F .

(2) If f is an isometry, then f induces an automorphism f � of 
�k�
�
F .

We shall next define the fiberwise truncation ft<t �
�

M�
.Rn/ � �

�

M�
.Rn/ and the

fiberwise cotruncation ft�t �
�

M�
.Rn/ � �

�

M�
.Rn/, depending on an integer t . Set

ft<t �
�

M� .Rn/

D f! 2 �
�

.Rn � F / j ! D P
j ��

1 �j ^ ��
2 �j ; �j 2 �

�
.Rn/; �j 2 
<t�

�
.F /g:

The complex ft<t �
�

M�
.Rn/ is a subcomplex of �

�

M�
.Rn/. Define

ft�t �
�

M� .Rn/

D f! 2 �
�

.Rn � F / j ! D P
j ��

1 �j ^ ��
2 �j ; �j 2 �

�
.Rn/; �j 2 
�t�

�
.F /g:
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Again, this is a subcomplex of �
�

M�
.Rn/. Similarly, a subcomplex

ft<t �
�

M� .U˛0:::˛p
/ � �

�

M� .U˛0:::˛p
/

of fiberwise truncated multiplicatively structured forms on ��1.U˛0:::˛p
/ is given by

requiring every �j to lie in 
<t�
�
.F /. This is well defined by the transformation law

(1) together with Lemma 3.4 (1). A subcomplex

ft�t �
�

M� .U˛0:::˛p
/ � �

�

M� .U˛0:::˛p
/

of fiberwise cotruncated multiplicatively structured forms on ��1.U˛0:::˛p
/ is given

by requiring every �j to lie in 
�t�
�
.F /. This is well defined by the transformation

law and Lemma 3.4 (2). (At this point, it is used that the transition functions of the
bundle are isometries.)

Let S W Rn�1 � F ,! Rn � F , Q W Rn � F ! Rn�1 � F , be as in Section 2. The
induced map S� W �

�

M�
.Rn/ ! �

�

M�
.Rn�1/ restricts to a map

S� W ft<t �
�

M� .Rn/ ! ft<t �
�

M� .Rn�1/:

The induced map Q� W �
�

M�
.Rn�1/ ! �

�

M�
.Rn/ restricts to a map

Q� W ft<t �
�

M� .Rn�1/ ! ft<t �
�

M� .Rn/:

Lemma 3.5. The maps

ft<t �
�

M�
.Rn/ ft<t �

�

M�
.Rn�1/

Q�
��

S�
��

are chain homotopy inverses of each other and thus induce mutually inverse isomor-
phisms

H
�
.ft<t �

�

M�
.Rn// H

�
.ft<t �

�

M�
.Rn�1//

Q�
��

S�
��

on cohomology.

As in Section 2, let S0 W F D f0g � F ,! Rn � F be the inclusion at 0. The
induced map S�

0 W �
�

M�
.Rn/ ! �

�
.F / restricts to a map S�

0 W ft<t �
�

M�
.Rn/ !


<t�
�
.F /. The map ��

2 W �
�
.F / ! �

�

M�
.Rn/ restricts to a map ��

2 W 
<t�
�
.F / !

ft<t �
�

M�
.Rn/. An induction on n using Lemma 3.5 shows:

Lemma 3.6 (Poincaré lemma for truncated forms). The maps

ft<t �
�

M�
.Rn/ 
<t�

�
.F /

��
2

��

S�
0 ��
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are chain homotopy inverses of each other and thus induce mutually inverse isomor-
phisms

H r.ft<t �
�

M�
.Rn// H r.
<t�

�
.F // Š

´
H r.F /; r < t;

0; r � t;��
2

��

S�
0 ��

on cohomology.

An analogous argument, replacing 
<t�
�
.F / by 
�t�

�
.F /, proves a version for

fiberwise cotruncation:

Lemma 3.7 (Poincaré lemma for cotruncated forms). The maps

ft�t �
�

M�
.Rn/ 
�t�

�
.F /

��
2

��

S�
0 ��

are chain homotopy inverses of each other and thus induce mutually inverse isomor-
phisms

H r.ft�t �
�

M�
.Rn// H r.
�t�

�
.F // Š

´
H r.F /; r � t;

0; r < t;��
2

��

S�
0 ��

on cohomology.

4. Čech presheaves

Let M be a smooth manifold and V D fV˛g be a good open cover of M . The cover V
gives rise to a category C.V/, whose objects are all finite intersections V˛0:::˛p

of open
sets V˛ in V and an initial object ¿, the empty set. The morphisms are inclusions.
A Čech presheaf H on V is a contravariant functor H W C.V/ ! R-MOD into the
category R-MOD of real vector spaces and linear maps, such that H .¿/ D 0. A
homomorphism H ! G of Čech presheaves on V is a natural transformation from
H to G . The homomorphism is an isomorphism if H .V˛0:::˛p

/ ! G .V˛0:::˛p
/ is

an isomorphism for every object V˛0:::˛p
in C.V/. Let H be a real vector space.

The presheaf H is said to be locally constant with group H if all H .V˛0:::˛p
/, for

V˛0:::˛p
¤ ¿, are isomorphic to H and all linear maps H .V˛0:::˛p

/ ! H .Vˇ0:::ˇq
/

for nonempty inclusions Vˇ0:::ˇq
� V˛0:::˛p

are isomorphisms. A Čech presheaf H

on V possesses p-cochains

C p.VI H / D
Y

˛0;:::;˛p

H .V˛0:::˛p
/
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and a Čech differential ı W C p.VI H / ! C pC1.VI H / making C
�
.VI H / into a

complex. Its cohomology H p.VI H / is the Čech cohomology of the cover V with
values in H . An isomorphism H ��!Š G of two presheaves on V induces an
isomorphism of cohomology groups H

�
.VI H / ��!Š H

�
.VI G /. Let L be a locally

constant sheaf on M . Then L defines in particular a locally constant presheaf on
V (since V is good, LjV is constant for every V 2 Ob C.V/) so that H

�
.VI L/ is

defined. Then, as H q.V˛0:::˛p
I L/ D 0 for q > 0, there is a canonical isomorphism

H
�

Sh.M I L/ Š H
�
.VI L/ according to [5], Thm. III.4.13, where H

�

Sh.M I L/ denotes
sheaf cohomology. In particular, the Čech cohomology groups of V with values in
L are independent of the good cover used to define them. By [5], Cor. III.4.12, these
groups are furthermore canonically isomorphic to the Čech cohomology of M with
coefficients in L, {H �

.M I L/. If we view L as a local coefficient system on M ,
then the singular cohomology H

�
.M I L/ is defined and a canonical isomorphism

H
�

Sh.M I L/ Š H
�
.M I L/ is provided by [5], Thm. III.1.1.

Let us return to the good cover U on our base space B . We shall define three Čech
presheaves on U. Define H q.F / by

H q.F /.U / D H q.��1U /; U 2 Ob C.U/:

The structural morphisms associated to inclusions are given by restriction of forms.
Since all nonempty objects U in C.U/ are diffeomorphic to Rn, and the bundle
� W E ! B trivializes over every such U , the classical Poincaré lemma implies that
H q.F / is a locally constant presheaf with group H q.F /, the de Rham cohomology
of the fiber. Define the presheaf H

q

M�
.F / by

H
q

M�
.F /.U / D H q.�

�

M� .U //; U 2 Ob C.U/:

According to Proposition 2.10, the inclusion �
�

M�
.U / � �

�
.��1U / induces an

isomorphism H
q

M�
.F /.U / ��!Š H q.F /.U / for every nonempty U 2 Ob C.U/. If

V 2 Ob C.U/ is an open set with V � U , then the commutative square

�
�

M�
.U / � � ��

restr
��

�
�
.��1U /

restr
��

�
�

M�
.V / � � �� �

�
.��1V /

induces a commutative square

H
q

M�
.F /.U /

Š ��

restr
��

H q.F /.U /

restr

��

H
q

M�
.F /.V /

Š �� H q.F /.V /.

Thus the inclusion of multiplicatively structured forms induces an isomorphism

H
q

M�
.F / ��!Š H q.F /
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of presheaves for every q. In particular, H
q

M�
.F / is also locally constant with group

H q.F /. The isomorphism induces furthermore an isomorphism

H p.UI H
q

M�
.F // ��!Š H p.UI H q.F // (2)

of Čech cohomology groups. Define the presheaf H
q
�t .F / by

H
q
�t .F /.U / D H q.ft�t �

�

M� .U //; U 2 Ob C.U/; U ¤ ¿:

Since U ¤ ¿ is diffeomorphic to Rn and the bundle � W E ! B trivializes over U ,
the Poincaré Lemma 3.7 for cotruncated forms implies that the restriction S�

0 of a
form to the fiber over the origin of U Š Rn induces an isomorphism

H
q
�t .F /.U /

Š��!
S�

0

H q.F /

for q � t , whereas H
q
�t .F /.U / D 0 for q < t . If V 2 Ob C.U/ is a nonempty open

set with V � U , then the commutative diagram

ft�t �
�

M�
.U /

S�
0 ��

restr
��


�t�
�
.F /

ft�t �
�

M�
.V /

S�
0

�������������

(assuming, without loss of generality, that the origin of U lies in V ) induces a com-
mutative diagram

H
q
�t .F /.U /

Š
S�

0

��

restr
��

H q.F /

H
q
�t .F /.V /

Š
S�

0

�������������

for q � t . The restriction induces an isomorphism H
q
�t .F /.U / ��!Š H

q
�t .F /.V /.

Therefore, when q � t , H
q
�t .F / is a locally constant presheaf with group H q.F /.

Moreover, the commutative diagram

ft�t �
�

M�
.U /

S�
0 ��

� �

��

�
�
.F /

�
�

M�
.U /

S�
0

������������

induces, for q � t , a commutative diagram

H
q
�t .F /.U /

Š
S�

0

��

��

H q.F /

H
q

M�
.F /.U /,

Š
S�

0

�������������
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using Proposition 2.8. Thus H
q
�t .F /.U / ! H

q

M�
.F /.U / is an isomorphism for

q � t . Since it commutes with restriction to smaller open sets, we obtain the following
result.

Lemma 4.1. For q < t , the presheaf H
q
�t .F / is trivial, H

q
�t .F / D 0. For q � t ,

H
q
�t .F / is locally constant with group H q.F / and the inclusion ft�t �

�

M�
.�/ �

�
�

M�
.�/ induces an isomorphism

H
q
�t .F / ��!Š H

q

M�
.F /

of presheaves.

5. The spectral sequence of a flat, isometrically structured bundle

Let .K; ı; d/ be the double complex

Kp;q D C p.��1UI �q/ D
Y

˛0;:::;˛p

�q.��1U˛0:::˛p
/

defined in Section 2. The spectral sequence of the fiber bundle � W E ! B is the
spectral sequence E.K/ D fEr ; drg of K. Its E1-term is

E
p;q
1 D H

p;q

d
.K/ D

Y
˛0;:::;˛p

H q.��1U˛0:::˛p
/ D C p.UI H q.F //:

Since d1 D ı on E1, the E2-term is

E
p;q
2 D H p.UI H q.F //:

Let H q.F / be the Leray sheaf of � W E ! B , that is, the higher direct image sheaf
Rq��RE , where RE denotes the constant sheaf with stalk R on E. The Leray sheaf
H q.F / is the sheafification of the presheaf A on B given by A.U / D H q.��1U /,
U � B open ([8], Prop. III.8.1). Let Fb D ��1.fbg/ denote the fiber over a point
b 2 B . The restriction maps H

�
.��1U / ! H

�
.Fu/, u 2 U , induce an isomorphism

H
�

.F /u ��!Š H
�

.Fu/;

where H
�
.F /u is the stalk of H

�
.F / at u, [5], Prop. IV.4.2. By [5], Cor. IV.7.3,

H q.F / is locally constant. As explained in Section 4, a locally constant sheaf H q.F /

determines a locally constant Čech presheaf of sections H q.F /U D �.�I H q.F //

on the cover U such that

H
�

Sh.BI H q.F // Š H
�

.UI H q.F /U/:
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Lemma 5.1. The canonical map H q.F /.U / ! �.U I H q.F //, U 2 Ob C.U/,
given by sending a cohomology class x 2 H q.��1U / to the section u 7! xu, u 2 U

(where xu is the germ of x at u), defines an isomorphism H q.F / Š H q.F /U of
Čech presheaves on U.

Proof. The diagram

H q.F /.U / D H q.��1U / ��

restr
��

�.U I H q.F //

ev

��

H q.Fu/ H q.F /uŠ
��

commutes, where the right hand vertical map is evaluation, sending a section over U

to its value at u. For nonempty U 2 Ob C.U/, ��1.U / Š U � F Š Rn � F and the
left hand vertical restriction map is an isomorphism, e.g. by the Künneth theorem.
The evaluation map is an isomorphism because H q.F / is locally constant and thus
constant on U Š Rn. Thus H q.F /.U / ! �.U I H q.F // is an isomorphism for
every U 2 Ob C.U/.

(We do not claim, of course, that there is an isomorphism A Š �.�I H q.F //

of presheaves on B .) Using this lemma and [5], Thm. III.1.1, the E2-term can be
identified as

E
p;q
2 D H p.UI H q.F // Š H p.UI H q.F /U/

Š H
p
Sh.BI H q.F // Š H p.BI H q.F //;

where in the last group, the singular cohomology group, we have interpreted the Leray
sheaf as a local coefficient system.

Theorem 5.2. Let F be a closed, oriented, Riemannian manifold and � W E ! B a
flat, smooth fiber bundle over the closed, smooth base manifold B with fiber F and
structure group the isometries of F . Then the spectral sequence with real coefficients
of � W E ! B collapses at the E2-term.

Proof. Using multiplicatively structured forms, we first build a smaller model KM�

of K. The spectral sequences of KM� and K will be shown to be isomorphic (from
the E2-term on). In Section 2, we introduced the multiplicatively structured Čech–de
Rham double complex KM� D .C

�
.UI �

�

M�
/; ı; d/. In bidegree .p; q/ it is given by

K
p;q

M�
D C p.UI �

q

M�
/ D

Y
˛0;:::;˛p

�
q

M�
.U˛0:::˛p

/:

The vertical cohomology of KM� is

H
p;q

d
.KM� / D

Y
˛0;:::;˛p

H q.�
�

M� .U˛0:::˛p
// D C p.UI H

q

M�
.F //:
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The core of the argument is the construction of a filtration of KM� by cotruncated
double complexes K�t � KM� , where t is an integer. The group in bidegree .p; q/

is
K

p;q
�t D C p.UI .ft�t �

�

M� /q/ D
Y

˛0;:::;˛p

.ft�t �
�

M� .U˛0:::˛p
//q:

The vertical differential is given by the (restriction of the) de Rham differential d , and
the horizontal differential is given by the Čech differential ı. The vertical cohomology
of K�t is

H
p;q

d
.K�t / D

Y
˛0;:::;˛p

H q.ft�t �
�

M� .U˛0:::˛p
// D C p.UI H

q
�t .F //:

The double complex KM� determines a spectral sequence

E.KM� / D fEM�;r ; dM�;rgI
the double complex K�t determines a spectral sequence

E.K�t / D fE�t;r ; d�t;rg;
cf. [4], Thm. 14.14, p. 165. The inclusions of complexes

ft�t �
�

M� .U / � �
�

M� .U / � �
�

.��1U /; U 2 Ob C.U/;

induce inclusions of double complexes

K�t � KM� � K:

A map of double complexes induces a morphism of the associated spectral sequences.
Thus the above inclusions induce morphisms

E.K�t /
e�! E.KM� /

f�! E.K/:

Let us show that the differentials dM�;2 vanish. This will then provide the induction
basis for an inductive proof that all dM�;r , r � 2, vanish. The term EM�;1 is given
by

E
p;q

M�;1
D H

p;q

d
.KM� / D C p.UI H

q

M�
.F //:

Since dM�;1 D ı, we have

E
p;q

M�;2
D H

p

ı
.UI H

q

M�
.F //;

the Čech cohomology of U with values in the presheaf H
q

M�
.F /. The term E�t;1 is

given by
E

p;q
�t;1 D H

p;q

d
.K�t / D C p.UI H

q
�t .F //:
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Since d�t;1 D ı, we have

E
p;q
�t;2 D H

p

ı
.UI H

q
�t .F //:

Set t D q. Since e is a morphism of spectral sequences, we have a commutative
square

E
p;q
�t;2

e
p;q
2 ��

d
p;q
�t;2

��

E
p;q

M�;2

d
p;q

M�;2

��

E
pC2;q�1
�t;2

e
pC2;q�1
2 �� E

pC2;q�1

M�;2
.

In view of the above identifications of E2-terms, this can be rewritten as

H p.UI H
q
�t .F //

e
p;q
2 ��

d
p;q
�t;2

��

H p.UI H
q

M�
.F //

d
p;q

M�;2

��

H pC2.UI H
q�1
�t .F //

e
pC2;q�1
2 �� H pC2.UI H

q�1

M�
.F //.

Our choice of t together with Lemma 4.1 implies that e
p;q
2 is an isomorphism. There-

fore, we can express d
p;q

M�;2
as the composition

d
p;q

M�;2
D e

pC2;q�1
2 B d

p;q
�t;2 B .e

p;q
2 /�1: (3)

As q �1 < t , we have H
q�1
�t .F / D 0 by Lemma 4.1, and so H pC2.UI H

q�1
�t .F // D

0, d
p;q
�t;2 D 0 and e

pC2;q�1
2 D 0. By (3), d

p;q

M�;2
D 0.

We shall next show that for arbitrary t , d�t;2 D 0. Given any bidegree .p; q/,
there are two cases to consider: q � 1 < t and q � 1 � t . If q � 1 < t , then we have
E

pC2;q�1
�t;2 D H pC2.UI H

q�1
�t .F // D 0, so that d

p;q
�t;2 W E

p;q
�t;2 ! E

pC2;q�1
�t;2 D 0 is

zero. If q � 1 � t , then e
pC2;q�1
2 is an isomorphism by Lemma 4.1 and

d
p;q
�t;2 D .e

pC2;q�1
2 /�1 B d

p;q

M�;2
B e

p;q
2 D 0

since d
p;q

M�;2
D 0. Thus d�t;2 D 0 for any t .

For r � 2, let P.r/ denote the package of statements

� dM�;r D 0 and d�t;r D 0 for all t ,
� E

p;q

M�;r
D H p.UI H

q

M�
.F // and E

p;q
�t;r D H p.UI H

q
�t .F // for all t , and

� er D e2.

We have shown that P.2/ holds. We shall now show for r � 3 that if P.r � 1/ holds,
then P.r/ holds. The vanishing of the differentials in the Er�1-terms implies that

E
p;q

M�;r
D E

p;q

M�;r�1
D H p.UI H

q

M�
.F //
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and

E
p;q
�t;r D E

p;q
�t;r�1 D H p.UI H

q
�t .F //:

Furthermore, as e is a morphism of spectral sequences, we have

ep;q
r D H p;q.er�1/ D e

p;q
r�1 D e

p;q
2 :

Hence the commutative square

E
p;q
�t;r

e
p;q
r ��

d
p;q
�t;r

��

E
p;q

M�;r

d
p;q

M�;r

��

E
pCr;q�rC1
�t;r

e
pCr;q�rC1
r �� E

pCr;q�rC1

M�;r

can be rewritten as

H p.UI H
q
�t .F //

e
p;q
2 ��

d
p;q
�t;r

��

H p.UI H
q

M�
.F //

d
p;q

M�;r

��

H pCr.UI H
q�rC1
�t .F //

e
pCr;q�rC1
2 �� H pCr.UI H

q�rC1

M�
.F //.

Again take t D q. Then e
p;q
2 is an isomorphism and the factorization

d
p;q

M�;r
D e

pCr;q�rC1
2 B d

p;q
�t;r B .e

p;q
2 /�1

shows that d
p;q

M�;r
D 0 because H pCr.UI H

q�rC1
�t .F // D 0 by q � r C 1 < t

(r � 3). For arbitrary t , d�t;r D 0. For if q � r C 1 < t , then E
pCr;q�rC1
�t;r D

H pCr.UI H
q�rC1
�t .F // D 0 so that d

p;q
�t;r D 0, while for q � r C 1 � t , the

map e
pCr;q�rC1
2 is an isomorphism and d

p;q
�t;r D 0 follows from the factorization

d
p;q
�t;r D .e

pCr;q�rC1
2 /�1 B d

p;q

M�;r
B e

p;q
2 and the fact that dM�;r D 0. This induction

shows that dM�;r D 0 for all r � 2. We conclude that E.KM� / collapses at the
E2-term. This will now be used to prove that E.K/ collapses at E2.

Since f is a morphism of spectral sequences, we have for every .p; q/ a commu-
tative square

E
p;q

M�;2

f
p;q

2 ��

0Dd
p;q

M�;2

��

E
p;q
2

d
p;q
2

��

E
pC2;q�1

M�;2

f
pC2;q�1

2 �� E
pC2;q�1
2 ,
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which can be rewritten as

H p.UI H
q

M�
.F //

f
p;q

2 ��

0

��

H p.UI H q.F //

d
p;q
2

��

H pC2.UI H
q�1

M�
.F //

f
pC2;q�1

2 �� H pC2.UI H q�1.F //.

By (2), f
p;q

2 is an isomorphism for all .p; q/. Thus d2 D 0 on E2. The fact that f2

is an isomorphism implies that fr is an isomorphism for all r � 2. This shows, since
dM�;r D 0 for all r � 2, that d

p;q
r D 0 for all r � 2. Consequently, E.K/ collapses

at the E2-term, as was to be shown.

6. Nonisometrically structured flat bundles

We construct an example of a flat, smooth circle bundle whose Leray–Serre spectral
sequence with real coefficients does not collapse at the E2-term. The example shows,
then, that in Theorem 5.2 one cannot delete without substitution the requirement that
the structure group act isometrically. The example is based on constructions of
J. Milnor, cf. [12], [13].

Let B be a closed Riemann surface of genus 2. Its universal cover zB is conformally
diffeomorphic to the complex upper half plane H D fz 2 C j Im z > 0g. The
fundamental group �1.B/ acts on H biholomorphically as the deck transformations.
The group of biholomorphic automorphisms of H is PSL.2; R/, acting as Möbius
transformations

z 7! az C b

cz C d
; a; b; c; d 2 R; ad � bc D 1:

This yields a faithful representation �1B ! PSL.2; R/. The operation of PSL.2; R/

on H extends naturally to the closure xH D H [ R [ f1g of H in C [ f1g. In
particular, PSL.2; R/ acts on the boundary circle @ xH D R[f1g and we can form the
flat circle bundle � with projection � W E D zB ��1B .R [ f1g/ ! B and structure
group PSL.2; R/. Recall that any orientable, possibly nonlinear, sphere bundle 	

with structure group Diff.Sn�1/ has a real Euler class e.	/ 2 H n.M I R/, where
M is the base manifold. Since our bundle � can be identified (though not linearly)
with the tangent circle bundle S.TB/ of B (see [13]), the Euler number he.�/; ŒB�i
of � is the Euler characteristic .B/ D �2. As the Euler class is transgressive and
not zero, the differential d2 W E

0;1
2 ! E

2;0
2 is nontrivial and the spectral sequence

of � does not collapse at E2. In more detail, let � 2 E
0;1
1 D C 0.UI H 1.S1// be

the element corresponding to the usual angular forms on E ([4], Remark 14.20).
Since � is orientable, d1.�/ D ı.�/ D 0 and � determines a class Œ�� 2 E

0;1
2 D
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H 0.BI H 1.S1//. We have e.�/ D ˙d2Œ�� for the transgression

d2 W E
0;1
2 D H 0.BI H 1.S1// ! E

2;0
2 D H 2.BI H 0.S1// D H 2.BI R/:

It follows from Theorem 5.2 that there is no Riemannian metric on S1 D R [ f1g
such that the action of �1.B/ on R [ f1g is isometric. This statement will now be
affirmed directly, without appealing to the theorem.

Proposition 6.1. There is no Riemannian metric on R [ f1g such that the Fuchsian
group given by the image of the representation �1B ! PSL.2; R/ acts isometrically
on R [ f1g.
Proof. By contradiction; suppose there were such a metric. The image � � PSL.2; R/

of the faithful representation �1B ! PSL.2; R/ is a cocompact surface Fuchsian
group and hence all nontrivial elements of � are hyperbolic, that is, jtrX j > 2 for
X 2 � � f1g. Let X be such an element. Any hyperbolic element of PSL.2; R/ has
precisely two fixed points in xH , both of which lie in R [ f1g. In particular, X has
a finite, real fixed point x. Let v 2 Tx.R [ f1g/ be any nonzero tangent vector at
this fixed point. If

X� W Tx.R [ f1g/ ! TX.x/.R [ f1g/ D Tx.R [ f1g/
denotes the differential of X W R[f1g ! R[f1g at x, then X�.v/ D �v for some
nonzero scalar � 2 R and

j�j � kvkx D k�vkx D kX�.v/kx D kvkx;

where k � kx is the putative �-invariant norm, evaluated at x. Consequently, X�.v/ D
˙v. Let t be the standard coordinate in R � R [ f1g and write

X.t/ D at C b

ct C d
; a; b; c; d 2 R; ad � bc D 1; ja C d j > 2:

Taking v to be the standard basis vector v D @t , we have X�.@t / D dX
dt

.x/ � @t and
thus ˇ̌̌

ˇdX

dt
.x/

ˇ̌̌
ˇ D 1:

In fact, however, the derivative of a hyperbolic Möbius transformation in PSL.2; R/

at a finite, real fixed point is never ˙1. Indeed, if c ¤ 0, then

x D 1

2c
.a � d ˙ p

�/;

where � is the discriminant � D tr2 X � 4 > 0, and if c D 0, then x D �b=.a � d/.
(Note that c D 0 and X hyperbolic implies that a ¤ d .) The derivative of X is given
by dX=dt D .ct C d/�2. Brief calculations verify that .cx C d/2 cannot be 1 at the
above points x, for hyperbolic X .
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This example illustrates that when modifying the structure group of a fiber bundle,
there is a tension between flatness and compactness of the structure group: For a flat
bundle with noncompact structure group, one can often reduce to a compact group,
but in doing so may be forced to give up flatness. Conversely, given a compactly
structured bundle which is not flat, one may sometimes gain flatness at the expense
of enlarging the structure group to a noncompact group. For example, identifying the
flat PSL.2; R/-bundle � with S.TB/, one may give � the structure group SO.2/, but
one loses flatness (S.TB/ is not a flat SO.2/-bundle).

7. Equivariant cohomology

We turn our attention to isometric actions of discrete, torsion-free groups. The actions
considered here are usually not proper, and our G-spaces are generally not G-CW
complexes. Concerning condition (1) of Theorem 7.1 below, we remark again that
a nonproper action factors in many geometric situations through a proper action; for
instance, a discrete, torsion-free group may act nonproperly on a closed manifold,
but in such a way that the manifold can be endowed with an invariant Riemannian
metric – in that case, the action factors through the (proper) action of the compact
isometry group.

Theorem 7.1. Let F be an oriented, closed, smooth manifold and G a discrete
group, whose Eilenberg–MacLane space K.G; 1/ may be taken to be a closed, smooth
manifold. If for a smooth action of G on F ,

(1) the action factors through the proper, smooth action of a Lie group, or

(2) F is Riemannian and G acts isometrically on F ,

then the real G-equivariant cohomology of F decomposes as

H k
G.F I R/ Š L

pCqDk

H p.GI H q.F I R//;

where the H q.F I R/ are G-modules determined by the action.

Proof. If (1) is satisfied, that is, the action of G on F factors as G ! H ! Diffeo.F /

with H a Lie group acting properly, then F can be equipped with an H -invariant
Riemannian metric, by [15]. Then H , and thus also G, acts isometrically on F so
that it suffices to prove the theorem assuming hypothesis (2). Let B ' K.G; 1/ be
an aspherical, closed, smooth manifold with fundamental group G. The universal
cover zB ! B can serve as a model for the universal principal G-bundle EG ! BG

because it is a principal G-bundle with contractible total space zB , as follows from the
fact that zB is a simply connected CW-complex and �i . zB/ Š �i .B/ D 0 for i � 2.
We recall that the Borel construction F �G EG is the orbit space .F �EG/=G, where
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G acts diagonally on the product F � EG. The G-equivariant cohomology of F is
the cohomology of the Borel construction,

H
�

G.F / D H
�

.F �G EG/:

Using the model zB ! B , this may be computed as

H
�

G.F / D H
�

.F �G
zB/:

The space F �G
zB is the total space of a flat fiber bundle

F
� � �� F �G

zB

��

B ,

whose projection is induced by the second-factor projection F � zB ! zB . Since
G acts isometrically on F , Theorem 5.2 applies and we conclude that the Leray–
Cartan–Lyndon spectral sequence for real coefficients of the G-space F collapses at
the E2-term. In particular,

H k
G.F I R/ Š H k.F �G

zBI R/

Š L
pCqDk

H p.BI H q.F I R//

Š L
pCqDk

H p.GI H q.F I R//:

Remark 7.2. If F
i! E ! B is any fibration with B path-connected such that

the restriction i� W H
�
.EI R/ ! H

�
.F I R/ is surjective (i.e. the fiber is “totally

nonhomologous to zero in E”), then the action of �1B on H
�
.F I R/ is trivial (as the

map f� W Fb ! Fb0 associated to a path � in B from b to b0 comes, by the homotopy
lifting property, with a homotopy Fb � I ! E between the inclusion of Fb in E and
f� followed by the inclusion of Fb0 in E) and the spectral sequence of the fibration
collapses at E2, yielding the Leray–Hirsch theorem ([11], Thm. 5.10, p. 148). Our
results apply to situations where i� needs not be surjective. In Section 8, we consider
an example of a certain Z3-action on the manifold F 4 D S2 � S2. This action is
nontrivial even on cohomology and thus i� is not surjective in this example. Indeed,
if ŒS2� 2 H2.S2/ is the fundamental class and u 2 H 2.S2I R/ denotes the generator
with hu; ŒS2�i D 1, then for instance u � 1 2 H 2.F 4I R/ is not in the image of i�.

Let us discuss some immediate consequences of Theorem 7.1. For a G-module
H , let H G D fv 2 H j gv D v for all g 2 Gg denote the subspace of invariant
elements.
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Corollary 7.3. Let F be an oriented, closed, connected, smooth manifold and G a
discrete group as in Theorem 7.1, acting smoothly on F so that hypothesis (1) or (2)
is satisfied. Then there is a monomorphism

H k.GI R/ ˚ H k.F I R/G ,! H k
G.F I R/

for k � 1.

Proof. For k � 1, the direct sum of Theorem 7.1 contains the term H k.GI H 0.F I R//

and the term H 0.GI H k.F I R//. The former is isomorphic to H k.GI R/, since G

acts trivially on H 0.F I R/ and H 0.F I R/ Š R as F is connected. The latter is
isomorphic to H k.F I R/G .

In particular, we obtain lower bounds for the ranks of the equivariant groups in
terms of the ranks of the group cohomology.

Corollary 7.4. In the situation of Corollary 7.3, the inequalities

rk H k.G/ � rk H k
G.F /

hold for k � 0.

If a G-space F has a fixed point, then � W F �G EG ! BG has a section given by
Œe� 7! Œ.f; e/�, where f is a fixed point. Consequently, �� W H

�
.G/ ! H

�

G.F / is a
monomorphism. Note that our results concern group actions that may be fixed-point-
free, even free. (See Example 7.6 below.) Let cdR G denote the R-cohomological
dimension of a group G, that is, the smallest n 2 N [ f1g such that H k.GI R/

vanishes for all k > n. For a topological space X , let cdR X be the smallest n 2
N [ f1g such that the singular cohomology H k.X I R/ vanishes for all k > n.

Corollary 7.5. In the situation of Corollary 7.3, the inequality

cdR G � cdR.F �G EG/

holds.

Proof. Suppose that n D cdR G is finite. Then H n.GI R/ is not zero. By Corol-
lary 7.4, H n

G.F I R/ is not zero and it follows that cdR.F �GEG/ � n. If cdR G D 1,
then for every n 2 N, there exists an N � n such that H N .F �GEGI R/ ¤ 0, whence
cdR.F �G EG/ D 1.

Although the underlying spaces of the G-actions considered in this paper are
smooth manifolds, and hence can be given a (regular) CW-structure, no such structure
can usually be found that would make the G-space into a G-complex. A G-complex
is a CW-complex together with a G-action which permutes the cells. A compact
G-complex can be free only when G is finite. But nontrivial finite groups cannot
arise as fundamental groups of closed aspherical manifolds. On the other hand, free
actions can occur in the context of Theorem 7.1, as the following example shows.
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Example 7.6. Let G D Z act freely on F D S1 by powers of a rotation by an
angle which is an irrational multiple of 2� . The quotient topology on the orbit space
S1=Z is the coarse topology, that is, the only open sets in S1=Z are the empty set
and S1=Z. The coarse topology on a set X has the property that any map Y ! X is
continuous. In particular, the map H W X�I ! X given by H.x; t/ D x for t 2 Œ0; 1/

and H.x; 1/ D x0 for all x 2 X , where x0 2 X is a base-point, is continuous.
Thus X is homotopy equivalent to a point and therefore acyclic. This shows that
cdR.S1=Z/ D 0. Since cdR Z D cdR S1 D 1, the inequality cdR G � cdR.F=G/

does not hold and consequently, by Corollary 7.5, we have

cdR.F �G EG/ ¤ cdR.F=G/;

despite the fact that the action is free. This also emphasizes that it is prudent to observe
carefully the hypotheses of the Vietoris–Begle mapping theorem in attempting to
apply it to the map F �G EG ! F=G for a free action.

Example 7.6 illustrates once again that the actions considered in the present paper
are generally not proper, since their orbits need not be closed. Furthermore, the
isotropy groups for a proper G-CW complex are compact (so finite if G is discrete).
The isotropy groups arising for our actions can be infinite. (Consider the trivial Z-
action, or a Z-action that factors through a finite cyclic group.) For a proper G-CW
complex X , a result of W. Lück [9], Lemma 6.4, based on [10], Lemma 8.1, asserts
that the projection X �G EG ! X=G induces an isomorphism

Hn.X �G EGI Q/ ��!Š Hn.X=GI Q/:

For the actions arising in our Theorem 7.1, the groups Hn.X �G EGI Q/ and
Hn.X=GI Q/ are generally not isomorphic, as Example 7.6 shows.

Let us consider some specific groups.

Corollary 7.7. If Zn acts isometrically on an oriented, closed, connected, Riemann-
ian manifold F , then

rk H k
Zn.F / �

�
n

k

�
;

with equality for k D 0.

Proof. The inequality follows from Corollary 7.4 by observing that we may take
K.Zn; 1/ D T n, the n-torus, and rk H k.T n/ D �

n
k

�
.

Corollary 7.8. If a discrete, integral Heisenberg group Hn, n a positive integer,
acts isometrically on an oriented, closed, connected, Riemannian manifold F , then
rk H 0

Hn
.F / D 1,

rk H k
Hn

.F / � 2 for k D 1; 2;

and H 3
Hn

.F I R/ does not vanish.
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Proof. Let H.R/ � GL3.R/ be the continuous Heisenberg group, i.e. the subgroup
of upper triangular matrices of the form0

@1 x z

0 1 y

0 0 1

1
A ; x; y; z 2 R:

This is a contractible Lie group. The discrete Heisenberg group Hn can be described
as the subgroup of H.R/ generated by the matrices

X D
0
@1 1 0

0 1 0

0 0 1

1
A ; Yn D

0
@1 0 0

0 1 n

0 0 1

1
A ; Z D

0
@1 0 1

0 1 0

0 0 1

1
A :

It is a torsion-free, nilpotent group and a central extension of Z2 by Z with relations
ŒX; Yn� D Zn, ŒX; Z� D 1, ŒYn; Z� D 1. Being a subgroup of H.R/, Hn acts freely
(and properly discontinuously and cocompactly) on H.R/. Thus the quotient map
H.R/ ! B is the universal cover of the orbit space B D H.R/=Hn and B is a
closed, orientable, smooth 3-manifold, in fact, an orientable circle-bundle over the
2-torus. Moreover, �1.B/ D Hn and �k.B/ D �kH.R/ D 0 for k � 2. Hence
B D BHn D K.Hn; 1/ and we have

H1.Hn/ D H1.B/ D �1B=Œ�1B; �1B� D Hn=ŒHn; Hn�

D hX; Yn; Z j ŒX; Yn� D 1; ŒX; Z� D 1; ŒYn; Z� D 1; Zn D 1i
D Z2 ˚ Z=n:

(See also [1], Chap. I, Sec. 3 .) Thus

rk H 1.Hn/ D rk H1.Hn/ D 2:

By Poincaré duality, rk H 2.Hn/ D rk H 1.Hn/. Furthermore, rk H 3.Hn/ D 1, as B

is connected, closed, and orientable. The result follows from Corollary 7.4.

8. An example

We will compute the equivariant second real cohomology of a certain isometric Z3-
action on F 4 D S2 � S2, using our Theorem 7.1. The Eilenberg–MacLane space
K.Z3; 1/ may be taken to be a 3-torus T 3. Viewing S2 as the unit sphere in R3,
the rotation group SO.3/ acts linearly and isometrically on S2. The metric on F 4 is
the product metric. Let R1; R2; R3 2 SO.3/ be three mutually commuting rotations,
such as for example

Ri D
0
@cos �i � sin �i 0

sin �i cos �i 0

0 0 1

1
A ;
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where the rotation angles �i , i D 1, 2, 3, are irrational multiples of 2� . We will
specify the action of G D Z3 on F 4 by declaring how the generators a D .1; 0; 0/,
b D .0; 1; 0/, c D .0; 0; 1/ 2 Z3 act. If .x; y/ is a point in S2 � S2, x; y 2 S2, then
set

a.x; y/ D .R1y; x/; b.x; y/ D .R2x; R2y/; c.x; y/ D .R1R3y; R3x/:

It is readily verified that these three isometries of F 4 form a commuting set. The
condition on the rotation angles implies that this action does not factor through a
finite group. On H 0.F 4/, all elements of G act trivially. Let u 2 H 2.S2/ be the
generator with hu; ŒS2�i D 1. Then H 2.F 4/ has rank 2 with basis fu � 1; 1 � ug and
H 4.F 4/ has rank 1 generated by u � u. The group operates on these classes by

a�.u � 1/ D 1 � u; b�.u � 1/ D u � 1; c�.u � 1/ D 1 � u;

a�.1 � u/ D u � 1; b�.1 � u/ D 1 � u; c�.1 � u/ D u � 1:

The action on H 4.F 4/ is trivial; for example

a�.u�u/ D a�..u�1/[.1�u// D a�.u�1/[a�.1�u/ D .1�u/[.u�1/ D u�u:

We calculate the twisted group H 0.T 3I H 2.F 4//:

H 0.T 3I H 2.F 4// D H 2.F 4/G

D f�.u � 1/ C �.1 � u/ j �; � 2 R; g.�.u � 1/ C �.1 � u//

D �.u � 1/ C �.1 � u/ for all g 2 Gg
D f�.u � 1/ C �.1 � u/ j �.1 � u/ C �.u � 1/

D �.u � 1/ C �.1 � u/g
D f�.u � 1/ C �.1 � u/ j � D �g:

Thus H 0.T 3I H 2.F 4// has rank 1 and is generated by u�1C1�u. Since H 1.F 4/ D
0, we have H 1.T 3I H 1.F 4// D 0. Furthermore, as H 0.F 4/ is a constant local
system of rank one on T 3, the group H 2.T 3I H 0.F 4// D H 2.T 3I R/ has rank 3

generated by the dual basis of the homology basis S1 � S1 � pt, S1 � pt �S1, and
pt �S1 � S1. By Theorem 7.1,

H 2
Z3.F 4/ D H 0.T 3I H 2.F 4// ˚ H 1.T 3I H 1.F 4// ˚ H 2.T 3I H 0.F 4//

D H 2.F 4/Z3 ˚ 0 ˚ H 2.T 3/

Š R4:
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