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Abstract. We study the analogue, in orbit equivalence, of free product decompositions and free
indecomposability for countable groups. We introduce the (orbit equivalence invariant) notion
of freely indecomposable (F� ) standard probability measure preserving equivalence relations
and establish a criterion to check it, namely non-hyperfiniteness and vanishing of the first L2-
Betti number. We obtain Bass–Serre rigidity results, i.e. forms of uniqueness in free product
decompositions of equivalence relations with (F� ) components. The main features of our work
are weak algebraic assumptions and no ergodicity hypothesis for the components. We deduce,
for instance, that a measure equivalence between two free products of non-amenable groups
with vanishing first `2-Betti numbers is induced by measure equivalences of the components.
We also deduce new classification results in orbit equivalence and II1 factors.
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1. Introduction

Bass–Serre theory [Ser77] studies groups acting on trees and offers extremely pow-
erful tools to understand their structure, together with a geometric point of view that
illuminates several classical results on free product decompositions. For instance
Kurosh’s subgroup theorem [Kur34], that describes the subgroups in a free product
of groups and, as a by-product, the essential uniqueness in free product decomposi-
tions into freely indecomposable subgroups, is much easier to handle via Bass–Serre
theory.

In orbit equivalence theory, the notion of free products or freely independent
standard equivalence relations introduced in [Gab00] proved to be useful in studying
the cost of equivalence relations and for some classification problems. The purpose of
our article is connected with the uniqueness condition in free product decompositions,
in the measurable context. To this end, we will take full advantage of the recent work
of the first named author [Alv08a], [Alv08b], who develops a Bass–Serre theory in
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this context. In particular, Theorem 3.1 and Theorem 3.2 will be crucial for our
purpose.

Very roughly, the kind of results we are after claim that if a standard measured
equivalence relation is decomposed in two ways into a free product of factors that are
not further decomposable in an appropriate sense, then the factors are pairwise related.
However, due to a great flexibility in decomposability, it appears that certain types
of free decomposition, namely slidings (Definition 2.7) and slicings (Definition 2.6),
are banal and somehow inessential (see Section 2.4). We thus start by clearing up
the notion of a freely indecomposable (F� ) standard measured countable equivalence
relation (Definition 4.5), ruling out inessential decompositions (Definition 4.1).

A countable group � is said to be measurably freely indecomposable (MF� ) if all
its free probability measure preserving (p.m.p.) actions produce freely indecompos-
able (F� ) equivalence relations. As expected, a free product of two infinite groups is
not MF� , and in fact none of its free p.m.p. actions is F� . The same holds for infi-
nite amenable groups (cf. Corollary 4.7). On the other hand, freely indecomposable
groups in the classical sense are not necessarily MF� , for instance the fundamental
group of a closed orientable surface of genus � 2 (see Proposition 4.13). We now
give a prototypical instance of our results:

Theorem 1.1. Consider two families of infinite countable MF� groups .�i /i2I and
.ƒj /j 2J , I D f1; 2; : : : ; ng, J D f1; 2; : : : ; mg, n;m 2 N� [ f1g. Consider two
free probability measure preserving actions ˛ and ˇ of the free products on standard
Borel spaces whose restrictions to the factors ˛j�i and ˇjƒj are ergodic. If the
actions ˛ and ˇ are stably orbit equivalent,

.
¨
i2I

�i / Õ˛.X;�/
SOE� .

¨
j 2J

ƒj / Õˇ .Y; �/; (1)

then n D m and there is a bijection � W I ! J for which the restrictions are stably
orbit equivalent,

˛j�i
SOE� ˇjƒ�.i/: (2)

Of course, such a statement urges us to exhibit MF� groups, and it appears that
their class is quite large:

Theorem 1.2 (Corollary 4.20). Every non-amenable countable group � with vanish-
ing first `2-Betti number (ˇ1.�/ D 0) is measurably freely indecomposable (MF� ).

Recall that the `2-Betti numbers are a sequence of numbers ˇr.�/ defined by
Cheeger–Gromov [CG86]: they are attached to each countable discrete group �
and that they have a general tendency to concentrate in a single dimension r and to
vanish in the other ones (see [BV97], [Lüc02]). The first `2-Betti number vanishes
for many “usual” groups, for instance amenable groups, direct products of infinite
groups, lattices in SO.p; q/ (p � q 6D 2), lattices in SU.p; q/, groups with Kazhdan’s
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property (T). It is worth noting that infinite Kazhdan’s property (T) groups also follow
MF� from Adams–Spatzier [AS90], Th. 1.1 (see [Gab00], Ex. IV.12). The list of
groups with vanishing ˇ1 may be continued, for instance, with the groups with an
infinite finitely generated normal subgroup of infinite index, groups with an infinite
normal subgroup with the relative property (T), amalgamated free products of groups
with ˇ1 D 0 over an infinite subgroup, mapping class groups... On the other hand,
for a free product of two (non trivial) groups we have ˇ1.�1 � �2/ > 0 unless
�1 D �2 D Z=2Z, in which case �1 � �2 is amenable.

Results in the spirit of Theorem 1.1 were obtained as by-products of operator
algebraic considerations in [IPP08], Cor. 0.5, Cor. 7.8, Cor. 7.80, and also recently
in [CH10], Cor. 6.7. Our results cover a large part of these corollaries. We will
come back more precisely on the differences between these papers and ours, but an
important issue is that they both require the ergodicity of the actions restricted to the
factors and some particular algebraic assumptions on the groups.

We will extend our framework by introducing marginal free groups or relatives
(recall that in Kurosh’s theorem there are “vertex subgroups” and a free group) and,
more seriously, by removing the ergodicity assumption on the actions of the factors;
and both of these extensions prove to be necessary to handle with measure equivalence
of groups (see [Gab05] for a survey on this notion introduced by M. Gromov). Recall
that two countable groups � and ƒ are measure equivalent (ME), in symbols:

�
ME�
�
ƒ (3)

if and only if they admit stably orbit equivalent (SOE) free p.m.p. actions. The
real number � 2 R�C is called the generalized index or the compression constant
according to whether one focuses on the classification of groups up to ME or on more
operator algebraic aspects of orbit equivalence. Commensurable groups are ME, and
the generalized index then coincides with the usual index for subgroups. It is proved
in [Gab05], PME6, p. 1814–1816) that measure equivalent groups with generalized
index 1 induce measure equivalence of their free products:

�i
ME�
1
ƒi H) ¨

i2I

�i
ME�
1

¨
i2I

ƒi .

Our techniques allow us to settle a converse when the factors are MF� . We observe
that being MF� is a measure equivalence invariant (Proposition 4.13), and before
stating our ME result, we consider the following striking example. It prevents us from
being overoptimistic or expecting a bijective correspondence between the factors.

Example 1.3. If � 0
1 G �1 and � 0

2 G �2 are two normal subgroups of finite index �
such that �1=�

0
1 ' �2=�

0
2 ' K, then the following groups are ME with �1 � �2

with generalized index � and they satisfy:

� 0
1 � �2 � �2 � � � � � �2„ ƒ‚ …

� copies

ME�
1
�1 � �1 � � � � � �1„ ƒ‚ …

� copies

�� 0
2

ME�
1
� 0

1 � � 0
2 � F��1 (4)
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whereFp is the free group onp generators. In fact these three groups are even mutually
commensurable with finite kernels and generalized index 1, since they appear as the
kernels of the three natural epimorphisms �1 � �2 � K.

Theorem 1.1 ensures that such “pathologies” are ruled out by adding ergodicity
assumptions on the actions of the factors. Explicit actions witnessing these measure
equivalences are easily produced by suspension, and the fact that they are not ergodic
when restricted to some factors is not at all incidental (and the above Example 1.3 may
be better understood). We are able, from Theorem 5.1 (see Remark 5.3), to localize
some constraints on the failure of ergodicity, for instance for any action witnessing a
measure equivalence between the following commensurable groups:

Corollary 1.4. Assume that �1, �2 are MF� and not ME, and that � 0
1 has finite

index � 2 in �1. Then, for any stably orbit equivalent free actions �1 ��2 Õ˛X and
� 0

1 � �2 � �2 � � � � � �2 ÕˇY , the restriction ˛j�2 is not ergodic.

We are now in position to state our general measure equivalence result:

Theorem 1.5 (ME Bass–Serre rigidity). Consider two families of infinite count-
able MF� groups (for instance non-amenable with vanishing first `2-Betti number)
.�i /i2I and .ƒj /j 2J , I D f1; 2; : : : ; ng, J D f1; 2; : : : ; mg, n;m 2 N� [ f1g. If
their free products are measure equivalent,¨

i2I

�i
ME� ¨

j 2J

ƒj (5)

then there are two maps � W I ! J and � 0 W J ! I such that

�i
ME� ƒ�.i/ and ƒj

ME� �� 0.j /:

Moreover, if �0; ƒ0 are two groups in the ME classes of some free groups, then the
same conclusion holds under the assumption¨

i2I

�i

¨
�0

ME� ¨
j 2J

ƒj

¨
ƒ0: (6)

Observe that we do not assume the generalized index � D 1. Would we do so, we
would not get � D 1 in the conclusion as Example 1.3 again indicates. Also observe
that the groups �0; ƒ0 do not appear in the conclusion.

Let us mention a recent Bass–Serre rigidity result obtained by Sako via C*-algebra
techniques, and dealing with free products with amalgamation of direct products of
non-amenable exact groups over a common amenable subgroup [Sak10].

It is interesting to observe that one may combine our theorem 1.5 for free products
with Monod–Shalom’s Theorem 1.16 [MS06] for direct products. Using the facts that
a free product of infinite groups belongs to their class Creg, and that a direct product
of non-amenable groups is MF� , we get the following type of results:



Free products, orbit equivalence and measure equivalence rigidity 57

Corollary 1.6. Assume � is either
i) a finite direct product of non-trivial free products of torsion-free MF� groups

�i , or
ii) a free product of non-trivial finite direct products of torsion free groups �i in

the class Creg.
If � is measure equivalent with a group ƒ of the same kind, then the elementary

pieces �i of � define the same set of ME-classes as those of ƒ.

Of course, this construction can be iterated by taking alternatively free or finite
direct products of groups �i as in i) or ii) above, according to whether the first
operation is a free or a direct product. A measure equivalence with a group ƒ of the
same kind entails measure equivalences between the elementary pieces. Notice that
the number of iterations follows the same for � and ƒ.

The above Theorem 1.5 is essentially a consequence of the following SOE The-
orem 1.8 (see Theorem 5.1 for the more general measured equivalence relations
statement). We continue with similar data. In the SOE context, the role of free
groups is played by treeability (see [Ada88], [Gab00] or Section 2.3 for more on this
notion). Recall that it follows from [Hjo06] that a group � is ME with a free group
if and only if it admits a free p.m.p. treeable action (see [Gab05], PME8). A group
is said strongly treeable if all its free p.m.p. actions are treeable. This is for instance
the case of the amenable groups (even finite or even trivial) or the free products of
amenable groups (e.g. free groups). We have no example of a group that is ME with
a free group but that is not strongly treeable.

We display separately the following framework that will be in use in the next
results:

Framework 1.7. Let

– .�p/p2P and .� 0
p0/p02P 0 , P D f1; 2; : : : ; ng, P 0 D f1; 2; : : : ; n0g, n; n0 2

N� [ f1g be two families of infinite countable groups,

– �0, � 0
0 be two countable groups.

Assume ˛ and ˛0 are two free p.m.p. stably orbit equivalent actions

.
¨

p2P

�p � �0/ Õ˛.X;�/
SOE� .

¨
p02P 0

� 0
p0 � � 0

0/ Õ˛0

.X 0; �0/ (7)

of the free products on standard Borel spaces, such that

– the restrictions ˛j�p and ˛0j� 0
p0 are freely indecomposable (F� ) (for p; p0 2

P;P 0),
– the restrictions ˛j�0 and ˛0j� 0

0 are treeable.

Theorem 1.8 (SOE Bass–Serre rigidity). If ˛ and ˛0 are two SOE actions as in
Framework 1.7, then up to countable partitions, the components are in one-to-one
correspondence in the following sense. There exist
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1. for each p 2 P , a measurable ˛j�p-invariant partition X D `
k2K.p/

Xk ,

2. for each p0 2 P 0, a measurable ˛0j� 0
p0-invariant partition X 0 D `

k02K0.p0/

X 0
k0 ,

3. a bijection � W `
p2P

K.p/ ! `
p02P 0

K 0.p0/ between the index sets

according to which the restrictions of the actions to the factors and the subsets are
SOE:

8k 2
a
p2P

K.p/; ˛j.�k �Xk/
SOE� ˛0j.� 0

�.k/ �X 0
�.k// (8)

with the obvious notational conventions: �k WD �p for the unique p 2 P such that
k 2 K.p/, and � 0

�.k/
WD � 0

p0 for the unique p0 2 P 0 such that �.k/ 2 K 0.p0/.

Observe that under ergodic assumptions on the actions restricted to the factors,
the invariant partitions turn out to be trivial and � gives a bijective correspondence
between the original index sets. Ergodicity on one side may force the same situation:

Corollary 1.9. Consider two SOE actions ˛ and ˛0 as in Framework 1.7. Assume
that n � n0 < 1 and that the restrictions of the actions to the �p-factors ˛j�p are
ergodic, 8p 2 P . Then the restrictions ˛0j� 0

p0 are also ergodic, n D n0 and � gives
a bijection � W P ! P 0. If moreover ˇ1.�p/ D ˇ1.�

0
p0/ D 0 for all p; p0 2 P;P 0

and �0 D � 0
0 D f1g, then the factors follow orbit equivalent ˛j�p

OE� ˛0j� 0
�.p0/

.

We also get some consequences for ergodic components from Theorem 5.1.
It is a banal observation that the number of ergodic components (let us denote it
#erg comp.�/) of a single action G Õ� .X;�/ is invariant under stable orbit equiva-
lence. We obtain a survival of this invariant for a restriction of an action to factors of
a free product:

Corollary 1.10. Consider two SOE actions ˛ and ˛0 as in Framework 1.7. Let
P1 � P and P 0

1 � P 0 be the indices of those groups �p , � 0
p0 that are measure

equivalent with �1. Then the number of ergodic components of the restrictions are
equal: X

p2P1

#erg comp.˛j�p/ D
X

p02P 0
1

#erg comp.˛0j� 0
p0/: (9)

Even, the measures of the ergodic components become a SOE invariant, under
a control of the self generalized indices. The set IME.�/ of possible generalized

indices � in measure equivalences between a group � and itself �
ME�
�
� is an invariant

of the ME class of� (see [Gab02b] or [Gab05], PME17). The condition IME.�/ D f1g
is obtained for instance when � has an `2-Betti number ˇq.�/ 6D 0;1 [Gab02a].
For sake of simplicity, we give a sample of the kind of statements that may be derived
from Theorem 5.1 (see Theorem 6.4):
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Corollary 1.11. Assume that the .�p/p2P have vanishing ˇ1 and that �0 is a free
group. Assume that �1 admits at least one `2-Betti number ˇq.�1/ different from 0

and 1 and that it is not measure equivalent with any of the other �p , p 6D 1. If ‚
is a SOE between two p.m.p. actions ˛ and ˛0 of . p̈2P �p � �0/, then ‚ is in fact
an OE and the restrictions to �1 are OE. In particular, they have the same measure
space of ergodic components.

Corollary 1.12. Let �0 D F2 and �1 D F3 � F3. Consider a one-parameter family
of free p.m.p. actions�0 ��1 Õ˛s .X;�/, where the restriction ˛sj�1 has two ergodic
components of respective measures s; 1 	 s. The actions ˛s are not mutually stably
orbit equivalent for s 2 Œ0; 1=2�.

Recall that free p.m.p. group actions � Õ� .X;�/ define finite von Neumann
algebras by the so called group-measure-space construction of Murray–von Neumann
or von Neumann crossed product L1.X;�/ Ì� � . Stably orbit equivalent actions
define stably isomorphic crossed-products, but the converse does not hold in general,
and this leads to the following definition. Two free p.m.p. actions � Õ� .X;�/ and
� 0 Õ� 0

.X 0; �0/ are called von Neumann stably equivalent if there is � 2 .0;1/ such
that L1.X;�/ Ì� � ' .L1.X 0; �0/ Ì� 0 � 0/� .

Both papers [IPP08], [CH10] establish rigidity phenomena in operator algebras
and derive orbit equivalence results for the components of free products from an
assumption of von Neumann stable equivalence on the actions. To this end, some
strong algebraic constraints on the involved groups are imposed. More precisely in
[IPP08], Cor. 0.5, Cor. 7.8, Cor. 7.8’, the analysis relies on the notion of relative
property (T) in von Neumann algebras introduced by S. Popa in [Pop06], and thus
the groups �p; �

0
p (in the notation of Framework 1.7) are required to admit a non

virtually abelian subgroup with the relative property (T) and some ICC-like and
normal-like properties (for instance, they may be ICC property (T) groups) (see
[IPP08], Assumption 7.6). In [CH10], Cor. 6.7, the operator algebraic notion involved
is primality, so that the assumption on the groups �p; �

0
p is to be ICC non-amenable

direct products of infinite groups. In both cases, they all satisfy ˇ1 D 0. As already
mentioned, the actions restricted to the factors ˛j�p and ˛0j� 0

p0 are assumed to be

ergodic. On the other hand, the assumption that the actions are SOE ˛
SOE� ˛0 is

replaced by the weaker one that ˛ and ˛0 are von Neumann stably equivalent. All
these results exploit the antagonism between free products and either various forms
of property (T), or direct product, or more generally in our case the vanishing of
the first `2-Betti number. Also, in [IPP08] the “marginal” groups �0; �

0
0 are solely

assumed to be a-T-menable (i.e. to have Haagerup property) a property that in turn is
antagonist to property (T), while our �0; �

0
0 are ME with a free group (antagonist to

F� ) and thus a-T-menable. Observe that there are MF� a-T-menable groups, thus
able to play the role of a �p or a �0 according to the approach.

On the other hand, it follows from [IPP08], Th. 7.17, Cor. 7.18, that von Neumann
stable equivalence entails stable orbit equivalence, among the free p.m.p. actions of
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free products of (at least two) infinite groups, as soon as one of the two actions has
the relative property (T) in the sense of [Pop06], Def. 4.1. Meanwhile, Theorem 1.2
of [Gab08] establishes that any free product of at least two infinite groups admits
a continuum of relative property (T) von Neumann stably inequivalent ergodic free
p.m.p. actions, whose restriction to each free product component is conjugate with
any prescribed (possibly non-ergodic) action.

When injected in our context, this gives further classifications results for II1 fac-
tors. For instance:

Theorem 1.13. Let �1; �2 be non-ME, non-amenable groups with ˇ1 D 0. Assume
ˇq.�1/ 6D 0;1 for someq > 1. The crossed-product II1 factorsM1�AM2 associated
with the various ergodic relative property (T) free p.m.p. actions �1 � �2 Õ� .X;�/

are classified by the pairsA � M1, and in particular by the isomorphism class of the
centers Z.M1/ of the crossed-product associated with the restriction of the action to
�1, equipped with the induced trace.

Of course, we do not claim that this invariant is complete.
Our treatment considers p.m.p. standard equivalence relations instead of just free

p.m.p. group actions. The notion of L2-Betti numbers for these objects, introduced
in [Gab02a], gives a criterion for free indecomposability:

Theorem 1.14 (Th. 4.18). If R is a nowhere hyperfinite p.m.p. standard equivalence
relation on .X;�/ with ˇ1.R; �/ D 0, then it is freely indecomposable.

Our main result is Theorem 5.1 which describes the kind of uniqueness one can
expect in a free product decomposition into F� subrelations.

Some parts of our work may be led in the purely Borel theoretic context. For
instance, we show that a treeable F� equivalence relation is necessarily smooth
(Proposition 4.6). The proofs of Theorem 1.5, Corollary 1.9 and Corollary 1.11 are
given in Section 6.4.

2. Free product decompositions

2.1. Generalities. Let X be a standard Borel space. All the equivalence relations
we will consider are Borel with countable classes. By countable, we mean “at most
countable”. In the measured context,X is equipped with a non-atomic finite measure
� and the equivalence relations are measure preserving (m.p.) (resp. probability
measure preserving (p.m.p.) when � is a probability measure) and the following
definitions are understood up to a null-set.

Since we are about to consider, on a standard Borel spaceX , equivalence relations
that may be defined only on a subset of X , we set:
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Definition 2.1. The Borel set on which a countable standard Borel equivalence rela-
tion R is defined will be called its domain and will be denoted by D.R/.

Recall that a complete section is a Borel subset of D.R/ that meets all the classes.
A fundamental domain is a Borel subset of D.R/ that meets each class exactly once.
An equivalence relation is smooth if it admits a fundamental domain. An equivalence
relation is finite if all its classes are finite. In this case, it is smooth. In the probability
measure preserving case, R is smooth if and only if it is finite. R is aperiodic if its
classes are all infinite on D.R/. If U � D.R/, we denote by RjU the restriction
R \ U � U of R to U , and its domain is D.RjU/ D U . The relation R is trivial
if R D f.x; x/ W x 2 D.R/g, i.e. if its classes are reduced to singletons. The
equivalence relation R on D.R/ � X naturally extends to an equivalence relation on
the whole of X by setting the class of x 2 X n D.R/ to be reduced to the singleton
fxg. We use the same notation R for the extended relation since it will be clear from
the context what we are considering. The full group ŒR� of R is the group of all
Borel isomorphisms of D.R/ whose graph is contained in R. The full pseudogroup
ŒŒR�� is the family of all Borel partial isomorphisms between Borel subsets of D.R/
whose graph is contained in R. The equivalence relation � is a subrelation of R if
D.�/ � D.R/ and .x; y/ 2 � implies .x; y/ 2 R. If � is a subrelation of R and
	 W A ! B is a partial isomorphism in the full pseudogroup ŒŒR�� of R whose target
B is contained in D.�/ then

	�1�	 (10)

denotes the equivalence relation of domain A defined by .x; y/ 2 	�1�	 if and only
if .	.x/; 	.y// 2 � . It is the image of � jB under 	�1. Two subrelations �1 and �2

of R are said inner conjugate in R if there is a partial isomorphism 	 2 ŒŒR�� with
domain D.�2/ and target D.�1/ such that �2 D 	�1�1	.

2.2. Free products

Definition 2.2 (see [Gab00], Déf. IV.9). A countable family of equivalence relations
.Ri /i2I with domains D.Ri / � X is freely independent if the following holds:
for any n-tuple .x1; : : : ; xn/ of distinct elements of X such that .xj ; xj C1/ 2 Rij

(for j D 1; : : : ; n and xnC1 WD x1), there is an index j such that ij D ij C1. The
equivalence relation R is decomposed as the free product

R D ¨
i2I

Ri (11)

or is the free product of the countable family .Ri /i2I if the family of subrelations is
freely independent and generates R (in particular D.R/ D S

i2I D.Ri /). The Ri

are the factors or the components of the free product decomposition.

Lemma 2.3. Let R D R1 � R2 � R3 be decomposed as a free product. Consider �1

and �2 two subrelations of R1 and R2 that are inner conjugate in R, then �1 (and
�2) is smooth.
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Proof. Let 	 2 ŒŒR��, 	 W D.�2/ ! D.�1/ such that �2 D 	�1�1	. Assume first that
	 decomposes as a product of partial isomorphisms taken strictly from the ŒŒRi ��, i.e.
	 D 	rn

: : : 	r2
	r1

, such that for each j : 	rj
2 ŒŒRkj

��, kj 6D kj C1 and for every z in
its domain 	rj

.z/ 6D z. Any .x; y/ 2 �2 defines, by introducing the right subwords
of 	, a “rectangular” cycle

x
Rk1� 	r1

.x/
Rk2� 	r2

	r1
.x/ � � � � Rkn�1� 	rn�1

: : : 	r2
	r1
.x/

Rkn� 	.x/

�2
o o�1

y
Rk1� 	r1

.y/
Rk2� 	r2

	r1
.y/ � � � � Rkn�1� 	rn�1

: : : 	r2
	r1
.y/

Rkn� 	.y/

that may be shorten by definition of free products. Due to strictness, the only possible
shortenings may occur around the vertical sides: after a possible shortening of the
horizontal sides in case k1 D 2 or kn D 1, the extreme points have to coincide, so
that �1 and �2 are trivial. The general case reduces to this after a decomposition of
the domain of 	 into pieces where it satisfies the above assumption. Its restrictions
to the pieces being trivial, �1 and �2 follow smooth.

2.3. Graphings and treeings. Recall from [Lev95], [Gab00] that a countable family
of partial isomorphismsˆ D .	i /i2I is called a graphing and defines an equivalence
relation Rˆ D hˆi D h	i W i 2 I i on D.Rˆ/ D the union of the domains and
the targets of the 	i ’s. It is a treeing if any equation 	"1

i1
	

"2

i2
� � �	"n

in
.x/ D x (with

"ij D ˙1) implies there is an index j such that ij D ij C1 and "ij D 	"ij C1
. An

equivalence relation is treeable if it admits a generating treeing. The notion of treeing
was introduced by S. Adams [Ada88] and proved to be very useful in [Gab98] and
[Gab00].

We recall some properties of treeable equivalence relations and their connections
with free products.

Proposition 2.4. The following holds in the Borel theoretic context:

1. A subrelation of a treeable equivalence relation is itself treeable.

2. If ˆ D .	i /i2I is a treeing, then Rˆ is the free product of the subrelations
generated by the individual partial isomorphisms Rˆ D ¨

i2I h	i i.
3. A free product of treeable equivalence relations is treeable.

4. A treeable equivalence relation is freely decomposed as a free product of finite
subrelations.

Proof. Item 1 is Theorem IV.4 in [Gab00] (where the proof does not make use of the
measure). This has also been shown independently by Jackson–Kechris–Louveau
[JKL02]. See also [Alv08a] for a geometric approach. Item 2 is immediate from
the definitions (see [Gab00], Ex. IV.10). So is also item 3: a treeing for the free
product is made of the union of treeings for the factors. As for item 4, by a result
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of Slaman–Steel and Weiss ([SS88], [Wei84]), each singly generated relation h	i i is
hyperfinite. We now claim that a hyperfinite equivalence relation is a free product of
finite equivalence relations. To that end, it is enough to show that if R1 is a subrelation
of a finite equivalence relation R2 then there exists a (finite) subrelation R0

1 of R2

such that R2 D R1 � R0
1. Indeed, given fundamental domains D1 and D2 of R1

and R2, we get a Borel finite-to-one projection 
 W D1 ! D2 whose pre-images
naturally define the required R0

1 on D1.

An action�Õ.X;�/ is treeable if the equivalence relation it generates is treeable.
If� is measure equivalent with a free group then it admits a treeable p.m.p. free action.

Question 2.5 ([Gab00], Question VI.2). Are there groups with both treeable and
non-treeable free p.m.p. actions?

2.4. Slidings and slicings. We now consider two banal ways of freely decomposing
an equivalence relation.

Definition 2.6 (Slicing). A slicing of R is the free product decomposition

R D ¨
j 2J

RjVj (12)

affiliated with an R-invariant Borel partition j̀ 2J Vj of the domain D.R/.

Definition 2.7 (Sliding). Let U � D.R/ be a complete section of R. A sliding of
R to U consists in a smooth subrelation T < R defined on D.R/ with fundamental
domain U and in the corresponding free product decomposition

R D RjU � T : (13)

An explicit construction of such a smooth (thus treeable) subrelation T for each
such U may be found in [Gab00], Lem. II.8, where the notion is introduced in a
measured context. Notice that the proof does not make use of the measure. From
this, one can deduce an easy particular case of Theorem 3.1 from next section:

Proposition 2.8. Assume that R D j̈ 2J Rj is a free product decomposition with
D.Rj0

/ D D.R/ for some j0 and U a complete section for each Rj . Then we have
RjU D j̈ 2J Rj jU � T , where T is a treeable subrelation.

Proof. Consider slidings Rj D Rj jU � Tj and inject them in the decomposition of
R D j̈ 2J .Rj jU � Tj /. For j 6D j0, the sliding Tj � Tj0

D .Tj � Tj0
/jU � Tj0

,
gives the global sliding ¨

j 2J

Tj D ¨
j 2J nfj0g

.Tj � Tj0
/jU � Tj0

:
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It follows that

RjU D ¨
j 2J

Rj jU �
T WD‚ …„ ƒ¨

j 2J nfj0g
.Tj � Tj0

/jU

where T is treeable by Proposition 2.4, items 1 and 3.

3. Theorems à la Kurosh after [Alv08a]

We will make a crucial use in our construction of some tools introduced by the first
named author, namely the following two analogues of Kurosh’s theorem [Kur34] for
subgroups of free products, in the context of p.m.p. standard equivalence relations.
The first one concerns the particular situation of a subrelation which is simply the
restriction to some Borel subset of a given free product.

Theorem 3.1 (A la Kurosh for restrictions [Alv08a]). Let

� D ¨
i2I

�i (14)

be a free product decomposition of � and Y � X a complete section for � . Then �

admits a refined free product decomposition induced by slicings of the factors �i ,

�i D ¨
k2K.i/

�i jXk; D.�i / D `
k2K.i/Xk; (15)

such that the restriction � jY admits a free product decomposition:

� jY D ¨
i2I

� ¨
k2K.i/

Vk

� � T (16)

where T is a treeable subrelation; and for each i 2 I :

1. for each k 2 K.i/, there is a partial isomorphism 	k 2 ŒŒ� ��, defined on the
domain D.Vk/, that inner conjugates Vk with �i restricted to the target of 	k:

Vk D 	�1
k �i 	k (17)

and Xk D �i	k.D.Vk// is the �i -saturation of the image 	k.D.Vk//;

2. if D.�i /\Y is non-empty, then there is k 2 K.i/ such that Vk D �i jD.�i / \ Y
(i.e. D.Vk/ D D.�i / \ Y , 	k D idD.�i /\Y ).

Compare with the analog result [IPP08], Prop. 7.4 (2); both the statement and the
proof are much less intricate, due to the assumption that the factors �i are ergodic.
This Theorem 3.1 is itself of course a little bit more precise than the next one which
describes the general situation of a subrelation in a free product.



Free products, orbit equivalence and measure equivalence rigidity 65

Theorem 3.2 (À la Kurosh [Alv08a]). Let

� D ¨
i2I

�i (18)

be a free product decomposition of � . If R < � is a subrelation of � with non-null
domain D.R/ � X , then R admits a free product decomposition

R D ¨
i2I

� ¨
k2K.i/

Vk

� � T (19)

where T is a treeable subrelation; and for each i 2 I :

1. for each k 2 K.i/, there is a partial isomorphism 	k 2 ŒŒ� �� defined on the
domain D.Vk/ such that

Vk D R \ 	�1
k �i 	k : (20)

In particular, Vk is inner conjugate with a subrelation of �i .

2. there is k 2 K.i/ such that Vk D R \ �i (when this intersection is not trivial),
D.Vk/ D D.R/ \ D.�i / and 	k D idD.Vk/.

Remark 3.3. It does not matter whether D.R/ is a complete section of � or not.

Remark 3.4. If one of the original factors, say �i0 , is treeable, then the factors Vk

associated with k 2 K.i0/ in Theorem 3.1 or Theorem 3.2 follow treeable so that¨
k2K.i0/ Vk � T is treeable (see Proposition 2.4). More generally, if the Vk in a

certain collection are treeable, one may assemble them together with T to form a
treeable relation that may be put in place of T , in the above theorems.

4. Freely indecomposable equivalence relations

Observing that slicings (Definition 2.6) and slidings (Definition 2.7) decompose an
equivalence relation as a free product in a somewhat trivial way leads to set the
following definition.

4.1. Free indecomposability

Definition 4.1 (Inessential free product decomposition). A free product decompo-
sition R D �j 2J Rj , of a (countable) standard Borel equivalence relation on X is
called inessential if there is a Borel set U � X such that:

1. U admits a Borel RjU -invariant partition U D j̀ 2J Uj ;
2. for each j 2 J , RjUj D Rj jUj ;
3. U is a complete section for R.
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We then say that the partition is a trivialization of the decomposition.

Remark 4.2. In the measured context, all identities are understood up to a set of
measure zero.

Remark 4.3. If the decomposition R D j̈ 2J Rj is trivialized by U D j̀ 2J Uj :

1. It induces the slicing RjU D j̈ 2J Rj jUj D j̈ 2J RjUj , and U being a
complete section, a sliding/slicing decomposition R D j̈ 2J Rj jUj �T , where
T is a smooth treeable equivalence relation with fundamental domain U .

2. We insist that the RjU -invariance of the partition means that the R-saturations
Vj WD RUj of the Uj have trivial mutual intersections and partition X , leading
to the slicing:

R D ¨
j 2J

RjVj : (21)

Proposition 4.4. Assume the free product decompositionR D j̈ 2J Rj is trivialized
by U D j̀ 2J Uj . Then,

1. xU D j̀ 2J
xUj , where xUj WD RjUj is the Rj -saturation of Uj , also trivializes

the free product decomposition.

2. If j 2 J
– the subrelation Rj is trivial when restricted to SUi , for i 6D j ;
– the subrelation Rj is smooth when restricted to X n SUj .

3. If R is measure preserving, D.Ri / D D.R/ and Ri is aperiodic, then X D Vi

and R D Ri almost everywhere.

4. If R is ergodic, U equals one of the Uj ’s, say Uj0
, and R D Rj0

jU � T , where
T is a smooth treeing admitting U as fundamental domain.

Proof. The only non-obvious facts are (possibly) items 1 and 2:
1. If Nx; Ny 2 xUj are R-equivalent, there are R-equivalent points x; y 2 Uj such

that xRj Nx and NyRjy. By RjUj D Rj jUj , Nx; Ny follow Rj -equivalent.
2. The first part is clear. As for the second part, it is then enough to show (since

X D S
j Vj ) that Rj restricted to Vi n SUi D RUi n RiUi is smooth for every i 2 I .

The Ri -slicing affiliated withVi D SUi

`
Vi n SUi and the R-invariance ofVi lead to the

free product decomposition RjVi D Ri j SUi � Ri j.Vi n SUi /� . j̈ 2J nfig Rj jVi /. Any

partial isomorphism	 2 ŒŒR��with domain � SUi and target � Vi n SUi inner conjugates
the restriction of each of the other factors with a subrelation of Rj SUi D Ri j SUi . By
Lemma 2.3, these subrelations are smooth. Since SUi is a complete section for RjVi ,
there are enough such 	, and the conclusion follows.

Definition 4.5 (F� equivalence relation). A countable standard Borel equivalence
relation R is freely indecomposable (F� ) if any free product decomposition R D
R1 � R2 � � � � � Ri � � � � is inessential in the sense of Definition 4.1.
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For instance, any finite equivalence relation is F� . See Remark 4.2 in the mea-
sured context.

Proposition 4.6. If R is treeable (for instance hyperfinite) and F� then it is smooth.
In fact, any p.m.p. aperiodic treeable equivalence relation admits an essential de-
composition in two pieces R D R1 � R2.

By Ornstein–Weiss theorem [OW80], Proposition 4.6 entails:

Corollary 4.7. Every free p.m.p. action of an infinite amenable group is non-F� .

Proof of Proposition 4.6. From Proposition 2.4, R decomposes as a free product¨
i2I Ri of finite subrelations. The property RjUi D Ri jUi in Definition 4.1 (2)

implies that R is smooth. In the p.m.p. context, the X splits in two R-invariant
Borel subsetsX1

`
Xh where the classes have infinitely many ends (resp. where R

is hyperfinite) [Ada90]. On Xh, R is generated by a free action of Z=2Z � Z=2Z.
On X1, we claim that one can find a treeing ˆ D .'1/ _ ˆ2 of R such that the
domain A1 of '1 is non-negligible and ˆ2 generates a subrelation R2 on X1 that is
aperiodic. Assuming this claim, the free product decomposition RjX1 D h'1i�R2

is essential: Proposition 4.4 (2) with aperiodicity of R2 implies SU2 D X1 (a.e.)
for any hypothetical trivialization. But again by Proposition 4.4 (2), h'1i should be
trivial on SU2 D X1.

Let us prove the claim. Indeed, we show that: ifˆ is a treeing of R such that the
associated graphsˆŒx� (see [Gab00]) for all x 2 X have infinitely many ends1, then
up to a subdivision (i.e. the splitting of a generator in two generators by a partition
of its domain in two parts) one can pick one of the generators '1 2 ˆ whose removal
produces a graphing ˆ2 WD ˆ n .'1/ which generates an aperiodic subrelation.

If for every x 2 X , its valency in ˆŒx� is � 3, then pick any ' 2 ˆ and choose a
non-negligible Borel subsetA of its domain such thatA\'.A/ D ;. Then'1 WD 'jA
and 	2 obtained by replacing ' by its restriction toX nAwill do (in the graphsˆ2Œx�

the valency of every vertex is � 2).
In general, let Xcore be the set of x 2 X such that (when seen as a vertex in

ˆŒx�) x belongs to the core of ˆŒx� (i.e. the union of the geodesic lines). Let ˆcore

be the graphing made of the restrictions z' of ' 2 ˆ to the subset of their domain
where x and '.x/ both belong to Xcore. By assumption, Xcore is a complete section
for R. Moreover Rˆcore D RjXcore and ˆcore is a treeing on Xcore whose graphs
ˆcoreŒx� have infinitely many ends and no leaves. Let X�3 � Xcore be the set of x
whose valency in ˆcoreŒx� is � 3. It is again a complete section for R. Pick a partial
isometry z' 2 ˆcore whose domain intersects X�3 in a non-null set (up to replacing
z' by z'�1). Then choose a non-negligible subset A (in this intersection) such that
A \ f .A/ D ;, where f .x/ is the first point in X�3 along a ray issuing from x in
the direction of z'.x/ in ˆcoreŒx� (again, vertices in ˆcoreŒx� and points in Xcore are

1I.e., there are infinitely many different rays issuing from any vertex.
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identified). Set '1 WD z'jA. By construction, for every point x 2 X�3, its long star
(the rays in ˆcoreŒx� issuing from x until reaching another point in X�3) meets at
most one edge associated with '1. Thus, removing '1 from ˆcore (or ˆ) produces a
graphing with infinite orbits.

Proposition 4.8. For p.m.p. standard aperiodic equivalence relations, the Defini-
tion 4.5 can be stated equivalently for free product decompositions in two pieces.

Proof. Let R be a standard aperiodic p.m.p. equivalence relation. Assuming that any
free product decomposition into two pieces R D �1 � �2 is inessential, we show that
any free product decomposition R D �j 2J Rj into at most countably many pieces is
also inessential.

For each i 2 J , let R0
i D �j 2J nfigRj and consider a trivialization Ui

`
U 0

i

associated with the free product decomposition, R D Ri � R0
i . Moreover Ui may

be assumed Ri -saturated (Proposition 4.4 (1)). We claim that V D `
Ui trivializes

the free product decomposition �j 2J Rj . Since Ri jUi D RjUi is aperiodic (when
Ui is non negligible) and Ri jX nUi is smooth (Proposition 4.4 (2)), the only point to
check is that V is a complete section. The complement of its saturation Y D X nRV

is contained in \i2J .X n Ui /, so that RjY D �j 2J Rj jY is treeable.
Under a p.m.p. assumption, Proposition 4.6 and �.Y / 6D 0 would produce an

essential free product decomposition in two pieces of RjY (thus also of R), leading
to a contradiction. Thus Y is negligible.

4.2. Properties of free indecomposability

Remark 4.9. Given an R-invariant partition D.R/ D Y
`
Z, then R is F� if and

only if RjY and RjZ are F� . In particular, if R is F� , then the extension of R to
X (by trivial classes outside D.R/) is also F� .

Proposition 4.10. If R is F� , then for every non-null Borel set Y , the restriction
RjY is also F� .

Proof. By Remark 4.9, one may assume that Y is a complete section of R and that
R is aperiodic. Any free product decomposition RjY D ¨

i2I Ri leads by sliding
to R D ¨

i2I Ri � T where T is a treeing with fundamental domain Y . The F� -
property for R gives a trivialization

`
i2I Ui

`
UT , such that Ui � D.Ri / � Y ,

RjUi D Ri jUi and RjUT D T jUT . Since T is smooth, UT is negligible (by
aperiodicity). It follows that

`
i2I Ui � Y gives a trivialization for the restriction of

RjY .

Proposition 4.11 (Stable orbit equivalence invariance). If R and � are stably orbit
equivalent, then R is F� if and only if � is F� .
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Proof. The statement being clear for orbit equivalence, it remains to show: if Y a
complete section of R and RjY is F� , then R is also F� . One may assume that R is
aperiodic. For each free product decomposition R D ¨

i2I Ri , Theorem 3.1 delivers
a free product decomposition of the restriction RjY D ¨

i2I

�¨
k2K.i/ 	

�1
k

Ri 	k

��
T , with T treeable. The F� -property for RjY gives a trivializationa

i2I

� a
k2K.i/

Uk

� a
UT ;

where in particular .RjY /jUT D T jUT is treeable (Proposition 2.4 item 1) and
thus smooth (by Propositions 4.6 and 4.10). It follows that UT is negligible (by
aperiodicity), and from .RjY /jUk D .	�1

k
Ri 	k/jUk D 	�1

k
Ri j	k.Uk/ 	k that`

i2I

�`
k2K.i/ 	k.Uk// trivializes the original decomposition.

Definition 4.12. A countable group is called measurably freely indecomposable
(MF� ) if all its free p.m.p. actions are freely indecomposable (F� ).

Proposition 4.13. Beingmeasurably freely indecomposable is ameasure equivalence

invariant: if �
ME� ƒ then � is MF� iff ƒ is MF� .

For instance, such groups as the fundamental group of a closed orientable surface
of genus � 2 are freely indecomposable in the classical sense (they have only one
end) but are not MF� since being ME with a non-cyclic free group.

Proof of Proposition 4.13. Consider two standard p.m.p. equivalence relations zR on
. zX; Q�/ and R on .X;�/. Let p W zX ! X be a measurable map such that p�. Q�/ � �

and p induces, for (almost) every Qx 2 zX , a bijection between the zR-class of Qx and
the R-class of p. Qx/. Such a p is a locally bijective morphism from zR to R.

Remark 4.14. This notion were introduced in [Gab05], p. 1815, as locally one-to-one
and onto morphism from zR to R, and we take this opportunity to correct a regrettable
translation mistake that led to use the words one-to-one instead of bijective, all along
the paper.

Lemma 4.15. If zR is F� then R is also F� .

Proof of the lemma. Observe that for a Borel subset �W � zX , zRj �W is smooth if and
only if Rjp.�W / is smooth (the restrictions are smooth iff their saturations are smooth,
iff their classes are finite). Let R D �j 2J Rj be a free product decomposition of R.
It induces via p a free product decomposition accordingly zR D �j 2J

zRj , where p
becomes a locally bijective morphism from zRj to Rj (see [Gab05]). Let j̀ 2J

zUj

be a trivializing partition of this decomposition such that the zUj are zRj saturated
(Proposition 4.4 item 1) and let Uj D p. zUj /. If zRj is smooth when restricted to
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some Borel subset zZj � zUj , then zR follows smooth on zR zZj (by zRj j zUj D zRj zUj )
and the same holds for R onp. zR zZj /, so that R is F� on this saturated part. One thus
may assume that the zRj j zUj -classes are all infinite. By Proposition 4.4 item 2, zRj is
smooth outside zUj , so that p. zX n zUj /\p. zUj / is negligible and zUj D p�1p. zUj /. It
follows that

`
p. zUj / is a trivializing partition for R D �j 2J Rj .

From this lemma, one gets that if �
ME� ƒ and if � is not MF� (i.e. � admits

some non F� p.m.p. free action � Õ˛.X;�/) then there is a p.m.p. free action of �
that is both non-F� and SOE with a p.m.p. free action ofƒ. Let .�; �/ be a measure
equivalence coupling between � and ƒ. Consider the coupling .� � X; � � �/,
with the diagonal actions induced from � Õ˛.X;�/ and the trivial action of ƒ
on X . The quotient actions � Õ.� � X/=ƒ and ƒ Õ�n.� � X/ are free (see
[Gab02b]), SOE and the first one is non-F� by the above lemma, since it factors onto
� Õ˛.X;�/. The conclusion of Proposition 4.13 then follows by SOE invariance
(Proposition 4.11).

Question 4.16. Are there groups that admit some F� and some non-F� free p.m.p.
actions?

4.3. L2-Betti numbers. We now consider finite-measure preserving equivalence
relations.

Definition 4.17. A measure preserving standard equivalence relation R on .X;�/ is
called nowhere hyperfinite if for every non-null Borel subset V � X , the restriction
RjV is not hyperfinite.

We establish a criterion for equivalence relations to be F� . The notion of L2-
Betti numbers is introduced in [Gab02a]. Some useful properties are recalled in
Section 6.1.

Theorem 4.18. If R is a nowhere hyperfinite finite-measure preserving standard
equivalence relation on .X;�/ with ˇ1.R/ D 0, then it is freely indecomposable.

In case D.R/ 6D X and ˇ1.R/ D 0 (of course computed with respect to the
restriction of the measure to D.R/ – see Section 6.1), then the extension of R to X
(by trivial classes outside D.R/) is also F� (see Remark 4.9).

We will prove (Section 6.2) more precisely:

Theorem 4.19. Assume R is an aperiodic finite measure preserving standard equiv-
alence relation with ˇ1.R/ D 0 and assume that R decomposes as a free product
R D R1 � R2 � � � � � Ri � � � � . Let Ui � X be the union of the infinite Ri -classes,
for i D 1; 2; : : : . Then

1. the mutual intersections are trivial, �.Ui \ Uj / D 0 for i 6D j ;
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2. the partition U D U1

`
U2

` � � � `Ui

` � � � is RjU -invariant;

3. the restrictions Ri jUj are trivial for i 6D j ;

4. RjUi D Ri jUi for each i ;

5. the restriction of R to the complement W of the saturation RU is hyperfinite
(if �.W / > 0).

And thus, if R is nowhere hyperfinite then the partition of U trivializes the decom-
position.

Given the coincidence [Gab02a] of the first `2-Betti number ˇ1.�/ of any count-
able group � with the first L2-Betti number ˇ1.R˛; �/ of the orbit equivalence
relation defined by any free p.m.p. action � Õ˛.X;�/, and since non-amenability
implies nowhere hyperfinite, we immediately get:

Corollary 4.20. Every non-amenable countable group� with vanishing first `2-Betti
number ˇ1.�/ D 0 is measurably freely indecomposable.

Problem 4.21. Produce examples of MF� groups with ˇ1 > 0.

Let us say that a p.m.p. countable standard equivalence relation is accessible if
it admits a free product decomposition R D �j 2J Rj into freely indecomposable
subrelations.

Problem 4.22. Find/characterize p.m.p. countable standard equivalence relations,
with finite ˇ1, that are non-accessible.

5. Bass–Serre rigidity

Suppose that‚ W G1�G2 ! G0
1�G0

2 is an isomorphism of groups whereGi andG0
j are

freely indecomposable groups different from Z. Since ‚.G1/ is a subgroup of G0
1 �

G0
2, Kurosh’s theorem implies that ‚.G1/ is a subgroup of a conjugate of G0

1 or G0
2.

Up to a permutation of the indices, we assume that‚.G1/ is a subgroup of a conjugate
conj.G0

1/ of G0
1. Another use of Kurosh’s theorem implies that ‚�1.conj.G0

1// is
a subgroup of a conjugate of G1 or G2. But since ‚�1.conj.G0

1// contains G1,
we deduce equality with G1, i.e. ‚.G1/ D conj.G0

1/ and in the same way that
‚.G2/ D conj.G0

2/. This observation is the starting point of our main theorem:

Theorem5.1. LetR D ¨
p2P Rp�T andR0 D ¨

p02P 0 R0
p0�T 0 bep.m.p. standard

equivalence relations decomposed into free products, where each factor Rp and R0
p0

is freely indecomposable and aperiodic on its domain; and where T and T 0 are
treeable. If R and R0 are SOE, via an isomorphism‚ W V � D.R/ ! V 0 � D.R0/
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then R and R0 admit free product decompositions induced by countable slicings of
the factors:

8p 2 P; D.Rp/ D
a

k2K.p/

Xk and 8p0 2 P 0; D.R0
p0/ D

a
k02K0.p0/

X 0
k0

R D ¨
p2P

.
¨

k2K.p/

RpjXk/ � T and R0 D ¨
p02P 0

.
¨

k02K0.p0/

R0
p0 jX 0

k0/ � T 0

for which there exists a bijection � W `
p2P K.p/ ! `

p02P 0 K 0.p0/ between the
index sets such that, denoting �k WD RpjXk and � 0

k0 WD R0
p0 jX 0

k0 , for each
k 2 `

p2P K.p/, the slices �k and � 0
�.k/

are SOE via an isomorphism between
subsets of the domains D.�k/ D Xk and D.� 0

�.k/
/ D X 0

�.k/
of the shape f 0‚f ,

where f 2 ŒŒR�� and f 0 2 ŒŒR0��.

The proof of the theorem will be given in Section 6.3.

Remark 5.2. Recall that in case Rp is ergodic, then it admits no non-trivial slicing.
If all the Rp and R0

p0 are ergodic, then Theorem 5.1 establishes a bijection between
the Rp and the R0

p0 (� becomes a bijection between the sets of indices P and P 0).

Remark 5.3. In the context of Corollary 1.4, we argue by contraposition: if R˛j�2
is

ergodic, then a slicing of R˛ delivered by Theorem 5.1 contains only one �2-piece.
On the other hand, Rˇ has already at least two �2-pieces. Thus, the bijection ‚ of
the theorem has to entail an SOE between a �1-slice of R˛ and a �2-slice of Rˇ .

6. Proofs

6.1. Preliminaries. We list some properties of L2-Betti numbers of equivalence
relations (see [Gab02a]) on the non atomic probability measure space .X;�/. Recall
that theL2-Betti numbers are defined with respect to an invariant probability measure
[Gab02a]. In case a finite measure is invariant, one usually normalizes it. Thusˇq.R/

stands for the q-th `2-Betti number of R on D.R/ with respect to the normalized
probability measure �jD.R/

�.D.R//
. If D.R/ ¨ X , the notation ˇq.R; �/ means that

we extend R trivially outside D.R/ to compute L2-Betti numbers according to the
probability measure �.

Proposition 6.1. The following holds:

1. ˇ0.R/ D R
X

d�.x/
#R.x/

, the mean value of the inverse of the cardinal of the class of

x, with the convention 1
1 D 0. It follows that ˇ0.R/ 2 Œ0; 1�.

2. The relation R is trivial if and only if ˇ0.R/ D 1.

3. R is aperiodic on D.R/ if and only if ˇ0.R/ D 0.
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4. If ˇ1.R/ D 0 and V � X satisfies �.V / > 0, then ˇ1.RjV / D 0.

5. For a free product: ˇ1.R1 � R2; �/ 	 ˇ0.R1 � R2; �/ D ˇ1.R1; �/ 	
ˇ0.R1; �/C ˇ1.R2; �/ 	 ˇ0.R2; �/C 1.

Proof. We use the notation of [Gab02a]. If the space .X;�/ admits an R-invariant
partition into non-negligible subsets X D `

Xr , then

p̌.R; �/ D
X

r

�.Xr/ p̌.RjXr ;
�jXr

�.Xr/
/: (22)

Indeed, the Hilbert moduleH one has to consider to define theL2-Betti numbers may
be decomposed into a direct sum H D L

r Hr according to the decomposition of
X , and the normalization of the trace leads to dimR Hr D �.Xr/ dimRjXr

Hr , and
the formula. Thus, up to partitioning the space into the Borel subsets Xr where the
classes have constant cardinal r , one may compute ˇ0.R/ under the assumption that
the classes all have cardinal r . If r D 1, then ˇ0.R/ D 0 ([Gab02a], [Prop. 3.15).
If r is finite, there is a contractible R-complex containing only one point in each
fiber. The computation is then immediate, ˇ0.R/ D 1

r
. In general,

ˇ0.R; �/ D
X

r

�.Xr/
1

r
D

Z
X

d�.x/

#R.x/
: (23)

Properties 2 and 3 follow. Property 4 is a consequence of formula 22 and [Gab02a],
Th. 5.3.

As for Property 5, it is quite technical and we go back to the definitions in [Gab02a].
Observe that if the classes of R D R1 � R2 are almost all finite, then we are in a
treeable situation and the formula is immediate by [Gab02a], Cor. 3.23, and [Gab00],
Th. IV.15.

Recall that the first two L2-Betti numbers (ˇ0 and ˇ1) are computed by con-
sidering any 2-dimensional simplicial R-complex † with simply connected fibers,
and any exhausting increasing family of uniformly locally bounded R-invariant sub-
complexes .†t /t2N . Then, one calculate the limits of the von Neumann dimensions
(with respect to the von Neumann algebra associated with R and the trace associated
with �) for � D 0; 1:

ˇ�.R/ D lim
s!1 lim

t!1;t�s
dimR ClosfIm. NH .2/� .†s/

J�;s;t! NH .2/� .†t //g„ ƒ‚ …
WDr�.†s ;†t /

(24)

where J�;s;t is induced in homology by the inclusion †s � †t .
From

Ker @1jC .2/
1 .†s/ ,! Ker @1jC .2/

1 .†t / ! Ker @1jC .2/
1 .†t /=Closf@2C

.2/
2 .†t /g;
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and similarly in dimension 0: with NH .2/
0 .†s/ D C

.2/
0 .†s/=Closf@1C

.2/
1 .†t /g, we

obtain that ClosfIm J1;s;tg ' Ker @1jC .2/
1 .†s/=Closf@2C

.2/
2 .†t /g \ C

.2/
1 .†s/ and

ClosfIm J0;s;tg D C
.2/
0 .†s/=Closf@1C

.2/
1 .†t /g \ C .2/

0 .†s/. It follows that

r1.†s; †t / D dimR Ker @1jC .2/
1 .†s/ 	 dimR Closf@2C

.2/
2 .†t /g \ C .2/

1 .†s/;

r0.†s; †t / D dimR C
.2/
0 .†s/ 	 dimR Closf@1C

.2/
1 .†t /g \ C .2/

0 .†s/: (25)

Assuming †s D R and ˇ0.†s/ D ˇ0.R/ for all s, (and we will check below that
this can be assumed) the formula (25) becomes

r0.†s; †t / D 1 	 dimR Closf@1C
.2/
1 .†s/g

D 1 	 ŒdimR C
.2/
1 .†s/ 	 dimR Ker @1jC .2/

1 .†s/�

and eventually

r1.†s; †t / 	 r0.†s; †t /

D dimR C
.2/
1 .†s/ 	 1 	 dimR Closf@2C

.2/
2 .†t /g \ C .2/

1 .†s/:
(26)

Recall that a simple graphingˆmade of partial isomorphisms taken from the full
pseudogroup ŒŒR�� naturally defines a 1-dimensional simplicial R-complex †ˆ with
0-skeleton†.0/

ˆ D R, where R is fibered by 
 W R ! X , .x; y/ 7! x (see [Gab02a],
Ex. 2.2.2). Conversely, if † is a simplicial R-complex with 0-skeleton †.0/ D R,
then its 1-skeleton †.1/ defines the subrelation R† of R where .u; v/ 2 R† iff for
some x 2 X , .x; u/ and .x; v/ (seen as 0-cells of †) belong to the same connected
component of the x-fiber of †. In particular, R† D R iff † is fiber-connected.
Moreover if †0 � † then R†0 � R†.

A (fiber)-simply connected 2-dimensional simplicial R-complex † with †.0/ D
R can be obtained from the fibering 
 by taking †.1/ to be the complete graph in
each 
-fiber and then adding a 2-cell for each triple of vertices in the 
-fibers.

We claim that a fiber-connected simplicial R-complex † with †.0/ D R admits
an exhausting increasing family of uniformly locally bounded R-invariant
sub-complexes .†t /t2N (with †.0/

t D R and) with ˇ0.†t ; �/ D ˇ0.R; �/. Since
ˇ0.†t ; �/ D ˇ0.R†t

; �/, in view of Proposition 6.1 (1) it is enough to have
#R†t

.x/ D #R.x/ for a.e. x 2 X . And by monotonicity, this is satisfied for
each t as soon as it is satisfied for t D 0. We restrict to the subset of X made of the
infinite R-classes (since†0 is obvious to construct on its complement). By [Zim84],
9.3.2, let R0 be an aperiodic hyperfinite subrelation, ˆ0 a treeing of it with valency
� 3 and †0 WD †ˆ0

.
After this preparation, we resume considering an aperiodic free-product decom-

posed R D R1 � R2. We consider two 2-dimensional fiber-simply connected
complexes and their exhaustions †1, .†1;t /t2N for R1 and †2, .†2;t /t2N for
R2, such that †.0/

1 D †
.0/
1;t D R1 and †.0/

2 D †
.0/
2;t D R2. and such that
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ˇ0.†1;t ; �/ D ˇ0.R1; �/ and ˇ0.†2;t ; �/ D ˇ0.R2; �/. By suspension [Gab02a],
Sect. 5.2, we get the induced R-complexes z†1, .z†1;t /t2N and z†2, .z†2;t /t2N (or
equivalently since †.0/

i D Ri � R, we consider the R-saturations of the various
Ri -complexes).

The 2-dimensional simplicial R-complex z† D z†1 [ z†2 has 0-skeleton D R

and exhausting sequence z†t D z†1;t [ z†2;t . It is fiber-connected: its 1-skeleton
generates the equivalence relation Rz† D Rz†1

_ Rz†2
D R1 _ R2 D R; and it

is fiber-simply connected: a simple loop (pushed by homotopy) in the 1-skeleton
of a fiber gives a n-tuple of points in X that are Rz†1

- or Rz†2
-equivalent and the

free product hypothesis implies that the loop is entirely contained in one (simply
connected) connected component of one of the z†j .

We claim that ˇ0.z†t / D ˇ0.R1 � R2/ for all t 2 N: a finite Rz†t
-class decom-

poses into its (finite) Rz†1;t
- and Rz†2;t

-classes that are complete, i.e. Rz†j;t
.y/ D

Rj .y/, by the assumption ˇ0.z†j;t / D ˇ0.Rj /.
Thanks to the particular shape of z†, the boundary operator @2 decomposes by

blocks:

C
.2/
2 .z†/ D C

.2/
2 .z†1/˚ C

.2/
1 .z†2/

.@2/1˚.@2/2! C
.2/
1 .z†1/˚ C

.2/
1 .z†2/ D C

.2/
1 .z†/:

The terms in the right hand side of the formula (26) for z† may be split accordingly.
It follows that

r1.z†s; z†t / 	 r0.z†s; z†t / D r1.z†1;s; z†1;t / 	 r0.z†1;s; z†1;t / 	 1
C .r1.z†2;s; z†2;t / 	 r0.z†2;s; z†2;t / 	 1/C 1

and taking the limits, like in (24), leads to the required formula of Property 5.

6.2. Proof of Theorem 4.19. Consider R with ˇ1.R/ D 0 and all the classes
infinite. We start assuming that R decomposes as a free product of two factors
R D R1 � R2. Let Ui be the union of the infinite Ri -classes, for i D 1; 2.

1. We show that RjU1 D R1jU1, RjU2 D R2jU2 and both R2jU1 and R1jU2

are trivial: If �.U1/ > 0, then the restrictions of R and R1 to U1 satisfy respectively
ˇ1.RjU1/ D 0 (by 6.1 Property 4) and ˇ0.R1jU1/ D 0 (by 6.1 Property 3). By
Theorem 3.2, RjU1 D R1jU1 � � , where we have isolated the particular subrelation
Vi1 D R1 \ RjU1 D R1jU1 (Theorem 3.2(2)) and we have put all the other terms
of the free product decomposition together to form � , which itself contains the other
subrelation Vi2 D R2 \ RjU1 D R2jU1.
By 6.1 Property 5, ˇ1.RjU1/„ ƒ‚ …

D0

D ˇ1.R1jU1/„ ƒ‚ …
�0

C ˇ1.�/„ƒ‚…
�0

C1 	 .ˇ0.R1jU1/„ ƒ‚ …
D0

Cˇ0.�//

so that ˇ0.�/ D 1, i.e. (by Proposition 6.1, item 2) � is trivial. It follows that
R2jU1 is trivial and the decomposition reduces to RjU1 D R1jU1. Symmetrically,
if �.U2/ > 0, R1jU2 is trivial and RjU2 D R2jU2.
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2. We claim that �.U1 \ U2/ D 0, for otherwise, .R1jU1/jU1 \ U2 the iterated
restriction would have infinite classes (by the following standard lemma). But it is
also the trivial subrelation .R1jU2/jU1 \ U2.

Lemma 6.2. If the p.m.p. equivalence relation R is aperiodic, and V � X is non-
negligible, then the restriction RjV is aperiodic.

3. We claim that the partition U D U1

`
U2 is RjU -invariant. We may assume

both are non-null. The partition is already R1jU - and R2jU -invariant. As above,
Theorem 3.2 gives a decomposition RjU D R1jU �� , where � contains R2jU . The
above parts (1) and (2) apply to this decomposition, with U 0

2 the union of the infinite
�-classes, in place of U2, leading to �.U1 \ U 0

2/ D 0. Observe that U 0
2 contains the

�-saturation ofU2 D U nU1, so thatU 0
2 D U2 (a.s.) andU2 is �-invariant. Being also

R1jU -invariant, U2 ends up RjU -invariant. Symmetrically, U1 is RjU -invariant.
The four first points of Theorem 4.19 have been proved for two factors.

4. If now R D R1 �R2 �� � ��Ri �� � � , we apply the above result after one factor
Ri has been isolated and the other ones have been glued together in an SRi leading
to a decomposition R D Ri � SRi . The union SUi of the infinite orbits of SRi contains
all the Uj , for j 6D i . We immediately deduce the four first points of Theorem 4.19
in general. For instance, Ui being RjUi [ SUi -invariant is also invariant for the even
more restricted equivalence relation Rj.U1 [ U2 [ � � � [ Ui [ � � � /.

5. We conclude by proving that the restriction of R to W D X n R:U , the
complement of the saturation of U , is hyperfinite as soon as �.W / > 0. Observe
that W is R-invariant and that RjW D R1jW � R2jW � � � � � Ri jW � � � � . By
definition of U , the restrictions Ri jW are finite subrelations, and thus treeable, so
that RjW follows treeable and aperiodic. Since moreover ˇ1.RjW / D 0 (Proposi-
tion 6.1 Property 4) it is hyperfinite by Proposition 6.10 of [Gab02a]. If R is nowhere
hyperfinite, then �.W / D 0 and U is a complete section for R. This completes the
proof of Theorem 4.19.

6.3. Proof ofTheorem 5.1. By Theorem 3.1 and Proposition 4.10, the proof reduces
to the case where‚ W D.R/ ! D.R0/ is in fact an OE between R D ¨

p2P Rp � T

and R0 D ¨
p02P 0 R0

p0 � T 0.
a) Fix one p 2 P and define the subrelation

E 0
p WD ‚Rp‚

�1 (27)

of R0, the image of Rp under‚. It admits a decomposition according to Theorem 3.2:

E 0
p D ¨

p02P 0

.
¨

k02K0.p;p0/

V 0
k0/ � T 0

p (28)

where for each k0 2 K 0.p; p0/,

V 0
k0 D E 0

p \  0�1
k0 R0

p0  
0
k0 (29)
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with  0
k

2 ŒŒR0�� a partial isomorphism defined on D.V 0
k0/. In particular, V 0

k0 is inner
conjugate in R0 with a subrelation of R0

p0 . As for T 0
p , it is a treeable subrelation,

containing the treeable part given by Theorem 3.2 and the conjugates of subrelations
of T 0 (see Remark 3.4).

Since E 0
p is F� just like Rp , this decomposition (28) admits a trivializing partition

(Definition 4.1). Observe that the treeable part T 0
p cannot survive as a slice in the

trivializing partition: its restriction to some Ui would coincide with E 0
pjUi , would be

treeable [Gab00], Prop. II.6, and (F� ) (Proposition 4.10); and thus smooth (Proposi-
tion 4.6), which is ruled out by the aperiodicity assumption on Rp . The trivializing
partition thus takes the form

a
p02P 0

a
k02K0.p;p0/

U 0
k0 (30)

and induces the slicing (see Remark 4.3 item 2, equation (21)) affiliated with the
partition of D.E 0

p/ into the E 0
p-saturations V 0

k0 of U 0
k0

E 0
p D ¨

p02P 0

¨
k02K0.p;p0/

E 0
pjV 0

k0 (31)

Rp D ‚�1 E 0
p ‚ D ¨

p02P 0

¨
k02K0.p;p0/

Rpj‚�1V 0
k0 : (32)

Moreover, by definition of the trivialization, for each k0 2 K 0.p; p0/ the restriction
of E 0

p to U 0
k0 satisfies:

E 0
pjU 0

k0 D V 0
k0 jU 0

k0

D �
E 0

p \ . 0�1
k0 R0

p0  
0
k0/

�jU 0
k0

D E 0
pjU 0

k0 \ . 0�1
k0 R0

p0  
0
k0/jU 0

k0

which means exactly

E 0
pjU 0

k0 � . 0�1
k0 R0

p0  
0
k0/jU 0

k0 : (33)

Since we did not yet use the properties of the R0
p0 , let us raise what we proved so

far:

Proposition 6.3. If � D ¨
q2Q �q � T is p.m.p. and T is treeable, and if E is a

subrelation that is freely indecomposable and aperiodic on its domain, then there are
(at most) countably many disjoint Borel subsets Ur whose E-saturations Vr D EUr

form an E-invariant partition D.E/ D `
q2Q

`
r2R.q/ Vr with affiliated slicing E D¨

q2Q

¨
r2R.q/ EjVr and such that for r 2 R.q/, one has EjUr �  �1

r �q r jUr for
some  r 2 ŒŒ� ��.
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b) Observe that the slicings (31) of the factors E 0
p WD ‚Rp‚

�1 induce the corre-
sponding free product decompositions of R0 D ‚R‚�1 and R:

R0 D ¨
p2P

� ¨
p02P 0

¨
k02K0.p;p0/

E 0
pjV 0

k0

� �‚T ‚�1; (34)

R D ¨
p2P

� ¨
p02P 0

¨
k02K0.p;p0/

Rpj‚�1V 0
k0

� � T : (35)

c) The subrelation . 0�1
k0 R0

p0  
0
k0/jU 0

k0 of R0 D ‚R‚�1 appearing in (33), for
some p 2 P , p0 2 P 0 and k0 2 K 0.p; p0/ such that U 0

k0 is non-negligible, gets itself
a free product decomposition with respect to (34), given by Theorem 3.2:

. 0�1
k0 R0

p0  
0
k0/jU 0

k0 D ��l2LWl

� � Tk0 : (36)

The point 2 of Theorem 3.2 states that the particular term

Wl0
D . 0�1

k0 R0
p0  

0
k0/jU 0

k0 \ E 0
pjV 0

k0

has to appear and from (33), we get

Wl0
D E 0

pjU 0
k0 :

On the other hand, . 0�1
k0 R0

p0  
0
k0/jU 0

k0 is F� since isomorphic with the restriction
of the F� relation R0

p0 to a non-null subset of its domain. As such, its decomposition
(36) admits a trivialization.

But the particular term E 0
pjU 0

k0 is nowhere smooth on its whole domain U 0
k0 , so

that (Proposition 4.4 item 3) this term is the only one of the decomposition (36); i.e.
(33) is an equality:

E 0
pjU 0

k0 D . 0�1
k0 R0

p0  
0
k0/jU 0

k0 ;

‚ Rpj‚�1.U 0
k0/ ‚

�1 D .‚Rp‚
�1/jU 0

k0 D  0�1
k0 R0

p0 j 0
k0.U

0
k0/  

0
k0 :

This shows that the map  0
k0‚ defines, for k0 2 K 0.p; p0/, an isomorphism

 0
k0‚ W Rpj‚�1.U 0

k0/
OE� R0

p0 j 0
k0.U

0
k0/ (37)

and thus a SOE between the slicing term Rpj‚�1.V 0
k0/ D ‚�1 E 0

pjV 0
k0 ‚ of (32) and

R0
p0 j 0

k0.U
0
k0/, the restriction of R0

p0 to  0
k0.U

0
k0/,

 0
k0‚ W Rpj‚�1.V 0

k0/
SOE� R0

p0 j 0
k0.U

0
k0/: (38)

d) Fix a p0 2 P 0. We will show that the family of sets

W 0.k0/ WD  0
k0.U

0
k0/ for k0 2

a
p2P

K 0.p; p0/ (39)



Free products, orbit equivalence and measure equivalence rigidity 79

induces a slicing of R0
p0 (in particular the family is not empty), i.e. we show that

their R0
p0-saturation form a partition of D.R0

p0/.
d-1)We first show that their R0

p0-saturation intersect trivially. Letk0
1 2 K 0.p1; p

0/
and k0

2 2 K 0.p2; p
0/ such that the R0

p0-saturations of W 0.k0
1/ and W 0.k0

2/ have a
non-null intersection, i.e. there is a partial isomorphism �0 2 ŒŒR0

p0 �� with (non-
null) domain contained in W 0.k0

1/ and target in W 0.k0
2/. It follows that the partial

isomorphism  0�1
k0

2
�0 0

k0
1

has non-null domain A1 � U 0
k0

1

and target A2 � U 0
k0

2

and

conjugates E 0
p1

jA1 with E 0
p2

jA2. But these subrelations are not smooth and appear
as subrelations of factors of the free product decomposition (34). It follows from
Lemma 2.3 that they cannot belong to different factors, i.e. k0

1 D k0
2.

d-2) Consider now the invariant partition of D.R0
p0/ given by the R0

p0-saturations
of the sets W 0.k0/, for k0 2 p̀2P K

0.p; p0/, and the complement Z.p0/ of their
union in D.R0

p0/; and consider the affiliated slicing of R0
p0 . We will show that the

measure of Z.p0/ is zero. We exchange the roles of R and R0 after having further
decomposed R0 thanks to the just above constructed slicing of R0

p0 affiliated with`
p2P

`
k02K0.p;p0/ R0

p0W
0.k0/

`
Z.p0/:

R0 D ¨
p02P 0

� ¨
p2P

� ¨
k02K0.p;p0/

R0
p0 jR0

p0W
0.k0/

� � R0
p0 jZ.p0/

�
� T 0:

We use ‚�1 and apply the above steps a), b), c). After a restriction of its domain,
the slice R0

p0 jZ.p0/ is conjugate with one of the Rp restricted to a Borel subset
Y of its domain, like in (37) via some 1‚

�1, where 1 2 ŒŒR��. This restriction
RpjY has just been shown ((37) again but in the direct sense) to be conjugate (up
to an additional restriction) with a restriction of one of the R0

q0 jW 0.k0/, for some
q0 2 P 0 and k0 2 K 0.p; q0/, via some 0

2‚, with 0
2 2 ŒŒR0��. Since the composition

0
2‚1‚

�1 2 ŒŒR0��, it follows that up to restricting to a non-negligible Borel subset,
R0

p0 jZ.p0/ is inner conjugate with a restriction of R0
q0 jW 0.q0/, one of the factors in

the decomposition of R0, which is different from R0
p0 jZ.p0/ by definition of Z.p0/.

Lemma 2.3 would imply that R0
p0 jZ.p0/ is somewhere smooth, contrarily to the

assumption that the orbits of the R0
p0 are all infinite on its domain. It follows that the

measure of Z.p0/ is zero.
The families W 0.k0/ induce slicings of the factors R0

p0 leading to a refined free
product decomposition of R0 whose (non treeable) terms are indexed by K WD

p̀2P

`
p02P 0 K 0.p; p0/ and in a bijective SOE correspondence with those of the

refined decomposition (35) of R, via ‚ and inner partial isomorphisms. The slicing
of Rp we were after in Theorem 5.1 is affiliated with the Ak0 WD ‚�1V 0

k0 (the Rp-
saturation of the ‚�1U 0

k0), for k0 2 K.p/ WD `
p02P 0 K 0.p; p0/, while the slicing

of R0
p0 is affiliated with the R0

p0-saturation Bk0 WD R0
k0W

0.k0/ D R0
k0 

0
k0.U

0
k0/, for

k0 2 K 0.p0/ WD p̀2P K
0.p; p0/, and the SOE is given by (37).
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6.4. Proof of the corollaries

Proof of Theorem 1.5 of the introduction. By measure equivalence with free groups,
we have treeable free p.m.p. actions �0 Õ˛X and ƒ0 ÕˇY . Considering a cou-
pling .�; �/ witnessing the measure equivalence of Equation (6), the corresponding
diagonal-action coupling on � � X � Y , obtained by extending ˛; ˇ trivially on
the other factors, delivers SOE actions of

¨
i2I �i � �0 and j̈ 2J ƒj � ƒ0 whose

restrictions to �0 and ƒ0 are treeable. Theorem 1.5 then follows immediately from
Theorem 5.1.

Proof of Corollary 1.9. The ergodicity assumption on the ˛ side prevents from any
slicing for R˛ in Theorem 5.1 which gives nevertheless a bijection

� W P !
a

p02P 0

K 0.p0/

(n D n0 follows) for which‚ induces a SOE of the shape f 0‚f , where f 0 2 ŒŒR˛0 ��

and f 2 ŒŒR˛��, between the terms R˛j�p
and R˛0j�0

�.p/
. The latter follows ergodic.

Under the moreover assumption, the free products p̈2P �p and
¨

p02P 0 � 0
p0 have

the same first `2-Betti number, 6D 0;1. Thus any SOE between them has to be
an OE ([Gab02a]): ‚ induces an OE between the ergodic subrelations R˛j�p

and
R˛0j�0

�.p/
.

Corollary 1.11 of the introduction is a specialization of the following.

Theorem 6.4. Let ‚ be a SOE between two actions ˛ and ˛0 as in Framework 1.7.

Assume that �1
ME� � 0

1 with generalized index 1, and that �1

ME
6� �p; �

0
p0 for all

p; p0 6D 1. Assume moreover that IME.�1/ D f1g. Then ‚ is in fact an orbit
equivalence and the restrictions to�1 and� 0

1 areOE. In particular, they have the same
measure space of ergodic components, in particular the same families of measures
of ergodic components (possibly with repetition).

Proof. Theorem 5.1 applied to the SOE ‚ between R˛ D p̈2P R˛j�p
� R˛j�0

and R˛0 D ¨
p02P 0 R0̨ j� 0

p0 � R˛0j�0
0

produces slicings of R˛j�1
and R˛0j�0

1
whose

components are pairwise associated by � and SOE via partial isomorphisms of the
shapef 0‚f withf 0, f preserving respectively the measures�;�0. They all scale the
measure by the same factor and may be assembled together in order to produce a global
SOE between R˛j�1

and R˛0j�0
1
, with the same compression constant. The point

being that all together the slices meet almost all their classes. Now IME.�1/ D f1g
(for instance if some p̌.�1/ 6D 0;1) and �1

ME�
1
� 0

1 imply that any SOE between

free p.m.p. �1- and � 0
1-actions is in fact an OE. The compression constant equals 1

and ‚ is in fact an OE.
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