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Abstract. Let G D G .k/ be the k-rational points of a simple algebraic group G over a
local field k and let � be a lattice in G. We show that the regular representation ��nG of
G on L2.�nG/ has a spectral gap, that is, the restriction of ��nG to the orthogonal of the
constants in L2.�nG/ has no almost invariant vectors. On the other hand, we give examples
of locally compact simple groups G and lattices � for which L2.�nG/ has no spectral gap.
This answers in the negative a question asked by Margulis. In fact, G can be taken to be the
group of orientation preserving automorphisms of a k-regular tree for k > 2.
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1. Introduction

Let G be a locally compact group. Recall that a unitary representation � of G on a
Hilbert space H has almost invariant vectors if, for every compact subset Q of G and
every " > 0, there exists a unit vector � 2 H such that supx2Q k�.x/� � �k < ". If
this holds, we also say that the trivial representation 1G is weakly contained in � .

Recall that a lattice � in G is a discrete subgroup such that there exists a finite
G-invariant regular Borel measure � on �nG. Denote by ��nG the unitary rep-
resentation of G given by right translation on the Hilbert space L2.�nG; �/ of the
square integrable measurable functions on �nG. The subspace C1�nG of the constant
functions on �nG is G-invariant as well as its orthogonal complement

L2
0.�nG/ D

n
� 2 L2.�nG/ j

Z
�nG

�.x/d�.x/ D 0
o
:

Denote by �0
�nG

the restriction of ��nG to L2
0.�nG; �/. We say that ��nG (or

L2.�nG; �/) has a spectral gap if �0
�nG

has no almost invariant vectors. (In [Marg91],
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Chapter III, 1.8, � is then called weakly cocompact.) It is well-known that L2.�nG/

has a spectral gap when � is cocompact in G (see [Marg91], Chapter III, 1.10).
Margulis (op. cit., 1.12) asks whether this result holds more generally when � is a
subgroup of finite covolume.

The goal of this note is to prove the following results:

Theorem 1. Let G be a simple algebraic group over a local field k and G D G .k/,
the group of k-rational points in G . Let � be a lattice in G. Then the unitary
representation ��nG on L2.�nG/ has a spectral gap.

Theorem 2. For an integer k > 2, let X be the k-regular tree and G D Aut.X/.
Then G contains a lattice � for which the unitary representation ��nG on L2.�nG/

has no spectral gap.

So Theorem 2 answers in the negative Margulis’ question mentioned above.
Theorem 1 is known in case k D R ([Bekk98]). It holds, more generally, when G

is a real Lie group ([BeCo08]). Observe also that when k � rank.G / � 2, the group
G has Kazhdan’s Property (T) (see [BHV]) and Theorem 1 is clear in this case. When
k is non-archimedean with characteristic 0, every lattice � in G .k/ is uniform (see
[Serr], p. 84) and hence the result holds as mentioned above. By way of contrast, G

has many non uniform lattices when the characteristic of k is non zero (see [Serr] and
[Lubo91]). So, in order to prove Theorem 1, it suffices to consider the case where
the characteristic of k is non-zero and where k � rank.G / D 1.

Recall that when k is non-archimedean and k � rank.G / D 1, the group G .k/

acts by automorphisms on the associated Bruhat–Tits tree X (see [Serr]). This tree
is either the k-regular tree Xk (in which every vertex has constant degree k) or is the
bi-partite bi-regular tree Xk0;k1

(where every vertex has either degree k0 or degree
k1 and where all neighbours of a vertex of degree ki have degree k1�i ). The proof
of Theorem 1 will use the special structure of a fundamental domain for the action of
� on X as described in [Lubo91] (see also [Ragh89] and [Baum03]).

Theorems 1 and 2 provide a further illustration of the different behaviour of
general tree lattices as compared to lattices in rank one simple Lie groups over local
fields; for more on this topic, see [Lubo95].

The proofs of Theorems 1 and 2 will be given in Sections 3 and 4; they rely
in a crucial way on Proposition 6 from Section 2, which relates the existence of a
spectral gap with expander diagrams. In turn, Proposition 6 is based, much in the
spirit of [Broo81], on analogues for diagrams proved in [Mokh03] and [Morg94] of the
inequalities of Cheeger and Buser between the isoperimeric constant and the bottom of
the spectrum of the Laplace operator on a Riemannian manifold (see Proposition 5).
This connection between the combinatorial expanding property and representation
theory is by now a very popular theme; see [Lubo94] and the references therein. While
most applications in this monograph are from representation theory to combinatorics,
we use in the current paper this connection in the opposite direction: the existence or
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absence of a spectral gap is deduced from the existence of an expanding diagram or
of a non-expanding diagram, respectively.

2. Spectral gap and expander diagrams

We first show how the existence of a spectral gap for groups acting on trees is related
with the bottom of the spectrum of the Laplacian for an associated diagram.

A graph X consists of a set of vertices VX, a set of oriented edges EX, a fix-point
free involution � W EX ! EX, and end point mappings @i W EX ! VX for i D 0; 1

such that @i . Ne/ D @1�i .e/ for all e 2 EX. Assume that X is locally finite, that is, for
every x 2 VX, the degree deg.x/ of x is finite, where deg.x/ is the cardinality of the
set

@�1
0 .x/ D fe 2 EX j @0.e/ D xg:

The group Aut.X/ of automorphisms of the graph X is a locally compact group in
the topology of pointwise convergence on X , for which the stabilizers of vertices are
compact open subgroups.

We will consider infinite graphs called diagrams of finite volume. An edge-
indexed graph .D; i/ is a graph D equipped with a function i W ED ! RC (see
[BaLu01], Chapter 2). A measure � for an edge-indexed graph .D; i/ is a function
� W VD [ ED ! RC with the following properties (see [Mokh03] and [BaLu01],
2.6):

� i.e/�.@0e/ D �.e/,
� �.e/ D �. Ne/ for all e 2 VD, and
� P

x2VD �.x/ < 1.

Following [Morg94], we will say that D D .D; i; �/ is a diagram of finite volume.
The in-degree indeg.x/ of a vertex x 2 VD is defined by

indeg.x/ D
X

e2@�1
0

.x/

i.e/ D
X

e2@�1
0

.x/

�.e/

�.x/
:

The diagram D is k-regular if indeg.x/ D k for all x 2 VD.
Let D D .D; i; �/ be a connected diagram of finite volume. Observe that � is

determined, up to a multiplicative constant, by the weight function i . Indeed, fix
x0 2 VD and set �.e/ D i.e/=i. Ne/ for e 2 ED. Then

�.@1e/ D �. Ne/

i. Ne/
D �.e/

i. Ne/
D �.@0e/�.e/

for every e 2 ED. Therefore �.x/ D �.e1/�.e2/ : : : �.en/�.x0/ for every path
.e1; e2; : : : ; en/ from x0 to x 2 VD.
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Let D D .D; i; �/ be a diagram of finite volume. An inner product is defined for
functions on VD by

hf; gi D
X

x2VD

f .x/g.x/�.x/:

The Laplace operator � on functions f on VD is defined by

�f .x/ D f .x/ � 1

indeg.x/

X
e2@�1

0
.x/

�.e/

�.x/
f .@1.e//:

The operator � is a self-adjoint positive operator on L2.VD/. Let

L2
0.VD/ D ff 2 L2.VD/ j hf; 1VDi D 0g

and set
�.D/ D inf

f
h�f; f i;

where f runs over the unit sphere in L2
0.VD/. Observe that

�.D/ D inff� j � 2 	.�/ n f0gg;
where 	.�/ is the spectrum of �.

Let now X be a locally finite tree, and let G be a closed subgroup of Aut.X/.
Assume that G acts with finitely many orbits on X . Let � be a discrete subgroup
of G acting without inversion on X . Then the quotient graph �nX is well-defined.
Since � is discrete, for every vertex x and every edge e, the stabilizers �x and �e are
finite. Moreover, � is a lattice in G if and only if � is a lattice in Aut.X/ and this
happens if and only if X

x2D

1

j�xj < 1;

where D is a fundamental domain of � in X (see [Serr]). The quotient graph �nX Š
D is endowed with the structure of an edge-indexed graph given by the weight function
i W ED ! RC where i.e/ is the index of �e in �x for x D @0.e/. A measure
� W VD [ ED ! RC is defined by

�.x/ D 1

j�xj and �.e/ D 1

j�ej
for x 2 VD and e 2 ED. Observe that �.VD/ D P

x2D 1=j�xj < 1. So, D D
.D; i; �/ is a diagram of finite volume.

Let G be a group acting on a tree X . As in [BuMo00], 0.2, we say that the action
of G on X is locally 1-transitive if, for every x 2 VX and every n � 1, the stabilizer
Gx of x acts transitively on the sphere fy 2 X j d.x; y/ D ng.
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Proposition 3. Let X be either the k-regular tree Xk or the bi-partite bi-regular tree
Xk0;k1

for k � 3 or k0 � 3 and k1 � 3. Let G be a closed subgroup of Aut.X/.
Assume that the following conditions are both satisfied:

� G acts transitively on VX in the case X D Xk and G acts transitively on the set
of vertices of degree k0 as well as on the set of vertices of degree k1 in the case
X D Xk0;k1

;
� the action of G on X is locally 1-transitive.

Let � be a lattice in G and let D D �nX be the corresponding diagram of finite
volume. The following properties are equivalent:

(i) the unitary representation ��nG on L2.�nG/ has a spectral gap;

(ii) �.D/ > 0.

For the proof of this proposition, we will need a few general facts. Let G be
a second countable locally compact group and U a compact subgroup of G. Let
Cc.U nG=U / be the space of continuous functions f W G ! C which have compact
support and which are constant on the double cosets UgU for g 2 G.

Fix a left Haar measure � on G. Recall that L1.G; �/ is a Banach algebra under
the convolution product, the L1-norm and the involution f �.g/ D f .g�1/; observe
that Cc.U nG=U / is a �-subalgebra of L1.G; �/. Let � be a (strongly continuous)
unitary representation of G on a Hilbert space H . A continuous �-representation of
L1.G/, still denoted by � , is defined on H by

�.f /� D
Z

G

f .x/�.x/�d�.x/; f 2 L1.G/; � 2 H :

Assume that the closed subspace H U of U -invariant vectors in H is non-zero.
Then �.f /H U � H U for all f 2 Cc.U nG=U /. In this way, a continuous �-
representation �U of Cc.U nG=U / is defined on H U .

Proposition 4. With the previous notation, let f 2 Cc.U nG=U / be a function with
the following properties: f .x/ � 0 for all x 2 G,

R
G

fd� D 1, and the subgroup
generated by the support of f is dense in G. The following conditions are equivalent:

(i) the trivial representation 1G is weakly contained in � I
(ii) 1 belongs to the spectrum of the operator �U .f /.

Proof. Assume that 1G is weakly contained in � . There exists a sequence of unit
vectors �n 2 H such that

lim
n

k�.x/�n � �nk D 0;

uniformly over compact subsets of G. Let


n D
Z

U

�.u/�ndu;
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where du denotes the normalized Haar measure on U . It is easily checked that

n 2 H U and that

lim
n

k�.f /
n � 
nk D 0:

Since

k
n � �nk �
Z

U

k�.u/�n � �nkdu;

we have k
nk � 1=2 for sufficiently large n. This shows that 1 belongs to the
spectrum of the operator �U .f /.

For the converse, assume that 1 belongs to the spectrum of �U .f /. Hence, 1

belongs to the spectrum of �.f /, since �U .f / is the restriction of �.f / to the
invariant subspace H U . As the subgroup generated by the support of f is dense in
G, this implies that 1G is weakly contained in � (see [BHV], Proposition G.4.2).

Proof of Proposition 3. We give the proof only in the case where X is the bi-regular
tree Xk0;k1

. The case where X is the regular tree Xk is similar and even simpler.
Let X0 and X1 be the subsets of X consisting of the vertices of degree k0 and k1,

respectively. Fix two points x0 2 X0 and x1 2 X1 with d.x0; x1/ D 1. So, X0 is the
set of vertices x for which d.x0; x/ is even and X1 is the set of vertices x for which
d.x0; x/ is odd. Let U0 and U1 be the stabilizers of x0 and x1 in G. Since G acts
transitively on X0 and on X1, we have G=U0 Š X0 and G=U1 Š X1.

We can view the normed �-algebra Cc.U0nG=U0/ as a space of finitely supported
functions on X0. Since U0 acts transitively on every sphere around x0, it is well-
known that the pair .G; U0/ is a Gelfand pair, that is, the algebra Cc.U0nG=U0/ is
commutative (see for instance [BLRW09], Lemma 2.1). Observe that Cc.U0nG=U0/

is the linear span of the characteristic functions ı
.0/
n (lifted to G) of spheres of even

radius n around x0. Moreover, Cc.U0nG=U0/ is generated by ı
.0/
2 ; indeed, this

follows from the formulas (see [BLRW09], Theorem 3.3)

ı
.0/
4 D ı

.0/
2 � ı

.0/
2 � k0.k1 � 1/ı

.0/
0 � .k1 � 2/ı

.0/
2 ;

ı
.0/
2nC2 D ı

.0/
2 � ı

.0/
2n � .k0 � 1/.k1 � 1/ı

.0/
2n�2 � .k1 � 2/ı

.0/
2n for n � 2:

Let f0 D 1

kı
.0/
2 k1

ı
.0/
2 . We claim that f0 has all the properties listed in Proposition 4.

Indeed, f0 is a non-negative and U0-bi-invariant function on G with
R

G
f0.x/dx D

1. Moreover, let H be the closure of the subgroup generated by the support of
f0. Assume, by contradiction, that H ¤ G. Then there exists a function in
Cc.U0nG=U0/ whose support is disjoint from H . This is a contradiction, as the
algebra Cc.U0nG=U0/ is generated by f0. This shows that H D G.

Let � be the unitary representation of G on L2
0.�nG/ defined by right translations.

Observe that the space of �.U0/-invariant vectors is L2
0.�nX0/. So, we have a �-

representation �U0
of Cc.U0nG=U0/ on L2.�nX0; �/, where � is the measure on

the diagram D D �nX , as defined above.
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Similar facts are also true for the algebra Cc.U1nG=U1/: this is a commutative
normed �-algebra, it is generated by the characteristic function ı

.1/
2 of the sphere

of radius 2 around x1, and the representation � of G on L2
0.�nG/ induces a �-

representation �U1
of Cc.U1nG=U1/ on L2

0.�nX1; �/. Likewise, the function f1 D
1

kı
.1/
2 k1

ı
.1/
2 has all the properties listed in Proposition 4.

Let AX be the adjacency operator defined on `2.X/ by

AXf .x/ D 1

deg.x/

X
e2@�1

0
.x/

f .@1.e//; f 2 `2.X/:

Since AX commutes with automorphisms of X , it induces an operator AD on
L2.VD; �/ given by

ADf .x/ D 1

indeg.x/

X
e2@�1

0
.x/

�.e/

�.x/
f .@1.e//; f 2 L2.VD; �/;

where D is the diagram obtained from the quotient graph �nX . So, � D I � AD ,
where � is the Laplace operator on D.

Let BD denote the restriction of AD to the space L2
0.VD; �/. It follows that

�.�/ > 0 if and only if 1 does not belong to the spectrum of BD .
Proposition 3 will be proved, once we have shown the following

Claim. 1 belongs to the spectrum of BD if and only if 1G is weakly contained in � .

For this, we consider the squares of the operators AX and AD and compute

A2
Xf .x/ D 1

k0k1

deg.x/f .x/ C 1

k0k1

X
d.x;y/D2

f .y/; f 2 `2.X/:

The subspaces `2.X0/ and `2.X1/ of `2.X/ are invariant under A2
X and the restrictions

of A2
X to `2.X0/ and `2.X1/ are given by right convolution with the functions

g0 D 1

k0k1

ıe C
�

1 � 1

k0k1

�
f0;

g1 D 1

k0k1

ıe C
�

1 � 1

k0k1

�
f1;

where ıe is the Dirac function at the group unit e of G.
It follows that the restrictions of B2

D to the subspaces L2
0.�nX0; �/ and

L2
0.�nX1; �/ coincide with the operators �U0

.g0/ and �U1
.g1/, respectively.

For i D 0; 1, the spectrum 	.�Ui
.gi // of �Ui

.gi / is the set

	.�Ui
.gi // D ˚

1
k0k1

C .1 � 1
k0k1

/� j � 2 	.�Ui
.fi //

�
:



258 B. Bekka and A. Lubotzky

Thus, 1 belongs to the spectrum of �U0
.fi / if and only if 1 belongs to the spectrum

of �U0
.gi /.

To prove the claim above, assume that 1 belongs to the spectrum of BD . Then 1

belongs to the spectrum of B2
D . Hence 1 belongs to the spectrum of either �U0

.g0/

or �U1
.g1/ and therefore 1 belongs to the spectrum of either �U0

.f0/ or �U1
.f1/. It

follows from Proposition 4 that 1G is weakly contained in � .
Conversely, suppose that 1G is weakly contained in � . Then, again by Proposi-

tion 4, 1 belongs to the spectra of �U0
.f0/ and �U1

.f1/. Hence, 1 belongs to the
spectra of �U0

.g0/ and �U1
.g1/. We claim that 1 belongs to the spectrum of BD .

Indeed, assume by contradiction that 1 does not belong to the spectrum of BD ,
that is, BD �I has a bounded inverse on L2

0.VD; �/. Since 1 belongs to the spectrum

of the self-adjoint operator �U0
.g0/, there exists a sequence of unit vectors �

.0/
n in

L2
0.�nX0; �/ with

lim
n

k�U0
.g0/�.0/

n � �.0/
n k D 0:

As the restriction of B2
D to L2

0.�nX0; �/ coincides with �U0
.g0/, we have

k�U0
.g0/�.0/

n � �.0/
n k D k.B2

D � I /�.0/
n k

D k.BD � I /.BD C I /�.0/
n k

� 1

k.BD � I /�1kk.BD C I /�.0/
n k:

Thus, limn kBD�
.0/
n C �

.0/
n k D 0. On the other hand, observe that BD maps

L2
0.�nX0; �/ to the subspace L2.�nX1; �/ and that these subspaces are orthogonal

to each other. Hence,

kBD�.0/
n C �.0/

n k2 D kBD�.0/
n k2 C k�.0/

n k2

This is a contradiction since k�
.0/
n k D 1 for all n. The proof of Proposition 3 is now

complete.

Next we rephrase Proposition 3 in terms of expander diagrams. Let .D; i; w/ be
a diagram with finite volume. For a subset S of VD, set

E.S; Sc/ D fe 2 ED j @0.e/ 2 S; @1.e/ … Sg:
We say that D is an expander diagram if there exists " > 0 such that

�.E.S; Sc//

�.S/
� "

for all S � VD with �.S/ � �.D/=2. The motivation for this definition comes from
expander graphs (see [Lubo94]).

We quote from [Mokh03] and [Morg94] the following result which is standard in
the case of finite graphs.



Lattices with and lattices without spectral gap 259

Proposition 5 ([Mokh03], [Morg94]). Let .D; i; w/ be a diagram with finite volume.
Assume that supe2ED i. Ne/=i.e/ < 1 and that supx2VD indeg.x/ < 1. The following
conditions are equivalent:

(i) D is an expander diagram;

(ii) �.D/ > 0.

As an immediate consequence of Propositions 3 and 5, we obtain the following
result which relates the existence of a spectral gap to an expanding property of the
corresponding diagram.

Proposition 6. Let X be either the k-regular tree Xk or the bi-partite bi-regular
tree Xk0;k1

for k � 3 or k0 � 3 and k1 � 3. Let G be a closed subgroup of
Aut.X/ satisfying both conditions from Proposition 3. Let � be a lattice in G and let
D D �nX be the corresponding diagram of finite volume. The following properties
are equivalent:

(i) the unitary representation ��nG on L2.�nG/ has a spectral gap;

(ii) D is an expander diagram.

3. Proof of Theorem 1

Let G D G .k/ be the k-rational points of a simple algebraic group G over a local
field k and let � be a lattice in G. As explained in the Introduction, we may assume
that k is non-archimedean and that k � rank.G / D 1. By the Bruhat–Tits theory, G

acts on a regular or bi-partite bi-regular tree X with one or two orbits. Moreover, the
action of G on X is locally 1-transitive (see [Chou94], p. 33).

Passing to the subgroup GC of index at most two consisting of orientation preserv-
ing automorphisms, we can assume that G acts without inversion. Indeed, assume
that L2.� \ GCnGC/ has a spectral gap. If � is contained in GC, then L2.�nG/

has a spectral gap since GC has finite index (see [BeCo08], Proposition 6). If �

is not contained in GC, then � \ GCnGC may be identified as a GC-space with
�n�GC D �nG. Hence, 1GC is not weakly contained in the GC-representation
defined on L2

0.�nG/.
Let X be the Bruhat–Tits tree associated to G. It is shown in [Lubo91], Theo-

rem 6.1 (see also [Baum03]) that � has fundamental domain D in X of the following
form: there exists a finite set F � D such that D n F is a union of finitely many
disjoint rays r1; : : : ; rs . (Recall that a ray in X is an infinite path beginning at some
vertex and without backtracking.) Moreover, for every ray rj D fxj

0 ; x
j
1 ; x

j
2 ; : : : g in

D n F , the stabilizer �
x

j

i

of x
j
i is contained in the stabilizer �

x
j

iC1

of x
j
iC1 for all i .

To prove Theorem 1, we apply Proposition 6. So, we have to prove that D is an
expander diagram.



260 B. Bekka and A. Lubotzky

Choose i 2 f0; 1; : : : g such that, with

D1 D F [
s[

j D1

fxj
0 ; : : : ; x

j
i g;

we have �.D1/ > �.D/=2.
Let S be a subset of D with �.S/ � �.D/=2. Then D1 ª S . Two cases can

occur.
� First case: S \ D1 D ;. Thus, S is contained in

s[
j D1

fxj
iC1; x

j
iC2; : : : g:

Fix j 2 f1; : : : ; sg. Let i.j / 2 f0; 1; : : : g be minimal with the property that x
j

i.j /C1
2

S . Then ej WD .x
j

i.j /C1
; x

j

i.j /
/ 2 E.S; Sc/. Observe that j�

x
j

lC1

j D deg.x
j

l
/j�

x
j

l

j
for all l � 0. Let k be the minimal degree for vertices in X (so, k D minfk0; k1g if
X D Xk0;k1

).Then �.x
j

lC1
/ � �.x

j

l
/=k for all l and

�.ej / D 1

j�ej
j � k

j�
x

j

i.j /

j D k�.x
j

i.j /
/:

Therefore, we have

�.E.S; Sc//

�.S/
�

Ps
j D1 �.ej /Ps

j D1 �.fxj

i.j /C1
; x

j

i.j /C1
; : : : ; g/

� k

Ps
j D1 �.x

j

i.j /
/Ps

j D1

P1
lD0 �.x

j

i.j /Cl
/

� k

Ps
j D1 �.x

j

i.j /
/Ps

j D1 �.x
j

i.j /
/
P1

lD0 k�l

D k

Ps
j D1 �.x

j

i.j /
/

1
1�k�1

Ps
j D1 �.x

j

i.j /
/

D k
1
1

1�k�1

D k � 1:

� Second case: S \ D1 ¤ ;. Then there exist x 2 S \ D1 and y 2 D1 n S . Since
D1 is a connected subgraph, there exists a path .e1; e2; : : : ; en/ in ED1 from x to y.
Let l 2 f1; : : : ; ng be minimal with the property @0.el/ 2 S and @1.el/ … S . Then
el 2 E.S; Sc/. Hence, with C D minf�.e/ j e 2 ED1g > 0, we have

�.E.S; Sc//

�.S/
� C

�.D/
:

This completes the proof of Theorem 1.
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4. Proof of Theorem 2

Let .D; i; �/ be a k-regular diagram. By the “inverse Bass–Serre theory” of groups
acting on trees, there exists a lattice � in G D Aut.Xk/ for which D D �nXk .
Indeed, we can find a finite grouping of .D; i/, that is, a graph of finite groups
D D .D; D/ such that i.e/ is the index of De in D@0e for all e 2 ED. Fix an origin
x0. Let � D �1.D; x0/ be the fundamental group of .D; x0/. The universal covering
of .D; x0/ is the k-regular tree Xk and the diagram D can identified with the diagram
associated to �nXk . For all this, see (2.5), (2.6) and (4.13) in [BaLu01].

In view of Proposition 6, Theorem 2 will be proved once we present examples of
k-regular diagrams with finite volume which are not expanders. An example of such
a diagram appears in [Mokh03], Example 3.4. For the convenience of the reader, we
review the construction.

Fix k � 3 and let q D k � 1. For every integer n � 1, let Dn be the finite graph
with 2n C 1 vertices

B
x

.n/
1

� B
x

.n/
2

� B � � � � B � B
x

.n/
2n

� B
x

.n/
2nC1

:

Let D be the following infinite ray:

B
x0

� B
x1

� D1 � B
x2

� B
x3

� D2 � B � B � � � � � � B
x2n�2

� B
x2n�1

�Dn � B � B � � � :

We first define a weight function in on EDn as follows:

� in.e/ D 1 if e D .x
.n/
1 ; x

.n/
2 / or e D .x

.n/
2 ; x

.n/
1 /;

� in.e/ D q if e D .x
.n/
m ; x

.n/
mC1/ for m even;

� in.e/ D 1 if e D .x
.n/
m ; x

.n/
mC1/ for m odd;

� in.e/ D q if e D .x
.n/
mC1; x

.n/
m / for m even;

� in.e/ D 1 if e D .x
.n/
mC1; x

.n/
m / for m odd.

Observe that in.e/=in. Ne/ D 1 for all e 2 EDn. Define now a weight function i on
ED as follows:

� i.e/ D q C 1 if e D .x0; x1/;

� i.e/ D q if e D .x1; x0/;

� i.e/ D 1 if e D .xm; xmC1/ for m � 1;

� i.e/ D q if e D .xmC1; xm/ for m � 1;

� i.e/ D in.e/ if e 2 EDn.
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One readily checks that, for every vertex x 2 D,
X

e2@�1
0

.x/

i.e/ D q C 1 D k;

that is, .D; i/ is k-regular. The measure � W VD ! RC corresponding to i (see the
remark at the beginning of Section 2) is given by

� �.x0/ D 1=.q C 1/,

� �.x2m�2/ D 1=qm�1 for m � 2,

� �.x2m�1/ D 1=qm for m � 1,

� �.x/ D 1=qn if x 2 Dn.

One checks that, if we define �.e/ D i.e/�.@0e/ for all e 2 ED, we have �. Ne/ D
�.e/. Moreover,

�.Dn/ D .2n C 1/
1

qn

and hence

�.D/ � 1

q C 1
C 2

X
n�0

1

qn
C

X
n�1

�.Dn/ < 1:

We have also
E.Dn; Dc

n/ D f.x2n�1; x2n�2/; .x2n; x2nC1/g;
so that

�
�
E.Dn; Dc

n/
� D q

1

qn
C 1

qn
D q C 1

qn
:

Hence
�

�
E.Dn; Dc

n/
�

�.Dn/
D

qC1
qn

.2n C 1/ 1
qn

D q C 1

2n C 1

and

lim
n

�
�
E.Dn; Dc

n/
�

�.Dn/
D 0:

Observe that, since limn �.Dn/ D 0, we have �.Dn/ � �.D/=2 for sufficiently
large n. This completes the proof of Theorem 2.

References

[BaLu01] H. Bass and A. Lubotzky, Tree lattices. Progr. Math. 176, Birkhäuser, Boston 2001.
Zbl 1053.20026 MR 1794898

[Baum03] U. Baumgartner, Cusps of lattices in rank 1 Lie groups over local fields. Geom.
Dedicata 99 (2003), 17–46. Zbl 1028.22011 MR 1998927

http://www.emis.de/MATH-item?1053.20026
http://www.ams.org/mathscinet-getitem?mr=1794898
http://www.emis.de/MATH-item?1028.22011
http://www.ams.org/mathscinet-getitem?mr=1998927


Lattices with and lattices without spectral gap 263

[BLRW09] U. Baumgartner, M. Laca, J. Ramagge, and G. Willis, Hecke algebras from
groups acting on trees and HNN extensions. J. Algebra 321 (2009), 3065–3088.
Zbl 05599079 MR 2510040

[Bekk98] B. Bekka, On uniqueness of invariant means. Proc. Amer. Math. Soc. 126 (1998),
507–514. Zbl 0885.43003 MR 1415573

[BeCo08] B. Bekka and Y. de Cornulier, A spectral gap property for subgroups of finite
covolume in Lie groups. Colloq. Math. 118 (2010), 175–182. Zbl 1188.22006
MR 2600524

[BHV] B. Bekka, P. de la Harpe, and A. Valette. Kazhdan’s property (T). New Math.
Monogr. 11, Cambridge University Press, Cambridge 2008. Zbl 1146.22009
MR 2415834

[Broo81] R. Brooks, The fundamental group and the spectrum of the Laplacian. Comment.
Math. Helv. 56 (1981), 581–598. Zbl 0495.58029 MR 656213

[BuMo00] M. Burger and S. Mozes, Groups acting on trees: from local to global structure. Inst.
Hautes Études Sci. Publ. Math. 92 (2000), 113–150. Zbl 1007.22012 MR 1839488

[Chou94] F. M. Choucroun, Analyse harmonique des groupes d’automorphismes d’arbres
de Bruhat-Tits. Mém. Soc. Math. France (N.S.) 58 (1994), 1–166. Zbl 0840.43019
MR 1294542

[Dixm69] J. Dixmier, Les C �-algèbres et leurs représentations. 2e ed., Cahiers Scientifiques
29, Gauthier-Villars, Paris 1969. Zbl 0174.18601 MR 0246136

[Lubo91] A. Lubotzky, Lattices in rank one Lie groups over local fields. Geom. Funct. Anal.
4 (1991), 405–431. Zbl 0826.22012 MR 1308046

[Lubo94] A. Lubotzky, Discrete groups, expanding graphs and invariant measures. Progr.
Math. 125, Birkhäuser Verlag, Basel 1994. Zbl 0826.22012 MR 1308046

[Lubo95] A. Lubotzky, Tree-lattices and lattices in Lie groups. In Combinatorial and ge-
ometric group theory (Edinburgh, 1993), London Math. Soc. Lecture Note Ser.
204, Cambridge University Press, Cambridge 1995, 217–232. Zbl 0840.22019
MR 1320284

[Marg91] G. A. Margulis, Discrete subgroups of semisimple Lie groups. Ergeb. Math. Grenz-
geb. (3) 17, Springer-Verlag, Berlin 1991. Zbl 0732.22008 MR 1090825

[Mokh03] S. Mokhtari-Sharghi, Cheeger inequality for infinite graphs. Geom. Dedicata 100
(2003), 53–64. Zbl 1026.05060 MR 2011113

[Morg94] M. Morgenstern, Ramanujan diagrams. SIAM J. Discrete Math. 7 (1994), 560–570.
Zbl 0811.05045 MR 1299084

[Morg95] M. Morgenstern, Natural bounded concentrators. Combinatorica 15 (1995),
111–122. Zbl 0822.05038 MR 1325275

[Ragh72] M. S. Raghunathan, Discrete subgroups of Lie groups. Ergeb. Math. Grenzgeb. 68,
Springer-Verlag, New York 1972, Zbl 0254.22005 MR 0507234

[Ragh89] M. S. Raghunathan, Discrete subgroups of algebraic groups over local fields of
positive characteristics. Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 127–146.
Zbl 0689.22004 MR 1013536

[Serr] J.-P. Serre, Trees. Springer-Verlag, Berlin 1980. Zbl 0548.20018 MR 0607504

http://www.emis.de/MATH-item?05599079
http://www.ams.org/mathscinet-getitem?mr=2510040
http://www.emis.de/MATH-item?0885.43003
http://www.ams.org/mathscinet-getitem?mr=1415573
http://www.emis.de/MATH-item?1188.22006
http://www.ams.org/mathscinet-getitem?mr=2600524
http://www.emis.de/MATH-item?1146.22009
http://www.ams.org/mathscinet-getitem?mr=2415834
http://www.emis.de/MATH-item?0495.58029
http://www.ams.org/mathscinet-getitem?mr=656213
http://www.emis.de/MATH-item?1007.22012
http://www.ams.org/mathscinet-getitem?mr=1839488
http://www.emis.de/MATH-item?0840.43019
http://www.ams.org/mathscinet-getitem?mr=1294542
http://www.emis.de/MATH-item?0174.18601
http://www.ams.org/mathscinet-getitem?mr=0246136
http://www.emis.de/MATH-item?0826.22012
http://www.ams.org/mathscinet-getitem?mr=1308046
http://www.emis.de/MATH-item?0826.22012
http://www.ams.org/mathscinet-getitem?mr=1308046
http://www.emis.de/MATH-item?0840.22019
http://www.ams.org/mathscinet-getitem?mr=1320284
http://www.emis.de/MATH-item?0732.22008
http://www.ams.org/mathscinet-getitem?mr=1090825
http://www.emis.de/MATH-item?1026.05060
http://www.ams.org/mathscinet-getitem?mr=2011113
http://www.emis.de/MATH-item?0811.05045
http://www.ams.org/mathscinet-getitem?mr=1299084
http://www.emis.de/MATH-item?0822.05038
http://www.ams.org/mathscinet-getitem?mr=1325275
http://www.emis.de/MATH-item?0254.22005
http://www.ams.org/mathscinet-getitem?mr=0507234
http://www.emis.de/MATH-item?0689.22004
http://www.ams.org/mathscinet-getitem?mr=1013536
http://www.emis.de/MATH-item?0548.20018
http://www.ams.org/mathscinet-getitem?mr=0607504


264 B. Bekka and A. Lubotzky

[Tits70] J. Tits, Sur le groupe des automorphismes d’un arbre. In Essays on topology
and related topics, Springer-Verlag, New York 1970, 188–211. Zbl 0214.51301
MR 0299534

Received August 31, 2009; revised June 29, 2010

B. Bekka, IRMAR, Université de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex,
France

E-mail: bachir.bekka@univ-rennes1.fr

A. Lubotzky, Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel

E-mail: alexlub@math.huji.ac.il

http://www.emis.de/MATH-item?0214.51301
http://www.ams.org/mathscinet-getitem?mr=0299534

	Introduction
	Spectral gap and expander diagrams
	Proof of Theorem 1
	Proof of Theorem 2
	References

