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Abstract. For each subcomplex of the standard CW-structure on any torus, we compute the
homology of a certain infinite cyclic regular covering space. In all cases when the homology
is finitely generated, we also compute the cohomology ring. For aspherical subcomplexes of
the torus, our computation gives the homology of the groups introduced by M. Bestvina and
N. Brady in [3]. We compute the cohomological dimension of each of these groups.
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1. Introduction

In 1995, Bestvina and Brady introduced a construction which takes as input a finite flag
complex L, and outputs a group HL, the Bestvina–Brady group, whose homological
finiteness properties are controlled by the homotopy type of L [3]. Bestvina and
Brady’s most remarkable application of this construction was in the case when L

is acyclic but not 1-connected, in which case they showed that HL is type FP but
not finitely presentable [3]. Many other groups having surprising combinations of
finiteness conditions can be constructed as Bestvina–Brady groups. For example, by
choosing L to be acyclic over some rings but not acyclic over others, one obtains
a group HL which is FP over some rings but not FP over others. With the benefit
of hindsight, Stallings’ group that is finitely presented but not FP3 is isomorphic
to HL in the case when L is the octahedron [17], and Bieri’s higher dimensional
generalizations of Stallings’ group have a similar interpretation [4].

The original proof of the Bestvina Brady theorem, and many later generalizations
[3], [14], [6] have used techniques from CAT(0) geometry. The theme of this paper
is that many of the homological properties of the groups HL can be derived using
more standard methods from algebraic topology. This is similar in spirit to [8], in
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which Dicks and Leary used algebraic techniques to find a presentation for HL. In
particular, we compute the ordinary homology and cohomology of each group HL,
with arbitrary coefficients (in Sections 5 and 6), and we compute the cohomological
dimension of HL over many rings R (in Section 8). One point of interest is that the
cohomological dimension of HL can vary with the choice of ring. Another surprise
is that the cohomological dimension of HL and many of the finiteness properties of
HL are detected by ordinary cohomology. In the case when L is acyclic over a ring
R, we also compute the ring structure on the R-cohomology of HL (Section 6).

One advantage of the algebraic approach is that it applies also in the case when L

is infinite. Bestvina–Brady groups HL for infinite L have found application in [13],
so this is not an empty generalization. Moreover, something can be said when L is
not a flag complex. The Bestvina–Brady construction really yields an Eilenberg–Mac
Lane space for the group HL rather than the group itself. In the case when L is not
flag, this construction still yields a space, although this space is no longer aspherical.

In the next Section, we give a detailed description of the Bestvina–Brady con-
struction and of our results.

2. The spaces TL and zTL

Let T be the circle, or 1-dimensional unitary group, given a CW-structure with one
0-cell and one 1-cell. Suppose also that the identity element of the group is chosen to
be the 0-cell. For a set V , let T .V / denote the direct sum T .V / D L

v2V T . There is
a natural CW-structure on T .V / in which the i -cells are in bijective correspondence
with i -element subsets of V .

For the purposes of this paper, a simplicial complex will be defined abstractly
as a non-empty set of finite sets which is closed under inclusion. The one element
members of the set of sets are the vertices of the simplicial complex. Every simplicial
complex (including the empty simplicial complex) contains a unique �1-simplex
corresponding to the empty set.

If � is a finite subset of V , the closure in T .V / of the cell corresponding to � is
equal to T .�/, and consists of all the cells corresponding to subsets of � . It follows
that there is a bijective correspondence between simplicial complexes whose vertex
set is contained in V and non-empty subcomplexes of T .V / (see [10], 3.23, for this
statement in the case when V is finite). The empty simplicial complex corresponds
to the subcomplex T; consisting of just the single 0-cell of T .V /, and a non-empty
simplicial complex L corresponds to the complex TL defined by

TL D
[

�2L

T .�/:

The fundamental group of TL and the cohomology ring of TL are easily described
in terms of L, and there is a characterisation of those L for which TL is aspherical.
(We shall describe all of these results below.)
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A point in T .V / is a vector .tv/ of elements of T indexed by V , such that only
finitely many tv are not the identity element. The group multiplication induces a map
� W T .V / ! T which takes the point .tv/ to the product of all of the non-identity tv’s.
For each L this induces a cellular map �L W TL ! T , and �L is surjective when L is
non-empty. Our aim is to study the homology and cohomology of the space zTL, the
infinite cyclic cover of TL obtained by pulling back the universal cover of T via �L.

zTL �! R??y
??y

TL

�L�! T

For each L, we describe the homology of zTL, together with information about the
Z-action induced by the action of Z by deck transformations on zTL. We deduce that
for any non-trivial ring R, the R-homology of zTL is finitely generated as an R-module
if and only if L is finite and R-acyclic. In all cases when L is R-acyclic, we give a
complete description of the cohomology ring H �. zTLI R/.

Let GL denote the fundamental group of TL. Since the fundamental group of
a CW-complex depends only on its 2-skeleton, the group GL depends only on the
1-skeleton of the simplicial complex L. The presentation for GL coming from the
cell structure on TL has one generator for each vertex of L, subject only to the relation
that the generators v and w commute whenever fv; wg is an edge in L. These groups
are known as right-angled Artin groups. It can be shown that TL is aspherical if and
only if L is a flag complex. Every simplicial complex may be completed to a flag
complex with the same 1-skeleton (just add in a simplex for each finite complete
subgraph of the 1-skeleton) and so one sees that the spaces of the form TL include
models for the classifying spaces of all right-angled Artin groups.

When L is non-empty, zTL is connected and the fundamental group of zTL is the
kernel of the induced map �� W GL ! Z, which sends each of the generators for GL

to 1 2 Z. Call this group HL. The groups HL are known as Bestvina–Brady groups.
In the case when L is a finite flag complex, M. Bestvina and N. Brady showed that the
homological finiteness properties of HL are determined by the homotopy type of L.
For example, they show that HL is finitely presented if and only if L is 1-connected
[3]. For an explicit presentation for HL for any L, see [8].

Let L be an n-dimensional flag complex. It is easy to show that in this case, the
cohomological dimension of the group GL is equal to n C 1. The cohomological
dimension of GL over any non-trivial ring R is also equal to n C 1. It also follows
easily that the cohomological dimension of HL is equal to either n or n C 1. Our
computations together with some of the results from [3] allow us to determine the
cohomological dimension of HL, at least in the case when R is either a field or a
subring of the rationals. If n D 0 and L is a single point, then HL is the trivial
group. Otherwise, if there exists an R-module A such that H n.LI A/ ¤ 0, then
HL has cohomological dimension n C 1 over R. If there exists no such A, then HL

has cohomological dimension n over R. Note that in contrast to the case of GL, the
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cohomological dimension of HL may vary with the choice of ring R. As a corollary
we deduce that the trivial cohomological dimension and cohomological dimension
of HL are equal.

Some of these results appeared, with slightly different proofs, in the Southampton
PhD thesis of the second named author. For some results, we give a brief sketch of
a second proof. Some computations of low-dimensional ordinary cohomology (and
many other algebraic invariants) for a special class of the Bestvina–Brady groups also
appear in a recent paper of S. Papadima and A. Suciu [15].

3. Homology and cohomology of TL

The differential in the cellular chain complex for T .V / is trivial, and hence so is the
differential in the cellular chain complex for TL, for any L. It follows that for any
ring R, Hi .TLI R/ is a free R-module with basis the i -cells of TL, or equivalently the
.i �1/-simplices of L. The differential in the cellular cochain complex is also trivial.
The group H i .TLI R/ is isomorphic to a direct product of copies of R indexed by the
.i � 1/-simplices of L. To describe the ring structure on the cohomology, we first
consider the case of the torus T .V /.

The cohomology ring H �.T .V /I R/ can be described as the exterior algebra
ƒ�

R;V . A homogeneous element f 2 ƒn
R;V is an alternating function f W V n ! R,

where we say that a function is alternating if the following two conditions are satisfied:

(1) f .v1; : : : ; vn/ D 0 whenever there exists 1 � i < j � n with vi D vj ;
(2) f .v1; : : : ; vi ; viC1; : : : ; vn/ D �f .v1; : : : ; viC1; vi ; : : : ; vn/ for any i with 1 �

i < n.

If f 2 ƒi and g 2 ƒn�i , the product f:g is the so-called ‘shuffle product’. This is
defined in terms of the pointwise product by the equation

f:g.v1; : : : ; vn/ D
X

�

�.�/f .v�.1/; : : : ; v�.i//g.v�.iC1/; : : : ; v�.n//;

where �.�/ 2 f˙1g denotes the sign of the permutation � , and the summation ranges
over all permutations � such that

�.1/ < �.2/ < � � � < �.i/ and �.i C 1/ < �.i C 2/ < � � � < �.n/:

(The ‘shuffles’ or permutations of the above type are chosen because they are a set of
coset representatives in Sn for the subgroup Si � Sn�i , so that each i -element subset
of f1; : : : ; ng is equal to f�.1/; : : : ; �.i/g for exactly one such � . Any other set of
coset representatives could be used instead.)

There is a similar description of the ring structure on H �.TLI R/ for any simplicial
complex L, as the exterior face ring ƒ�

R.L/ of L. If V is the vertex set of L, ƒ�
R.L/

is the quotient of ƒ�
R;V by the homogeneous ideal IL, with generators the functions
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that vanish on every n-tuple .v1; : : : ; vn/ which does not span a simplex of L. The
inclusion of TL in T .V / induces a homomorphism of cohomology rings

ƒ�
R;V Š H �.T .V /I R/ ! H �.TLI R/;

and it is easy to check (from the additive description of H �.TLI R/ given above)
that this homomorphism is surjective and that its kernel is IL. Hence one obtains a
theorem which was first stated in [12] in the case when L is finite:

Theorem 1. For any simplicial complex L and any ring R, the cohomology ring
H �.TLI R/ is isomorphic to the exterior face ring ƒ�

R.L/.

For any path-connected space X, there is a natural isomorphism between H1.X I Z/

and Hom.�1.X/; Z/. The element of H 1.TLI Z/ D ƒ1
Z.L/ that corresponds to the

homomorphism �� W GL ! Z is the element ˇL, the constant function which takes
each vertex of L to 1 2 Z. By a slight abuse of notation, write ˇL also for the element
of ƒ1

R.L/ that takes each vertex of L to 1 2 R.
In any anticommutative ring, multiplication by an element of odd degree gives rise

to a differential. The cochain complex structure on ƒ�
R.L/ given by multiplication

by ˇL is easily described.

Theorem 2. For any ring R, there is a natural isomorphism of cochain complexes

.ƒ�
R.L/; ˇ�/ Š C ��1C .LI R/

between the exterior face ring of L with differential given by left multiplication by
ˇL, and the augmented simplicial cochain complex of L shifted in degree by one.

Proof. In degree i , each of the two graded R-modules is isomorphic to a direct
product of copies of R indexed by the .i � 1/-simplices of L, or equivalently the
R-valued functions on the oriented .i � 1/-simplices of L, where f .��/ D �f .�/

if �� is the same simplex as � with the opposite orientation. It remains to show that
this isomorphism is compatible with the differentials on the two cochain complexes.

Let f be an R-valued function on the .i � 1/-simplices of L, and compare the
functions ˇ:f and ıf , the image of f under the differential on C ��1C .LI R/. If
.v0; : : : ; vi / is the vertex set of an oriented i -simplex of L, then

ˇ:f .v0; : : : ; vi / D
iX

j D0

.�1/j ˇ.vj /f .v0; : : : ; vj �1; vj C1; : : : ; vi /

D
iX

j D0

.�1/j f .v0; : : : ; vj �1; vj C1; : : : ; vi /

D ıf .v0; : : : ; vi /:

This completes the proof.
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4. Higher homotopy of TL

Recall that a full subcomplex M of a simplicial complex L is a subcomplex such that
if � is any simplex of L and each vertex of � is in M , then � is in M .

Proposition 3. If M is a full subcomplex of L, then TM is a retract of TL.

Proof. Let W be a subset of V . There is an isomorphism of topological groups
T .V / Š T .W / ˚ T .V � W /. The inclusion

i W T .W / Š T .W / ˚ f1g ! T .V /

and projection

� W T .V / ! T .V /=f1g ˚ T .V � W / Š T .W /

satisfy � B i D 1T .W /, and show that T .W / is a retract of T .V /.
Now suppose that L is a simplicial complex with vertex set V and that M is the

full subcomplex with vertex set W � V . Then TL is a subcomplex of T .V /, and TM

is a subcomplex of T .W /. The maps i and � , when restricted to TM and TL, show
that TM is a retract of TL as claimed.

Recall that a simplicial complex L is said to be flag if every finite complete sub-
graph of the 1-skeleton of L is the 1-skeleton of a simplex of L. Any full subcomplex
of a flag complex is flag.

Proposition 4. TL is aspherical if and only if L is a flag complex.

Proof. A subset of a CW-complex that meets the interior of infinitely many cells
contains an infinite discrete set, so cannot be compact. Hence any map from a sphere
to a CW-complex has image inside a finite subcomplex and any homotopy between
maps of a sphere into a CW-complex has image contained in a finite subcomplex.
Thus it suffices to consider the case when L is finite.

Suppose that L is a finite flag complex with vertex set V . If L is an n-simplex,
then TL is an .n C 1/-torus, and so TL is aspherical. If L is not a simplex, then there
exist v1; v2 2 V so that there is no edge in L from v1 to v2. For i D 1; 2, let Li be the
full subcomplex of L with vertex set V �fvig, and define L3 by L3 D L1 \L2. Then
L D L1 [ L2, and each of L1, L2 and L3 is flag. By induction, TLi

is aspherical
for i D 1; 2; 3. Also TL3

D TL1
\ TL2

is a subcomplex of both TL1
and TL2

. The
fundamental group of TL3

maps injectively to the fundamental group of each of TL1

and TL2
, since TL3

is a retract of each of TL1
and TL2

. A theorem of Whitehead [10],
1.B.11, implies that TL D TL1

[ TL2
is aspherical.

Conversely, suppose that L is not flag. Then L contains a full subcomplex M

which is equal to the boundary of an n-simplex for some n > 1. Then TM is the
n-skeleton of an .n C 1/-torus, and so �n.TM / is non-zero. Since TM is a retract of
TL it follows that �n.TL/ is non-zero too.
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Remark 5. There is also a metric proof that TL is aspherical whenever L is a finite
flag complex [3]. (When L is flag, the geodesic metric on T .L/ induced by the stan-
dard product metric on T .V / is locally CAT(0). A version of the Cartan–Hadamard
theorem shows that any locally CAT(0) metric space is aspherical.) We give the above
proof instead to emphasize that the metric technology is not needed.

5. Homology of zTL

Let Z denote the fundamental group of T , an infinite cyclic group, and let z denote
a generator for Z. Since zTL is defined in terms of �L W TL ! T by pulling back the
universal covering space of T , Z acts via deck transformations on zTL. When L is
non-empty, the map �L induces an isomorphism GL=HL Š Z. In this section we
describe the cellular chain complex and homology of zTL as a Z-module, for every
L. Let C C� .L/ denote the augmented cellular chain complex of L, and let d D dL

be its differential.

Proposition 6. The cellular chain complexC�. zTL/ is isomorphic to the chain complex
ZŒZ� ˝ C C

��1.L/ with differential .1 � z/ ˝ dL.

Proof. Each .n � 1/-simplex � of L corresponds to a cubical n-cell in TL, whose
opposite faces are identified. In zTL this lifts to a free Z-orbit of n-cells. The i th
opposite pair of faces are no longer identified, but differ by the translation action
of z. By picking an orbit representative in each orbit of cells, we establish a Z-equi-
variant bijection between the set of n-cells of zTL and the direct product of Z with
the set of .n � 1/-simplices of L. The free abelian group with this basis is naturally
isomorphic to ZŒZ� ˝ C C

n�1.L/. Let v be any fixed 0-cell of zTL. In each orbit of
higher-dimensional cells, pick the orbit representative that has v as a vertex but does
not have z�1v as a vertex. With respect to this choice of orbit representatives, the
boundary map is as claimed.

Corollary 7. For any L, for any abelian group A, and for any n � 0, there are short
exact sequences of ZŒZ�-modules:

0 ! BC
n�1.LI A/ ! Hn. zTLI A/ ! ZŒZ� ˝ xHn�1.LI A/ ! 0;

0 ! ZŒZ� ˝ xHn�1.LI A/ ! Hn. zTLI A/ ! ZC
n�1.LI A/ ! 0;

where Z acts trivially on ZC� .LI A/ and on BC� .LI A/, the cycles and boundaries in
C C� .LI A/. The inclusion of the Z-fixed points in Hn. zTLI A/ gives rise to the first
sequence, and the map of Hn. zTLI A/ onto its largest Z-invariant quotient gives rise
to the second sequence.

In the case when A D R, a ring, each sequence admits an RŒZ�-module structure.
In this case, the first sequence is split if xHn�1.LI R/ is R-projective, and the second
sequence always admits an R-module splitting.



128 I. J. Leary and M. Saadetoğlu

Proof. Take elements p.z/ 2 ZŒZ�, and c 2 C C
n�1.LI A/. The chain p.z/ ˝ c is a

cycle for .1�z/˝d if and only if d.c/ D 0. The boundary of p.z/˝c is .1�z/p.z/˝
d.c/. Thus the cycles Zn in C�. zTLI A/ may be identified with ZŒZ� ˝ ZC

n�1.LI A/,
and the boundaries Bn may be identified with .1 � z/ZŒZ� ˝ BC

n�1.LI A/. Between
these lies B 0

n D ZŒZ� ˝ BC
n�1.LI A/, and B 0

n is a ZŒZ�-submodule of Zn. This gives
a short exact sequence of ZŒZ�-modules

0 ! B 0
n=Bn ! Hn. zTLI A/ ! Zn=B 0

n ! 0;

and one sees that B 0
n=Bn Š BC

n�1.LI A/ with trivial Z-action and that Zn=B 0
n Š

ZŒZ� ˝ xHn�1.LI A/.
Now define Z0

n to be .1 � z/ZŒZ� ˝ ZC
n�1.LI A/, a ZŒZ�-submodule of Zn.

As abelian groups, Zn D Z0
n ˚ �

1 ˝ ZC
n�1.LI A/

�
. It follows that the short exact

sequence
0 ! Z0

n=Bn ! Hn. zTLI A/ ! Zn=Z0
n ! 0

is always Z-split. One sees that Z0
n=Bn Š ZŒZ� ˝ xHn�1.LI A/ and that Zn=Z0

n Š
ZC

n�1.LI A/.
To compute the Z-fixed points in Hn. zT I A/, apply the Z-fixed point functor to

the first sequence. Since this functor is left-exact, one obtains an exact sequence:

0 ! BC
n�1.LI A/ ! Hn. zTLI A/Z ! 0:

To compute the maximal Z-fixed quotient of Hn. zT I A/, start with the short exact
sequence

0 ! Bn ! Zn ! Hn ! 0;

and apply the invariant quotient functor H0.ZI �/. This functor is right-exact, and it
is easy to see that H0.ZI Zn/ D Zn=Z0

n. Hence one obtains an exact sequence:

Zn=Z0
n ! Hn. zTLI A/Z ! 0:

Since we have already shown that Zn=Z0
n is a Z-invariant quotient of the homology

group Hn. zTLI A/, we see that the maximal Z-invariant quotient is isomorphic to
Zn=Z0

n as claimed.
In the case when A D R, a ring, the ZŒZ�-modules and maps that appear in the

short exact sequences also admit an R-module structure which commutes with the Z-
action. If xHn�1. zT I R/ is R-projective, then ZŒZ� ˝ xHn�1. zT I R/ is RŒZ�-projective,
and so the first short exact sequence of RŒZ�-modules splits. In any case, ZC

n�1.LI R/

is free as an R-module, and so the second short exact sequence admits an R-splitting.

Corollary 8. Let L be a finite complex and R a ring such that xHi .LI R/ D 0 for
i < n. Suppose also that L has fi i -dimensional simplices for i � 0, and define
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f�1 D 1. For each i with 0 � i � n, Hi . zTLI R/ is a free R-module of rank

iX

j D0

.�1/iCj fj �1:

Proof. For each j , C C
j .LI R/ is a free R-module of rank fj . For each i � n, we

know that
Hi . zTLI R/ Š ZC

i�1.LI R/ D BC
i�1.LI R/;

C C
i .LI R/ Š ZC

i�1.LI R/ ˚ ZC
i .LI R/;

and that ZC
i .LI R/ is a free R-module. Solving for the rank of ZC

i .LI R/ gives the
claimed result.

Corollary 9. If L is finite and Q-acyclic, then the Euler characteristic of zTL is
defined and is given by the formula:

�. zTL/ D
X

i�0

.�1/i .i C 1/fi :

Proof. Since L is Q-acyclic, the reduced Euler characteristic
P

i��1.�1/ifi of L is

equal to zero. Let L be n-dimensional. Then the expression for the rank of Hi . zTLI Q/

given by the previous corollary gives

�. zTL/ D
nX

iD0

.�1/i

iX

j D0

.�1/iCj fj �1 D
nX

iD0

.�1/i .n C 1 � i/fi�1:

Hence we see that

�. zTL/ D
nX

iD0

.�1/i .n C 1 � i/fi�1 � .n C 1/

nC1X

iD0

.�1/ifi�1 D
nC1X

iD0

.�1/i�1ifi�1;

as claimed.

Remark 10. There is a way to deduce Corollary 9 from results of Bestvina and Brady
from [3]. This alternative proof was given in the second named author’s PhD thesis
[16]. Let Q�L be the map defined by the pullback square

zTL

Q�L�! R??y
??y

TL

�L�! T :

In the case when L is finite and Q-acyclic, Bestvina and Brady show that the inclusion
Q��1

L .x/ in zTL is a rational homology isomorphism for any real number x [3]. In the
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case when x is not an integer, there is a cellular structure on Q��1
L .x/ with .i C 1/fi

i -cells for each i � 0.
On the other hand, we know of no other proof of Corollary 7 or Corollary 8 than

the proofs given above.

6. Cohomology of zTL

Proposition 11. Let C �. zT I A/ denote the cellular cochain complex for zTL with
coefficients in the abelian group A. Each C n. zTLI A/ is isomorphic to a coinduced
Z-module:

C n. zTLI A/ Š Hom.ZŒZ�; C n�1C .LI A// Š
Y

i2Z

C n�1C .LI A/:

If A is an R-module for some ring R, then this is an isomorphism of RŒZ�-modules.
The coboundary map is given by ı..fi /i2Z/ D .ıfi � ıfiC1/i2Z. The action of Z is
the ‘shift action’: z.fi /i2Z D .fiC1/. The image of C �.TL/ in C �. zTL/ is identified
with the ‘constant sequences’, i.e., those with fi D fj for all i; j .

Proof. Most of the assertions follow immediately from the description of C�. zTL/

given in Proposition 6, since

C �. zTLI A/ Š Hom.C�. zTL/; A/ Š Hom.ZŒZ� ˝ C C
��1.L/; A/

Š Hom.ZŒZ�; C ��1C .LI A//:

The claim concerning the image of C �.TL/ is clear, since cochains that factor through
the projection zTL ! zTL=Z D TL may be identified with cochains that are fixed by
the Z-action.

Corollary 12. For any L, any abelian group A, and any n � 0 there are short exact
sequences of ZŒZ�-modules:

0 ! C n�1C .LI A/=Bn�1C .LI A/ ! H n. zTLI A/ ! M ! 0;

0 !
Y

Z

xH n�1.LI A/ ! H n. zTLI A/ ! C n�1C .LI A/=Zn�1C .LI A/ ! 0;

where Z acts trivially on C �C.LI A/, and Z�C.LI A/ (resp. B�C.LI A/) denotes the
cocycles (resp. coboundaries) in C �C.LI A/. The module M fits in to a short exact
sequence:

0 ! xH n�1.LI A/
��!

Y

Z

xH n�1.LI A/ ! M ! 0;

where Z acts by the ‘shift action’ on the product and where � is the inclusion of
the constant sequences. The first short exact sequence is the inclusion of the Z-fixed
points in H n. zTLI A/. If A is an R-module, then both short exact sequences admit an
RŒZ�-action.
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Proof. Using the description of C � D C �. zTLI A/ given in Proposition 11, we obtain
descriptions of the coboundaries Bn and cocycles Zn in C n:

Bn Š
Y

i2Z

Bn�1C .LI A/;

Zn Š f.fi / 2
Y

i2Z

C n�1C .LI A/ W ıfi D ıfiC1 for all i 2 Zg:

Let B 0n be the submodule of Zn generated by Bn and the constant sequences
f.fi /i2Z W fi D fj g, and let Z0n be the submodule of Zn consisting of sequences
of cocycles, i.e., Z0n D Q

i2Z Zn�1C .LI A/. The first short exact sequence in the
statement is equal to

0 ! B 0n=Bn ! H n. zTLI A/ ! Zn=B 0n ! 0;

and the second one to

0 ! Z0n=Bn ! H n. zTLI A/ ! Zn=Z0n ! 0:

The computation of the Z-fixed points in H n. zTLI A/ follows by applying the Z-fixed
point functor to the first exact sequence.

Theorem 13. Let R be a ring. The image of the map

H �.TLI R/ ! H �. zTLI R/

is equal to the Z-fixed point subring of H �. zTLI R/ and is isomorphic to the quotient
H �.TLI R/=.ˇL/. In degree n, the cokernel of this map is isomorphic to an infinite
product of copies of xH n�1.LI R/. In particular, the map is a ring isomorphism if and
only if L is R-acyclic.

Proof. This follows from Corollary 12 and Theorem 2.

Corollary 14. Suppose that L is R-acyclic. There is an R-algebra isomorphism

H �. zTLI R/ Š ƒ�
R.L/=.ˇL/:

For each n, H n. zTLI R/ is isomorphic to a direct product of copies of R.

Proof. This follows from Theorem 13 and Theorem 1

Remark 15. The second named author’s PhD thesis contained a different proof of
Corollary 14 in the case when L is finite, flag and R-acyclic [16]. Recall that we
denote by GL the fundamental group of TL, and by HL the fundamental group of zTL.
Also recall from Proposition 4 that when L is flag, each of TL and zTL is an Eilenberg–
Mac Lane space for its fundamental group. In [16] an explicit chain homotopy was
used to show that the action of Z on H �. zTLI R/ is trivial when L is finite, flag and R-
acyclic. The long exact sequence in group cohomology coming from the isomorphism
GL D HL W Z was then used to establish the isomorphism of Corollary 14.
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7. Cohomological dimension

We define the trivial cohomological dimension of a space X , tcd.X/, to be the supre-
mum of those integers n for which there exists an abelian group A for which the
singular cohomology group H n.X I A/ is non-zero. For any non-trivial ring R, we
define tcdR.X/ similarly except that only abelian groups A admitting an R-module
structure are considered. We have been unable to find a reference for the notion of
trivial cohomological dimension (although we do not believe that it can be a new
idea), and so we include proofs for many of its properties below.

Now suppose that X is path-connected, and that G is the fundamental group of
X . For M a G-module, we write H �.X I M/ for the singular cohomology of X with
twisted coefficients in M . If X admits a universal covering space zX , then this is
just the cohomology of the cochain complex HomG.C�. zX/; M/ of G-equivariant
singular cochains on zX . The cohomological dimension cd.X/ of X is the supremum
of those integers n such that there is a G-module M for which H n.X I M/ ¤ f0g.
For a non-trivial ring R, cdR.X/ is defined similarly except that only RG-modules
M are considered.

Each of the invariants depends only on the homotopy type of X . In the case
when X is a classifying space or Eilenberg–Mac Lane space for G, we write cd.G/,
cdR.G/, tcd.G/ and tcdR.G/ for the corresponding invariants of X .

We summarize the properties of these invariants below.

Proposition 16. In the following statements, X is any path-connected space, and R

is any non-trivial ring. Rings are assumed to have units, and ring homomorphisms
are assumed to be unital.

(1) tcd.X/ D tcdZ.X/, cd.X/ D cdZ.X/.

(2) tcdR.X/ � cdR.X/.

(3) If there is a ring homomorphism 	 W R ! S , then tcdS .X/ � tcdR.X/ and
cdS .X/ � cdR.X/.

(4) If R is a subring of S in such a way that R is a direct summand of S as an
R-R-bimodule, then tcdR.X/ D tcdS .X/ and cdR.X/ D cdS .X/.

(5) If Y is a covering space of X , then cdR.Y / � cdR.X/.

(6) If H � G, then cdR.H/ � cdR.G/.

(7) For any group G, cdR.G/ D proj:dim:RG.R/.

Proof. A ZG-module is the same thing as a G-module, establishing (1). Similarly,
any R-module A may be viewed as an RG-module by letting each element of G act
via the identity, which establishes (2). A ring homomorphism 	 as above allows one
to define an R-module structure on any S -module and an RG-module structure on
any SG-module, which proves (3). Under the hypotheses of (4), any R-module A is
isomorphic to a direct summand of the S -module S ˝R A and any RG-module M is
isomorphic to a direct summand of the SG-module SG ˝RG M . Since cohomology
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commutes with finite direct sums, this shows that tcdR.X/ � tcdS .X/ and cdR.X/ �
cdS .X/. The opposite inequalities follow from (3).

If the fundamental group of Y is the subgroup H � G, and M is any RH -module,
define the coinduced RG-module by

Coind.M/ D HomZH .ZG; M/:

Then there is an isomorphism H �.X I Coind.M// Š H �.Y I M/, which establishes
(5). Now (6) is just the special case of (5) in which X is a classifying space for G,
since then the covering space of X with fundamental group H is a classifying space
for H .

If X is a classifying space for G, then the universal covering space zX is con-
tractible, and so C�. zX/ is a free resolution of Z over ZG. Similarly, C�. zX I R/ is
a free resolution of R over RG. Hence H �.X I M/ is isomorphic to ExtZG.Z; M/,
and if M is an RG-module H �.X I M/ is also isomorphic to ExtRG.R; M/, which
establishes (7). (See for example [5] for more details.)

Remark 17. It is easy to find groups G for which tcd.G/ < cd.G/. There are many
acyclic groups, or groups for which the group homology Hi .GI Z/ D 0 for all i > 0

(see for example [1]). For any such G, tcd.G/ D 0, while cd.G/ ¤ 0 unless G is
the trivial group.

Before stating the next proposition, we remind the reader that the dimension of
a simplicial complex is the supremum of the dimensions of its simplices, so that the
empty simplicial complex has dimension �1.

Proposition 18. For any simplicial complex L and any non-trivial ring R,

tcdR.TL/ D cdR.TL/ D dim.TL/ D dim.L/ C 1:

Proof. Immediate from Theorem 1.

Proposition 19. For any simplicial complex L with at least two vertices and for
any R,

tcdR. zTL/ D maxfdim.L/; 1 C tcdR.L/g:

Proof. Immediate from Corollary 12.

The following theorem is the first result in this paper for which we rely on tech-
niques from Bestvina–Brady [3].

Theorem 20. Let L be a simplicial complex with at least two vertices and let R be
a non-trivial ring.

(1) dim.L/ � tcdR. zTL/ � cdR. zTL/ � dim.L/ C 1.
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(2) If L is R-acyclic, then tcdR. zTL/ D cdR. zTL/ D dim.L/.

Proof. Claim 1 follows easily from earlier results. Proposition 19 implies that
dim.L/ � tcdR. zTL/. By Proposition 16, one has that tcdR. zTL/ � cdR. zTL/ �
cdR.TL/, and of course cdR.TL/ � dim.TL/ D dim.L/ C 1.

It remains to show that when L is R-acyclic, cdR. zTL/ � dim.L/. Following
Bestvina and Brady [3], let XL be the universal covering space of TL, or equivalently
of zTL. Now let fL W XL ! R be the composite

XL ! XL=HL D zTL

Q��!R;

where Q� is the lift of the map �L W TL ! T . Now define YL D f �1.0/ � XL.
There is a natural cubical CW-structure on XL, whose cells are the lifts to XL of
the cells of TL. One can also put a CW-structure on YL, such that each cell of YL

is the intersection of YL with a cell of XL. For this CW-structure, the dimension of
YL is equal to dim.L/. It can be shown that XL is homotopy equivalent to YL with
infinitely many subspaces homotopy equivalent to L coned off (this is from [3], but
see also [13] which explicitly checks this in the case when L is infinite).

Since L is R-acyclic, it follows that the inclusion of YL in XL induces an iso-
morphism of R-homology. The cellular chain complexes C�.YLI R/ and C�.XLI R/

consist of free RHL-modules, and so it follows that for any RHL-module M ,

H �. zTLI M/ Š H �.YL=HLI M/:

This shows that cdR. zTL/ � dim.L/ as required.

Remark 21. In the case when L is empty, zTL is 0-dimensional, and consists of a
single free Z-orbit of points. In the case when L is a single point, zTL is homeomorphic
to R, with Z acting via the translation action of Z. It is clear that the case when L

is empty is exceptional for zTL. The reason why the case when L is a single point
needs to be excluded from Proposition 19 and from Theorem 20 is that the formulae
for H �. zTLI R/ given in Section 6 involve the reduced cohomology of L, whereas
the definition of tcd.L/ involves the unreduced cohomology of L. This only makes
a difference when L is both 0-dimensional and R-acyclic, i.e., the case when L is a
single point.

8. Bestvina–Brady groups

In this section, we give a complete calculation of the cohomological dimension of
Bestvina–Brady groups, or equivalently the cohomological dimension of the spaces
zTL for L a flag complex. We impose some conditions on the coefficient ring R that
were not previously required. The reason why we work only with flag complexes in
this section is that we need to know that when L � K is a full subcomplex of K, then
zTL is homotopy equivalent to a covering space of zTK .
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Theorem 22. Let R be either a field or a subring of Q. Let L be a flag complex with
at least two vertices. (This implies that HL is infinite, and that zTL is a classifying
space for HL.) The following equations hold:

cdR.HL/ D tcdR.HL/ D maxfdim.L/; 1 C tcdR.L/g:

The proof of the theorem will require two lemmas, the second of which is a
strengthening of a lemma from [2].

Lemma 23. Suppose that L is a flag complex and is a subcomplex of a simplicial
complex K. The relative barycentric subdivision .K; L/0 is a flag complex containing
L as a full subcomplex.

Proof. Before defining the relative barycentric subdivision .K; L/0, we remind the
reader that each simplicial complex contains a unique �1-simplex corresponding to
the empty subset of its vertices. The vertex set of .K; L/0 is the disjoint union of the
vertex set of L and the set of simplices of K not contained in L. An n-simplex of
.K; L/0 has the form .�0 < �1 < � � � < �r/, for some r satisfying 0 � r � n C 1.
Here �0 denotes an .n � r/-simplex of L, each �i is a simplex of M , and �i is not
contained in L if i > 0.

Suppose that a finite subset S of the vertices of .K; L/0 has the property that any
two of its members are joined by an edge. Since L is flag, this implies that the set
S \ L is the vertex set of a simplex �0 of L. Each element of S � L is a simplex �i

of M not contained in L. The existence of an edge between each element of S \ L

and each element of S � L implies that each �i contains �0, and the existence of an
edge between each pair of elements of S � L implies that the �i are totally ordered
by inclusion. This shows that .K; L/0 is a flag complex.

From the description of the simplices of .K; L/0, it is easy to see that any simplex
of .K; L/0 whose vertex set lies in L is in fact a simplex in L, which verifies that L

is a full subcomplex of .K; L/0.

Lemma 24. Let L be a flag complex, let R be either a subring of Q or a field of
prime order, and suppose that tcdR.L/ < dim.L/. Then there is an R-acyclic flag
complex K containing L as a full subcomplex such that dim.L/ D dim.K/.

Proof. We may assume that dim.L/ D n is finite, and we may assume that n � 2.
Let C 0L denote the cone on the .n � 2/-skeleton of L, and let L1 be the union
L1 D L [ C 0L. Now L1 is .n � 2/-connected, and the inclusion map L ! L1

induces an isomorphism H n.L1I A/ ! H n.LI A/ for any abelian group A.
In each case, R is a principal ideal domain, and so by the universal coefficient

theorem for cohomology [11], V.3.3, for any R-module A we have that

H n.L1I A/ Š HomR.Hn.L1; R/; A/ ˚ Ext1
R.Hn�1.L1; R/; A/:
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The hypotheses therefore imply that Hn.L1I R/ D 0, and that Hn�1.L1I R/ is a
projective R-module. (Since L1 is .n�2/-connected, one also has that xHi .L1I R/ D
0 for each i < n�1.) Every projective module for a principal ideal domain is free [11],
I.5.1, and so Hn�1.L1I R/ is a free R-module. Since xHn�2.L1I Z/ D 0 (because
L1 is .n � 2/-connected), the universal coefficient theorem for homology [11], V.2.5,
tells us that Hn�1.L1I R/ Š Hn�1.L1I Z/ ˝ R.

If R is a field of prime order, the map Hn�1.L1I Z/ ! Hn�1.L1I R/ is surjec-
tive. If R is a subring of Q, every element 
 2 Hn�1.L1I R/ has the property that
there exists � a unit in R such that �
 is in the image of the map Hn�1.L1I Z/ !
Hn�1.L1I R/. In each case, it follows that there exist integral cycles zi 2 Cn�1.L1I Z/

whose images in the group Cn�1.L1I R/ map to an R-basis for Hn�1.L1I R/. By
the Hurewicz theorem, each zi is realized by some map fi W Sn�1 ! L1. Replace fi

by a simplicial approximation f 0
i W Si ! L1, where Si is some triangulation of the

.n�1/-sphere. Using a simplicial mapping cylinder construction as in [10], 2C.5, use
each f 0

i to attach a triangulated n-cell to L1 to produce L2, an R-acyclic simplicial
complex with dim.L2/ D n and such that L � L1 � L2. By Lemma 23, we may
take K to be the relative barycentric subdivision K D .L2; L/0.

Proof of Theorem 22. If S is any field, and R is the smallest subfield of S , then R and
S satisfy the conditions of statement (4) of Proposition 16. Hence there are equalities
of functions cdR D cdS and tcdR D tcdS . Thus it suffices to prove Theorem 22 in
the case when R is either the field of p elements or a subring of Q.

We may assume that dim.L/ D n < 1. In the case when tcdR.L/ D n,
Proposition 19 and part (1) of Theorem 20 imply that

n C 1 D tcdR. zTL/ � cdR. zTL/ � dim. zTL/ D n C 1;

as claimed. If tcdR.L/ < n, then by Lemma 24, there is an n-dimensional R-acyclic
flag complex K containing L as a full subcomplex. Part (2) of Theorem 20 tells us
that tcdR.K/ D cdR.K/ D n. Now HL is a retract of HK , and so by part (6) of
Proposition 16

cdR.HL/ D cdR. zTL/ � cdR.HK/ D cdR. zTK/ D n:

This gives
n D tcdR. zTL/ � cdR. zTL/ � cdR. zTK/ D n;

as claimed.

9. Examples

Example 25. Let L D L.m/ be a flag triangulation of the space constructed by
attaching a disc to a circle via a map of degree m. This L has the property that
tcdR.L/ D 0 if m is a unit in R and tcdR.L/ D 2 if m is not a unit in R. Let H D HL



The cohomology of Bestvina–Brady groups 137

be the corresponding Bestvina–Brady group. From Theorem 20 and Proposition 19,
it follows that for any ring R, cdR.H/ D 2 if m is a unit in R and cdR.H/ D 3 if m

is not a unit in R.

Example 26. Let L be a flag triangulation of a 2-dimensional Eilenberg–Mac Lane
space for the additive group of Q. Then tcdF .L/ D 1 for any field F , while
tcdZ.L/ D 2. From Theorem 22 it follows that the Bestvina–Brady group H D HL

has the property that cdF .H/ D 2 for any field F , while cdZ.H/ D 3.

Groups having similar properties to those given in Example 25 have been con-
structed previously by many authors, using finite-index subgroups of right-angled
Coxeter groups [2], [7], [9]. The examples coming from Coxeter groups have the
advantage that they are of type FP, whereas they have the disadvantage that the trivial
cohomological dimension of these groups appears to be unknown.

Finite-index subgroups of (non-finitely generated) Coxeter groups were used in [7]
to construct groups having similar properties to those given in Example 26. Again, the
trivial cohomological dimension of those examples appears to be unknown. It can be
shown that for any group G of type FP, there is a field F such that cdF .G/ D cdZ.G/.
(See Proposition 9 of [7].)
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