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Orbit equivalence, coinduced actions and free products�

Lewis Bowen

Abstract. The following result is proven. Let G1ÕT1.X1; �1/ and G2ÕT2.X2; �2/ be orbit
equivalent (OE), essentially free, probability measure preserving actions of countable groups
G1 and G2. Let H be any countable group. For i D 1; 2, let �i D Gi �H be the free product.
Then the actions of �1 and �2 coinduced from T1 and T2 are OE. As an application, it is shown
that if � is a free group, then all nontrivial Bernoulli shifts over � are OE.
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1. Introduction

Let G be a countable group and .X; �/ a standard probability space. A probabil-
ity measure-preserving (p.m.p.) action of G on .X; �/ is a collection fT ggg2G of
measure-preserving transformations T g W X ! X such that T g1T g2 D T g1g2 for
all g1; g2 2 G. We denote this by GÕT .X; �/.

Suppose G1ÕT1.X1; �1/ and G2ÕT2.X2; �2/ are two p.m.p. actions. A mea-
surable map � W X 0

1 ! X 0
2 (where X 0

i � Xi is conull) is an orbit equivalence if the
push-forward measure ���1 equals �2 and for every x 2 X 0

1, fT g
1 x W g 2 G1g D

fT g
2 �.x/ W g 2 G2g. If there exists such a map, then the actions T1 and T2 are said to

be orbit equivalent (OE). If, in addition, there is a group isomorphism ‰ W G1 ! G2

such that �.T
g
1 x/ D T

‰.g/
2 �.x/ for every x 2 X 0

1 and g 2 G1 then the actions T1

and T2 are said to be measurably-conjugate.
The initial motivation for orbit equivalence comes from the study of von Neumann

algebras. It is known that two p.m.p. actions are orbit equivalent if and only if their
associated crossed product von Neumann algebras are isomorphic by an isomorphism
that preserves the Cartan subalgebras [Si55]. H. Dye [Dy59], [Dy63] proved the
pioneering result that any two ergodic p.m.p. actions of the group of integers on the
unit interval are OE. This was extended to amenable groups in [OW80] and [CFW81].
By contrast, it is now known that every nonamenable group admits a continuum of
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non-orbit equivalent ergodic p.m.p. actions [Ep09]. This followed a series of earlier
results that dealt with various important classes of non-amenable groups ([GP05],
[Hj05], [Io09], [Ioxx], [Ki08], [MS06], [Po06]).

In the last decade, a number of striking OE rigidity results have been proven (for
surveys, see [Fu09], [Po07] and [Sh05]). These imply that, under special conditions,
OE implies measure-conjugacy. By contrast, the main theorem of this paper is a
contribution to the relatively small number of OE “flexibility” results.

To illustrate the new results, let us consider the classification of Bernoulli shifts
up to orbit equivalence and measure-conjugacy. So let G be a countable group. Let
.K; �/ be a standard probability space. KG is the set of all of functions x W G ! K

with the product Borel structure. For each g 2 G, let Sg W KG ! KG be the shift-
map defined by Sgx.h/ WD x.g�1h/ for any h 2 G and x 2 KG . This map preserves
the product measure �G . The action GÕS .KG ; �G/ is called the Bernoulli shift over
G with base-space .K; �/.

If � is supported on a finite or countable set K 0 � K then the entropy of .K; �/ is
defined by

H.K; �/ WD �
X

k2K0

�.fkg/ log.�.fkg//:

Otherwise, H.K; �/ WD C1.
A. N. Kolmogorov proved that if two Bernoulli shifts ZÕ.KZ; �Z/ and

ZÕ.LZ; �Z/ are measurably-conjugate then the base-space entropies H.K; �/ and
H.L; �/ are equal [Ko58], [Ko59]. This answered a question of von Neumann which
had been posed at least 20 years prior. The converse to Kolmogorov’s theorem was
famously proven by D. Ornstein [Or70a], [Or70b]. Both results were extended to
countable infinite amenable groups in [OW87].

A group G is said to be Ornstein if whenever .K; �/; .L; �/ are standard prob-
ability spaces with H.K; �/ D H.L; �/ then the corresponding Bernoulli shifts
GÕ.KG ; �G/ and GÕ.LG ; �G/ are measurably conjugate. A. M. Stepin proved
that if G contains an Ornstein subgroup, then G is Ornstein [St75]. Therefore, any
group G that contains an infinite amenable subgroup is Ornstein. It is unknown
whether every countably infinite group is Ornstein.

By [Bo10], every sofic group satisfies a Kolmogorov-type theorem. Precisely, if G

is sofic, .K; �/; .L; �/ are standard probability spaces with H.K; �/CH.L; �/ < 1
and the associated Bernoulli shifts GÕ.KG ; �G/, GÕ.LG ; �G/ are measurably-
conjugate then H.K; �/ D H.L; �/. If G is also Ornstein then the finiteness con-
dition on the entropies can be removed. Sofic groups were defined implicitly by
M. Gromov [Gro99] and explicitly by B. Weiss [We00]. For example, every count-
ably infinite linear group is sofic and Ornstein. It is unknown whether or not all
countable groups are sofic.

In summary, there is a large class of groups (e.g., all countable linear groups) for
which Bernoulli shifts are completely classified up to measure-conjugacy by base-
space entropy. Let us now turn to the question of orbit equivalence.
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By aforementioned results of [OW80] and [CFW81], it follows that if G1 and
G2 are any two infinite amenable groups then any two nontrivial Bernoulli shifts
G1Õ.KG1 ; �G1/, G2Õ.LG2 ; �G2/ are OE. By contrast, the Kolmogorov-type theo-
rem of [Bo10] combined with rigidity results of S. Popa [Po06], [Po08] and Y. Kida
[Ki08] prove that for many nonamenable groups G, Bernoulli shifts are classified up
to OE by base-space entropy. For example, this includes PSLn.Z/ for n > 2, mapping
class groups of surfaces (with a few exceptions) and any nonamenable sofic Ornstein
group of the form G D H � N with both H and N countably infinite that has no
nontrivial finite normal subgroups. Until the present paper, it was an open question
whether any two orbit-equivalent Bernoulli shifts over a non-amenable group G are
necessarily measurably-conjugate. This question featured in several talks given by
S. Popa.

As a corollary to the main result we obtain:

Theorem 1.1. Let G1; G2 be any two countably infinite amenable groups. Let H

be any countable group. For i D 1; 2, let �i D Gi � H be the free product. Let
.K; �/; .L; �/ be nontrivial standard probability spaces. Then the Bernoulli shifts
�1Õ.K�1 ; ��1/ and �2Õ.L�2 ; ��2/ are orbit equivalent.

It is known that amenable groups are sofic and a free product of sofic groups is
sofic [ES06]. Therefore, if H is sofic then each group �i above is also sofic. Since
�i contains the infinite amenable group Gi , it is also Ornstein. Thus [Bo10] implies
that the Bernoulli shifts over �i are completely classified by base-space entropy. In
particular, there is a 1-parameter family of non-measurably-conjugate Bernoulli shifts
over �i .

Corollary 1.2. Let G be a free group. Then all nontrivial Bernoulli shifts over G are
OE.

1.1. Statement of results. To formulate the main theorem, we need to discuss
coinduced actions (which have previously appeared for various purposes in [Lu00],
[Ga05], [Da06], [DGRS08] and [Ioxx]).

Definition 1. Fix a countable group � and a subgroup G < � . Let GÕT .X; �/ be
a measure-preserving action of G on a standard probability space. Let X� be the
space of all maps f W � ! X with the product Borel structure. For each � 2 � ,
S� W X� ! X� is defined by

S�f .�0/ WD f .��1�0/ for all f 2 X� ; �0 2 �:

Let
G WD ff 2 X� W f .�g/ D T g�1

f .�/ for all � 2 �; g 2 Gg:
G is invariant under the S -action of � . We will construct a shift-invariant measure
on G . To do this we need the following notion.
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A section for the inclusion G < � is a map � W �=G ! � such that �.�G/ 2 �G

for all � 2 � . Fix such a section � with �.G/ D e.
Define

ˆ W G ! X�=G ; ˆ.f /.C / WD f .�.C // for all f 2 G ; C 2 �=G:

This is a bijection. Define a measure 	 on G by 	.E/ WD ��=G.ˆ.E// for all Borel
E � G where ��=G is the product measure on X�=G . An exercise reveals that 	 is
shift-invariant and independent of the choice of the section � . We extend 	 to all of
X� by setting 	.X� � G / D 0. Then �ÕS .X� ; 	/ is called the action coinduced
from GÕT .X; �/.

Theorem 1.3. Let G1ÕT1.X1; �1/ and G2ÕT2.X2; �2/ be orbit equivalent, essen-
tially free, p.m.p. actions of countable groups G1 and G2. Let H be any countable
group. For i D 1; 2, let �i D Gi �H be the free product. Then the coinduced actions
�1ÕS1.X

�1

1 ; 	1/ and �2ÕS2.X
�2

2 ; 	2/ are orbit equivalent.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Because G1 and G2 are countably infinite amenable groups,
the well-known results of [OW80] and [CFW81] imply that the Bernoulli shifts
G1Õ.KG1 ; �G1/ and G2Õ.LG2 ; �G2/ are orbit equivalent. Let X D KG1 , Y D
LG2 . It is a straightforward exercise to show that for each i D 1; 2 the coinduced
actions �1Õ.X�1 ; 	1/ and �2Õ.Y �2 ; 	2/ are measurably-conjugate to the Bernoulli
shifts �1Õ.K�1 ; ��1/ and �2Õ.L�2 ; ��2/. By Theorem 1.3 above, these are orbit
equivalent.

1.2. The idea behind the construction. This section provides a non-rigorous sketch
of the following.

Theorem 1.4. Let .X; �/ be a standard probability space. Let �A D hA; C i
and �B D hB; C i each be a free group on two generators. Let hAiÕ.X; �/ and
hBiÕ.X; �/ be actions of the infinite cyclic groups hAi and hBi that have the same
orbits. I.e., for every x 2 X , fAnx W n 2 Zg D fBnx W n 2 Zg. Let �AÕ.X�A ; 	A/

be the action coinduced from hAiÕ.X; �/ and let �BÕ.X�B ; 	B/ be the action
coinduced from hBiÕ.X; �/. Then �AÕ.X�A ; 	A/ and �BÕ.X�B ; 	B/ are orbit
equivalent.

This theorem is implied immediately by Theorem 1.3. The sketch we provide
gives the idea behind the proof of Theorem 1.3.

Let x 2 X and consider the diagram of its A-orbit show in Figure 1. The vertices
represent elements of the orbit. For each i there is an arrow from the vertex repre-
senting Aix to the vertex representing Ai�1x. It may seem backwards to draw the
arrows this way; but there is a good reason. If X D KZ and A is the shift map then
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A4x A3x A2x Ax x A�1x A�2x A�3x A�4x A�5x

Figure 1. A diagram for the A-orbit of x.

.A�nx/.0/ D x.n/ for any n 2 Z. So in this case, we could replace each vertex
labeled A�nx with the value A�nx.0/ D x.n/ and we would then have a picture of
the sequence fx.n/gn2Z. With this convention in mind, it is not necessary to label
every vertex. As long as one vertex is labeled, the rest of the labels are determined
by the arrows.

In Figure 2, there is a diagram for a typical point f 2 X�A with respect to the
coinduced measure 	A. The underlying graph is the Cayley graph of �A (only part of
which is shown in the figure). The circled dot represents the identity element in �A.
For every g 2 �A there are directed edges .g; gA/ and .g; gC /. Edges of the form
.g; gA/ are drawn horizontally while those of the form .g; gC / are drawn vertically.

Several vertices are labeled by elements x; y; z; w 2 X . These are the values of f

at the group elements represented by the vertices. For examples, the diagram implies
that f .e/ D x; f .AC / D y; f .A�1C / D z and f .C / D w. Because f is a typical
point in X�A (according to the measure 	A), we must have f .�An/ D A�nf .�/ for
any � 2 �A and n 2 Z. This explains the other labels. Notice that if f 2 X�A is
chosen at random with law 	A then x; y; z; w are independent samples drawn from
.X; �/.

A2w Aw w A�1w A�2w

Az z A�1z Ay y A�1y

A2x Ax x A�1x A�2x

Figure 2. A diagram for the hA; C i-orbit of a function f 2 X�A .
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Now the B-orbit of a point x 2 X equals its A-orbit. So we may draw them
together as in Figure 3. The dashed arrows represent the B-action. For example, one
can see from the diagram that B�1x D A�5x.

x

Figure 3. The A and B-orbit diagram of x.

Let

GA WD ff 2 X�A W f .�An/ D A�nf .�/ for all � 2 �A; n 2 Zg
and define GB similarly.

The diagrams above give us the idea for how to construct the orbit equivalence
between �AÕ.GA; 	A/ and �BÕ.GB ; 	B/. Take the diagram of a typical point in
f 2 .GA; 	A/ (Figure 2) and draw in the dashed green arrows representing the action
of hBi to obtain Figure 4. Then erase the blue arrows and what we have left is a
diagram of a point in .GB ; 	B/. This defines a map 
 W GA ! GB .

w

z y

x

Figure 4. A diagram for the orbit equivalence 
.

By reversing the roles of A and B , we can similarly define a map ‚ W GB ! GA

such that 
‚ and ‚
 are the identity maps on GB and GA respectively. So 


is invertible. It clearly takes �A-orbits to �B -orbits. It might not be obvious, but

�	A D 	B . Thus 
 is the required orbit equivalence. To prove Theorem 1.3, we
will construct an orbit equivalence in a similar manner.



Orbit equivalence, coinduced actions and free products 7

1.3. Organization. In § 2 we construct a map 
 W X�1 ! X�2 . The rest of the
paper is devoted to showing that this map is an orbit equivalence. There are three
statements to be proven: 
 has a measurable inverse (accomplished in § 3), 
 takes
orbits to orbits (accomplished in § 4) and 
�	1 D 	2, i.e., 
 is a measure-space
isomorphisms. This is obtained in the last section, §5.

Acknowledgements. I would like to thank Sorin Popa for asking whether the full
2-shift over F2 is stably orbit equivalent to a Bernoulli shift over F3. My investigations
into this question led to this work. I would also like to thank Bruno Duchesne for
pointing out errors in a preliminary version of this paper.

2. Defining the orbit equivalence

Without loss of generality, we may assume that X1 D X2, �1 D �2 and the
identity map from X1 to X2 is an orbit equivalence between G1ÕT1.X1; �1/ and
G2ÕT2.X2; �2/. In other words, we may assume that .X; �/ is a standard proba-
bility space and G1ÕT1.X; �/, G2ÕT2.X; �/ are measure-preserving actions such
that for a.e. x 2 X , fT g

1 x W g 2 G1g D fT g
2 x W g 2 G2g.

To simplify notation, we will g � x instead of T1.g/x if g 2 G1; x 2 X (or if
g 2 G2; x 2 X ). Likewise we will write �f D S�f if � 2 �i and f 2 X�i .

After reducing X by removing a set of measure zero, we may assume that both
actions T1 and T2 are free and that every T1-orbit is a T2-orbit and vice versa. Let
! W G1 � X ! G2 be the Zimmer 1-cocycle. It satisfies

!.g; x/ � x D g � x for all g 2 G1; x 2 X; (1)

!.g1g2; x/ D !.g1; g2 � x/!.g2; x/ for all g1; g2 2 G1; x 2 X: (2)

As in Definition 1, for i D 1; 2 let

Gi D ff 2 X�i W f .�g/ D Ti .g
�1/f .�/ for all � 2 �i ; g 2 Gig:

Proposition 2.1. There exists a unique Borel map ˇ W �1 � G1 ! �2 satisfying the
following.

� ˇ.g; f / D !.g; f .e// for all g 2 G1.
� ˇ.h; f / D h for all h 2 H .
� ˇ.h�; f / D hˇ.�; f / for all h 2 H; � 2 �1.
� ˇ.g�; f / D ˇ.g; �f /ˇ.�; f / D !.g; f .��1//ˇ.�; f / for all g 2 G1; � 2 �1.

Proof. Since � 2 �1 D G1 � H is a free product, any element � 2 �1 can be written
uniquely as � D h1g1h2g2 : : : hngn with g1; g2; : : : ; gn�1 2 G1 � feg, gn 2 G1,
h1 2 H and h2; : : : ; hn 2 H � feg for some n � 1.
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For i D 1 : : : n, let �i D higi : : : hngn. Let �nC1 D e. Define ˇ.e; f / WD e for
any f 2 X�1 . For induction, assume that ˇ.�i ; f / has been defined for some i � 2.
Then we define ˇ.�i�1; f / by

ˇ.�i�1; f / WD hi�1!.gi�1; f .��1
i //ˇ.�i ; f /:

This defines ˇ for all � 2 �2. It is clear that any function satisfying the conditions
above must be defined as such. This explains the uniqueness part of the proposition.

It is immediate that f̌ satisfies the first three items. To check the last item, let
� D h1g1h2g2 : : : hngn 2 �1 as above. Let q 2 G1 and f 2 X�1 . We must show
that

ˇ.q�; f / D ˇ.q; �f /ˇ.�; f /:

This is true by definition if h1 ¤ e. So assume h1 D e. Let � D h2g2 : : : hngn and
p D g1. We must show that

ˇ.qp�; f / D ˇ.q; p�f /ˇ.p�; f /:

Equivalently, we must show that

ˇ.qp; �f /ˇ.�; f / D ˇ.q; p�f /ˇ.p; �f /ˇ.�; f /:

Cancel the last factor on both sides and use item (1) to obtain the equivalent formu-
lation:

!.qp; f .��1// D !.q; f .��1p�1//!.p; f .��1//:

By equation (2)

!.qp; f .��1// D !.q; p � f .��1//!.p; f .��1//:

Since f 2 G1, p � f .��1/ D f .��1p�1/. This finishes the proposition.

Lemma 2.2. For every f 2 G1, ˇ. �; f / W �1 ! �2 is a bijection.

Proof. Every � 2 �2 D G2 � H can be written uniquely as � D h1g1h2g2 : : : hngn

with g1; g2; : : : ; gn�1 2 G1 � feg, gn 2 G1, h1 2 H and h2; : : : ; hn 2 H � feg for
some n � 1. For i D 1 : : : n, let �i D higi : : : hngn. Let �nC1 D e.

Note that ˇ.e; f / D e D �nC1. Since the action of G1 on X is free there
exists a unique g0

n 2 G1 such that !.g0
n; f .e// D gn. Proposition 2.1 implies

ˇ.hng0
n; f / D hngn D �n. Moreover, hng0

n is the unique element of �1 with
ˇ. �; f /-image equal to �n.

For induction, suppose that for some i � 2, g0
j 2 G1 has been defined for all

i � j � n and hig
0
i : : : hng0

n is the unique element of �1 with ˇ. �; f /-image equal to
�i . Let � D hig

0
i : : : hng0

n. Since the action of G1 on X is free there exists a unique
g0

i�1 2 G1 such that !.g0
i�1; f .��1// D gi�1. Proposition 2.1 implies

ˇ.hi�1gi�1�/ D hi�1gi�1�i D �i�1:
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Moreover, hi�1gi�1� is the unique element of �1 with ˇ. �; f /-image equal to �i�1.
The completes the induction step. Since � 2 �2 is arbitrary, this proves the lemma.

Define 
 W G1 ! G2 by

.
f /.ˇ.��1; f /�1/ D f .�/ for all f 2 G1; � 2 �1:

We will show that 
 is an orbit equivalence between the coinduced actions
�1Õ.G1; 	1/ and �2Õ.G2; 	2/. There are three statements to prove: (1) 
 is in-
vertible, (2) 
 maps orbits to orbits and (3) 
�	1 D 	2. These are proven in the next
three sections.

3. The inverse of �

In this section, we prove:

Proposition 3.1. The map 
 W G1 ! G2 is invertible with measurable inverse.

To prove this we will explicitly construct the inverse by swapping �1 with �2 in
the construction of 
. Let � W G2 � X ! G1 be the Zimmer 1-cocycle satisfying

�.g; x/ � x D g � x for all g 2 G2; x 2 X; (3)

�.g1g2; x/ D �.g1; g2 � x/�.g2; x/ for all g1; g2 2 G2; x 2 X: (4)

Note that

!.�.g2; x/; x/ D g2; �.!.g1; x/; x/ D g1 for all g1 2 G1; g2 2 G2; x 2 X: (5)

Lemma 3.2. The range of 
 is contained in G2.

Proof. Let f 2 G1, g 2 G2 and � 2 �1. It suffices to show that

.
f /.ˇ.��1; f /�1g2/ D g�1
2 � .
f /.ˇ.��1; f /�1/:

Observe:

g�1
2 � .
f /.ˇ.��1; f /�1/ D g�1

2 � f .�/

D �.g�1
2 ; f .�// � f .�/

D f .��.g�1
2 ; f .�//�1/

D .
f /.ˇ.�.g�1
2 ; f .�//��1; f /�1/:

So it suffices to show that

ˇ.��1; f /�1g2 D ˇ.�.g�1
2 ; f .�//��1; f /�1:
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By taking inverses of both sides we see that this is equivalent to

g�1
2 ˇ.��1; f / D ˇ.�.g�1

2 ; f .�//��1; f /:

Proposition 2.1 implies

ˇ.�.g�1
2 ; f .�//��1; f / D !.�.g�1

2 ; f .�//; f .�//ˇ.��1; f /:

So it suffices to show that

g�1
2 D !.�.g�1

2 ; f .�//; f .�//

which is true by (5).

The proof of the next proposition is similar to that of Proposition 2.1.

Proposition 3.3. There exists a unique Borel map ˛ W �2 � G2 ! �1 satisfying the
following.

� ˛.g; f / D �.g; f .e// for all g 2 G2.
� ˛.h; f / D h for all h 2 H .
� ˛.h�; f / D h˛.�; f / for all h 2 H; � 2 �2.
� ˛.g�; f / D ˛.g; �f /˛.�; f / D �.g; f .��1//˛.�; f / for all g 2 G2; � 2 �2.

As in Lemma 2.2, ˛. �; f / is bijective for any f 2 G2. So we define ‚ W G2 ! G1

by
.‚f /.˛.��1; f /�1/ D f .�/ for all f 2 G2; � 2 �2:

We will show that ‚ is the inverse of 
. We will need the next lemma.

Lemma 3.4. The following are true:

˛.ˇ.�; f /; 
f / D � for all � 2 �1; f 2 G1;

ˇ.˛.�; f /; ‚f / D � for all � 2 �2; f 2 G2:

Proof. We prove only the first equation since the second one is similar. It is easy to
check that the lemma is true if � D e. By induction, it suffices to show that for any
� 2 �1, g 2 G1 and h 2 H ,

˛.ˇ.g�; f /; 
f / D g˛.ˇ.�; f /; 
f /I
˛.ˇ.h�; f /; 
f / D h˛.ˇ.�; f /; 
f /

The second equation above is immediate. The first equation is a short calculation:

˛.ˇ.g�; f /; 
f / D ˛.!.g; f .��1//ˇ.�; f /; 
f /

D �.!.g; f .��1//; 
f .ˇ.�; f /�1//˛.ˇ.�; f /; 
f /

D �.!.g; f .��1//; f .��1//˛.ˇ.�; f /; 
f /

D g˛.ˇ.�; f /; 
f /:



Orbit equivalence, coinduced actions and free products 11

The first equality uses Proposition 2.1, the second uses Proposition 3.3, the third uses
the definition of 
 and the last uses equation (5).

Lemma 3.5. The following are true:


f .�/ D f .˛.��1; 
f /�1/ for all f 2 G1; � 2 �2;

‚f .�/ D f .ˇ.��1; ‚f /�1/ for all f 2 G2; � 2 �1:

Proof. We prove only the first equation since the second one is similar. By definition,
if � 2 �1 is such that � D ˇ.��1; f /�1 then 
f .�/ D f .�/: The previous lemma
implies that

˛.ˇ.��1; f /; 
f / D ��1:

Therefore, ��1 D ˛.��1; 
f / and


f .�/ D f .�/ D f .˛.��1; 
f /�1/

as claimed.

Lemma 3.6. For any f 2 G1, ‚
.f / D f . Also, for any f 2 G2, 
‚.f / D f .

Proof. For any f 2 G1 and any � 2 �2,

‚
f .˛.��1; 
f /�1/ D 
f .�/ D f .˛.��1; 
f /�1/:

Therefore, ‚
f D f as claimed. The second statement can be proven similarly.

Proposition 3.1 follows immediately from the lemma above.

4. Orbits to orbits

Lemma 4.1. The cocycles ˇ and ˛ satisfy the equations:

ˇ.�1�2; f / D ˇ.�1; �2f /ˇ.�2; f / for all �1; �2 2 �1; f 2 G1;

˛.�1�2; f / D ˛.�1; �2f /˛.�2; f / for all �1; �2 2 �2; f 2 G2:

Proof. This follows from Propositions 2.1 and 3.3.

Lemma 4.2. For any � 2 �1; f 2 G1,

ˇ.�; f /.
f / D 
.�f /:

Similarly,
˛.�; f /.‚f / D ‚.�f / for all � 2 �2; f 2 G2:
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Proof. We prove only the first equation since the second one is similar. By Lemma 2.2,
it suffices to show that

ˇ.�; f /.
f /.ˇ.��1; �f /�1/ D 
.�f /.ˇ.��1; �f /�1/ for all � 2 �1:

By definition of the action of �2 on G2:

ˇ.�; f /.
f /.ˇ.��1; �f /�1/ D .
f /.ˇ.�; f /�1ˇ.��1; �f /�1/:

By the previous lemma,

ˇ.�; f /�1ˇ.��1; �f /�1 D ˇ.��1�; f /�1:

By definition of 
f ,

.
f /.ˇ.��1�; f /�1/ D f .��1�/ D .�f /.�/ D 
.�f /.ˇ.��1; �f /�1/:

The lemma above and Lemma 2.2 imply:

Proposition 4.3. For every f 2 G1, 
.f�f W � 2 �1g/ D f�.
f / W � 2 �2g:

5. Measure-space isomorphism

Proposition 5.1. The pushforward measure 
�	1 D 	2.

Let us recall the definition of the measures 	i for i D 1; 2. Let �i W �i=Gi ! �i

be a section such that �i .Gi / D e. Define ˆi W Gi ! X�i =Gi by ˆi .f /.C / D
f .�i .C //. ˆi is a bijection. By definition, 	i is the pullback measure ˆ�

i ��i =Gi .
The measures 	i do not depend on the choice of section. So, we will make the

following choice. For each coset C 2 �i=Gi such that C ¤ Gi , let �i .C / D
g1h1 : : : gnhn where g1h1 : : : gnhn is the unique element of C such that g1 2 G1,
g2; : : : ; gn 2 G1 � feg and h1; : : : ; hn 2 H � feg. Define length.C / D n. Also let
length.Gi / D 0 and if � 2 �i define length.�/ WD length.�Gi /.

Let rng �i WD �i .�i=Gi /. Let f 2 G1 be chosen at random with law 	1. For
� 2 �2, let Z� WD 
f .�/. Proposition 5.1 is equivalent to the assertion that
fZ� W � 2 rng �2g is a jointly independent set of random variables and each Z� 2 X

has distribution � (this is because 
f 2 G2, so its values on �2 are determined by its
values on rng �2). Note that Ze D 
f .e/ D f .e/ has distribution �. Because the
pushforward measure 
�	1 is �2-invariant, it follows that every Z� has distribution
�. So it suffices to show that the family fZ� W � 2 rng �2g is jointly independent.

Lemma 5.2. For any f 2 G1, the map Bf W �1 ! �2 defined by Bf .�/ WD
ˇ.��1; f /�1 restricts to abijection from rng �1 to rng �2. Moreover, length.Bf .�// D
length.�/. Similarly, the map A�f W �2 ! �1 defined by A�f .�/ WD ˛.��1; 
f /�1

restricts to a bijection from rng �2 to rng �1 and length.A�f .�// D length.�/.
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Proof. Proposition 2.1 implies Bf maps rng �1 into rng �2 and preserves lengths.
Similarly, Proposition 3.3 implies the map A�f maps rng �2 into rng �1 and preserves
lengths. Lemmas 3.4 and 3.6 imply these maps are inverses.

For � 2 �1, let Y� WD f .�/ (where, as above, f 2 G1 is chosen at random with
law 	1). By definition of 	1, fY� W � 2 rng �1g is an i.i.d. (independent identically
distributed) family. It is tempting then to claim that, since Zˇ.��1;f /�1 D Y� , the
lemma above implies fZ� W � 2 rng �2g is an i.i.d. family. However, since the map
� 7! ˇ.��1; f /�1 depends on f , this cannot be taken for granted.

Let Li .n/ D f�i .C / 2 �i W C 2 �i=Gi ; length.C / � ng. Assume for induction
that for some n � 0, fZ� W � 2 L2.n/g is i.i.d. (this is trivially true if n D 0). By
Lemma 3.5, Z� D Y˛.��1;�f /�1 . The previous lemma implies that

fY˛.��1;�f /�1 W � 2 L2.n C 1/g D fY� W � 2 L1.n C 1/g
is i.i.d. So it suffices to show that the map

� 2 L2.n C 1/ � L2.n/; � 7! ˛.��1; 
f /�1

depends only on the variables fY� W � 2 L1.n/g (i.e., that it is a function of these
variables only). This is accomplished in the next lemma.

Lemma 5.3. Let n � 0. Let f1; f2 2 G1 and suppose that f1.�/ D f2.�/ for all
� 2 L1.n/. Then

˛.��1; 
f1/ D ˛.��1; 
f2/ for all � 2 L2.n C 1/:

Proof. If � 2 L2.0/ then � D e and the result is trivial. So assume for in-
duction that the equation holds for all � 2 L2.k/ for some 0 � k � n. Let
� D g1h1 : : : gkC1hkC1 2 L2.k C 1/. Let � D g1h1 : : : gkhk 2 L2.k/. By
Lemma 4.1 and Proposition 3.3,

˛.��1; 
f1/ D ˛.h�1
kC1g�1

kC1��1; 
f1/

D ˛.h�1
kC1g�1

kC1; ��1
f1/˛.��1; 
f1/

D h�1
kC1�.g�1

kC1; ��1
f1.e//˛.��1; 
f1/:

Similar reasoning shows that

˛.��1; 
f2/ D h�1
kC1�.g�1

kC1; ��1
f2.e//˛.��1; 
f2/:

The induction hypothesis implies ˛.��1; 
f1/ D ˛.��1; 
f2/. So it suffices to show
that ��1
f1.e/ D ��1
f2.e/. By Lemma 3.5,

��1
f1.e/ D 
f1.�/ D f1.˛.��1; 
f1/�1/ D f1.˛.��1; 
f2/�1/:

By the previous lemma, ˛.��1; 
f2/�1 2 L1.k/ � L1.n/. So the hypotheses on f1

and f2 imply

��1
f1.e/ D f1.˛.��1; 
f2/�1/ D f2.˛.��1; 
f2/�1/ D ��1
f2.e/:
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The lemma above and the preceding discussion show that fZ� W � 2 L2.n/g
is i.i.d. for all n � 0. This implies that the family fZ� W � 2 �2g is i.i.d. which
implies Proposition 5.1. Theorem 1.3 follows immediately from Propositions 3.1, 4.3
and 5.1.
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