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Abstract. In 1954 A. G. Howson proved that the intersection of two finitely generated sub-
groups of a free group is again finitely generated. Now the free metabelian subgroups of a free
metabelian group of finite rank n are quite restricted. Indeed they are again of finite rank at most
n. This suggests that there may be an analog of Howson’s theorem for free metabelian groups.
This turns out not to be the case. The object of this paper is to explore such intersections in
free metabelian groups and, more generally, in the wreath product of two free abelian groups.
In such a wreath product we show, for instance, that there are algorithms to decide whether or
not the intersection of two finitely subgroups is finitely generated or trivial. This leaves open
the existence of algorithms to decide the same questions for finitely generated subgroups of
finitely generated metabelian groups as a whole.

Mathematics Subject Classification (2010). 20E10, 20E22, 20R10.

Keywords. Free metabelian, intersections, wreath products, algorithms.

1. Introduction

1.1. Finitely generated metabelian groups. In his ground breaking paper [9] in
1954, P. Hall observed that the commutator subgroup ŒG; G� of a finitely generated
metabelian group G can be viewed as a finitely generated module over the integral
group ring of the factor derived group G=ŒG; G�. Thus the structure of finitely gen-
erated metabelian groups is in large measure determined by the structure of finitely
generated modules over polynomial rings in finitely many variables. This enabled
Hall to prove a number of beautiful theorems about finitely generated metabelian
groups. In particular he showed that they satisfy max-n, the maximal condition for
normal subgroups, and hence that there are only a countable number of isomorphism
classes of finitely generated metabelian groups. Another consequence of this max-
imal condition is that the additive group of rational numbers is not a subgroup of a
finitely generated metabelian group, which places a restriction on the abelian sub-
groups of these groups. However, as Hall pointed out in [10], the nature of the abelian
subgroups remains difficult to determine.
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Hall’s work gave rise to a number of positive algorithmic results about finitely
generated metabelian groups (see for instance the monograph [15]). In particular,
Romanovskii [21] in 1980 proved that there is an algorithm to decide whether or not
an element in a finitely generated metabelian group lies in a given finitely generated
subgroup. Thus the intersection of two finitely generated subgroups is a recursive
set, i.e., there is an algorithm to decide if an element is or is not in the intersection of
two finitely generated subgroups. However many problems remain open. Although
the word and conjugacy problems have been shown to have positive solutions, the
isomorphism problem remains seemingly out of reach at this time. One positive result
in this area is the proof by Groves and Miller [8] that there is an algorithm which
determines whether or not a finitely generated metabelian group is free metabelian.

It seems that free metabelian groups are more tractable than finitely generated
metabelian groups as a whole. For instance it is easy enough to prove that the free
metabelian subgroups of a free metabelian group of finite rank n have rank at most n.
Indeed a subgroup of a free metabelian group is free if and only if it is generated by a
set of elements which are independent modulo the derived group [1]. Moreover, the
non-cyclic abelian subgroups of a free metabelian group are contained in the derived
group and are therefore free abelian. In fact Wilhelm Magnus [16] has proved that
every free metabelian group can be embedded in the wreath product of two free abelian
groups and it is easy to prove that the abelian subgroups of such wreath products are
free abelian. Many results about finitely generated metabelian groups make use of
wreath products and this theorem of Magnus, for example the embedding theorem
of Baumslag [2] and Remeslennikov [20]. But these remarks belie the complexity of
even this restricted class of metabelian groups. For instance there are continuously
many subgroups of the free metabelian group of rank two [6].

It is easy to characterize the finitely generated metabelian groups in which the
intersection of finitely generated subgroups are again finitely generated [14]. In gen-
eral it is not easy to decide whether the intersections of finitely generated subgroups
of metabelian groups as a whole are finitely generated. Here we shall prove that there
are algorithms which decide for a free metabelian group (or, more generally, for the
wreath product of two free abelian groups) whether the intersection of two finitely
generated subgroups is finitely generated or trivial. The proof of these results makes
use of a new way of describing metabelian groups to which we now turn and which
seems to be an essential element in understanding intersections.

1.2. Hybrid presentations of metabelian groups. As already noted in the abstract,
even the intersection of two finitely generated free metabelian subgroups of a finitely
generated free metabelian group need not be finitely generated. We shall give a
number of examples of this and related phenomena in Section 5. In particular we find
(Theorem 5.1) that the free metabelian group F of rank 2 contains free metabelian
subgroups H1 and H2 also of rank 2 with intersection H1 \ H2 D ŒH1; H1� D
ŒH2; H2�. Thus their intersection is their derived group which is a free cyclic ZHi -
module and hence free abelian of countably infinite rank. While this intersection is
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not finitely generated, it still has a description as a ZHi -module which is suitably
finite. With this and other examples in mind, we introduce the notion of a hybrid
generating system of a metabelian group.

Definition 1.1. Let G be a metabelian group. A hybrid generating system of G

consists of

(1) an abelian normal subgroup B of G containing the derived group of G;
(2) a subset X of G which generates G modulo B;
(3) a subset Y of automorphisms of B which generates an abelian subgroup T of

the automorphism group of B;
(4) a subset Z of B which generates B viewed as a module over the integral group

ring ZT of T .

Such a hybrid generating system will be termed finite if X; Y; Z are all finite.

The notion of a hybrid generating system gives rise in the obvious way to what
we term a hybrid presentation.

Definition 1.2. A hybrid presentation of a metabelian group G is

(1) a hybrid generating system B; X; Y; Z of G, as above;
(2) a presentation of the abelian group T on the generators Y ;
(3) a presentation of B as ZT -module on the generators Z;
(4) a set of relations R which induce a presentation of G modulo B and take the form

u` D v`, where the u` are words in the set X of G and the v` are ZT -module
words in the set Z.

A hybrid presentation is termed finite if the sets X; Y; Z of generators in the given
hybrid generating system are finite and the corresponding sets of relations are finite.

Now if G is a metabelian group and B is an abelian normal subgroup of G

containing the derived group, then each element g 2 G defines an automorphism Og
of B via conjugation:

Og W b 7! g�1bg .b 2 B/:

The mapping ˛ which sends each element g 2 G to Og is then a homomorphism of G

into the automorphism group of B which induces a homomorphism ˛� of G=B into
the automorphism group of B .

We observe that every finitely generated metabelian group G has a finite hybrid
presentation. We need first to show that it has a finite hybrid generating system. We
choose B to be the derived group of G, X a set of elements of G which generate it
modulo its derived group, T the subgroup of the automorphism group of B generated
by Y D f˛�.x/ j x 2 Xg and, since the derived group of a finitely generated
metabelian group is finitely generated as a module over the integral group ring of the
factor derived group, Z can be chosen to be any such set of generators. This provides
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us with a finite hybrid presentation of G on choosing a finite presentation for B as a
ZT -module and a finite set R of relators which induce a presentation of G modulo
B in the manner required.

As another example, observe that if T is a finitely generated free abelian group
and B is a free ZT module with a finite basis, then setting G D B , G has a finite
hybrid presentation with X D ;, Y the free basis of T and Z the module free basis
of B , and the set of relations R D ;. Now, assuming Y and Z are non-empty, as
an abelian group B is free of countably infinite rank. So the same group can have
numerous finite hybrid presentations of a very different character.

We remark that the data in a finite hybrid presentation allows one in principle
to enumerate a recursive presentation of the underlying metabelian group G as an
abstract group.

Our interest in finite hybrid presentations is to use them in investigating the sub-
groups of given metabelian groups and to help understand how such subgroups inter-
sect. Computing intersections of subgroups is often quite difficult. It turns out that
the notion of a hybrid presentation is useful in this connection. To this end, we will
need the following definition:

Definition 1.3. Let G be a metabelian group given by a finite hybrid presentation
as above. We term a (not necessarily finitely generated) subgroup H of G finitely
hybrid-presentable if H \ B is finitely generated as a P -submodule of B for some
subgroup P of T .

The data given in this definition allows us to find a finite hybrid presentation of
H , which explains the terminology. Indeed choose H \ B to be the appropriate
abelian normal subgroup of H as required in Definition 1.1. Moreover, since G=B

is finitely generated, so too is H=H \ B . Consequently the conditions laid down in
Definition 1.1 can readily be satisfied. It follows that under these circumstances H

has a finite hybrid presentation. We shall make heavy use of this remark in the sequel.
Furthermore, it is then not hard to see that a finitely generated subgroup H of a finitely
generated metabelian group is finitely hybrid-presentable (see Proposition 3.2). We
have already observed that groups with a finite hybrid presentation need not be finitely
generated.

It is important to note that this discussion of subgroups is relative in the sense
that the subgroups here are viewed not in their own right, but as subgroups of the
given containing group. For example, consider the free metabelian group F of rank 3

with free generators fx1; x2; x3g. Let C be the normal closure of Œx1; x2� which is a
free Z.F=ŒF; F �/-module. Consider the subgroup K generated by C and the cyclic
group on Œx1; x3�. Then K is not a ZP -submodule for any non-trivial subgroup
P � F=ŒF; F �. Nor is it finitely generated as a module over the trivial subgroup. So
as a subgroup K is not finitely hybrid-presentable. As an abstract group, K is a free
abelian group of countably infinite rank, so in several different ways it does have a
finite hybrid presentation.
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1.3. Intersections in certain wreath products. Our analysis of intersections of
subgroups in free metabelian groups will apply more generally to certain wreath
products. We will make extensive use of the Magnus embedding [16] of the free
metabelian group into the wreath product W D A wr T of two finitely generated
free abelian groups A and T with bases fa1; : : : ; amg and ft1; : : : ; tng. Thus W is the
split extension W D T Ë B where B is the free ZT -module with basis fa1; : : : ; amg.
Magnus showed that if F is the free metabelian group with basis fx1; : : : ; xng and
m � n then the map defined by xi 7! tiai is an embedding of F into W .

The wreath product W is of course finitely generated, and W has a finite hybrid
presentation as above using the base group B as the abelian normal subgroup. We
can now state our main results.

TheoremA. Let W D AwrT be the wreath product of finitely generated free abelian
groups A and T , and let H1 and H2 be finitely hybrid-presentable subgroups of W .
Then H1 \ H2 is finitely hybrid-presentable. Moreover there is a uniform algorithm
which, given finite hybrid presentations for H1 and H2, computes a finite hybrid
presentation for H1 \ H2.

It follows from the proof of Theorem A that it is possible to describe when the
intersection of two finitely generated subgroups of such wreath products is again
finitely generated:

Theorem B. Let W D A wr T be the wreath product of finitely generated free
abelian groups A and T , and let � denote the projection of W onto T . Let H1 and
H2 be finitely generated subgroups of W and let H D H1 \ H2. Then H is finitely
generated if and only if either H \ B D 1 or H� has finite index in H1� \ H2� .

As a consequence we can describe algorithms for testing whether such an inter-
section is finitely generated.

Corollary C. Let W be the wreath product of two finitely generated free abelian
groups. Let H1 and H2 be finitely generated subgroups of W . There is a uniform
algorithm to determine whether or not H1 \ H2 is finitely generated, and, if so,
whether or not H1 \ H2 is trivial.

Our methods depend heavily on the fact that the base group B is a free ZT -
module. We leave open the question as to whether and how our results can be
extended to finitely generated metabelian groups as a whole. Our notion of a finite
hybrid presentation is available in the general case, but not all of our results carry
over. In Section 5 we give an example showing that Theorem A does not carry over
to finitely generated metabelian groups in general.

This paper is structured as follows. In Section 2 we set up some notation and review
the necessary algorithmic background results. In Section 3 we prove some useful facts
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about the structure of finitely generated submodules of B and of finitely generated
subgroups of W . In Section 4.1 we show that the intersection H1 \ H2 of two
subgroups of W with finite hybrid presentations also has a finite hybrid presentation
by showing that if Hi \ B is a finitely generated Pi -module, then H1 \ H2 \ B is
finitely generated as a P1 \ P2-module. We also show how to compute a finite set
of module generators for H1 \ H2 \ B . In Section 4.2 we describe an algorithm
to compute .H1 \ H2/� when H1 and H2 are given by finite hybrid presentations,
thus completing the calculation of the finite hybrid presentation for H1 \ H2 and
the proof of Theorem A. In Section 4.3 we characterize those situations in which the
intersection of two finitely generated subgroups is itself finitely generated (Theorem B
and Corollary C). In Section 5 we construct a number of examples and use the above
results to analyze their properties.

2. Notation and algorithmic background

If G is a group, ZG denotes the group ring of G over the ring Z of integers.
In 1954 P. Hall showed that finitely generated abelian-by-polycyclic groups (and

hence finitely generated metabelian groups) satisfy max-n, the maximum condition
for normal subgroups. Such a group G is an extension of a normal abelian subgroup
A by a polycyclic group P D G=A. Hall showed that the group ring ZP is a right
noetherian ring and A is a finitely generated ZP -module. This connection between
commutative algebra and group theory has been very fruitful and has led to many
finiteness conditions and algorithmic results.

As permanent notation we let W denote the wreath product W D A wr T of
two finitely generated free abelian groups A and T with bases fa1; : : : ; amg and
ft1; : : : ; tng. The projection of W onto T is denoted by � . We use multiplicative
notation in our ZT -modules, so an element f 2 ZT acting on b 2 B gives bf (see
below for an example of this notation).

Previously we noted that W is the split extension W D T Ë B where B is the
free ZT -module with basis fa1; : : : ; amg. But we will often view B in a slightly
different way. Namely B is isomorphic to the restricted direct product of the groups
fAt D t�1At j t 2 T g. To see this we observe that any element in the free module B

can be written in terms of monomials and hence gives a unique element in the direct
product of the groups fAt j t 2 T g. For instance,

a
2�5t�1

1
t2

1 a
3t1Ct�1

1
t2

2 D .a2
1/.a3

2/t1.a�5
1 a2/t�1

1
t2

:

For P � T , we will use the term P -module for ZP -module. If � is a subset of
the P -module M , we denote by modP .�/ the P -submodule of M generated by S .
Again we emphasize that we are using multiplicative notation in such P -modules.

Algorithmic questions are of fundamental interest in combinatorial group theory.
In the 1950s it was shown that each of Dehn’s fundamental decision problems –
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the word, conjugacy and isomorphism problems for finitely presented groups – is
undecidable in general [19], [7]. Then in the mid-1980s it was shown [11], [5] that
these problems are also unsolvable for finitely presented solvable groups of derived
length at most 3.

The situation is dramatically different, however, if we further restrict to derived
length at most 2, i.e. to metabelian groups. In 1959 P. Hall proved that finitely gener-
ated metabelian groups are residually finite [9]. Since finitely generated metabelian
groups satisfy max-n, they are finitely presented in the variety of metabelian groups.
It follows that the word problem for such groups is decidable (see, for example,
Theorem 9.1.1 in [15]). In 1980 Romanovskii showed the problem of deciding mem-
bership in finitely generated subgroups of finitely generated metabelian groups is
solvable. Then in 1982 Noskov proved that the conjugacy problem is also decidable
in this context [18]. On the other hand, the decidability of the isomorphism problem
for finitely presented metabelian groups remains unknown.

Many of the known algorithmic results for metabelian and related solvable groups
are collected in the monograph [15], see particularly Sections 9.4 and 9.5. At the heart
of many of these algorithms is the fact that the group ring ZP of a polycyclic group
is submodule computable in the sense defined in [3]. This means that (1) ZP is a
right Noetherian ring in which the ring operations are computable; (2) every finitely
generated right ZP -module M is right Noetherian; and (3) there are algorithms
which, when given a finite presentation of M , viewed as a ZP -module, and a finite set
S of elements of M , find a presentation for N D modZP .S/ and decide membership
in N .

For finitely generated metabelian groups in particular, Baumslag, Cannonito and
Robinson [4] demonstrated the decidability of a host of additional natural problems.
These include the computation of the derived subgroup, centralizers, the center, the
Fitting subgroup and the Frattini subgroup. We will make extensive use of the results
and methods of [3] and of [4].

Among the questions left open in [4] are two about the computation of inter-
sections: given a finitely generated metabelian group G and two finitely generated
subgroups H and K, can we decide if the intersection H \ K is finitely generated,
and, if so, can we decide if H \K is trivial? They show how to answer these questions
when at least one of the subgroups, say H , is nearly normal, that is, when H \ ŒG; G�

is normal in G. In this case H \ ŒG; G� is finitely generated as a G=ŒG; G�-module.
Our results provide a rather different sort of answer in the context of free metabelian
groups.

Subgroups with finite hybrid presentations, in our terminology, are similar to these
nearly normal subgroups of [4]. Clearly nearly normal subgroups are finitely hybrid-
presentable in the case the subgroup B in the definition is the derived group itself,
that is, in case B D ŒG; G�. For completeness, we briefly explore the relationship
between these two classes of subgroups in the case of the wreath product W .

Let A be free abelian with basis a1, a2, a3, let T be free abelian with basis t1, t2,
t3, and let W be the wreath product of A and T . We begin by constructing a subgroup
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of W which has a finite hybrid presentation but is not nearly normal. Let H be the
subgroup of W generated by t1a1 and t2a2. It is easy to see directly that H has a
finite hybrid presentation: since HB=B is free abelian with basis ft1B; t2Bg, H \ B

is generated as a normal subgroup of H by the commutator Œt1a1; t2a2�; therefore,
H \ B D H \ ŒW; W �, and it is finitely generated as a ht1; t2i-module. On the other
hand, H is not nearly normal since H \ ŒW; W � is not normal in W .

Next we construct a subgroup K of W which is nearly normal, but viewed as a
subgroup of W , does not have a finite hybrid presentation. Let C be the T -module
generated by Œt1a1; t2a2�. Let K be the subgroup of W generated by a3 and C . It
is not hard to see that K D K \ B is not finitely generated as a P -submodule for
any P � T : the only element t of T such that Kt � K is t D 1, so K is a P -
submodule if and only if P D 1, but K is not finitely generated as an abelian group.
Thus we see that K does not have a finite hybrid presentation. On the other hand,
K \ ŒW; W � D C , and C is finitely generated as a W=ŒW; W �-module, so K is nearly
normal.

3. About finite generation

Here we will be concerned with W D A wr T , where A and T are as usual finitely
generated free abelian groups on fa1; : : : ; amg and ft1; : : : ; tng and B is the base
group of W .

In this section we prove structural theorems about finitely generated modules (not
necessarily submodules) contained in B and finitely generated subgroups of W .

For d 2 B , the support of d , denoted by �.d/, is the set of all elements t 2 T

such that the image of d under the projection from B to At is non-trivial. Note that
�.d/ is always finite. If M is a subgroup of B then we put �.M/ D S

d2M �.d/.
Observe that if M1 and M2 are subgroups of B , then �.M1M2/ D �.M1/ [ �.M2/.
If d 2 B and P is a subgroup of T then the support of the cyclic P -module d ZP is
�.d/P . Also �.M1 \ M2/ � �.M1/ \ �.M2/.

We begin with a lemma characterizing finitely generated modules of B in terms
of supports.

Lemma 3.1. Let P be a subgroup of T , and let M � B be a P -module. Then M

is finitely generated as a P -module if and only if there exists a finite subset S of T

such that �.M / � fsp j s 2 S; p 2 P g. If M is generated by m1; m2; : : : ; mk as a
P -module and S D SiDk

iD1 �.mi /, then �.M/ D fsp j s 2 S; p 2 P g.

Proof. Suppose that M is generated as a P -module by m1; : : : ; mk . Let S be
SiDk

iD1 �.mi /. For p 2 P , since �.m
p
i / D �.mi /p, we see that fsp j s 2 S;

p 2 P g � �.M/. To see that �.M/ � fsp j s 2 S; p 2 P g, suppose that m 2 M .
Then m can be written as a product of elements of the form bp , where b D m�

i
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for some i , some � D ˙1, and some p 2 P . Now �.bp/ � SP , and therefore
�.m/ � SP .

For the converse, suppose that there exists a finite subset S of T such that �.M/ �
fsp j s 2 S; p 2 P g. Let C � B be the direct product of the subgroups fAsp j s 2
S; p 2 P g. Notice that C is a P -module. Let a1; : : : ; an be a set of generators for
A as an abelian group. C is finitely generated as a P -module by

S

s2S

fas
1; : : : ; as

ng:

Therefore, C is a Noetherian P -module. Since M is a P -submodule of C , M is
finitely generated.

The next proposition characterizes finitely generated subgroups of W in terms of
their intersection with B . Here, as before, � is the projection of W onto T .

Proposition 3.2. Let H be a subgroup of G and let P D H� . Then H \ B is a
P -module and H is finitely generated if and only if H \ B is finitely generated as a
P -module.

Proof. Suppose H is finitely generated. Since H=.H \ B/ is finitely presented,
H \ B is finitely generated as a normal subgroup of H . Therefore, H \ B is finitely
generated as a P -module.

Conversely, suppose that H \ B is generated as a P -module by d1; : : : ; dr .
Let h1; : : : ; hs be elements of H such that h1.H \ B/; : : : ; hs.H \ B/ generate
H=.H \B/ as an abelian group. Then d1; : : : ; dr , h1; : : : ; hs generate H as a group.

We want to be able to decide whether a subgroup given by a finite hybrid presenta-
tion is finitely generated. We begin with an elementary observation about intersections
of subgroups of finitely generated abelian groups.

Lemma 3.3. Let H and K be subgroups of T . Suppose that H is a subset of the
union of finitely many cosets of K. Then ŒH W H \ K� < 1.

Proof. Let h 2 H . Let fg1K; g2K; : : : ; grKg be a set of distinct cosets whose union
contains H . By the pigeonhole principle, there exist positive integers 0 < ˇ <

˛ � r C 1 and a gi such that h˛ 2 giK and hˇ 2 giK. Therefore h˛�ˇ 2 K.
Therefore, H=.H \ K/ is a finitely generated abelian group of finite exponent, and
hence ŒH W H \ K� < 1.

Now we can recognize when a subgroup with a finite hybrid presentation is actually
finitely generated.

Proposition 3.4. Suppose that H \ B is finitely generated as a P -module for some
P � T . H is finitely generated if and only if H \ B D 1 or ŒP W H� \ P � < 1.



666 G. Baumslag, C. F. Miller III and G. Ostheimer

Proof. First suppose that H is finitely generated. Then H \ B is finitely generated
as an H�-module and H \ B is also finitely generated as a P -module. Therefore,
by Proposition 3.1 there exist finite subsets R and S of T such that �.H \ B/ D
RP D SH� . Fix r 2 R. For all p 2 P , there exist s 2 S and q 2 H� such that
sq D rp, so p D r�1sq. Thus, P is a subset of the union of finitely many cosets of
H� . By Lemma 3.3, ŒP W H� \ P � < 1.

Conversely, suppose that ŒP W P \ H�� < 1 and H \ B ¤ 1. Since H \ B is
finitely generated as a P -module, it is also finitely generated as a P \H�-module, and
hence as an H�-module. By Proposition 3.2, H is finitely generated as a subgroup.

4. Intersections

In this section we prove that, in the wreath product W , the intersection of two sub-
groups with finite hybrid presentations also has a finite hybrid presentation, and we
describe an algorithm to find such a description. This, together with Proposition 3.4,
shows that we can decide whether or not the intersection of two subgroups with finite
hybrid presentations is finitely generated, and, if so, if it is trivial.

4.1. The structure of H1 \ H2 \ B. Our first proposition is about intersections of
submodules of B .

Proposition 4.1. Let P1 and P2 be subgroups of T . Suppose that Ki is a finitely
generated Pi -submodule of B for i D 1; 2. Then K1 \ K2 is finitely generated as a
P1 \ P2-module.

Proof. Let K D K1 \ K2. K is a .P1 \ P2/-module.
By Lemma 3.1 it suffices to show that there exists a finite subset U of T such that

�.K/ � fsp j s 2 U; p 2 P1 \ P2g:
By Lemma 3.1 we know that there exists a finite set R of T such that �.K1/ D

RP1. Likewise, there exists a finite set S of T such that �.K2/ D SP2. Since
�.K/ � �.K1/ \ �.K2/, it suffices to show that there exists a finite subset U of T

such that RP1 \ SP2 � U.P1 \ P2/.
Let R D fr1; : : : ; rag and let S D fs1; : : : ; sbg. Let I be the set of those ordered

pairs .i; j / of indices for which there exist p 2 P1 and q 2 P2 such that rip D sj q.
For .i; j / 2 I , let pi;j 2 P1 and qi;j 2 P2 be one such solution, so ripi;j D sj qi;j .
Let

U D fripi;j j .i; j / 2 I g:
Let t 2 RP1 \ SP2. Then there exists .i; j / 2 I , p 2 P1, q 2 P2 such that
t D rip D sj q. If we put z D .pi;j /�1p then computing in the abelian group T we
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have
z D .pi;j /�1p D .ripi;j /�1rip D .sj qi;j /�1sj q D q�1

i;j q:

Therefore pi;j p�1 2 P1 \ P2, so t D ripi;j z where z D .pi;j /�1p 2 P1 \ P2.

As a consequence we have the following result which is the first assertion of
Theorem A. The algorithmic assertions of Theorem A will be established in Propo-
sitions 4.7 and 4.12 below.

Corollary 4.2 ( = first part of Theorem A). If H1 and H2 are subgroups of W with
finite hybrid presentations, then H1 \ H2 also has a finite hybrid presentation.

Proof. Let P1; P2 be subgroups of T such that Hi \ B is finitely generated as a
Pi -module. Then H1 \H2 \B D .H1 \B/\ .H2 \B/, which is finitely generated
as a P1 \ P2-module by Proposition 4.1.

In order to show that we can actually compute H1 \ H2 \ B we will need to
generalize Lemma 2.2 of [3] which states that if M is a finitely generated P -module,
and M1 and M2 are finitely generated P -submodules of M , then we can compute
M1 \ M2. In particular we will need to be able to compute M1 \ M2 when each Mi

is a Pi -module, but P1 ¤ P2. Lemma 4.6 will show that this is possible when M1

and M2 are submodules of B � W ; Lemmas 4.3, 4.4 and 4.5 will pave the way.

Lemma 4.3. Let G be a finitely generated abelian group, and let H be a subgroup
of G. Let F be a free G-module with finite basis B. Let � be a finite subset of
F . There is a uniform algorithm to compute a finite set of H -module generators for
modH .B/ \ modG.�/.

Proof. This is a special case of Corollary 2.13 of [3].

Lemma 4.4. Let P � T , and let U D fu1; u2; : : : ; ung be a set of elements of T

such that if i ¤ j , then uiP ¤ uj P . Then U is a basis for the free P -submodule
N of ZT given by N D modP U . Thus, AUP is a free P -submodule with basis
fau j a 2 A; u 2 Ug, where A is a basis for A as an abelian group.

Proof. Suppose that f1; f2; : : : ; fn 2 ZP such that u1f1 C u2f2 C � � � C unfn D 0.
Notice that �.uifi / � uiP , so if i ¤ j , then �.uifi / is disjoint from �.uj fj /.
From this it follows that uifi D 0 for all i D 1; 2; : : : ; n. Now ui 2 T so ui ¤ 0:
remember, we are using multiplicative notation in T . Since ZT is an integral domain,
it follows that fi D 0 for i D 1; 2; : : : ; n. This shows that N is free with basis U.

It is easy to see that since U is a basis for a free P -submodule N of ZT , then
AN D AUP is a free P -submodule of B with basis fau j a 2 A; u 2 Ug.
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Lemma 4.5. Let W be the wreath product of finitely generated free abelian groups
A and T . Let P and P1 be subgroups of T such that P � P1. Let M1 be a
finitely generated P1-submodule of B . Let U be a finite subset of T such that if
u; v 2 U , then uP1 ¤ vP1. Then there is a uniform algorithm to compute a finite
set of generators for M1 \ modP AU as a P -module.

Proof. Let Q D UP1 [ �.M1/. By Lemma 3.1, �.M1/ is the union of finitely many
cosets of P1. Therefore, Q is itself the union of finitely many cosets of P1. Thus
there exists a finite subset Q � U of T such that Q D S

u2Q uP1 and u; v 2 Q,
u ¤ v implies that uP1 ¤ vP1. Let C D faq j a 2 A; q 2 Qg. By Lemma 4.4 AQ

is free as a P1-module and C is a basis for AQ as such.
Let N be the P -module given by N D modP C \ M1. By Lemma 4.3 we can

find generators for N as a P -module. By Lemma 2.2 of [3] we can then compute
N 0 D N \ modP AU as a P -module.

We will now show that N 0 D M1 \ modP AU . Since U � Q, modP AU �
modP C . Therefore M1 \ modP AU � M1 \ modP C D N and hence M1 \
modP AU � N 0. On the other hand, N 0 � N � M1, and clearly N 0 � modP AU .
Therefore N 0 � M1 \ modP AU .

Lemma 4.6. Let W be the wreath product of finitely generated free abelian groups
A and T . For i D 1; 2, let Pi be a subgroup of T , and let P D P1 \ P2. Let Mi be
a finitely generated Pi -submodule of B and let M be a finitely generated P -module
such that M � M1 \ M2. Then there is a uniform algorithm to compute a finite set
of generators for M1 \ M2 as a P -module.

Proof. It suffices to describe an algorithm to compute P -module generators for
M \ M1 since M1 \ M2 D .M \ M1/ \ .M \ M2/. The difficulty arises because
M1 may not be finitely generated as a P -module. In the proof of Proposition 3.1,
we see that we can compute a finite subset U of T such that �.M1 \ M/ � UP and
u; v 2 U , u ¤ v implies uP ¤ vP .

Let N D modP AU . Then M1 \ M � N . It is sufficient to find a finite set
of generators for N \ M1 as a P -module, since we can then compute M \ M1 D
M \ .N \ M1/. Lemma 4.5 suffices for computing N \ M1.

The next result provides one of the algorithms needed for Theorem A. The other
required algorithm is given by Proposition 4.12 below.

Proposition 4.7. LetW be thewreath product offinitely generated free abeliangroups
A and T and let H1 and H2 be subgroups of W given by finite hybrid presentations.
There is a uniform algorithm to compute a finite generating set for H1 \ H2 \ B as
an H1� \ H2�-module.

Proof. Suppose that Hi \ B is given as a Pi -module. Let P D P1 \ P2. Our
first task to find a finite set U � T such that H1 \ H2 \ B is contained in the
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P -module generated by the direct sum of fAu j u 2 U g. Examination of the proof of
Proposition 4.1 shows that given elements r; s 2 T , we must be able to decide if there
exist elements p1 2 P1 and p2 2 P2 such that rp1 D sp2, and to find such elements
if they exist. Since rp1 D sp2 if and only if rs�1 D p�1

1 p2, we can use linear algebra
to test whether or not rs�1 is an element of P1P2. If it is, we can enumerate the
elements of P1 and P2 until we find p1 2 P1 and p2 2 P2 such that rs�1 D p�1

1 p2.
By Lemma 4.6 we can then compute a finite generating set for H1 \ H2 \ B .

4.2. The structure of .H1\H2/�. Suppose we are given finite hybrid presentations
for subgroups H1 and H2 of W . The finite hybrid presentation for Hi consists of a
finite set of elements of Hi whose images generate HiB=B , a finite set of elements
of T that generate a subgroup we call Pi , and a finite set of elements of Hi that
generate Hi \ B as a Pi -module. In order to complete our calculation of a finite
hybrid presentation for H1 \H2, we must compute .H1 \H2/� . Let Qi D HiB=B .
Note that while Hi \ B is also a Qi -module, it may not be finitely generated as such.

We examine three cases:

(1) B � H2;
(2) Q1 D Q2;
(3) the general case.

Case 1 is easy: if B � H2, then .H1 \ H2/B D H1B \ H2B , so computations
in W=B suffice to find generators for .H1 \ H2/B=B .

It is also easy to see that the general case (3) can be handled assuming that cases 1
and 2 can be handled. To see this, let K D H1B \ H2B . Computations in W=B

suffice for computing K. Let H 0
i D Hi \ K. Using case 1 we compute generators

for H 0
i B=B . Now H 0

1 \ H 0
2 D H1 \ H2. Furthermore,

H 0
1B D .H1 \ .H1B \ H2B//B D .H1 \ H2B/B D H1B \ H2B:

Thus H 0
1B D H 0

2B , so we use case 2 to compute .H 0
1 \H 0

2/B=B D .H1 \H2/B=B

as required.
We are left with case 2, in which Q1 D Q2. Let Q D Q1 (so Q D Q2 as well).

Notice that H1 \ B and H2 \ B are both Q-modules, though they might not be
finitely generated as such.

Our primary task will be to find generators for the following subgroup P of Q:

P D fp 2 Q j there exists a 2 B such that pa 2 H1 \ H2g:
We will now mimic the proof of Theorem 5.6 of [4] by describing P as the kernel of
a derivation ı from Q to a quotient of a certain Q-submodule of B . We will do so in
several steps.

In this case there exist sets S1 � H1 and S2 � H2 of the form

S1 D fx1b1; x2b2; : : : ; xrbrg; S2 D fx1c1; x2c2; : : : ; xrcrg;
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where the xi ’s form a basis for Q as a free abelian group, the bi ’s and ci ’s are in B ,
and where the images of Si generate HiB=B .

Let �i be the map that takes m 2 Z to f 2 ZQ defined as follows: for any
b 2 B , .xib/m D xm

i bf D xm
i bm�i . For m > 0, one can check that m�i D

1Cxi C� � �Cxm�1
i and that .�m/�i D �x�1

i �x�2
i �� � ��x�m

i . Consequently, for
all m 2 Z, the identity .xi � 1/.m�i / D .xm

i � 1/ holds. We also define the elements

di D .xici /
�1.xibi / D bic

�1
i

for i D 1; 2; : : : ; r , which measure the difference between the corresponding gener-
ators of the Si .

Lemma 4.8.

.x1b1/v1.x2b2/v2 : : : .xrbr/vr

D x
v1

1 x
v2

2 : : : xvr
r b

v1�1x
v2
2

x
v3
3

:::x
vr
r

1 b
v2�2x

v3
3

x
v4
4

:::x
vr
r

2 : : : bvr �r
r :

Similar equations hold for the ci and di .

Proof.

.x1b1/v1.x2b2/v2 : : : .xrbr/vr

D .x
v1

1 b
v1�1

1 /.x
v2

2 b
v2�2

2 / : : : .xvr
r bvr �r

r /

D x
v1

1 x
v2

2 : : : xvr
r b

v1�1x
v2
2

x
v3
3

:::x
vr
r

1 b
v2�2x

v3
3

x
v4
4

:::x
vr
r

2 : : : bvr �r
r : �

We now define a set map � from Q to B by

� W x
v1

1 x
v2

2 : : : xvr
r 7! d

v1�1x
v2
2

x
v3
3

:::x
vr
r

1 d
v2�2x

v3
3

x
v4
4

:::x
vr
r

2 : : : d vr �r
r :

Notice that by Lemma 4.8, if q D x
v1

1 x
v2

2 : : : x
vr
r , then

q� D q�1.x1d1/v1.x2d2/v2 : : : .xrdr/vr :

That is, if we substitute xidi for xi in q and express the result in the form qb with
b 2 B , then b D q�. Alternatively, if we use functional notation q D q.xi / and
q.xibi / and q.xici / are the results of replacing the xi by xibi and xici respectively,
then q� D q.xici /

�1q.xibi /. The following proposition gives a key property of this
map � for intersections.

Proposition 4.9. q 2 P if and only if q� 2 .H1 \ B/.H2 \ B/.
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Proof. We have the following chain of equivalences:

x
v1

1 x
v2

2 : : : xvr
r 2 P

() 9a 2 B such that x
v1

1 x
v2

2 : : : xvr
r a 2 H1 \ H2

() 9a 2 B such that

.x
v1

1 x
v2

2 : : : xvr
r a/�1.x1b1/v1.x2b2/v2 : : : .xrbr/vr 2 H1 \ B

and .x
v1

1 x
v2

2 : : : xvr
r a/�1.x1c1/v1.x2c2/v2 : : : .xrcr/vr 2 H2 \ B

() 9a 2 B; m1 2 H1 \ B; m2 2 H2 \ B such that

a�1b
v1�1x

v2
2

x
v3
3

:::x
vr
r

1 b
v2�2x

v3
3

x
v4
4

:::x
vr
r

2 : : : bvr �r
r D m1 and

a�1c
v1�1x

v2
2

x
v3
3

:::x
vr
r

1 c
v2�2x

v3
3

x
v4
4

:::x
vr
r

2 : : : cvr �r
r D m2

() 9a 2 B; m1 2 H1 \ B; m2 2 H2 \ B such that

a D b
v1�1x

v2
2

x
v3
3

:::x
vr
r

1 b
v2�2x

v3
3

x
v4
4

:::x
vr
r

2 : : : bvr �r
r m1 and

a D c
v1�1x

v2
2

x
v3
3

:::x
vr
r

1 c
v2�2x

v3
3

x
v4
4

:::x
vr
r

2 : : : cvr �r
r m2

() 9m1 2 H1 \ B; m1 2 H2 \ B such that

b
v1�1x

v2
2

x
v3
3

:::x
vr
r

1 b
v2�2x

v3
3

x
v4
4

:::x
vr
r

2 : : : bvr �r
r m1

D c
v1�1x

v2
2

x
v3
3

:::x
vr
r

1 c
v2�2x

v3
3

x
v4
4

:::x
vr
r

2 : : : cvr �r
r m2

() 9m1 2 H1 \ B; m2 2 H2 \ B such that

d
v1�1x

v2
2

x
v3
3

:::x
vr
r

1 d
v2�2x

v3
3

x
v4
4

:::x
vr
r

2 : : : d vr �r
r D m�1

1 m2;

which is the desired result.

Lemma 4.10. For all i; j D 1; 2; : : : ; r , Œxidi ; xj dj � 2 .H1 \ B/.H2 \ B/.

Proof. Since T is abelian and so Œxi ; xj � D 1, an easy calculation gives

Œxidi ; xj dj � D d �1
i x�1

i d �1
j x�1

j xidixj dj D d
xj �1

i d
1�xi

j :

We get a similar equation by substituting b’s for d ’s, and another by substitut-
ing c’s for d ’s. Since d

xj �1

i d
1�xi

j D b
xj �1

i b
1�xi

j .c
xj �1

i c
1�xi

j /�1, Œxidi ; xj dj � D
Œxibi ; xj bj �.Œxici ; xj cj �/�1 2 .H1 \ B/.H2 \ B/.

Let M be the Q-submodule of B generated by the di ’s and the Q-module
.H1 \ B/.H2 \ B/. Let ı be the map from Q to M=.H1 \ B/.H2 \ B/ given
by qı D q�.H1 \ B/.H2 \ B/.

Lemma 4.11. ı is a derivation.
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Proof. Let p D x
u1

1 x
u2

2 : : : x
ur
r and let q D x

v1

1 x
v2

2 : : : x
vr
r . Then modulo

.H1 \ B/.H2 \ B/ we have the congruences

.pq/ı 	 .pq/�1.x1d1/u1Cv1.x2d2/u2Cv2 : : : .xrdr/ur Cvr

	 .pq/�1.x1d1/u1.x1d1/v1 : : : .xrdr/ur .xrdr/vr

	 .pq/�1.x1d1/u1 : : : .xrdr/ur .x1d1/v1 : : : .xrdr/vr

	 .p�1.x1d1/u1 : : : .xrdr/ur /qq�1.x1d1/v1 : : : .xrdr/vr

	 .pı/q.qı/;

which means that .pq/ı 	 .pı/q.qı/ mod .H1 \ B/.H2 \ B/. (Notice the use of
Lemma 4.10 in line 3.)

This brings us to the following result which is the remaining algorithm needed for
Theorem A. Taken together, Corollary 4.2 and Propositions 4.7 and 4.12 establish
Theorem A.

Proposition 4.12. Let W D A wr T be the wreath product of finitely generated free
abelian groups A and T , and let H1 and H2 be subgroups of W given by finite hybrid
presentations, where Hi \ B is given as a Pi -module. There is a uniform algorithm
to compute a finite set of generators for .H1 \ H2/� .

Proof. As we saw at the start of this section, we may assume that H1� D H2� .
Let Q D H1� . Let ı be the derivation from Q to M=.H1 \ B/.H2 \ B/ defined
above. By Proposition 4.9, the kernel of ı is P . Clearly, M=.H1 \ B/.H2 \ B/ is
finitely generated as a Q-module, so by Lemma 5.5 of [4], we can compute P . Since
membership testing in H1 \ H2 is possible, for each generator p of P we can do an
exhaustive enumeration search to find an element b of B such that pb 2 H1 \ H2.
The images in W � of the elements pb 2 H1 \H2 so obtained generate .H1 \H2/� .

4.3. Finite generation of intersections. Notice that .H1 \ H2/� � H1� \ H2� ,
but the reverse inequality does not necessarily hold; indeed, .H1 \ H2/� may not
have finite index in H1� \ H2� . The proposition below shows that this fact is at the
heart of why the intersection of two finitely generated subgroups of W may not itself
be finitely generated.

Theorem 4.13 (= Theorem B). Let H1 and H2 be finitely generated subgroups of W

and let H D H1 \ H2. Then H is finitely generated if and only if either H \ B D 1

or H� has finite index in H1� \ H2� .

Proof. Let K D H \ B . By Proposition 3.2 H is finitely generated if and only if K

is finitely generated as an H�-module.
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Suppose that H is finitely generated and that K ¤ 1. By Lemma 3.1 there exists
a nonempty finite subset S of T such that �.K/ � fsp j s 2 S; p 2 H�g. But K

is a .H1� \ H2�/-module, so �.K/ must be closed under right multiplication by
H1� \ H2� . It follows that H� must have finite index in H1� \ H2� .

Clearly, if K D 1, then H is finitely generated since it is isomorphic to a subgroup
of T . So assume that K ¤ 1 and that H� has finite index in H1� \ H2� . By
Proposition 4.1 K is finitely generated as a .H1� \ H2�/-module. Since H� has
finite index in H1� \ H2� , K is also finitely generated as a H�-module.

This leads to the following decidability result:

Corollary 4.14 (= Corollary C). LetW be thewreath product of twofinitely generated
free abelian groups. Let H1 and H2 be finitely generated subgroups of W . There is
a uniform algorithm to determine whether or not H1 \ H2 is finitely generated, and,
if so, whether or not H1 \ H2 is trivial.

Proof. We can compute finite hybrid presentations for H1 and H2, and from these, by
Propositions 4.7 and 4.12, we can compute a finite hybrid presentation for H1 \ H2.
From this finite hybrid presentation it is obvious whether H1 \ H2 are trivial since
this is the case if and only if H1 \ H2 \ B and .H1 \ H2/� are both trivial. If
H1 \ H2 \ B is trivial, then H1 \ H2 is finitely generated. If H1 \ H2 \ B is not
trivial, then H1 \ H2 is finitely generated if and only if .H1 \ H2/� has finite index
in H1� \ H2� , and this is easy to decide using linear algebra.

5. Howson’s theorem and some examples of intersections of finitely generated
metabelian groups

We again recall Howson’s theorem [13] from 1954: if F is a free group, and H1 and
H2 are finitely generated subgroups of F , then H1 \ H2 is finitely generated.

Now instead let F be a finitely generated free metabelian group. It is not difficult
to produce two finitely generated subgroups of F whose intersection is not finitely
generated (one such example is provided below), so the obvious analog of Howson’s
theorem does not hold in this context. It is natural to then ask: which subgroups of a
free metabelian group are more closely analogous to finitely generated subgroups of
a free group? All subgroups of free groups are free, suggesting that there is an analog
of Howson’s theorem for finitely generated free metabelian subgroups of F . In any
group, the intersection of two finite index subgroups is finitely generated by virtue
of being of finite index itself. Another possibility then is to restrict attention to those
free metabelian subgroups which are of finite index modulo the derived group of the
given supergroup. Here we give one example that illustrates that Howson’s theorem
does not carry over to free metabelian groups in either instance.
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We construct two finitely generated subgroups of the free metabelian group F

that are themselves free, whose projections in F=ŒF; F � generate all of F=ŒF; F �,
and whose intersection is not finitely generated.

We again remark that the free metabelian subgroups of a finitely generated free
metabelian group are of restricted rank. Specifically, if Fn is the free metabelian
group of rank n, then Fn can not be embedded in Fn�1, the free metabelian group
of rank n � 1. In fact, more generally it can be shown that the free solvable groups
Fn.S`/ of rank n and derived length ` cannot be embedded in a finite direct power of
Fn�1.S`/ for any n (see Corollary 25.73 in [17]).

Theorem 5.1. Let F be the free metabelian group of rank 2. Then there exist
finitely generated free metabelian subgroups H1 and H2 of F such that H1ŒF; F � D
H2ŒF; F � D F , but H1 \ H2 is not finitely generated. Moreover, H1 \ H2 D
H1 \ B D H2 \ B and is a free cyclic Z.F=ŒF; F �/-module.

Proof. Let W be the wreath product of two finitely generated free abelian groups A

and T , each of rank 2 with bases a1, a2 and t1, t2 respectively. We adopt our usual
notation: B is the direct product of fAt j t 2 T g that is normal in W and � is the
projection of W onto T D W=B .

Let F be the subgroup group of W that is generated by t1a1 and t2a2. F is
free metabelian [16]. Let a be the commutator of the generators for F , so a D
a

t2�1
1 a

1�t1
2 . F \ B equals ŒF; F � and is generated as a T -module by a. Let H1 D

ht1a1at1 ; t2a2at2i and let H2 D ht1a1a; t2a2ai. Clearly H1 and H2 are subgroups
of F and H1� D H2� D W � D T . Furthermore H1ŒF; F � D H2ŒF; F � D F .

We will first show that H1 \ B D H2 \ B ¤ 1. Let b be the commutator of the
generators of H1. Then H1 \ B is generated as a T -module by b where

b D Œt1a1at1 ; t2a2at2 �

D .a1at1/t2�1.a2at2/1�t1

D a1Ct1.t2�1/Ct2.1�t1/

D a1�t1Ct2 :

But H2 \ B is generated as a T -module by b as well since

Œt1a1a; t2a2a� D .a1a/t2�1.a2a/1�t1 D a1C.t2�1/C.1�t1/ D a1�t1Ct2 :

Thus H1 \ B D H2 \ B ¤ 1 as claimed.
Since H1� D H2� D T and H1 \ B D H2 \ B is the free cyclic ZT -module

generated by b D a1�t1Ct2 , it follows that H1 and H2 are free metabelian groups [16].
Note that the free cyclic module H1 \ B is not finitely generated as a group (it is free
abelian of countably infinite rank).

Finally, we will show that .H1 \ H2/ � B , and hence that H1 \ H2 D H1 \ B

which we have already calculated. We define d1, d2 as in Section 4.2, so

di D .tiaia/�1.tiaia
ti / D .aia

ti /.aia/�1 D ati �1:
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Let n1 and n2 be integers such that t
n1

1 t
n2

2 2 .H1 \ H2/� . Then by Proposition 4.9

we know that d
.n1�1/t

n2
2

1 d
n2�2

2 D a.1�t1Ct2/f for some f 2 ZT . Therefore

.t1 � 1/.n1�1/t
n2

2 C .t2 � 1/.n2�2/ D .1 � t1 C t2/f;

.t
n1

1 � 1/t
n2

2 C .t
n2

2 � 1/ D .1 � t1 C t2/f;

and hence we have

t
n1

1 t
n2

2 � 1 D .1 � t1 C t2/f:

Such an equation is only possible if n1 D n2 D 0 (and f D 0). To see this observe
that ZT is naturally embedded in QT . The retraction from QT to Q defined by
t1 7! 3 and t2 7! 2 sends the right-hand side of the equation to 0. But the left-hand
side is sent to 3n12n2 � 1 which is 0 only when n1 D n2 D 0, as claimed. Thus
.H1 \ H2/ � B , completing the proof of the theorem.

If H1 and H2 are subgroups satisfying the hypotheses of Proposition 5.1, then is
it always the case that H1 \ H2 is not finitely generated? Our final example shows
that the answer to this question is “No".

Proposition 5.2. Let F be the free metabelian group of rank 2. Then there exist
finitely generated free metabelian subgroups H1 and H2 of F such that H1ŒF; F � D
H2ŒF; F � D F , H1 6� H2, H2 6� H1, and H1 \ H2 is finitely generated.

Proof. Let W be the wreath product of two finitely generated free abelian groups
A and T , each of rank 2 with bases a1, a2 and t1, t2 respectively. We adopt our
usual notation: B is the direct product of fAt j t 2 T g that is normal in W ; � is the
projection of W onto W=B; ZT is the group ring of T .

Let F be the subgroup group of W that is generated by t1a1 and t2a2. F is
free metabelian by [16]. Let a be the commutator of the generators for F , so a D
a

t2�1
1 a

1�t1
2 . Note that F \ B equals ŒF; F � and is generated as a ZT -module by a.

Let H1 D ht1a1at1 ; t2a2at1i and let H2 D ht1a1a; t2a2ai. It is clear that H1� D
H2� D W � D T and also that H1ŒF; F � D H2ŒF; F � D F . We will see below that
H1 \ B and H2 \ B are nontrivial, from which it follows [16] that H1 and H2 are
free metabelian with bases the given generators. It remains to prove that H1 \ H2 is
finitely generated and that H1 6� H2 and H2 6� H1.

We will begin by showing that H1 \ H2 is finitely generated. By Proposition 4.7
we know H1 \ H2 \ B is finitely generated as a T -module. So it suffices to show
that .H1 \ H2/� D T . Then by Proposition 4.9 it suffices to show that t1� D d1

and t2� D d2 both belong to .H1 \ B/.H2 \ B/. In the present example d1 D
a1at1.a1a/�1 and d2 D a2at1.a2a/�1, and so d1 D d2 D at1�1.



676 G. Baumslag, C. F. Miller III and G. Ostheimer

Now H1 \ B is generated as a T -module by

Œt1a1at1 ; t2a2at1 � D a�t1a�1
1 t�1

1 a�t1a�1
2 t�1

2 t1a1at1 t2a2at1

D a
t2�1
1 a

1�t1
2 a�t2

1
Ct1t2

D a1�t2
1

Ct1t2 :

Therefore H1 \B consists of all elements B of the form af where f is in the ideal �

of ZT generated by 1�t2
1 Ct1t2. A similar calculation shows that Œt1a1a; a; t2a2a� D

a1�t1Ct2 . Therefore H2 \ B is generated by a1�t1Ct2 , and hence H2 \ B consists
of all elements B of the form af where f is in the ideal J of ZT generated by
1 � t1 C t2. Hence .H1 \ B/.H2 \ B/ is the set of all elements of B of the form af

where f is in the ideal K in ZT generated by 1 � t2
1 C t1t2 and 1 � t1 C t2. Since

d1 D d2 D at1�1, it remains to show that t1 � 1 is in K . But this is clear since

t1 � 1 D t1.1 � t1 C t2/ � .1 � t2
1 C t1t2/:

This completes the proof that H1 \ H2 is finitely generated.
Next we show that H1 6� H2 by showing that 1 � t2

1 C t1t2 62 J D .1 � t1 C t2/.

1 � t2
1 C t1t2 2 J () t�1

1 � t1 C t2 2 J

() t�1
1 � 1 2 J

() 1 � t1 2 J

() t2 2 J

() J D ZT;

but this is the case if and only if 1 � t1 C t2 is invertible in ZT . But by [12], the
invertible elements of ZT are all of the form ˙t for some t 2 T .

Next we show that H2 6� H1 by showing that 1 � t1 C t2 62 � D .1 � t2
1 C t1t2/.

1 � t1 C t2 2 � () t1 � t2
1 C t1t2 2 � () t1 � 1 2 �:

Therefore, if 1 � t1 C t2 2 � then t2 2 �, so � D ZT . Since 1 � t1 C t2 is not
invertible in ZT , this is impossible. This completes the proof of the proposition.

A final example: Finally we construct an example which is of interest from
several perspectives. Let H D h a i wr h s i be the wreath product of the cyclic group
generated by a with the cyclic group generated by s. If we introduce the abbreviation
ai D asi

then H can also be viewed as the split extension of the free abelian group
B with basis fai .i 2 Z/g by the infinite cycle on s which acts by ai 7! aiC1. Also
H has a presentation as H D h a; s j Œa; asi

� D 1; i 2 Z i and is finitely generated
but not finitely presented.
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Now we define G to be the ascending HNN extension of H by the stable letter t

which acts by a 7! a2 and s 7! s. Thus

G D h H; t j t�1st D s; t�1at D a2 i
D h a; s; t j Œa; asi

� D 1; t�1st D s; t�1at D a2 i:

Then G is also finitely generated but not finitely presented. Notice that the subgroup
generated by fa; tg has the familiar presentation BS.1; 2/ D h a; t j t�1at D a2 i
and has derived group isomorphic to the additive group of ZŒ1

2
�. It follows that the

the derived group ŒG; G� is the normal closure of the element a and is isomorphic to
the direct sum of countably many copies of ZŒ1

2
� which are conjugate by the action

of s.
We next consider the subgroup K of G generated by the two elements fa; stg. If

we abbreviate u D st then we calculate u�kamuk D t�ks�kamsktk D t�kam
k

tk .

In case k � 0 this becomes u�kamuk D am2k

k
. But if k < 0 the tk or equivalently

uk can only be pinched when m D n2jkj for some n, and then u�kan2jkj
uk D an

k
.

Consequently the elements of K which are equal to u-free words lie in the subgroup
of B generated by the elements f: : : ; a�2; a�1; a0; a2

1; a4
2; a8

3; : : : g.
Now observe the words of H which represent elements of K must have exponent

sum 0 on s and hence lie in B . It follows that H \ K is exactly the subgroup of B

which we have just described, that is,

H \ K D h : : : ; a�2; a�1; a0; a2
1; a4

2; a8
3; : : : i:

Of course G=ŒG; G� is the free abelian group on fs; tg. H \ K is closed under the
action of positive powers of t and of u but not negative powers. It is also closed
under negative powers of s but not positive powers. More generally H \ K is not
a submodule of ŒG; G� for any non-trivial subgroup of G=ŒG; G�. So H \ K is the
intersection of two finitely generated groups but is not finitely hybrid-presentable
as a subgroup. Consequently not all of our results carry over to finitely generated
metabelian groups in general. Notice however that H \ K is finitely generated by
fa0g as a module over the polynomial ring ZŒu; s�1� with monoid generators fu; s�1g.
This suggests the notion of hybrid-presentable may need to be expanded to include
such modules.

Since this group is generated by the subgroups H and K, it follows that the
subgroup ŒH; K� is normal in G. Now Œa; s� D a�1

0 a1 and Œa; u� D a�1
0 a2

1, both
lie in ŒH; K� and so a1 D as 2 ŒH; K�. Since ŒH; K� is normal, it follows that
ŒH; K� D ŒG; G�. One can also check that ŒH; K�=.H \ K/ is isomorphic to the
direct sum of countably many copies of the group of 2n-th roots of unity.
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