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Free subalgebras of Lie algebras close to nilpotent

Alexey Belov and Roman Mikhailov

Abstract. We prove that for every automata algebra of exponential growth the associated Lie
algebra contains a free subalgebra. For n � 1, let LnC2 be a Lie algebra with generators
x1; : : : ; xnC2 and the following relations: for k � n, any commutator (with any arrangement
of brackets) of length k which consists of fewer than k different symbols from fx1; : : : ; xnC2g
is zero. As an application of this result about automata algebras, we prove that LnC2 contains
a free subalgebra for every n � 1. We also prove the similar result about groups defined by
commutator relations. Let GnC2 be a group with n C 2 generators y1; : : : ; ynC2 and the
following relations: for k � n, any left-normalized commutator of length k which consists of
fewer than k different symbols from fy1; : : : ; ynC2g is trivial. Then the group GnC2 contains
a 2-generated free subgroup.

The main technical tool is combinatorics of words, namely combinatorics of periodical
sequences and period switching.
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1. Introduction

Let A be an associative algebra over a commutative ring with identity, generated
by a set S . Denote by A� the Lie algebra with the same set of generators S and
operation Œu; v� D uv � vu, u; v 2 A: In other words A� is the Lie subalgebra of
A� generated by the given set S . The algebra A� clearly depends on the choice of
the set of generators of A.

For n � 1, let LnC2 be a Lie algebra with generator set x1; : : : ; xnC2 and following
relations: for k � n, any commutator of length k which consists of fewer than k

different symbols from fx1; : : : ; xnC2g is zero. For example, the trivial commutators
in Ln which correspond to the case k D 3 are:

ŒŒxi ; xj �; xi �; i ¤ j:

One of the main results of this paper is following:

Theorem 1. For every n � 1, LnC2 contains a free Lie subalgebra.
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The algebras with few relations were extensively studied [3], [4], [10], [12].
E. I. Zelmanov [15] proved that a free pro-p group with a set of relations satisfying
the Golod–Shafarevich condition contains a free pro-p group. This result is in spirit
of the present work.

The proof of Theorem 1 is based on the theory of monomial algebras. An algebra
with a basis X is called monomial if all its defining relations are of the form u D
0, where u is a word written in X . Let A be a finitely generated algebra with
generators x1; : : : ; xs . The growth function VA.n/ is equal to the dimension of the
space generated by words of length � n. If VA.n/ grows exponentially, then A has
exponential growth; if polynomially, then A has polynomial growth. Intermediate
growth is also possible. The polynomial or exponential growth property does not
depend on the choice of the set of generators.

For n � 1, let AnC2 be the monomial algebra with generators x1; : : : ; xnC2 and
the following relations: u.x1; : : : ; xnC2/ D 0 if juj D k .k � n/ and u consists
of fewer than k symbols from fx1; : : : ; xnC2g: Clearly, the Lie algebra A�

nC2 is a
quotient of LnC2: A�

nC2 ' LnC2=I . Hence, if we will be able to prove that A�
nC2

contains a 2-generated free subalgebra, then LnC2 also contains a 2-generated free
subalgebra, and Theorem 1 follows. The algebra AnC2 has an alternative description
based on the following property: u.x1; : : : ; xnC2/ D 0 in the algebra AnC2 if the
distance between two occurrences of the same letter in u.x1; : : : ; xnC2/ is less than
nC 1.

Consider a super-word w D .x1 : : : xnC1/1 (the notion of super-word is defined
in the Section 2). It is clear that w ¤ 0 and any series of changes xnC1 7! xnC2 will
not yield zero, since the distance between two occurrences of the same letter is still
� n.

With the help of above changes it is possible to get 2M different non-zero words
from the word of length .nC 1/ �M , M � 1. It follows that the number of different

non-zero words of length k in the monomial algebra A is not less than 2Œ k
nC1

�, and
the algebra A has exponential growth. The algebra AnC2 is finitely presented and
hence is an automata algebra ([6], e.g., Proposition 5.4). Hence A�

nC2 contains a
2-generated (and countably generated) free subalgebra by Theorem 2 below.

Theorem 2. Let A D ha1; : : : ; ani be an automata algebra of exponential growth.
Then the Lie algebra A� contains a free 2-generator subalgebra.

The proof of this Theorem is contained in Section 4.1.

Remark. A more complicated proof is needed to show that a Lie algebra with gen-
erators x1; : : : ; xnC1 and the relations: for k � n, any commutator of length k which
consists of fewer than k different symbols from fx1; : : : ; xnC1g is zero, also contains
a free subalgebra for every n � 3.

A similar situation takes place in the case of groups. As a natural group-theoretical
analog of Theorem 1 we have the following:
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Theorem 3. For n � 1, let GnC2 be a group with n C 2 generators y1; : : : ; ynC2

and the following relations: for k D 3; : : : ; n, any commutator of length k which
consists of fewer than k different symbols from fy1; : : : ; ynC2g is trivial. Then the
group GnC2 contains a 2-generated free subgroup.

Note that the groups GnC2 are related to the construction of amenable groups with
fast Følner function from [8].

It is a pleasure for us to thank Mikhail Gromov for posing the problem and his
helpful comments, and Louis Rowen for useful discussions and suggestions. We
also thank the referee for constructive comments and corrections. The authors were
supported by the Israel Science Foundation grant No. 1178/06, Russian Fundamen-
tal Foundation Grant 08-01-91300-IND_a. The research of the second author was
partially supported by Russian Science Support Foundation and Presidential Grant
MK-3644.2009.1.

2. Periodicity

The order a1 � a2 � � � � � an induces a lexicographical order on the set of all words.
Two words are incomparable with respect to this order if one of them is the initial of
the other. By jvj will be denoted the length of a word v. By u � v will be denoted
the occurrence of a word u in a word v. A word u is called cyclic if u D vk for some
k > 1; otherwise it is called noncyclic or nonperiodic. If W D ukr , where r is an
initial segment in u, then W is called quasi-periodic of order juj. In this case W is a
subword of u1 (see next section). The words u and v are called cyclically conjugate
if u D cd and v D dc for some words c and d . The cyclic conjugacy relation is an
equivalence relation.

A super-word is a word which is infinite in both directions. A word that is infinite
to the left is called a left super-word; a word that is infinite to the right is called a
right super-word. By u1 will be denoted a super-word with the period u, by u1=2

a right (left) super-word which begins (terminates) with the word u.
Since it is clear from the context which super-word is under consideration, left or

right, we do not introduce special notation. The notation u1=2 � s � v1=2 means, for
example, that u1=2 is a left super-word and v1=2 is a right one.

Right super-words (unlike finite words, for which incomparable elements exist)
constitute a linearly ordered set with respect to the left lexicographic ordering; the
same is true for left super-words with respect to the right lexicographic ordering.

2.1. Periodic super-words. By u will be denoted a non-cyclic word. We recall
some propositions from [6] (Section 2.1). By Au1 we denote an algebra whose
defining relations have the following form: s D 0 where s is a word which is not a
subword of u1.
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Proposition 1. Every two subwords in u1 of length N juj are cyclically conjugate;
they coincide only when the distance between their first letters is divisible by the
period.

Proposition 2. a) The beginning subword of length juj � 1 uniquely defines the word
from Au1 . If the initial subwords of length juj�1 in two subwords v and v0 coincide
(v and v0 are subwords in the super-word u1), then one of them is a subword of the
other one. If jcj � juj and d1 and d2 are lexicographically comparable, then at least
one of the words cd1, cd2 is not a subword in u1.

b) The positions of the occurrences of a word v of length � juj in u1 differ by a
multiple of a period.

c) If jvj � juj and v2 � u1, then v is cyclically conjugate to a power of u.
Therefore, non-nilpotent words in Au1 are exactly those words that are cyclically
conjugate to words of the form uk .

Lemma 1 (on overlapping). If a subword of length mCn�1 occurs simultaneously
in two periodic words of periods m and n, then they are the same up to a shift.

2.2. Periodicity and Burnside-type problems. The periodicity of an infinite word
means its invariance with respect to a shift. In the one-sided infinite case a pre-period
appears; in the finite case effects related to the truncation appear. This, in conjunction
with super-word techniques, provides the essence of many combinatorial arguments
(see Proposition 3), especially Burnside-type problems.

Proposition 3 ([6], Section 2.1). If uW D W r , then uW is a subword of u1 and
W D unr , where r is an initial segment in u.

This proposition implies the following two lemmas.

Lemma 2 ([6], Section 2.1). Let W D ulvl , jul j D l , l D 0; : : : ; n. Then either all
vl are lexicographically comparable, or ul is quasi-periodic of order� n for some l .

From Lemma 2 one can deduce the nilpotency of the subalgebra of n � n matrix
algebra such that all the words of length � n over generators are nilpotent. (Sketch
of the proof [6] (Section 2.1.4): Consider a lexicographically minimal right super-
word W . Let W D ukWk , jukj D k, k D 0; : : : ; n, W0 D W . Consider an action
of beginners uk on the n-dimensional space V and note that Eeu0; : : : ; Eeun must be
linearly dependent.) This fact is called the Shestakov–Lvov hypothesis.

The authors present a sketch of proof of the Shirshov height theorem, which says
that a normal basis of an associative affine PI-algebra A contains only piecewise
periodic words whose number of periodic parts is less than h.A/, and the length of
each period is � m, where m is the minimal degree of a polynomial identity. More
details can be found in [6] (Section 2.2), [1], [5].
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Lemma 3 ([6], Section 2.1). If W has no n pairwise lexicographically comparable
subwords, then W contains the k-th power of a word v of order � n and k �
.jW j � 2n/=jvj.

The proof also uses the following facts.

� Any polynomial identity implies a multilinear identity of the same degree.
� If V D v1 : : : vm and v1 	 � � � 	 vs then for any � 2 Sm n Id,

V� D v�.1/ : : : v�.s/ � V D VId

and V is a linear combination of smaller words.
� If W D s1ws2 : : : wsmC1 and w has m pairwise lexicographically comparable

subwords, then W D W0v1 : : : vm and v1 	 � � � 	 vs for some v1; : : : ; vs .
� If W is long enough, then some subword w such that jwj � m2, repeats m times

and if w has not m pairwise incomparable subwords, we can use Lemma 3.

The general fact is the following: a normal basis of an associative affine PI-
algebra A contains only piecewise periodic words, the number of periodic parts is
less than h.A/, and the length of each period is at most the maximal dimension of a
matrix algebra satisfying all identities of A (Amitsur–Shestakov hypothesis).

The proof of the theorem about the coincidence of the nilradical and the Jacobson
radical in a monomial algebra is also based on the arguments of the same type applied
to super-words.

In this paper we focus on the investigation of places when one period switches to
another.

2.3. Period switching. Lemma 1 implies the following two technical statements
that are needed in sequel.

Lemma 4. Let u and v be two different non-cyclic words, let k and l be such that
kjuj > jvjC juj, l jvj > jujC jvj, r D unvm, n > k, m > l . Then r has no common
subwords with u1 of length � njuj C juj C jvj � 1 D .nC 1/juj C jvj � 1 and no
common subwords with v1 of length � .mC 1/jvj C juj � 1.

Proposition 4. Suppose that u, v are not powers of the same word, l jvj > 2juj and
sjuj > 2jvj. Then vlus is not a subword of u1 or v1.

Now we are going to prove an important fact on the non-cyclicity of period
switching.

Proposition 5. Suppose that u, v are not powers of the same word, l jvj � 2juj and
sjuj � 2jvj. Then vlus is not a proper power (i.e., it is not cyclical).
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Proof. Without loss of generality we may suppose that both u and v are non-cyclic.
Suppose that k > 1 and zk D vlus for some non-cyclic word z. Without loss of
generality we can assume that jvl j � jusj. Since sjuj � 2jvj, we have l � 3 or l D 2

and jvl j D jusj.
If k � 4, then vl contains z2, hence jvl j � jz2j. On the other hand, vl is subword

of z1. If jvj � jzj then jz2j � jvj C jzj. Due to Lemma 1, v is a power of z and
hence v D z (both z, v are non-cyclic). If jvj > jzj then jvl j � jv2j > jvj C jzj and
we are also done.

If k D 2 then z is a subword of vl ; us is a subword of z and hence us is a subword
of vl . We also have z D z1us for some z1. Since jusj � 2jvj, we have jz2j > jzjCjvj
and due to Lemma 1 we have u1 D z1 and hence u D z because u is the end of z

and both words are non-cyclic. We are also done in this case.
If k D 3 and l � 3 we have jvj � jzj=2. If k D 3 and l D 2 then jvl j D jusj.

So we also have jvj � jzj=2. In any case jvl j � jvj C jzj. By Lemma 1 we have
that v1 D z1 and hence v D z since both words are non-cyclic. In this case the
proposition follows easily.

Remark. It would be interesting to obtain exact conditions for Proposition 5.

Lemma 5. Let k and l be such that kjuj > jvj C juj, l jvj > juj C jvj, r D unvm,
n > k, m > l . Then r is not a subword of W 0 D v1=2u1=2 and hence of vpuq for
all p, q.

Proof. If r is a subword of W 0 then either un (i.e., the left part of r) is a subword of
v1 or vm (i.e., the right part of r) is a subword of u1. Both cases are excluded by
Proposition 4.

Proposition 6 (Period switching). Consider a super-word W D u1=2v1=2, where
u ¤ v are different noncyclic words. Let S D ukvl and suppose that juk�1j > 2jvj,
jvk�1j > 2juj, k; l � 2. Then S has just one occurrence in W , which is the obvious
one (which we call the “standard occurrence”).

Proof. Suppose the contrary. Then the extra occurrence of S is either to the left of
the standard occurrence, or to the right. Without loss of generality it is enough to
consider the former case.

Then, by Proposition 2, W is shifted with respect to the standard occurrence by a
distance divisible by juj. Hence we have: usW D WR, i.e., usW starts with W . We
can apply Proposition 3 and so we get that u1=2 starts with W . Then from combining
Lemma 1 and Proposition 2 we get that v is cyclically conjugate to u, and juj D jvj.

However in that case W D ukvl is a subword of u1. This implies that the relative
shifts of u and v are divisible by juj D jvj, and hence u D v. The statement is proved.

This result together with Lemmas 4 and 5 implies:
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Corollary 1. Let R D r1 D .unvm/1, n > k, m > l . All the occurrences of S in
R are separated by distances divisible by jr j D njuj Cmjvj.

Proof. First of all, as in Proposition 6, one can define the notion of a standard occur-
rence of S in R. Consider an occurrence NS of S in R. Then only the following cases
are logically possible:

(1) NS naturally corresponds to an occurrence of S in W (i.e., a power of v in NS starts
with a power of v in W and, similarly, a power of u in NS ends with a power of
u in W ).

(2) NS contains completely either un or vm.
(3) NS lies on the position of period switching from vm to um.

The second possibility is excluded by Lemma 4, and the third one by Lemma 5.
By Proposition 6 the first possibility corresponds only to standard occurrences, and
they are separated by distances divisible by jr j D junvmj D njuj Cmjvj.

Note that r and t are cyclically conjugate if and only if r1 D t1. Using this
observation and the previous corollary we get a proposition needed in the sequel.

Proposition 7. Let u, v be different non-cyclic words such that junj > 2jvj and
jvnj > 2juj. For all ki ; li � n, if .k1; l1/ ¤ .k2; l2/, then uk1vl1 and uk2vl2 are not
cyclically conjugate. (In particular, all of them are different).

Proof. Suppose that r D uk1vl1 and t D uk2vl2 are cyclically conjugate. Then
r1 D t1 and jr j D jt j D � D k1juj C l1jvj D k2juj C l2jvj since r , t are
not cyclical. Let us denote R D .uk2vl2/1. Put S D ukvl and suppose that
juk�1j > 2jvj, jvk�1j > 2juj, k; l � 2 and also k � min k1; k2, l � min.l1; l2/. It
is clear that such S exists and is a subword of both r and t .

Next, by Corollary 1, all occurrences of S in W are shifted by a distance divisible
by �, the period of R. This means that any occurrence of S can be extended to an
occurrence of r as well as to an occurrence of t . Hence there exist the occurrences
of r D un1Svm1 and t D un2Svm2 in W with common part S , intersection ı D
umin.n1;n2/Svmin.m1;m2/ and union ! D umax.n1;n2/Svmax.m1;m2/.

If r ¤ t , then n1 ¤ n2 since jsj D jt j. Without loss of generality we can assume
that n1 < n2. In this case m1 > m2 and the word t is shifted to the left from the
word r by the distance d D jun1 j � jun2 j D jvn2 j � jvm1 j.

Consider a union ! of r and t . Then ! D er D f t , jej D jf j D d . Observe
that r2 is a subword of t1 D W and that an occurrence of vm1 (which is the end
of r) precedes an occurrence of r . Since jvm2 j > d one has e D vm2�m1 . Similarly,
f D un1�n2 .

On the other hand ! can be also obtained by extending the subword S of W to
the left by the distance jvmax.m1;m2/j and to the right by the distance jumax.n1;n2/j, and
! D umax.n1;n2/vmax.m1;m2/ D un1�n2r D tvm2�m1 .
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Hence un1�n2 D vm2�m1 , n1 ¤ n2, m1 ¤ m2. It follows that u, v are powers of
the same word s. Therefore u ¤ v, one of these powers is greater than 1 and both u

and v cannot be non-cyclic words. But this contradicts their initial choice.

3. Regular words and Lie brackets

We shall extend the partial order � by defining the following B-relation (“Uf-
narovsky order”): f B g if for any two right super-words W1, W2, such that
W2.a; b/ 	 W1.a; b/ whenever b 	 a, the inequality W2.g; f / 	 W1.g; f /

holds. This condition is well defined and equivalent to the following: f B g iff
f 1=2 	 g1=2 (i.e., f m 	 gn for some m and n). It is clear that if f 	 g, then
f B g.

The relation B is a linear ordering on the following set of equivalence classes:
f 
 g if f D sl , g D sk for some s.

Observe that every finite word u yields the right super-word u1. Two equivalent
words correspond to the same super-words. The relation B corresponds to the relation
	 on the set of super-words.

A word u is called regular if one of the following equivalent conditions (see [6]
(Section 2.3), [14]) are satisfied:

a) u is greater than all its cyclic conjugates: if u1u2 D u, then u 	 u2u1.
b) If u1u2 D u, then u B u2.
c) If u1u2 D u, then u1 B u.
A word u is called semi-regular in the following case: If u D u1u2, then either

u 	 u2 or u2 is a beginning of u. (An equivalent definition can be obtained if
the relation C is replaced by the relation E in the definition of a regular word ([6],
Section 2.3). Every semi-regular word is a power of a regular one.

Remark. Let U.a; b/ E V.a; b/, u E v be some words in the alphabet a � b. Then
U.u; v/ E V.u; v/ and U.v; u/ D V.v; u/ ([14], p. 106). Let u1 E u2 be regular
words, then the word u1u2 is also regular; see [14], p. 106.

Let u be a regular word. Then u D u1u2 for some regular word u2 ¤ u of
maximum length. This fact, together with the previous remark, implies the following
statement.

Proposition 8. Let u B v be regular words. Let a 	 b and let w be a regular word.
Then w.u; v/ is also a regular wold.

It is well known that every regular word u defines the unique bracket arrangement
Œu� such that after lifting of all Lie brackets u will be the highest term in this expression
and Œu� D ŒŒu1�; Œu2��. Moreover, the monomials of such type form a basis in the free
Lie algebra (so-called Lyndon–Shirshov basis) (see [2], [14]).
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An arbitrary word W can be uniquely presented in the form W D W1 : : : Ws ,
where the words Wi are regular and W1 E � � � E Ws . This fact corresponds to the
Poincaré–Birkhof–Witt theorem.

The fact that any sufficiently large word written in a finite alphabet has a subword
of form uvu with regular u, v implies that a Lie algebra generated by sandwiches is
locally nilpotent. (A non-zero element u 2 L is called a sandwich in the Lie algebra
L if ad.u/ ad.v/ ad.u/ D 0 for any v 2 L.)

The positive solution of the restricted Burnside problem in the case of Lie algebras
has the following two stages: first to show the existence of a sandwich and then to
prove the local nilpotency of the sandwich algebra [14], [6] (Section 2.3.3). This is the
result ofA. I. Kostrikin and E. I. Zelmanov [9]. Another proof via super-words pointed
out here was obtained by J. Backeline and independently byA. D. Chanyshev [7]. The
positive solution of the so-called weak Burnside problem (existence of a universal
k-generated finite group with identity xn D e for every n and k) was obtained by
E. I. Zelmanov, based on the solution of the restricted Burnside problem for Lie
algebras and the classification of finite simple groups.

We shall need some technical statements in sequel.

Lemma 6 ([6], Section 2.1). Suppose that jukj � jv2j and uk is a subword of v1.
Then there exists a word S 0 which is cyclically conjugate to S such that u D .S 0/m

and v D .S2/n. If, moreover, the initial symbols of u and v are at a distance divisible
by jS j in v1, then S D S 0:

Corollary 2. Let u B v be semi-regular words. Then, for sufficiently large k and l ,
the words ukvl are regular and

uk1vl1 B uk2vl2

for k1 > k2.

Proof. Let ı be a cyclic conjugate of ukvl . It is clear that ı D ukvl . We only need
to prove that ı ¤ ukvl . In order to do this, we need only to show that ukvl is not a
cyclic word, but this follows from Proposition 5.

The next lemma follows from Lemma 6 and Corollary 2.

Lemma 7. Let ki > jd j, li > juj for i D 1; 2. Then uk1d l1 and uk2d l2 are not
cyclically conjugate, provided that u B d and u, d are not conjugate to proper
powers of the same word.

4. Regular words in automata algebras

Let ˆhx1; : : : ; xsi denote a free associative ˆ-algebra with generators x1; : : : ; xs .
Let Aha1; : : : ; asi be an arbitrary ˆ-algebra with a fixed set of generators a1; : : : ; as .
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A word or a monomial in the set of generators M is an arbitrary product of elements in
M. The set of all words constitutes a semigroup, which will be denoted by WdhMi.
The order a1 � � � � � as generates the lexicographic order on the set of words:
the greater of two words is the one whose first letter is greater; if the first symbols
coincide, then the second letters are compared, next the third letters and so on. Two
words are incomparable if one of them is an initial of the other.

By a word in an algebra we understand a non-zero word in its generators faig. We
cannot speak about the value of a super-word in an algebra, but we can speak about
its equality or nonequality to zero (and, in some cases, about linear dependence). A
super-word W is called a zero super-word if it has a finite zero subword, and it is
called a non-zero super-word if it has no finite zero subwords.

An algebra A is called monomial if it has defining relations of type c D 0, where
c is a word in a1; : : : ; as . Obviously, a monomial algebra is a semigroup algebra (it
coincides with the semigroup algebra over the semigroup of its words).

4.1. Automata algebras. The notion of automata algebra was introduced by Uf-
narovsky [13]. First we recall some well-known definitions from [6], Chapter 5.
Suppose we have an alphabet (i.e., a finite set) X . By a finite automaton (FA) with
the alphabet X of input symbols we shall understand an oriented graph G whose
edges are marked by the letters from X . One of the vertices of this graph is marked
as initial, and some vertices are marked as final. A word w in the alphabet X is called
accepted by a finite automaton if there exists a path in the graph, which begins at the
initial vertex and finishes in some final vertex such that marks on the path edges in
the order of passage constitute the word w.

By a language in the alphabet X we understand some subset in the set of all words
in X . A language L is called regular or automata if there exists a finite automaton
that accepts all words from L and only them.

An automaton is called deterministic if all edges which start from one vertex are
marked by different letters. If we reject such restriction, then we shall come to the
notion of a non-deterministic finite automaton. Also we can allow an automaton to
have several initial vertices. The following result from the theory of finite automata
is well known ([6] (chapter 5), [14]): For each non-deterministic FA there exists a
deterministic FA, which accepts the same set of words (i.e., the same language).

Remark. The standard definition of a deterministic finite automaton [11] requires
that for each pair of state and input symbol there is one and only one transition to a
next state. Our notion is designed for combinatorial ring theory and slightly differs
from the standard one.

It will be convenient for us to consider the class of FA such that all vertices are
initial and final simultaneously. The reason is that the language of non-zero words in
a monomial algebra has the following property: every subword of a word belonging
to the language belongs to it as well.
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Remark. Note that the pair of two different words in a deterministic FA generat-
ing a monomial algebra A corresponding to two circles with common initial vertex
generates a free associative subalgebra of A.

Suppose throughout that G is the graph of a deterministic FA, v is a vertex of G,
and w is a word. If the corresponding path C starting from v exists in G, then one
can define the vertex vw which will be a terminal vertex for C .

Let A be a monomial algebra (not necessary finitely defined). A is called an
automata algebra if the set of all of its non-zero words in generators of A is a regular
language. It is more convenient to use equivalent definition: a monomial algebra
is an automata algebra if the set of its non-zero words is the set of all subwords of
words of some regular language.

It is known that every automata algebra can be given by a certain deterministic
graph, and that every finitely defined monomial algebra is automata ([6], Proposi-
tion 5.4, [14]).

The Hilbert series for an automata algebra is rational ([6], Proposition 5.9). An
automata algebra has exponential growth if and only if G has two cycles C1 and
C2 with common vertex v such that the corresponding words w1, w2 (we read them
starting from v) are not powers of the same word. In this case the words w1 and w2

generate a free 2-generated associative algebra [13]. If there are no such cycles, A

has a polynomial growth. No intermediate growth is possible.
We recall the Theorem 2 which is the aim of this section:

Theorem 2. Let A D ha1; : : : ; ani be an automata algebra of exponential growth.
Then the Lie algebra A� contains a free 2-generator subalgebra.

Definition 1. We continue to assume that G is the graph of a deterministic FA. Call
a semiregular word u well-based if it is written on a certain cycle C with an initial
vertex v, i.e., vu D v. Two semi-regular words u1 and u2 are pairwise well-based
if u1 and u2 are written on cycles C1 and C2 with a common initial vertex v and
vC1 D vC2 D v. In this case, for any word W.a; b/ the word W.u1; u2/ ¤ 0 in A;
in particular u

k1

1 u
k2

2 ¤ 0.

Main Lemma. The graph G contains two regular pairwise well-based words u ¤ v.

Deduction of Theorem 2 from the Main Lemma. We may always assume that the reg-
ular pairwise well-based words u and v satisfy the condition u B v. Let a 	 b and
let w be a regular word. Then, by the Proposition 8, w.u; v/ also is a regular wold.

For every regular word u we can choose a unique presentation u D u1u2 with
regular u1 and regular u2 of maximal length. In this case Œu� D ŒŒu1�; Œu2�� (see [14]).
Therefore, by iterating this process, w.u; v/ can be obtained by setting Œu� 7! a,
Œv� 7! b to the word with brackets Œw�.
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Since u and v are well-based, for every word R.a; b/, one has R.u; v/ ¤ 0.
Let Œu�, Œv� be the results of the regular arrangement of the brackets for u and v,
respectively. Then Œu� ¤ 0, Œv� ¤ 0.

Thus we have constructed a one-to-one correspondence between the Lyndon–
Shirshov basis of a Lie algebra generated by Œu�, Œv� and the Lyndon–Shirshov basis
of a free 2-generated Lie algebra with generators a, b. The theorem follows.

4.2. Proof of the Main Lemma. Corollary 2 implies the following:

Proposition 9. Suppose that the graph G contains two ordered (in the sense of the
operation B) semi-regular pairwise well-based words. Then G contains also two
regular pairwise well-based words.

It is sufficient to find two ordered semi-regular pairwise well-based words, i.e.,
with common final and initial vertices. For that it is enough to prove the existence of
a sufficiently large number of well-based ordered semi-regular words. In this case,
infinitely many of them will have a common initial vertex, hence pairwise well-based,
and the main Lemma follows.

Lemma 8. Let u1 be a well-based word and let u2 be a cyclically conjugate word.
Then u2 is also well-based.

Proof. Suppose that u1 D w1w2, u2 D w2w1 and v is a base vertex of u1. Then
v0 D vw1 is a base vertex of u2. Indeed, v0u2 D vw1.w2w1/ D v.w1w2/w1 D
vw1 D v0.

Corollary 3. If u is well-based, then semi-regular word conjugate to u is also well-
based.

Now we shall finish the proof of the Main Lemma. Let u and d be ordered pairwise
well-based words (necessarily not semi-regular). Then, for every w.a; b/, the word
w.u; d/ is non-zero. In particular, ukd l are non-zero for all k, l . It is non-cyclic if
u and v are not powers of the same word due to Proposition 5 and ukd l ¤ uk0

d l 0

for .k; l/ ¤ .k0; l 0/ due to Proposition 7, provided that k and l are sufficiently large.
Now Lemma 7, together with the fact that every non-cyclic word uniquely corre-

sponds to a cyclically conjugated regular word, implies that there are infinitely many
well-based words. Infinitely many of them will have the same initial vertex and so
will be pairwise well-based; hence the Main Lemma follows.

5. Group-theoretical applications

This section is devoted to the proof of the Theorem 3. Let id.S/ denote the ideal
generated by the set S .
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Lemma 9. Suppose that a and b are homogeneous elements of a graded associative
algebra A such that the subalgebra generated by a, b is a free associative algebra
with free generators a, b. Let a0 (resp. b0) be a linear combination of elements in A

with degrees strictly greater than the degree of a (resp. b). Let Qa D aCa0, Qb D bCb0.
Then the algebra generated by Qa, Qb is a free associative with generators Qa, Qb.

The Lemma follows from the fact that for every polynomial h.u; v/ with non-zero
minimal component h0.u; v/, the minimal component of h. Qa; Qb/ is h0.a; b/ ¤ 0.

We call an algebra homogeneous if all its defining relations are homogeneous with
respect to the set of generators. Let A be a homogeneous algebra, and J be an ideal
of A generated by elements of degree � 1. We call such algebra good if A=J � k

and
T

n J n D 0. Every monomial algebra is good. For any x 2 A, the image of
x in A=J n is not zero for some n, so A can be embedded into the projective limit
lim �A=J n.

Lemma 10. Let B be a good homogeneous algebra with unit such that 1 C a and
1C b are invertible, a; b 2 J , and the elements a and b are free generators of a free
associative subalgebra C of B . Then the group generated by 1Ca and 1C b is free.

Remark. Note that the pair of two different pairwise well-based words in a monomial
algebra generates a free associative subalgebra (see Remark on p. 25).

Proof. Consider subalgebra C of algebra B generated by a, b and isomorphism
� W C ! khx; yi such that �.a/ D x, �.b/ D y.

Suppose that W.1 C a; 1 C b/ D 1 for some non-trivial word W.x; y/ ¤ 1 in
a free group. Consider free algebra khx; yi and its localization by 1 C x, 1 C y.
Then W.1C x; 1C y/ ¤ 1, and, for some n0 D n0.W /, W.1C Nx; 1C Ny/ ¤ 1 in
�n.khx; yi/ D khx; yi=id.x; y/n for all n � n0. In each such image, the elements
1C x and 1C y are invertible, so there is no need for localization.

On the other hand, since B is good homogeneous, the image of J m \ C under
isomorphism � lies in id.x; y/n0 , and

1 D �n0
.�.W.1C a; 1C b/// D W.1C Nx; 1C Ny/ ¤ 1:

We get a contradiction.

Let u and v be two pairwise well based regular words. They have canonical Lie
bracket arrangement. Let Œu� and Œv� be corresponding Lie elements (obtained via
lifting of Lie brackets). Notice that

Œu� D uC lexicographically smaller terms;

Œv� D v C lexicographically smaller terms:

We have following result.
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Corollary 4. Let u and v be two pairwise well based regular words, and let Œu� and
Œv� be the corresponding Lie elements (obtained via opening Lie brackets). Then Œu�,
Œv� generate as free generators a 2-generated free associative algebra (and also a
free Lie algebra via commutator operation).

For n � 1, consider the monomial algebra AnC2 with generators x1; : : : ; xnC2

(see Introduction). We adjoin the unit A0
nC2 D AnC2 [ f1g. Recall that x2

i D 0, so
the elements Nxi ´ 1C xi have inverses Nx�1

i ´ 1 � xi . Consider the group A#
nC2

generated by elements 1 C xi . Consider generators of a free subalgebra in the Lie
algebra A�

nC2 which correspond to regular words and configuration of brackets on
these words.

Consider the commutator of group elements

Œ Nxi ; Nxj � D Nxi Nxj Nx�1
i Nx�1

j

D .1C xi /.1C xj /.1C xi /
�1.1C xj /�1

D 1C Œxi ; xj �C higher terms:

Similarly, the longer commutators in group elements are expressed via the Lie com-
mutators

Œ Nxi1 ; : : : ; Nxim � D 1C Œxi1 ; : : : ; xim �C higher terms:

Let u, v be the two regular words as above. By the process above we construct
the corresponding group elements from A#: Nu D 1 C Œu� C higher terms, Nv D
1C Œv�C higher terms. Then, by Lemmas 9, 10 and Corollary 4, Nv and Nu generate a
free subgroup in A#.

Consider a commutator of length k in the generators of A#,

Œ Nxi1 ; : : : ; Nxik � D 1C Œxi1 ; : : : ; xik �C higher terms;

such that among Nxi1 ; : : : ; Nxik less than k are different. Then all monomials on the
right-hand side are of length at least k and contain less than k letters, thus they
are trivial in our monomial algebra and Œ Nxi1 ; : : : ; Nxik � D 1. This means that all
commutators of length k in A#

nC2 which consist of fewer than k different symbols
from f Nx1; : : : ; NxnC2g are trivial.

The group with the relations as in Theorem 3 can only be mapped onto our group,
hence it contains a free subgroup as well, and Theorem 3 follows.
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