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Anosov diffeomorphisms on infra-nilmanifolds modeled
on a free 2-step nilpotent Lie group
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Abstract. In this article we study the existence question of Anosov diffeomorphisms on an
infra-nilmanifold. After establishing a general existence criterion in terms of the associated
holonomy representation, we concentrate on infra-nilmanifolds for which the covering Lie
group is a free nilpotent Lie group. In turns out that in this case the criterion obtained before
can be reduced drastically. Finally, we completely solve the existence question in case the
covering Lie group is free 2-step nilpotent and the holonomy group is abelian.
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1. Introduction

In this article we will study Anosov diffeomorphisms f on a closed manifold M .
These Anosov diffeomorphisms have the property that there exists a continuous split-
ting of the tangent bundle TM D Es ˚ Eu of M such that df is contracting on Es

and expanding on Eu. In this way the tangent bundle splits into a stable part Es and
an unstable part Eu (see Definition 2.2 for a detailed definition).

Up till now, the only known examples of closed manifolds admitting an Anosov
diffeomorphism are infra-nilmanifolds. Actually, it has been conjectured that this is
the only class of manifolds in which one can expect to find Anosov diffeomorphisms.

It is well known (and rather easy to prove) that any torus of dimension at least
two admits an Anosov diffeomorphism. There is also a very good description, due
to Porteous [15], of which compact flat manifolds (these are the manifolds which are
finitely covered by a torus) allow an Anosov diffeomorphism (see Theorem 5.1).

The situation for general nilmanifolds is much more difficult and the dimension
alone does not provide any information on the existence question of an Anosov dif-
feomorphism. In fact, for any integer n � 3 one can easily give an example of a
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nilmanifold M of dimension n not admitting an Anosov diffeomorphism. Actually
the requirement that a nilmanifold admits an Anosov diffeomorphism, seems to im-
pose rather strong conditions on the nilmanifold. We refer the reader to [1], [2],
[4], [6], [7], [8], [12], [13], [14] for some results about Anosov diffeomorphisms on
nilmanifolds. The knowledge about Anosov diffeomorphisms on infra-nilmanifolds
(manifolds which are finitely covered by nilmanifolds) is, except for the case of com-
pact flat manifolds, almost non-existing. In this article we intend to present a first
approach to the existence problem of Anosov diffeomorphisms on infra-nilmanifolds.

The class of infra-nilmanifolds we are going to study is the class of infra-nilmani-
folds which are said to be modeled on a free nilpotent Lie group (see Section 5 for
the definition). This is a natural class of manifolds to study, because it is known
that the nilmanifolds which are finite covers of those infra-nilmanifolds do admit an
Anosov diffeomorphism, provided that the dimension (or even better the number of
generators of the corresponding free nilpotent Lie algebra) is big enough. This shows
that the situation we are dealing with is as close as possible to the case of compact
flat manifolds (and their finite covers, the tori).

The result of Porteous [15] on Anosov diffeomorphisms of flat manifolds men-
tioned above, gives a necessary and sufficient condition for the existence of anAnosov
diffeomorphism in terms of the rational holonomy representation associated to such
a flat manifold M . This holonomy representation is completely determined by the
fundamental group �1.M/, which fits in a short exact sequence

1 ! Zn ! �1.M/ ! F ! 1

where Zn is a maximal abelian normal subgroup of �1.M/ and F is finite, and
where the holonomy representation ' W F ! Aut.Zn/ � Aut.Qn/ is induced by
conjugation in �1.M/.

In the third section of this article we show how this notion of a rational holonomy
representation of a flat manifold can be generalized to the case of infra-nilmanifolds,
where we obtain a representation ' W F ! Aut.nQ/ of a finite group F into the
automorphism group of a Lie algebra nQ over the rationals. This representation
then induces what we call the abelianized rational holonomy representation
x' W F ! Aut

� nQ
ŒnQ;nQ�

�
.

In this article, we study the existence question of Anosov diffeomorphisms in
terms of this (abelianized) rational holonomy representation. We remark that also for
an infra-nilmanifoldM , this associated abelianized rational holonomy representation
is completely determined by the fundamental group �1.M/.

First we deal with the general case of all infra-nilmanifolds and obtain the fol-
lowing criterium for the existence of Anosov diffeomorphisms:

Theorem A. Let M be an infra-nilmanifold with associated rational holonomy rep-
resentation ' W F ! Aut.NQ/. Then M admits an Anosov diffeomorphism if and
only if there exists a hyperbolic automorphism (i.e., having no eigenvalues of mod-



Anosov diffeomorphisms on infra-nilmanifolds 557

ulus 1)  2 Aut.nQ/ with a normalized integer characteristic polynomial such that
 commutes with any element of '.F /.

By a normalized integer polynomial f .X/ 2 QŒX�, we mean a polynomial with
integer coefficients and unit constant term (i.e., ˙1).

Thereafter, we specialise to the class of infra-nilmanifolds modeled on a free
nilpotent Lie group, where we are able to translate the previous result to a condition
involving only the abelianized rational holonomy representation of such a manifold
and we prove the following:

Theorem B. Let M be an infra-nilmanifold modeled on a free c-step nilpotent Lie
group and with abelianized rational holonomy representation x' W F ! Aut

� nQ
ŒnQ;nQ�

�
.

ThenM admits an Anosov diffeomorphism if and only if there exists an automorphism
x 2 Aut

� nQ
ŒnQ;nQ�

�
such that

(1) x has a normalized integer characteristic polynomial,

(2) x commutes with any element of x'.F / and

(3) if we denote the eigenvalues of x by �1; �2; : : : ; �n, then

j�j1
�j2

: : : �jk
j ¤ 1

for all k 2 f1; 2; : : : ; cg and all j1; j2; : : : ; jk 2 f1; 2; : : : ; ng.

It turns out that, as we restrict our attention to the case of infra-nilmanifolds
modeled on a free 2-step nilpotent Lie group and with abelian holonomy group, we
can reduce these conditions even more into a result which is very similar to the one
Porteous obtained for compact flat manifolds:

Theorem C. Let M be an infra-nilmanifold modeled on a free 2-step nilpotent Lie
group, with abelian holonomy groupF and associated abelianized rational holonomy
representation x' W F ! Aut

� NQ
ŒNQ;NQ�

�
. Then M admits an Anosov diffeomorphism

if and only if

(1) each Q-irreducible component x'i of x' of multiplicity one splits in at least three
components when seen as a representation over R, and

(2) each Q-irreducible component x'i of x' of multiplicity two splits in more then
one component when seen as a representation over R.

As a conclusion of this article we formulate a conjecture, which is supported by
the work in this article and also by some other experiments, which can really be seen
as a very natural generalization of Porteous’s result:

Conjecture. Let M be an infra-nilmanifold modeled on a free c-step nilpotent Lie
group, with holonomy group F and associated abelianized rational holonomy rep-
resentation x' W F ! Aut

� NQ
ŒNQ;NQ�

�
. Then M admits an Anosov diffeomorphism if



558 K. Dekimpe and K. Verheyen

and only if each Q-irreducible component x'i of x' of multiplicitym splits in at least
c C 2 �m components when seen as a representation over R.

2. Infra-nilmanifolds and Anosov diffeomorphisms

Before we can start a detailed study ofAnosov diffeomorphisms on infra-nilmanifolds,
we recall some basic material on those infra-nilmanifolds and their fundamental
groups. We refer the reader to [3] and [11] and the references therein for more
details.

Let L be a connected and simply connected nilpotent Lie group and denote the
group of continuous automorphisms of L by Aut.L/. Then we can form the semi-
direct product group L Ì Aut.L/, which we will denote by Aff.L/ and which acts
on L via

.m; ˛/ � n D m˛.n/

for allm; n 2 L and all˛ 2 Aut.L/. Fix a compact subgroupC of Aut.L/. A uniform
and discrete subgroup E of L Ì C is called an almost-crystallographic group. Such
an almost-crystallographic group E acts properly discontinuously on L. In case E
is also torsion-free such a group is said to be an almost-Bieberbach group and then
EnL is an infra-nilmanifold with fundamental group E.

If for an almost-Bieberbach group we have that E � L, then the quotient space
EnL is a nilmanifold. In general, for any almost-crystallographic group E one has
that N D E \ L is a normal (even characteristic) subgroup of E which is of finite
index inE. Moreover, the groupN will be a uniform lattice ofL andN is a maximal
nilpotent subgroup of E. (In fact it is the unique normal and maximal nilpotent
subgroup of E). So any almost-crystallographic group E gives rise to a short exact
sequence

1 ! N ! E ! F ! 1 (1)

in which F is a finite group and N is a finitely generated torsion-free nilpotent
group which is maximal nilpotent in E. We will refer to such a short exact sequence
(satisfying the conditions onF andN just mentioned) as being an essential extension.
The group F will be called the holonomy group of the almost-crystallographic group
(and in case the group is an almost-Bieberbach group, we also talk about the holonomy
group of the infra-nilmanifold).

Conversely, any groupE fitting in an essential extension (1) can be realized as an
almost–crystallographic group. The connected and simply connected nilpotent Lie
group L needed for this realization is uniquely determined and is in fact the Mal’cev
completion ofN (i.e., the unique connected and simply connected nilpotent Lie group
L containing N as a uniform lattice). In the sequel, we will also use NR to denote
this Mal’cev completion of N .

In fact, the realization of an abstract group E fitting in an essential extension has
some strong uniqueness properties. This follows immediately from the following
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theorem of K. B. Lee and F. Raymond [11]:

Theorem 2.1. LetL be a connected and simply connected nilpotent Lie group and let
E;E 0 � Aff.L/ be two almost-crystallographic groups. Then for any isomorphism
˛ W E ! E 0 there exists an .l; '/ 2 Aff.L/ such that

˛.e/ D .l; '/e.l; '/�1:

We remark that this theorem has been generalized to morphisms ˛ (not necessarily
isomorphism) by K. B. Lee in [10], Theorem 1.1.

Let E � Aff.L/ be an almost-Bieberbach group. If .l; '/ 2 Aff.L/ is such that
.l; '/E.l; '/�1 D E, then the map

f W L ! L; x 7! l'.x/;

induces a diffeomorphism onEnL, which is referred to as an affine diffeomorphism of
the infra-nilmanifold EnL. Moreover, the induced isomorphism on the fundamental
group is exactly the map ˛ W E ! E, e 7! .l; '/e.l; '/�1. It follows that any home-
omorphism of EnL is homotopic to a map induced from an affine diffeomorphism.

An automorphism ' 2 Aut.L/ is said to be hyperbolic if its differential d' 2
Aut.l/, where l is the Lie algebra corresponding toL, is a hyperbolic linear map (i.e.,
has no eigenvalues of modulus 1). An affine diffeomorphism of an infra-nilmanifold
EnL is said to be a hyperbolic infra-nilmanifold automorphism if it is induced by
an element .l; '/, where ' is a hyperbolic automorphism of L.

Hyperbolic infra-nilmanifold automorphisms play a crucial role in the study of
Anosov diffeomorphisms.

Definition 2.2. A C 1-diffeomorphism f W M ! M on a closed smooth manifold
M is said to be an Anosov diffeomorphism if there exists a continuous splitting
TM D Es ˚ Eu of the tangent bundle of M such that this splitting is df -invariant
and such that there exist a Riemannian metric k � k on TM and real constants c > 0

and 0 < � < 1 with

kdf n.v/k � c�nkvk for v 2 Es and kdf n.v/k � c��nkvk for v 2 Eu;

for all positive integers n.

It is known that any hyperbolic infra-nilmanifold automorphism is an Anosov
diffeomorphism of the infra-nilmanifold ([6], p. 63). Actually, by a theorem of
A. Manning there is more:

Theorem 2.3 ([14]). Any Anosov diffeomorphism on an infra-nilmanifold is topolog-
ically conjugate to a hyperbolic infra-nilmanifold automorphism.

As a conclusion of this introduction we therefore have

Corollary 2.4. Let M be an infra-nilmanifold. Then M admits an Anosov diffeo-
morphism if and only if M admits a hyperbolic infra-nilmanifold automorphism.
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3. Rational realizations of almost-Bieberbach groups

In the previous section we recalled that any group E fitting in an essential extension
(1) can be realized as a genuine almost-crystallographic subgroup of Aff.NR/, where
NR is the Mal’cev completion of the unique normal and maximal nilpotent subgroup
of E.

Actually, we can somehow strengthen this statement and use the radicable hull (or
rational Mal’cev completion) of N . Let N be any torsion-free and finitely generated
nilpotent group. Then there exists a unique group NQ such that NQ is a torsion-free
nilpotent radicable group containing N as a subgroup and such that any element of
NQ has some positive power lying in N (e.g., see [16], p. 107). In fact, if NR is the
Mal’cev completion ofN and nR is the corresponding Lie algebra (over R), then it is
known that the exponential map exp W nR ! NR is a diffeomorphism. If we denote
the inverse of this map by log, then NQ can be defined as

NQ D exp.Q log.N //:

In fact, if we define nQ D Q log.N / to be the Q-span of log.N /, then nQ is a Lie
algebra over the rationals and exp.nQ/ D NQ.

Suppose that two uniform discrete subgroups N1 and N2 of a given connected
and simply connected nilpotent Lie group are given which are commensurable (i.e.,
their intersection N1 \N2 is of finite index in both N1 and N2), then their radicable
hulls are equal:

exp.Q log.N1// D exp.Q log.N2// D exp.Q log.N1 \N2//:

Conversely, if N1 and N2 are two finitely generated subgroups of NQ with NQ D
exp.Q log.N1// D exp.Q log.N2// then N1 and N2 are commensurable and they
are both uniform discrete subgroups of the connected and simply connected nilpotent
Lie group NR. As a kind of shorthand we introduce the following definition.

Definition 3.1. Let NQ be the radicable hull of a finitely generated torsion-free
nilpotent group N. A subgroup H of NQ is said to be a full subgroup of NQ if H is
finitely generated and NQ is the radicable hull of H (i.e., NQ D exp.Q log.H//).

It follows that N is a full subgroup of NQ and for any other subgroup H of NQ,
we have thatH is a full subgroup ofNQ if and only ifN andH are commensurable.

It is well known that any automorphism ' of N extends uniquely to an automor-
phism Q' of NQ and any automorphism of NQ induces a Lie algebra automorphism
x' of nQ such that

NQ
Q' �� NQ

nQ x'
��

exp

��

nQ

exp

��
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commutes. Conversely, for any automorphism x' of nQ there exists an automorphism
Q' ofNQ making the above diagram commutative. (The same holds when we replace
NQ by NR and consider continuous automorphisms of NR.)

It follows that we can talk about the eigenvalues resp. the characteristic poly-
nomial of an automorphism of N (or NQ) by which we will mean the eigenvalues
resp. characteristic polynomial of the corresponding linear automorphism of nQ (or
equivalently nR).

Using this terminology we can see that any automorphism ofN has a normalized
integer characteristic polynomial. The converse is not true in general, i.e., there exist
automorphisms of NQ having a normalized integer characteristic polynomial, which
do not restrict to an automorphism of N . There is however a partial converse, which
will be sufficient for our purposes:

Theorem 3.2 ([4], Theorem 3.4). LetNQ be the radicable hull of a finitely generated
torsion-free nilpotent group N and let ' 2 Aut.NQ/ be an automorphism with
normalized integer characteristic polynomial. Then there exists a positive integer
k > 0 such that 'k 2 Aut.N /.

Let us again focus on an almost-Bieberbach group E and recall the notion of
a rational realization as developed in [5]. As E is an almost-Bieberbach group it
fits in an essential extension 1 ! N ! E ! F ! 1. Using the fact that any
automorphism of N has a unique lift to an automorphism of NQ it is possible to
construct the following commutative diagram of groups:

1 �� N ��
��

��

E ��
��

i1
��

F �� 1

1 �� NQ �� EQ �� F �� 1.

By using the same ideas of [3], Lemma 3.1.2 (using the radicable hull instead of
the Mal’cev completion), one can prove that the bottom extension splits. So we
can fix a splitting morphism s W F ! EQ and we use ' W F ! Aut.NQ/ to de-
note the induced morphism ('.f /.n/ D s.f /ns.f /�1). We will refer to the map
' as being the rational holonomy representation determined by E. Actually, the
rational holonomy representation of an almost-Bieberbach group E is not uniquely
determined (since the splitting s is not), but any two rational holonomy representations
', '0 W F ! Aut.NQ/ do induce the same maps p B ' D p B '0, where
p W Aut.NQ/ ! Out.NQ/ D Aut.NQ/= Inn.NQ/ is the natural projection:

p B ' D p B '0 W F ! Aut.NQ/
p�! Out.NQ/:

So we have that EQ Š NQ Ì F . Moreover any '.f / can also be viewed as an
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automorphism of NR, and therefore we obtain the extended commutative diagram

1 �� N ��
��

��

E ��
��

i1
��

F �� 1

1 �� NQ �� EQ �� F �� 1

1 �� NQ
��

��

�� EQ Š NQ Ì F ��
��

i2

��

F �� 1

1 �� NR
�� ER Š NR Ì F �� F �� 1.

The composition i D i2 Bi1 W E ! NR ÌF � NR ÌAut.NR/ realizesE as a genuine
almost-Bieberbach group, with the extra properties that for any element e 2 E we
have that i.e/ D .ne; fe/ 2 Aff.NR/, where ne 2 NQ and fe is an automorphism of
NR restricting to an automorphism ofNQ. Indeed the restriction of fe toNQ belongs
to the image of the rational holonomy representation '.F / of F .

Definition 3.3. Let E be an almost-crystallographic group fitting in an essential
extension 1 ! N ! E ! F ! 1. A rational realization of E is an embedding
i W E ! Aff.NR/ factoring through NQ Ì Aut.NQ/ via a map i 0,

E

i 0

�������������
i �� Aff.NR/ D NR Ì Aut.NR/

NQ Ì Aut.NQ/,
��

�����������������

and such that n D i 0.n/ D i.n/ for all n 2 E.

We have just proved:

Lemma 3.4. Any almost-Bieberbach group E admits a rational realization.

It is also possible to sharpen K. B. Lee and F. Raymond’s result with respect to a
rational realization:

Remark 3.5. Let E be an almost-Bieberbach group fitting in an essential extension
1 ! N ! E ! F ! 1 and assume that i W E ! Aff.NR/ is a rational realization of
E. Then for any automorphism˛ 2 Aut.E/ there exists an element .l;  / 2 Aff.NR/

such that

(1) l 2 NQ,
(2)  .NQ/ D NQ,
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(3) ˛.e/ D .l;  /e.l;  /�1 for all e 2 E.

Proof. The proof of this remark can be obtained by adapting the proof of K. B. Lee
and F. Raymond to the case of radicable hulls (instead of using Mal’cev completions).
See [11], Section 2.2 in [3], or [9].

4. Anosov diffeomorphisms on infra-nilmanifolds

In the previous section we have developed the necessary background to state and
prove Theorem A, describing a necessary and sufficient condition which an infra-
nilmanifold has to satisfy in order to admit an Anosov diffeomorphism.

Proof of Theorem A. Without loss of generality we may assume that we have fixed a
rational realization i W E ! Aff.NR/ and thatM is the quotient manifold i.E/nNR.
From now on we identify E with i.E/.

First assume thatM admits anAnosov diffeomorphism f . By a result of Manning
([14], see Theorem 2.3), we know that f is topologically conjugate to a hyperbolic
infra-nilmanifold automorphism determined by some element .l;  / 2 Aff.NR/. By
Remark 3.5, we may assume that  .NQ/ D NQ and l 2 NQ and we have that
.l;  /E.l;  /�1 D E. Now a general element of E can be written in the form
e D .ne; fe/, with ne 2 NQ and fe 2 Aut.NQ/ (for ease of notation we regard
Aut.NQ/ as being a subgroup of Aut.NR/, by identifying any element of Aut.NQ/

with its unique continuous extension to NR). Note that

'.F / D ffe j e 2 Eg:
From .l;  /E.l;  /�1 D E we find that

.l;  /.ne; fe/.l;  /
�1 D .l .ne/;  fe/. 

�1.l�1/;  �1/

D .l .ne/ .fe. 
�1.l�1///;  fe 

�1/ 2 E:
It follows that for any e 2 E, there exists an e0 2 E for which  fe 

�1 D fe0 . This
means that  normalizes '.F /. Since '.F / is a finite subgroup of Aut.NQ/, there
must exist some power of  which centralizes '.F /. So by replacing f (and then
also .l;  /) by some positive power if needed, we may assume that commutes with
any element of '.F /.

Now we consider elements .n; 1/ 2 N . As N is a characteristic subgroup of E,
we must have that

.l;  /.n; 1/.l;  /�1 D .l .n/l�1; 1/ 2 N:
Let �.l/ W NQ ! NQ, n 7! lnl�1. Then the above computation shows that the
composition �.l/ B  2 Aut.N / and hence has a normalized integer characteristic
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polynomial. However, it is not hard to show that  and �.l/ B  have the same
characteristic polynomial, hence we have found a hyperbolic automorphism  2
Aut.NQ/ having a normalized integer characteristic polynomial and such that  
commutes with any element of '.F /.

Conversely, assume that there is a hyperbolic automorphism  2 Aut.NQ/ hav-
ing a normalized integer characteristic polynomial such that  commutes with any
element of '.F /. Then, by applying Theorem 3.2 and by replacing  by a positive
power if needed, we may assume that  .N/ D N . As F D E=N is finite, we can
fix a finite number of elements

.n1; f1/ 2 E; .n2; f2/ 2 E; : : : ; .nk; fk/ 2 E
such that any element e D .ne; fe/ of E can be written as a product

e D .n; 1/.ni ; fi /

for some n 2 NQ and some i 2 f1; 2; : : : ; kg. Let N1 be the subgroup of NQ

generated by N and the elements n1; n2; : : : ; nk . Then N1 will be a full subgroup
of NQ containing N as a subgroup of finite index. It follows that we can choose a
subgroup N2 � N which is normal in N1 and of finite index in N1. As N2 is also a
full subgroup ofNQ, we can apply Theorem 3.2 (first forN1 and then once again for
N2) and conclude, by replacing  by some power if needed, that

 .N/ D N;  .N1/ D N1 and  .N2/ D N2:

It follows that induces an automorphism of the finite groupN1=N2, so some positive
power of  will induce the identity onN1=N2. So again after replacing with some
power of it, we may assume that

for all m 2 N1 there exists nm 2 N2 such that  .m/ D nmm:

We claim that .1;  / induces a hyperbolic infra-nilmanifold automorphism on M .
To check this, we show that .1;  /E.1;  /�1 D E. So take any element e D
.n; 1/.ni ; fi / of E, then

.1;  /.n; 1/.ni ; fi /.1;  /
�1 D . .n/; 1/. .ni /; fi /

D . .n/; 1/.nni
ni ; fi / (with nni

2 N2 � N )

D . .n/; 1//.nni
; 1/.ni ; fi /

D . .n/nni
; 1/.ni ; fi /

D .n0; 1/.ni ; fi / 2 E (with n0 D  .n/nni
2 N ):

This shows that .1;  /E.1;  /�1 � E. In the same way one proves that
.1;  /�1E.1;  / � E, from which we conclude that .1;  /E.1;  /�1 D E.
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5. Infra-nilmanifolds modeled on a free nilpotent Lie group

Let E be an almost-Bieberbach group inducing an essential extension 1 ! N !
E ! F ! 1. Recall that the corresponding infra-nilmanifold M is then obtained
as a quotient space EnNR. We say that M is modeled on the Lie group NR. A
connected and simply connected nilpotent Lie group L is said to be free nilpotent
of class c (with k generators) if and only if the corresponding Lie algebra l is free
nilpotent of class c (with k generators). So Rk is the free nilpotent Lie group of
class 1 on k generators.

The work of Porteous ([15]), completely describes which flat Riemannian mani-
folds do admit an Anosov diffeomorphism and this in terms of the rational holonomy
representation. Let us recall the main result of that paper.

Theorem 5.1 ([15], Theorem 6.1). LetM be a flat manifold with associated Bieber-
bach group E fitting in an essential extension 0 ! Zn ! E ! F ! 1 and with
an induced rational holonomy representation ' W F ! GL.n;Q/ D Aut.Qn/. Then
M admits an Anosov diffeomorphism if and only if each Q-irreducible component of
the representation ' which is of multiplicity one is reducible over R.

The flat Riemannian manifolds are exactly those infra-nilmanifolds which are
modeled on a Lie group Rk , i.e., on a free nilpotent Lie group of class 1. Our aim
is to extend Porteous’ result to infra-nilmanifolds modeled on a free nilpotent Lie
group.

As a first step in this direction we will prove a result in the same spirit as TheoremA,
obtaining a necessary condition which is easier to check then the one in Theorem A.
Thereafter we will be able to adapt this criterium into a necessary and sufficient
condition for the class of infra-nilmanifolds modeled on a free nilpotent Lie group,
too.

In order to be able to formulate this new result let us introduce the following
notion.

Definition 5.2. LetE be an almost-Bieberbach group with associated rational holon-
omy representation ' W F ! Aut.NQ/. The abelianized rational holonomy repre-
sentation is the induced map

x' W F ! Aut
� NQ

ŒNQ;NQ�

�
with x'.nŒNQ; NQ�/ D '.n/ŒNQ; NQ�:

Remark 5.3. (1) NQ
ŒNQ;NQ�

is an abelian group (and a rational vector space) and is

actually isomorphic (log induces a linear isomorphism) to nQ
ŒnQ;nQ�

. So we can equally
well speak about the abelianized rational holonomy representation

x' W F ! Aut
� nQ

ŒnQ;nQ�

�
:
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(2) There is still another way of viewing this abelianized holonomy representation.
Starting from the short exact sequence

1 ! N ! E ! F ! 1;

we have the induced short exact sequence of groups

1 ! N

ŒN;N �
! E

ŒN;N �
! F ! 1;

inducing a representation Q' W F ! Aut
�

N
ŒN;N �

�
by conjugation inside E

ŒN;N �
. Now

we can form the composition

F
Q'�! Aut

�
N

ŒN;N �

� ! Aut
�

N
ŒN;N �

˝ Q
�
:

This composition is another way to represent x' (note that N
ŒN;N �

˝ Q Š NQ
ŒNQ;NQ�

).

As an immediate consequence of Theorem A we find

Proposition 5.4. Let E be an almost-Bieberbach group with abelianized rational
holonomy representation x' W F ! Aut

� NQ
ŒNQ;NQ�

�
. If the infra-nilmanifold M cor-

responding to E admits an Anosov diffeomorphism, then there exists a hyperbolic
x 2 Aut

� NQ
ŒNQ;NQ�

�
commuting with any element of x'.F / and such that x has a

normalized integer characteristic polynomial.

Proof. By Theorem A we know that there exists a hyperbolic 2 Aut.nQ/ commut-
ing with any element of '.F /, where ' is a rational holonomy representation and such
that  has a normalized integer characteristic polynomial. It follows that  induces
an automorphism x of NQ

ŒNQ;NQ�
, which is also hyperbolic and commutes with any

element of x'.F /. Moreover, the characteristic polynomial of x is a polynomial with
rational coefficients and is a factor of the characteristic polynomial of  . It follows
that this characteristic polynomial has integer coefficients and unit constant term as
claimed.

It is easy to see that the converse of the above proposition does not hold. However,
for infra-nilmanifolds modeled on a free nilpotent Lie group, we can adapt the above
proposition and obtain Theorem B, giving us a necessary and sufficient condition
for this type of infra-nilmanifolds to admit an Anosov diffeomorphism. But first we
prove the following lemma.

Lemma 5.5. Let g be a finite dimensional nilpotent Lie algebra over Q. Assume that
' W g ! g is Lie algebra morphism and let x' W g=Œg;g� ! g=Œg;g� be the induced
linear map. Then ' will have a normalized integer characteristic polynomial if and
only if x' has a normalized integer characteristic polynomial.
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Proof. As the characteristic polynomialmx'.x/ is a rational factor of the characteristic
polynomial m'.x/, it follows that mx'.x/ has integer coefficients and unit constant
term when m'.x/ has integer coefficients and unit constant term.

Now assume that x' has a normalized integer characteristic polynomial. Let us
consider the graded Lie algebra ggr which is associated to g. Then

ggr D
cL

iD1

gi with gi D �i .g/=�iC1.g/;

and the Lie bracket on ggr is determined by

ŒX C �iC1.g/; Y C �j C1.g/� D ŒX; Y �C �iCj C1 2 giCj

for all X 2 �i .g/ and all Y 2 �j .g/.
The morphism ' induces an automorphism 'gr of ggr by 'gr.X C �iC1.g// D

'.X/C �iC1.g/ for all X 2 �i .g/. Note that 'gr.gi / D gi and that ' and 'gr have
the same characteristic polynomial.

Hence it is enough to show that the characteristic polynomial of 'gr has integer
coefficients and unit constant term. To prove this, consider the k-fold tensor product
of x':

˝k x' W
kN

g1 !
kN

g1:

If the collection of eigenvalues of x' is �1; �2; : : : ; �n, each listed as many times as
its multiplicity, then the collection of eigenvalues of ˝k' consists of all products of
the form

�i1�i2 : : : �ik ; 1 � i1; i2; : : : ; ik � n:

So the characteristic polynomial of ˝k x' will be
Q

1�i1;i2;:::;ik�n

.x � �i1�i2 � � ��ik /;

which is symmetric in the �ji
and hence will be a normalized integer polynomial.

Let

T .g1/ D
1L

nD0

nN
g1

be the tensor algebra of g1 and let

T .k/.g1/ D
1L

nDk

nN
g1:

From the discussion above, we get that the map that x' induces on the truncated tensor
algebra

Tc.g1/ D T .g1/=T
.cC1/.g1/

has a normalized integer characteristic polynomial. Now the free c-step nilpotent
Lie algebra, say fc.g1/, on g1 is the Lie subalgebra of Tc.g1/ generated (as a Lie
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algebra) by g1. It follows that x' induces a map, say Qx', on fc.g1/whose characteristic
polynomial has integer coefficients and unit constant term.

Moreover, the graded Lie algebra ggr can be obtained as a quotient fc.g1/=I ,
where I is an ideal of fc.g1/ and I is invariant under Qx'. We have that the map that Qx'
induces on the quotient fc.g1/=I has a normalized integer characteristic polynomial.
Since this induced map is exactly the map 'gr, the proof of the lemma is finished.

We are now ready to prove Theorem B.

Proof of Theorem B. AsM is modeled on a free c-step nilpotent Lie group, we know
that the Lie algebra nR and hence also nQ is a free c-step nilpotent Lie algebra.

First assume that M admits an Anosov diffeomorphism. By Theorem A, we
know that there exists a hyperbolic  2 Aut.nQ/ commuting with any element
of '.F / (where ' is a rational holonomy representation) and such that  has a
normalized integer characteristic polynomial. As already explained in the proof of
Proposition 5.4, we obtain that x commutes with any element of x'.F / and also has
a normalized integer characteristic polynomial. If we denote the eigenvalues of x by
�1; �2; : : : ; �n, then the eigenvalues of  are exactly the numbers of the form

�j1
�j2

: : : �jk
;

with k 2 f1; 2; : : : ; cg and j1; j2; : : : ; jk 2 f1; 2; : : : ; ng except perhaps those with
k > 1 and j1 D j2 D � � � D jk . As  is hyperbolic, we have that

j�j1
�j2

� � ��jk
j ¤ 1:

Note that this also holds for the case k > 1 and j1 D j2 D � � � D jk because
j�k

j1
j D j�j1

jk ¤ 1 and j�j1
j ¤ 1. This finishes the proof of the first direction.

Now assume the existence of a x as claimed. AsF is a finite subgroup, there exists
a setX1; X2; : : : ; Xn 2 nQ such that nQ is the free c-step nilpotent Lie algebra on the
generators X1; X2; : : : ; Xn (i.e., the canonical images of the Xi form a vector space
basis of nQ

ŒnQ;nQ�
) and such that if we use n1 to denote the subspace of n generated

by X1; X2; : : : ; Xn, we have that '.f /.n1/ D n1 for any f 2 F .
Now, for k D 2; 3; : : : ; c, we let nk be the subspace of n, which is generated (as

a vector space) by all elements of the form ŒXj1
; ŒXj2

; : : : ; ŒXjk�1
; Xjk

� : : : �� and we
let nk D 0 when k > c. Then

n D n1 ˚ n2 ˚ n3 ˚ � � �
is a positive grading of n (i.e., Œni ;nj � � niCj ) and '.f / respects this grading for
any f (i.e., '.f /.ni / D ni ). Of course, we have that n1 is isomorphic to nQ

ŒnQ;nQ�

and after identifying these two spaces we can say that x'.f / D '.f /jn1
. In the

same way we can view x as being a linear automorphism of n1. As n is free c-step
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nilpotent, the map x (seen as a map on n1) has a unique extension to a Lie algebra
automorphism  of nQ. Moreover, from the fact that x D  jn1

commutes with
x'.f / D '.f /jn1

, one deduces immediately that  commutes with '. Moreover, the
eigenvalues of  will all be of the form

�j1
�j2

: : : �jk

with k 2 f1; 2; : : : ; cg and j1; j2; : : : ; jk 2 f1; 2; : : : ; ng, showing that  is a hy-
perbolic automorphism. Finally, by Lemma 5.5 the characteristic polynomial of  
will have integer coefficients and unit constant term. The theorem is now proved by
applying Theorem A.

6. Rational representations of finite abelian groups

Given an infra-nilmanifold M (modeled on a free c-step nilpotent Lie group), The-
orem B provides necessary and sufficient conditions on the associated abelianized
rational holonomy representation x' for M to admit an Anosov diffeomorphism. In
this section we concentrate on the case of infra-nilmanifolds modeled on a free 2-
step nilpotent Lie group, and try to reduce the conditions even more. Therefore, we
will have a closer look at rational representations of finite groups satisfying similar
conditions as those mentioned in Theorem B.

Let T W F ! GL.n;Q/ be a rational representation of a finite group F . Trans-
lating the conditions in Theorem B, we want to know when there exists a matrix
C 2 GL.n;Q/ commuting with every element of T .F / such that C has a normal-
ized integer characteristic polynomial with no roots �, � where j�j D 1 or j��j D 1.

We can reduce these conditions to conditions on the Q-irreducible components
of T , and we find that the only Q-irreducible components that really matter are those
which occur with multiplicity one or two.

Theorem 6.1. Let T W F ! GL.n;Q/ be a representation of a finite group F and
write ˆ DIm.T /. Then the following assertions are equivalent:

(1) There exists a matrix C 2 GL.n;Q/ that commutes with every element of ˆ,
and such that C has a normalized integer characteristic polynomial with no
roots �, � where j�j D 1 or j��j D 1.

(2) For every Q-irreducible component Ti W F ! GL.ni ;Q/ of T that occurs with
multiplicity one resp. two, there exists a matrix Ci 2 GL.ni ;Q/ resp. Ci 2
GL.2ni ;Q/ that commutes with every element of Ti .F / resp. .Ti ˚ Ti /.F /,
and has a normalized integer characteristic polynomial without roots �, � with
j�j D 1 or j��j D 1.

Proof. First suppose that there exists a matrix C 2 GL.n;Q/ that commutes with
every element of ˆ and that satisfies the conditions. Now change the basis of Qn
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such that T splits up as T D T1 ˚ � � � ˚ Tk with each Ti Q-irreducible and with
equivalentTi identical and adjacent. Then if someTi occurs with multiplicity one, the
new matrix zC D P�1CP , where P is the matrix of the new basis, will have a single
block corresponding to Ti and commuting with it. The characteristic polynomial
of this block will divide the characteristic polynomial of C and so it will satisfy the
conditions. Equivalently, if some Ti occurs with multiplicity two, zC will have a block
corresponding to Ti ˚ Ti commuting with it and its characteristic polynomial will
again satisfy the conditions.

Conversely, suppose that for every Q-irreducible component Ti of multiplicity
one resp. two, we have a matrix Ki commuting with Im.Ti / resp. Im.Ti ˚ Ti / and
satisfying the conditions. We construct the matrix zC . If some Ti has multiplicity
one or two, put the corresponding Ki in its appropriate place on the diagonal. Now
if some Ti has multiplicity three, four or five, put

0
@I I I

I 2I 2I

I 2I 3I

1
A ;

0
BB@
I I I I

I I I 2I

I I 0 0

I 2I 0 0

1
CCA or resp.

0
BBBB@

I I I I I

I 2I 2I 2I 2I

I 2I 3I 3I 3I

I 2I 3I 4I 4I

I 2I 3I 4I 5I

1
CCCCA

in the appropriate place; if some Ti has even higher multiplicity, we can use suitable
combinations of these. So now we have different blocks in zC , whose eigenvalues
satisfy the conditions. However, there might be blocks, say Ki and Kj , such that
Ki has an eigenvalue �i and Kj has an eigenvalue �j with j�i�j j D 1, so problems
might arise for our eigenvalues of zC . Anyway, we can easily solve this by taking a
power of (one of) the blocks if necessary. Now zC commutes with Im.T / referred
to the new basis and by construction, zC has no eigenvalues �, � with j�j D 1 or
j��j D 1 and the characteristic polynomial of zC has integer coefficients. So if we
write C D P zCP�1, C will commute with ˆ and satisfy our conditions.

This theorem instructs us to have a closer look at Q-irreducible rational represen-
tations.

From this moment onwards, we restrict our attention to representations of finite,
abelian groups F .

Let F be a finite abelian group and T W F ! GL.n;Q/ a Q-irreducible repre-
sentation of F . Write ˆ D Im.T /, then since F is finite and abelian, so is ˆ, and
we can see that ˆ is an abelian subgroup of the multiplicative group of EndF .Qn/.
Thus by the following well-known theorem, we know that ˆ is cyclic.

Theorem 6.2. Every finite, abelian subgroup of the multiplicative group of a division
ring is cyclic.

We can choose a generator M D T .f / of ˆ, whose characteristic polynomial
will be Q-irreducible by the following lemma, the proof of which is left to the reader.
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Lemma 6.3. A linear transformation T on a finite-dimensional vector space over Q
is Q-reducible if and only if the characteristic polynomial of T is reducible over Q.

SinceM has finite order, it is diagonalizable and its eigenvalues are roots of unity.
Suppose �d is a primitive d -th root of unity which is an eigenvalue of M . Then the
minimal polynomial of �d over Q is �d .X/ (the d -th cyclotomic polynomial), and
since the characteristic polynomial of M is Q-irreducible, it needs to be exactly
�d .X/. So M has order d , its characteristic polynomial is �d 2 ZŒX�, and the
eigenvalues of M are exactly the '.d/ primitive d -th roots of unity (in which '
denotes the Euler phi function); we also find that '.d/ D n. Write K D Q.�d / and
let 	.K=Q/ D f
1; : : : ; 
'.d/g denote the Galois group of K over Q. Then K is a
minimal splitting field of T and Spec.M/ D f
1.�d /; : : : ; 
'.d/.�d /g, where every
eigenvalue occurs with algebraic multiplicity one. So we can choose an eigenvector
v 2 Kn with corresponding eigenvalue �d , and then 
i .v/ will be an eigenvector
with corresponding eigenvalue 
i .�d / for all i . So f
1.v/; : : : ; 
n.v/g is linearly
independent and generates Kn over K. If we take P 2 GL.n;K/ whose columns
are exactly those Galois-conjugate eigenvectors f
1.v/; : : : ; 
n.v/g, then

P�1MP D

0
B@

1.�d / � � � 0
:::

: : :
:::

0 � � � 
n.�d /

1
CA 2 GL.n;K/

is a diagonal matrix.
If we want to find C 2 GL.n;Q/ commuting with M , then M and C need to be

simultaneously diagonalizable. So we know that v is also an eigenvector of C , and
if � is the corresponding eigenvalue, then Spec.C / D f
1.�/; : : : ; 
n.�/g (here not
all 
i .�/ need to be different), and 
i .v/ is an eigenvector of C corresponding to the
eigenvalue 
i .�/ for all i .

Since we want the characteristic polynomial and the eigenvalues of C to satisfy
the conditions in Theorem 6.1, we want to know when we can find an algebraic unit
� 2 UK (where UK denotes the group of the algebraic units in K, i.e., the units in
the ring OK of the algebraic integers in K) so that 
1.�/; : : : ; 
n.�/ satisfy these
conditions. We prove the following lemma:

Lemma 6.4. LetK D Q.�d / be the algebraic extension of Q, where �d is a primitive
d -th root of unity, and let 	.K=Q/ D f
1; : : : ; 
'.d/g denote the Galois group of
K over Q. Then we can find an algebraic unit � in K satisfying j
i .�/j ¤ 1 and
j
i .�/
j .�/j ¤ 1 for all 1 � i; j � '.d/ if and only if '.d/ > 4.

Proof. For the proof of this lemma we are inspired by the construction of the iso-
morphism in the proof of Dirichlet’s unit theorem (see [17]) (in our case, s D 0 and
2t D '.d/).



572 K. Dekimpe and K. Verheyen

Write 	.K=Q/ D f
1; : : : ; 
t ; 
1; : : : ; 
tg and let UK denote the group of units
in the ring of the algebraic integers in K. Now define the map

l W UK ! Rt ; ˛ 7! .l1.˛/; : : : ; lt .˛// D .2 log j
1.˛/j; : : : ; 2 log j
t .˛/j/:
Then Im.l/ is a lattice in Rt of dimension t � 1 ([17], Theorem 12.5). So we
want to find an algebraic unit � 2 K such that li .�/ ¤ 0 and lj .�/ ¤ �li .�/
holds for all 1 � i; j � n. However, since � is an algebraic unit, we know that
j
1.�/ : : : 
t .�/j2 D 1, which translates to l1.�/C � � � C lt .�/ D 0.

Observe that in the case t D 2 (or '.d/ D 4) we can easily see that we cannot
find an algebraic unit� 2 K satisfying the required conditions, since these contradict
the fact that we now know that log j
1.�/j C log j
2.�/j D 0. Analogously, the case
t D 1 (or '.d/ D 2) can be excluded.

Choose "1; : : : ; "t�1 2 UK such that fl."1/; : : : ; l."t�1/g generates the lattice
l.Uk/; in other words,

Im.l/ D fa1l."1/C � � � C at�1l."t�1/ j ai 2 Zg:
Our goal is now to see when we can find ai 2 Z such that

a1l."1/C � � � C at�1l."t�1/ D .b1; : : : ; bt /

with bi ¤ 0 and bj ¤ �bi for all i; j .
Let V be the real vector space generated by fl."1/; : : : ; l."t�1/g, then V Š Rt�1.

We also know that the subspace of Rt generated by Im.l/ is contained in the hyper-
plane f.x1; : : : ; xt / 2 Rt j x1 C � � � C xt D 0g; so V will be exactly this hyperplane
and

v D .1; 2; 3; : : : ; t � 1;�.1C 2C � � � C t � 1// 2 V:
So we can find r1; : : : ; rt�1 2 R such that

r1l."1/C � � � C rt�1l."t�1/ D v:

Now if we choose qi 2 Q close enough to ri for all 1 � i � t � 1, then

v0 D q1l."1/C� � �C qt�1l."t�1/

D .1C �1; 2C �2; : : : ; t � 1C �t�1;�.1C 2C� � �C t � 1C �1 C� � �C �t�1//;

with �i 2 R small, will still have no coefficients bi , bj such that bi D 0 or bj D �bi .
To finish the proof, choose z 2 Z0 such that zqi 2 Z for all 1 � i � t � 1,

and let ai D zqi for all i . Then these are exactly the ai we were looking for, and
� D "

a1

1 : : : "
at�1

t�1 will satisfy the conditions of the lemma.

Furthermore, because we want our commuting matrix C to be in GL.n;Q/, we
will need the following number theoretical theorem later on:
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Theorem 6.5. Let K D Q.�/ be an algebraic number field and f
1; : : : ; 
ng the
monomorphisms from K to C. If P.X1; : : : ; Xn/ is a symmetric polynomial over Q
and ˛ 2 K, then P.
1.˛/; : : : ; 
n.˛// 2 Q.

We can now formulate the next theorem, which reduces the conditions on the
Q-irreducible components of T of multiplicity one in Theorem 6.1.

Theorem 6.6. Let T W F ! GL.n;Q/ be a Q-irreducible representation of a finite,
abelian groupF and writeˆ D Im.T /. Then the following assertions are equivalent:

(1) There exists a matrix C 2 GL.n;Q/ that commutes with every element of ˆ,
and such that C has a normalized integer characteristic polynomial which has
no roots �, � with j�j D 1 or j��j D 1.

(2) jˆj > 6 and jˆj ¤ 8; 10 and 12.

Proof. Choose a generator M of ˆ and write d D jˆj, so d is the order of M .
Let �d be a primitive d -th root of unity and write K D Q.�d / and 	.K=Q/ D
f
1; : : : ; 
'.d/g. Then 
1.�d /; : : : ; 
'.d/.�d / are the eigenvalues of M and we can
find a basis f
1.v/; : : : ; 
'.d/.v/g ofKn overK in which every
i .v/ is an eigenvector
of M corresponding to the eigenvalue 
i .�d /.

Suppose first that jˆj > 6 and jˆj ¤ 8; 10 and12. If we writed D p
e1

1 p
e2

2 : : : p
er
r ,

with r � 1, pi pairwise different primes and ei 2 N for all i , then '.d/ D
.p1 � 1/p

e1�1
1 .p2 � 1/p

e2�1
2 : : : .pr � 1/p

er �1
r , so for the chosen values of jˆj

we have that '.d/ � 6. According to the lemma above, we can find an algebraic unit
� 2 UK satisfying j
i .�/j ¤ 1 and j
i .�/
j .�/j ¤ 1 for all 1 � i; j � '.d/. Now
let

zC D

0
B@

1.�/ � � � 0
:::

: : :
:::

0 � � � 
'.d/.�/

1
CA 2 GL.n;K/

be the diagonal matrix with the 
i .�/ on the diagonal. Then zC commutes with
P�1MP , so if we take C D P zCP�1, then C commutes with M . Since C and
zC have the same characteristic polynomial and the same eigenvalues, Spec.C / D
f
1.�/; : : : ; 
'.d/.�/g, so the eigenvalues ofC satisfy the conditions by construction.
Also, since � is an algebraic unit, the constant term of the characteristic polynomial
is ˙1. By Theorem 6.5, it is also easy to see that the characteristic polynomial of
C has rational coefficients; but since those coefficients are also algebraic integers
and the only algebraic integers in Q are the elements of Z, the coefficients of the
characteristic polynomial will be integers.

The only thing that is left to show now is that C 2 Qn�n. Consider the linear
transformation h W Kn ! Kn that has matrix representation C with respect to the
standard basis; thus, with respect to the basis f
1.v/; : : : ; 
'.d/.v/g it has matrix
representation zC . We will show that C 2 Qn�n by showing that h.ej / 2 Qn for
every j .
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For 1 � j � n, we can write

ej D a
j
1
1.v/C � � � C aj

n
n.v/

for unique aj
i 2 K, 1 � i � n. But then, for 1 � k � '.d/, we also have


k.ej / D 
k.a
j
1
1.v//C � � � C 
k.a

j
n
n.v//

or, equivalently,

ej D 
k.a
j
1 /.
k B 
1/.v/C � � � C 
k.a

j
n/.
k B 
n/.v/

since ej 2 Qn. We may suppose that 
1 DId. Then by the uniqueness of the aj
i , we

can see that aj

k
D 
k.a

j
1 / for every k, so we can find aj 2 K such that

ej D 
1.a
j v/C � � � C 
n.a

j v/:

But then

h.ej / D 
1.a
j /h.
1.v//C � � � C 
n.a

j /h.
n.v//

D 
1.a
j /
1.�/
1.v/C � � � C 
n.a

j /
n.�/
n.v/

D 
1.a
j�v/C � � � C 
n.a

j�v/;

which is a symmetric polynomial evaluated in the 
i .a
j�v/ and so h.ej / 2 Qn by

Theorem 6.5.
Conversely, suppose that jˆj � 6 or jˆj D 8; 10 or 12 and that C 2 GL.n;Q/

commutes with M . Then '.d/ � 4 and we can easily see by Lemma 6.4 that the
characteristic polynomial of C cannot satisfy all conditions.

Remark 6.7. The property jˆj > 6 and jˆj ¤ 8; 10 and 12 of the above theorem is
also equivalent to each of the following statements:

(1) The dimension n of the irreducible representation T W F ! GL.n;Q/ is at
least 6.

(2) The Q-irreducible representation T W F ! GL.n;Q/ splits in at least three
components when seen as a representation T W F ! GL.n;R/ over R.

We want to do something similar for the Q-irreducible components of multiplicity
two.

Theorem 6.8. Let T1 W F ! GL.n;Q/ be a Q-irreducible representation of a finite,
abelian group F , and write T D T1 ˚ T1 W F ! GL.2n;Q/ andˆ D Im.T /. Then
the following assertions are equivalent:
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(1) There exists a matrix C 2 GL.2n;Q/ commuting with every element of ˆ such
that C has a normalized integer characteristic polynomial which has no roots
�, � with j�j D 1 or j��j D 1.

(2) jˆj > 4 and jˆj ¤ 6.

Proof. Let M D �
M1 0n

0n M1

�
be a generator of ˆ with M1 2 GL.n;Q/. First suppose

that jˆj > 4 and jˆj ¤ 6. If jˆj > 6 and jˆj ¤ 8; 10 and 12, we can find
C1 2 GL.n;Q/ commuting with M1 whose characteristic polynomial satisfies the
conditions, so C D �

C1 0n

0n C1

� 2 GL.2n;Q/ commutes with M . Thus we only have
to take a closer look to the case jˆj D 5, 8, 10 or 12. Let �d be an eigenvalue ofM1,
with d D 5, 8, 10 or 12. Then '.d/ D 4 and we can write K D Q.�d / to be the
splitting field of T1 and 	.K=Q/ D f
1; 
2; 
3; 
4g. Now M1 2 GL.4;Q/ and in
the same way as before, we can find P1 2 GL.4;K/ such that

P�1
1 M1P1 D

0
BB@

1.�d / 0 0 0

0 
2.�d / 0 0

0 0 
3.�d / 0

0 0 0 
4.�d /

1
CCA :

Write K D Q.e
…i
m / (you can always do this) and take L D Q.e

…i
2m /. Then L

is a splitting field of the polynomial X2 � e
…i
m over K, L is Galois over K and

	.L=K/ D fs1; s2g (suppose that s1.e
…i
2m / D e

…i
2m and s2.e

…i
2m / D e

�…i
2m ). We can

write 	.L=Q/ D f1; : : : ; 8g and we may suppose, without loosing generality, that
s1 D 1 and s2 D 2. By Lemma 6.4, we can now choose an algebraic unit � in L
for which ji .�/j ¤ 1 and ji .�/j .�/j ¤ 1 for all 1 � i; j � 8 (� will certainly
not be inK). Now 1.�/2.�/ 2 K and 1.�/C2.�/ 2 K since they are invariant
under the morphisms of 	.L=K/. So 1.�/ and 2.�/ are roots of

f .X/ D X2 � .1.�/C 2.�//X C 1.�/2.�/ 2 KŒX�:
Now consider the polynomials

mi .X/ D 
i .f .X//; 1 � i � 4:

Then
m.X/ D m1.X/m2.X/m3.X/m4.X/ 2 QŒX�

and 1.�/ is a root of this polynomial, so all Galois-conjugates of � are also roots.
This means thatm.X/ is (a power of) the monic minimal polynomial of� over Q; but
since � is an algebraic integer, this is a polynomial over Z. Now suppose that 1.�/

and 2.�/ are the roots of m1.X/, 3.�/ and 4.�/ are the roots of m2.X/, 5.�/

and 6.�/ are the roots of m3.X/, and 7.�/ and 8.�/ are the roots of m4.X/.
Choose

zC D
�
04 �14

M� MC

�
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in which

M� D

0
BB@
1.�/2.�/ 0 0 0

0 3.�/4.�/ 0 0

0 0 5.�/6.�/ 0

0 0 0 7.�/8.�/

1
CCA

and

MC D

0
BB@
1.�/C 2.�/ 0 0 0

0 3.�/C 4.�/ 0 0

0 0 5.�/C 6.�/ 0

0 0 0 7.�/C 8.�/

1
CCA :

The characteristic polynomial of zC is exactly m.X/ and so, by construction, the
characteristic polynomial of zC satisfies the conditions and zC commutes with M .
Now consider the matrix P1 2 GL.4;K/ as before and let P D �

P1 04

04 P1

�
. Then

P�1 zCP D
�

04 �14

P�1
1 M�P1 P�1

1 MCP1

�

will still satisfy the conditions on the characteristic polynomial and will commute
with M . In the same way as in the proof of Theorem 6.6, we can now show that
C 2 Q8�8.

Conversely, suppose that jˆj � 4 or jˆj D 6. Then M 2 GL.2;Q/ resp.
GL.4;Q/, and it is easy to see that there is no C 2 GL.2;Q/ resp. GL.4;Q/,
commuting with M , whose characteristic polynomial satisfies the conditions.

Remark 6.9. The property jˆj > 4 and jˆj ¤ 6 of the above theorem is also
equivalent to each of the following statements:

(1) The dimension n of the irreducible representation T W F ! GL.n;Q/ is at
least 4.

(2) The Q-irreducible representation T W F ! GL.n;Q/ is reducible, when seen
as a representation T W F ! GL.n;R/ over R.

7. Main theorem

As a consequence of what we have done so far, we obtain the main theorem of this
article.

Theorem 7.1. Let M be an infra-nilmanifold modeled on a free 2-step nilpotent Lie
group, with abelian holonomy groupF and associated abelianized rational holonomy
representation x' W F ! Aut

� NQ
ŒNQ;NQ�

�
. Then M admits an Anosov diffeomorphism

if and only if
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(1) for every Q-irreducible component x'i of x' of multiplicity one, we have
jIm.x'i /j > 6 and jIm.x'i /j ¤ 8, 10 and 12;

(2) for every Q-irreducible component x'i of x' of multiplicity two, we have
jIm.x'i /j > 4 and jIm.x'i /j ¤ 6.

Proof. By using Theorem 6.1, we can reduce Theorem B, for this type of infra-
nilmanifolds, to the following:

M admits an Anosov diffeomorphism if and only if for every Q-irreducible com-
ponent x'i W F ! Aut.Vi / that occurs with multiplicity one resp. two (where Vi is an
ni -dimensional subspace of NQ

ŒNQ;NQ�
), there exists an automorphism x i 2 Aut.Vi /

resp. x i 2 Aut.Vi ˚ ViC1/ (with ViC1 Š Vi ) such that

(1) x i has a normalized integer characteristic polynomial,
(2) x i commutes with any element of x'i .F / resp. .x'i ˚ x'i /.F /,
(3) x i has no eigenvalues �, � with j�j D 1 or j��j D 1.

So we only have to find out when we can find an automorphism commuting with
the Q-irreducible components of x' occurring with multiplicity one or two. By using
Theorem 6.6 and Theorem 6.8, we get exactly the conditions stated in the theorem.

In order to compare this theorem with the original result of Porteous mentioned
before, we use the Remarks 6.7 and 6.9 and formulate the above result as Theorem C
from the introduction.

This result and some more experiments we have carried out lead to the following
conjecture

Conjecture 7.2. Let M be an infra-nilmanifold modeled on a free c-step nilpotent
Lie group, with holonomy group F and associated abelianized rational holonomy
representation x' W F ! Aut

� NQ
ŒNQ;NQ�

�
. Then M admits an Anosov diffeomorphism

if and only if each Q-irreducible component x'i of x' of multiplicitym splits in at least
c C 2 �m components when seen as a representation over R.

References

[1] S. G. Dani, Nilmanifolds withAnosov automorphism. J. London Math. Soc. (2) 18 (1978),
553–559. Zbl 0399.58006 MR 518242

[2] S. G. Dani and M. G. Mainkar, Anosov automorphisms on compact nilmanifolds asso-
ciated with graphs. Trans. Amer. Math. Soc. 357 (2005), 2235–2251. Zbl 1061.22008
MR 2140439

[3] K. Dekimpe, Almost-Bieberbach groups: affine and polynomial structures. Lecture Notes
in Math. 1639, Springer-Verlag, Berlin 1996. Zbl 0865.20001 MR 1482520

http://www.emis.de/MATH-item?0399.58006
http://www.ams.org/mathscinet-getitem?mr=518242
http://www.emis.de/MATH-item?1061.22008
http://www.ams.org/mathscinet-getitem?mr=2140439
http://www.emis.de/MATH-item?0865.20001
http://www.ams.org/mathscinet-getitem?mr=1482520


578 K. Dekimpe and K. Verheyen

[4] K. Dekimpe, Hyperbolic automorphisms and Anosov diffeomorphisms on nilmanifolds.
Trans. Amer. Math. Soc. 353 (2001), 2859–2877. Zbl 0990.37022 MR 1828476

[5] K. Dekimpe and K. B. Lee, Expanding maps on infra-nilmanifolds of homogeneous type.
Trans. Amer. Math. Soc. 355 (2003), 1067–1077. Zbl 1009.37018 MR 1938746

[6] J. Franks, Anosov diffeomorphisms. In Global analysis (Berkeley, Calif., 1968), Proc.
Sympos. Pure Math. 14, Amer. Math. Soc., Providence, R.I., 1970, 61–93.
Zbl 0207.54304 MR 0271990

[7] M. W. Hirsch, Anosov maps, polycyclic groups, and homology. Topology 10 (1971),
177–183. Zbl 0211.26801 MR 0283824

[8] J. Lauret, Examples of Anosov diffeomorphisms. J. Algebra 262 (2003), 201–209.
Zbl 1015.37022 MR 1970807

[9] K. B. Lee, Infra-solvmanifolds of type (R). Quart. J. Math. Oxford Ser. (2) 46 (1995),
185–195. Zbl 0857.22009 MR 1333830

[10] K. B. Lee, Maps on infra-nilmanifolds – Rigidity and applications to fixed-point theory.
Pacific J. Math. 168 (1995), 157–166. Zbl 0920.55003 MR 1331996

[11] K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups. In Combinatorial
methods in topology and algebraic geometry (Rochester, N.Y., 1982), Contemp. Math.
44, Amer. Math. Soc., Providence, RI, 1985, 73–78. Zbl 0575.57026 MR 0813102

[12] M. G. Mainkar, Anosov automorphisms on certain classes of nilmanifolds. Glasgow
Math. J. 48 (2006), 161–170. Zbl 1134.37325 MR 2224936

[13] M. G. Mainkar and C. E. Will, Examples of Anosov Lie algebras. Discrete Contin. Dyn.
Syst. 18 (2007), 39–52. Zbl 1120.37014 MR 2276485

[14] A. Manning, There are no newAnosov diffeomorphisms on tori. Amer. J. Math. 96 (1974),
422–429. Zbl 0242.58003 MR 0358865

[15] H. L. Porteous,Anosov diffeomorphisms of flat manifolds. Topology 11 (1972), 307–315.
Zbl 0237.58015 MR 0296976

[16] D. Segal, Polycyclic groups. Cambridge Tracts in Math. 82, Cambridge University Press,
Cambridge 1983. Zbl 0516.20001 MR 0713786

[17] I. Stewart and D. Tall, Algebraic number theory. 2nd ed., Chapman and Hall Mathematics
Series, Chapman & Hall, London 1987. Zbl 0663.12001 MR 0896691

Received July 20, 2007; revised July 16, 2008

K. Dekimpe and K. Verheyen, K.U.Leuven Campus Kortrijk, Universitaire campus,
8500 Kortrijk, Belgium

E-mail: Karel.Dekimpe@kuleuven-kortrijk.be, kelly.verheyen@kuleuven-kortrijk.be

http://www.emis.de/MATH-item?0990.37022
http://www.ams.org/mathscinet-getitem?mr=1828476
http://www.emis.de/MATH-item?1009.37018
http://www.ams.org/mathscinet-getitem?mr=1938746
http://www.emis.de/MATH-item?0207.54304
http://www.ams.org/mathscinet-getitem?mr=0271990
http://www.emis.de/MATH-item?0211.26801
http://www.ams.org/mathscinet-getitem?mr=0283824
http://www.emis.de/MATH-item?1015.37022
http://www.ams.org/mathscinet-getitem?mr=1970807
http://www.emis.de/MATH-item?0857.22009
http://www.ams.org/mathscinet-getitem?mr=1333830
http://www.emis.de/MATH-item?0920.55003
http://www.ams.org/mathscinet-getitem?mr=1331996
http://www.emis.de/MATH-item?0575.57026
http://www.ams.org/mathscinet-getitem?mr=0813102
http://www.emis.de/MATH-item?1134.37325
http://www.ams.org/mathscinet-getitem?mr=2224936
http://www.emis.de/MATH-item?1120.37014
http://www.ams.org/mathscinet-getitem?mr=2276485
http://www.emis.de/MATH-item?0242.58003
http://www.ams.org/mathscinet-getitem?mr=0358865
http://www.emis.de/MATH-item?0237.58015
http://www.ams.org/mathscinet-getitem?mr=0296976
http://www.emis.de/MATH-item?0516.20001
http://www.ams.org/mathscinet-getitem?mr=0713786
http://www.emis.de/MATH-item?0663.12001
http://www.ams.org/mathscinet-getitem?mr=0896691

	Introduction
	Infra-nilmanifolds and Anosov diffeomorphisms
	Rational realizations of almost-Bieberbach groups
	Anosov diffeomorphisms on infra-nilmanifolds
	Infra-nilmanifolds modeled on a free nilpotent Lie group
	Rational representations of finite abelian groups
	Main theorem
	References

