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1. Introduction

1.1. Background. The study has origins in the famous Jewett–Krieger theorem:

to any ergodic and invertible measure-preserving map there exists an isomorphic

strictly ergodic (i.e. uniquely ergodic and minimal) homeomorphism. Natural fur-

ther investigation concerns more precise modelling, in which given a topologi-

cal dynamical system one searches for the minimal system with the same mea-

sure dynamics, i.e. having identical simplex of invariant measures with corre-

sponding measure preserving actions being isomorphic. The adequate theorem,

valid on zero-dimensional spaces even for a non-invertible map, was proved by

Downarowicz in [1]. It is worth mentioning that there is a paper by Kornfeld and

Ormes [5], which overlaps with Downarowicz’s results (in particular, the model is

found in the same class of orbit equivalence relation for the price of restricting to

simplices with countably many extreme points). The next step was made by Frej

and Kwaśnicka in [3], where the analogous result for free Z
d actions was proved.

At the present paper we generalize the latter to free actions of arbitrary amenable

groups on zero-dimensional spaces.

We should also mention a related earlier result of Furstenberg and Weiss

(see [4]), who show (for actions of Z) that any topologically transitive compact

extension of a non-periodic minimal dynamical system has a minimal model with

the same measure-theoretic structure.

1 Research of both authors is supported from resources for science in years 2013-2018 as
research project (NCN grant 2013/08/A/ST1/00275, Poland).
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1.2. Basic notions. Let G be a countable amenable group, i.e. a group in which

there exists a sequence of �nite sets Fn � G (called a Følner sequence, or the

sequence of Følner sets), such that for any g 2 G we have

lim
n!1

jgFn 4 Fnj

jFnj
D 0;

where gF D ¹gf W f 2 F º, j�j denotes the cardinality of a set, and 4 is the

symmetric di�erence.

Throughout the paper we assume that X is a zero-dimensional, compact

metrizable space. The action of G on X is determined by a homomorphism from

G to the group all of homeomorphisms of X , but we will avoid introducing unnec-

essary notation writing gx for the image of x by an appropriate homeomorphism.

The action of G is free if gx D x for any g 2 G and x 2 X implies that g is the

neutral element of G. The action is minimal if for any x 2 X the closure of the

orbit ¹gxW g 2 Gº is equal to the whole X , which is equivalent to non-existence

of non-trivial closed G-invariant subsets.

A measure � on X is G-invariant if �.gA/ D �.A/ for all g 2 G. By PG.X/

we denote the set of all G-invariant Borel probability measures on X . It is well

known that in our case PG.X/ endowed with the weak* topology is a compact,

metrizable and convex subset of the space of all Borel probability measures on X .

Every point of PG.X/ has a unique representation as a barycenter of a certain

Borel measure concentrated on the Borel set of all ergodic measures. These

properties are usually abbreviated by saying that PG.X/ is a Choquet simplex.

A set E � X is called full if �.E/ D 1 for every � 2 PG.X/.

De�nition 1.1. We say that two dynamical systems .X; G/ and .Y; G/ with

the same acting group G are Borel� isomorphic if there exists an equivariant

(i.e. commuting with the action) Borel-measurable bijection ˆW zX ! zY be-

tween full invariant subsets zX � X and zY � Y , such that the conjugate map

ˆ�WPG.X/ ! PG.Y / given by the formula ˆ�.�/ D � ı ˆ�1 is a (a�ne) home-

omorphism with respect to weak* topologies.

Our main result is the following theorem.

Theorem 1.2. If X is a metrizable, compact, zero-dimensional space and an

amenable group G acts freely on X then .X; G/ is Borel* isomorphic to a min-

imal dynamical system .Y; G/ (with Y being also metrizable, compact and zero-

dimensional).

1.3. Positive Banach density vs. syndeticity

De�nition 1.3. The set S � G is right-syndetic (we will brie�y write syndetic)

if there exists a �nite set F � G such that SF D G.
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De�nition 1.4. For S � G and a �nite F � G denote

DF .S/ D inf
g2G

jS \ Fgj

jF j

and

D.S/ D sup¹DF .S/W F � G; jF j < 1º:

We call D.S/ the lower Banach density of S .

The following properties of the above notions are quite easy to prove.

Proposition 1.5. (1) If .Fn/ is a Følner sequence then D.S/ D limn!1 DFn
.S/.

(2) S is syndetic if and only if D.S/ > 0.

1.4. The array representation of .X; G/. Let dX denote a metric on X . Let

ƒ D .X [ ¹0; 1; �º/Z, where 0,1 and � are additional elements which do not

initially occur in X . We will regard elements of ƒ as bilateral sequences which

will have elements of X or 0 on non-negative coordinates and elements ¹0; 1; �º
on negative coordinates. We de�ne a compact metric d on X [ ¹0; 1; �º by

d.x; y/ D

´

dX .x; y/ for x; y 2 X;

diam.X/ if x … X or y … X
.for x ¤ y/:

We can now de�ne a distance dƒ between x D .: : : ; x�1; x0; x1; : : : / and y D

.: : : ; y�1; y0; y1; : : : / in ƒ by

dƒ.x; y/ D

1
X

iD�1

2�ji jd.xi ; yi /:

Note that .ƒ; dƒ/ is a compact metric space. The space ƒG is an analogue of a

multidimensional shift space. The action of G on ƒG is de�ned by

.gy/ .h/ D y.hg/ for every y 2 ƒG :

We de�ne an array representation yX of X as a range of a map X 3 x 7! Ox 2 ƒG

de�ned by

Ox.g/n D

´

gx if n D 0;

0 otherwise.

Levels n 6D 0 will be used in the construction of a Borel� isomorphism afore-

mentioned in Theorem 1.2. It is not very hard to verify that yX is compact and

G-invariant and that x 7! Ox is in fact a topological conjugacy between .X; G/ and

. yX; G/.
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By a block in ƒG we mean a map B W F ! ƒ, where F is a �nite subset of G.

We de�ne a distance between blocks B1, B2 on a common domain F by

D.B1; B2/ D sup
g2F

dƒ.B1.g/; B2.g//

and we set D.B1; B2/ D diam.X/ if the domains of B1 and B2 are two di�erent

subsets of G. We say that B 0 is a subblock of B if the domain F of B contains

the domain F 0 of B 0 and both blocks agree on F 0. A block B with the domain F

occurs in Z � ƒG if there is z 2 Z and g 2 G such that z.fg/ D B.f / for every

f 2 F .

Remark 1.6. By Tikhonov’s theorem, the set of all blocks on a �xed domain is

a compact space. Moreover, compactness of yX implies that the set of all blocks,

which occur in yX and whose domain is �xed, is compact. It follows that for every

" > 0 it contains a �nite "-dense subset.

1.5. A few useful properties of the Følner sequence. First of all note that in

any amenable group there exists a Følner sequence with the following additional

properties (see [2]):

(1) Fn � FnC1 for all n,

(2) e 2 Fn for all n (e denotes the neutral element of G),

(3)
S

n Fn D G,

(4) Fn D F �1
n .

Throughout this paper, we will assume that the Følner sequence which we use has

these properties.

If F and A are �nite subsets of G and 0 < ı < 1, we say that F is .A; ı/-

invariant if
jF 4 AF j

jF j
< ı;

where AF D ¹af W a 2 A; f 2 F º. Observe that if A contains the neutral element

of G, then .A; ı/-invariance is equivalent to the simpler condition

jAF j < .1 C ı/ jF j :

If .Fn/ is a Følner sequence, then for every �nite A � G and every ı > 0

there exists an N such that for n > N the sets Fn are .A; ı/-invariant. This type

of invariance has the following consequence:

Lemma 1.7. Let F � G be a �nite set. For any " there exists a ı such that if

H � G is .F; ı/-invariant then the set HF D ¹h 2 H W F h � H º has cardinality

greater than .1 � "/ jH j.
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Figure 1. A picture illustrating Lemma 1.7. The set HF marked with a broken line has

cardinality greater than .1 � "/ jH j, where H is a big square marked with a solid line.

Figure 2. A picture illustrating Lemma 1.8. The smallest elliptic set is A. It is surrounded by

FA and F l A marked by broken lines, between which there is a closed solid line bounding

E. The big square is Hg. The two small squares show di�erent positions of a translate of

F W F h � Hg n E and F h0 � Hg \ E.
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Proof. Set ı D "
jF j

. Observe that if h … HF then for some f 2 F we have

f h 2 FH n H . Obviously, for every g 2 FH n H the number of elements

h 2 H such that f h D g for some f 2 F is at most jF j. Therefore the

number of elements h 2 H such that f h 2 FH n H for some f 2 F is at

most jF j jFH n H j 6 jF j jFH 4 H j < jF j ı jH j D " jH j. �

Lemma 1.8. Let F � G contain the neutral element e. For any l , there exists a

set H � F such that for every A � G and g 2 G if FA � E � F lA then either

F h � Hg \ E or F h � Hg n E for some h 2 Hg.

Intuitively, this can be interpreted as follows: if we divide H in two parts such

that the boundary is su�ciently “regular” (which is expressed by the fact that the

dividing set E is between FA and F lA), then at least one of the resulting parts is

regular enough to contain a translated copy of F .

Proof. Let H � G be a Følner set such that its subset

D D ¹h 2 H W F �lF h � H º

has cardinality equal to at least .1 � 1

3jF jlC1 / jH j (Lemma 1.7 is used with " D

1

3jF jlC1 ). Suppose that the cardinality of A \ Hg is at least 1

3jF jlC1 jH j. Then

A \ Dg is nonempty, and for h 2 A \ Dg we have F h � E and F h � Hg.

Otherwise, if the cardinality of A\Hg is less than 1

3jF jlC1 jH j, then we will show

that Hg n F �1F lA (and thus also Hg n E) has nonempty intersection with Dg.

Indeed, observe that if h is in Hg \ F �1F lA, then h 2 F �1F la for some a 2 A.

Either a 2 Hg (and then h 2 F �1F l.Hg \ A/) or a … Hg. In the latter case

F �lF h is not contained in Hg, and therefore h cannot be in Dg. Combining

these two cases, we see that

Hg \ F �1F lA � .F �1F l.Hg \ A// [ .Hg n Dg/:

Both sets on the right have cardinality smaller than 1
3

jH j, therefore

jHg \ F �1F lAj <
2

3
jH j ;

hence Hg n F �1F lA is large enough to have nonempty intersection with Dg.

If h is in such an intersection, then F h � Hg (since h 2 Dg) and F h\F lA D ¿,

since otherwise we would have h 2 F �1F lA. �

Remark 1.9. Note that the set H chosen in the above lemma also satis�es the

hypothesis for any subset of F containing the neutral element, since the reasoning

above (in particular the choice of the set D) can be repeated unchanged for such

subsets.
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1.6. Marker lemma

Lemma 1.10 (Marker lemma). Let X be a compact, metrizable, zero-dimensional

space. Let G be a group acting continuously and freely on X . For every �nite

H � G there exists a clopen set V such that

(1) g.V / are disjoint for each g 2 H ,

(2)
S

g2F g.V / D X for some Følner set F .

Proof. Since the action of G is free, for any x 2 X the points gx are all di�erent.

Therefore there exists a clopen neighborhood Ux 3 x such that the sets h�1g.Ux/

are pairwise disjoint for distinct h�1g, where g; h 2 H . The sets .Ux/x2X cover

the compact set X , so we can select from them a �nite subcover U1; : : : ; UM .

Now de�ne the following sets V1; : : : ; VM :

V1 D U1 (1)

Vj D Vj �1 [
�

Uj n
�

[

g;h2H

g�1h.Vj �1/
��

: (2)

Let V D VM . Observe that the sets g.V /; g 2 H are pairwise disjoint. Indeed,

suppose that for some g; h 2 H we have g.V / \ h.V / ¤ ¿. Equivalently,

V \ h�1g.V / ¤ ¿. Therefore there exists an x 2 V such that x 2 h�1g.V /,

and thus g�1hx 2 V . Denote y D g�1hx. Let j and j 0 be the smallest indices

for which x 2 Vj and y 2 Vj 0 . Since x D h�1gy (therefore the points x and

y are interchangeable), we can assume without loss of generality that j 0 6 j .

As x 2 Vj n Vj �1, x must belong to Uj . The point y is also in Vj , and since it

belongs to g�1h.Uj /, it cannot belong to Uj . It follows that y 2 Vj �1. In this

case x D h�1gy 2 h�1g.Vj �1/, and therefore x belongs to the union that was

discarded from Uj when de�ning Vj , which is a contradiction.

Now let F be a Følner set large enough that F � H �1H (such an F exists,

since every element of G belongs to every Følner set from some point onwards).

Let x 2 X . There exists a smallest j such that x 2 Uj . If x … Vj , then x must

belong to the union
S

g;h2H g�1h.Vj �1/ �
S

g2F g.Vj �1/ �
S

g2F g.V /. On the

other hand, if x 2 Vj , then obviously x 2 V , and thus the set
S

g2F g.V / contains

all of X .

�

Corollary 1.11. Let X and G be as above. For every x 2 X and every �nite

T � G there is a set C.x/ � G such that

(1) Tg \ Tg0 D ¿ for each pair g; g0 2 C.x/, g 6D g0,

(2) lower Banach density of C.x/ is bounded away from zero. Even more,

there is a set F such that for every x 2 X and every g 2 G it holds that

C.x/ \ Fg 6D ¿.
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Moreover,

C.gx/g D C.x/ (3)

for all g 2 G and the map x 7! C.x/ is continuous in this sense that for any

Følner set F the sets C.x/ and C.x0/ agree on F if x and x0 are close enough.

Proof. Let V be a clopen set obtained by applying Marker lemma to the set

H D T �1T . De�ne C.x/ D ¹g 2 GW gx 2 V º. Note that this immediately implies

that C.hx/h D C.x/ for each h 2 G. Suppose g 2 C.x/. If Tg\Tg0 6D ¿, g 6D g0,

then g0 2 T �1Tg D Hg, so g0g�1 2 H . But g0x D g0g�1gx 2 g0g�1.V /. Since

both the neutral element e and g0g�1 are in H , the sets V and g0g�1V are disjoint,

so g0x 62 V , meaning g0 62 C.x/. This proves (1).

To prove the assertion about lower Banach density, notice that for every g it

holds that
S

f 2F gf .V / D X provided that
S

f 2F f .V / D X . Hence, for every

x 2 X and every g 2 G there is f 2 F such that x 2 g�1f .V /, i.e. f �1gx 2 V or,

in other words, f �1g 2 C.x/. We obtain DF �1.C.x// D infg
jC.x/\F �1gj

jF �1j
>

1
jF j

.

Hence D.C.x// >
1

jF j
.

Continuity of x 7! C.x/ stems from the fact that V obtained in Marker lemma

is clopen, hence for g from a �nite set F images gx simultaneously fall into V or

stay outside V for x,x0 close enough. �

2. The model

Let .Fn/ be a Følner sequence in G. Let ."k/ be a summable sequence of positive

numbers. For the sake of convenience, we �x a selection function � which assigns

to a pair .D; N /, where D is a subset of G containing at least N elements, a

sequence �.DI N / of N di�erent elements of D. We will de�ne a sequence of

block codes ˆk de�ned on the array representation yX of X using an inductive

procedure. Certain aspects of the construction cause the �rst two steps to be

slightly di�erent (simpler) than subsequent ones, which is why we will begin by

describing Steps 1 and 2 of the construction, and then proceed to describe the

procedure of Step k C 1 based on Step k.

Step 1. Let T0 D ¹eº and let B1 D .B1
1 ; B1

2 ; : : : ; B1
N1

/ be an "1-dense family

of blocks with domain T0 occurring in yX , which in this step is just an "1-dense

set of symbols from the alphabet ƒ, occurring in yX . Apply Corollary 1.11 to

T0, obtaining for every x 2 X a set C 0
1.x/ such that the sets T0c are pairwise

disjoint for c 2 C 0
1.x/ and the set T0C 0

1.x/ has positive lower Banach density.

Choose m1 so that for every g 2 G, x 2 X , the set Fm1
g contains at least N1

elements c 2 C 0
1.x/ and its cardinality satis�es "1

ˇ

ˇFm1

ˇ

ˇ > N1. (To obtain Fm1

choose F whose existence is granted by (2) of Corollary 1.11, �nd a Følner set
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which contains N1 disjoint copies Fg1,. . . ,FgN1
of F , then choose m1 so that

Fm1
contains

SN1

iD1 Fgi ; increase m1 if necessary to ful�l the size conditions).

Now apply Corollary 1.11 to Fm1
(playing a role of T ), obtaining a set C1.x/ for

every x 2 X . For every x 2 X and every c 2 C1.x/ the set D D Fm1
\ C 0

1.x/c�1

contains an N1-element sequence �.DI N1/. Let

.d c
1 ; : : : ; d c

N1
/ D �.DI N1/c � Fm1

c \ C 0
1.x/:

The point ˆ1. Ox/ will be created by replacing the content of Ox.T0d c
j / (i.e. a symbol

at Ox.d c
j /) by B1

j for j D 1; : : : ; N1, rewriting the erased part of a trajectory of

x (which originally was in row 0) to row 1, adding the symbol � in row �1 at

coordinates d c
j and making no other changes. Namely, for 1 6 j 6 N1, let

Dj .x/ D
®

d c
j W c 2 C1.x/

¯

;

and de�ne for g 2 Dj .x/, where j D 1; : : : ; N1,

ˆ1. Ox/n;g D

8

ˆ

ˆ

<

ˆ

ˆ

:

� if n D �1;

B1
j .0/ if n D 0;

Ox0;g if n D 1;

and ˆ1. Ox/n;g D Oxn;g otherwise (by B1
j .0/ we mean a symbol which lies on zero

level of the block). Continuity of the maps C1.x/ and C 0
1.x/, and their behaviour

under the action of G, mean that the map ˆ1 is continuous and commutes with

the action of G. In fact, it may be considered a block code. Furthermore, as

ˆ1. Ox/ retains the original non-zero symbols of Ox (they were moved to row 1 at the

coordinates that were changed), it is invertible, i.e. the systems OX and ˆ1. yX/ are

conjugate. We will now show that for any x 2 X every element of B1 occurs in

ˆ1. Ox/ syndetically. Indeed, by Corollary 1.11 there exists a set E � G such that

Eg \ C1.x/ is nonempty for every g 2 G (note that E does not depend on x).

Therefore, for every g 2 G the set T1g, where T1 D Fm1
E, contains Fm1

c for

some c 2 C1.x/, which implies that every block from B1 occurs in ˆ1. Ox/ inside

T1g, which is the de�nition of syndeticity. Moreover, we may assume that T1 is

symmetric, i.e. T �1
1 D T1 (if not then replace it with T �1

1 T1).

Finally, we choose H1 using Lemma 1.8 for F D T1 and l D 5 (in fact, the

choice of l is insigni�cant in this step, because we will deal with the set of the form

T1A). The set H1 will replace T1 in the role of being a “syndeticity constant” for

occurrence of elements ofB1 in subsequent systems we will create (T1 itself would

be too small). For convenience, we denote X1 D ˆ1. yX/.

Step 2. Now let B2 D .B2
1 ; B2

2 ; : : : ; B2
N2

/ be an "2-dense family of blocks with

domain T1 occurring in X1, N2 D jB2j. Apply Corollary 1.11 to the set H �1
1 T1
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obtaining for every x 2 X1 some set C 0
2.x/. Note that for distinct c; c0 2 C 0

2.x/

each set H1g (g 2 G) intersects at most one of T1c, T1c0. Indeed, if it intersected

both of them then we would have g 2 H �1
1 T1c \ H �1

1 T1c0, contradicting (1) of

Corollary 1.11. Similarly as before, choose m2 so that for every g 2 G, x 2 X1,

the set Fm2
g contains at least N2 elements c 2 C 0

2.x/ such that T1c � Fm2
g;

we can also request that N2 jT1j2 < "2

ˇ

ˇFm2

ˇ

ˇ. (The set Fm2
is obtained using the

same procedure as in Step 1: choose F by (2) of Corollary 1.11, �nd a Følner set

which contains N2 disjoint copies Fg1,. . . ,FgN2
of F , then choose m2 so that Fm2

contains
SN2

iD1 T1Fgi ; increase m2 if necessary to ful�l the size conditions).

As in Step 1, apply Corollary 1.11 to Fm2
, obtaining a set C2.x/ for every x 2 X1.

For every x 2 X1 and every c 2 C2.x/ the set D D Fm2
\ C 0

2.x/c�1 contains a

N2-element sequence �.DI N2/. Let

.d c
1 ; : : : ; d c

N2
/ D �.DI N2/c � Fm2

c \ C 0
2.x/:

We will construct an auxiliary map ‰2W X1 ! ƒG (we enumerate ‰ks starting

from k D 2, because each ‰k is constructed in kth step). The point ‰2.x/ will be

created by replacing the content of x.T1d c
j / by B2

j for j D 1; : : : ; N2, rewriting

the erased part of a trajectory of x (which at the moment was in rows 0 or 1) to

row 2, adding the symbol � in row �2 at coordinates d c
j and 1 at other modi�ed

coordinates, and making no other changes. Namely, for 1 6 j 6 N2, let

Dj .x/ D
®

d c
j W c 2 C2.x/

¯

;

and de�ne

‰2.x/n;g D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

� if n D �2 and g 2 Dj .x/;

1 for n D �2; g 2 T1d for some d 2 Dj .x/;

but g 62 Dj .x/;

xN;g for n D 2; g 2 T1d for some d 2 Dj .x/;

where N D max¹i W xi;g 6D 0º;

B2
j .gd �1/.n/ for n D �1; 0; 1 and g as above,

and ‰2.x/n;g D xn;g otherwise. Let ˆ2 D ‰2 ı ˆ1. Same as before, the map

‰2 is a conjugacy between X1 and its image, therefore ˆ2 is a conjugacy, too.

Let X2 D ‰2.X1/ D ˆ2. yX/. It follows from Corollary 1.11(2) that each element

of B2 occurs in X2 syndetically. More precisely, there is a set E � G such that

Eg \ C2.x/ is nonempty for every g 2 G and therefore, putting T2 D Fm2
E,

we obtain that T2g contains some Fm2
c, c 2 C2.x/, for every g 2 G. We can

enlarge E to obtain T 4
1 � E and assume that T2 D T �1

2 , replacing T2 with T �1
2 T2

if necessary (required for further steps).

Moreover, elements of B1 also occur syndetically in X2. Indeed, let Ox 2 X2

and let g 2 G. By the construction of C 0
2.x/, the set H1g (g 2 G) intersects at
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most one T1c for c 2 C 0
2.x/. By the choice of H1 (see Step 1 and Lemma 1.8) there

exists some h such that T1h is a subset of H1g that is either disjoint from all T1c or

is a subset of T1C 0
2.x/, in which case it must be exactly one of T1c, c 2 C 0

2.x/. In

either case, the block Ox.T1h/ is a block occurring in X1, since it was either in an

area unchanged by ‰2, or was entirely replaced by content of one of the blocks in

B2 (all of which occur in X1). By the construction of ˆ1, this means that Ox.T1h/

contains all the blocks from B1, which ultimately means that every block from B1

occurs syndetically in Ox.

Finally, choose H2 using Lemma 1.8 for F D H 4
1 T2 and l D 5. Note that each

H2g contains some T2h, thus it contains all blocks from B2.

Step k C 1. Suppose we have constructed:

� maps ˆ1; : : : ; ˆk, which are conjugacies mapping yX to Xk , where Xk D

ˆk. yX/ � ƒG ,

� H1; : : : ; Hk, T0; T1; : : : ; Tk, which are subsets of G, where Ti D T �1
i for all

i ,

� Fm1
; : : : ; Fmk

, which are selected Følner sets,

� B1; : : : ;Bk, which are collections of blocks such that

(1) Bj is a collection of blocks on the domain Tj �1, "j -dense in the collec-

tion of all such blocks occurring in Xj �1,

(2) Tj � Hj � Tj C1 � Hk and T 4
1 : : : T 4

j � Tj C1 for j D 1; : : : ; k � 1,

(3) for any j D 1; : : : ; k, every block with domain Tj in Xj has every block

from Bj as a subblock,

(4) for any j D 1; : : : ; k and any i > j , every block with domain Hj in Xi

has every block from Bj as a subblock,

(5) for every A � G and g 2 G if Tj A � E � T 5
j A then either Hj g n E

contains Tj h or Hj g\E contains Tj h for some h 2 Hj g, j D 1; : : : ; k,

(6) jBj jjTj �1j2 < "j jFmj
j for j D 1; : : : ; k.

We will make use of the following:

Enlarging algorithm

Let T be a set in G. Fix x 2 X and k 2 N. Let T 0 be the union of T and

all sets of the form Tkg (where g is any point such that x.�k; g/ D �)

that intersect TkT . We put

E1.T; x; k/ D TkT 0:

(see Figure 3). Then inductively we de�ne

Ej C1.T; x; k/ D E1.Ej .T; x; k/; x; k � j /
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for 1 6 j < k and

E.T; x; k/ D Ek.T; x; k/:

Note that TkT � E.T; x; k/ � T 4
1 T 4

2 : : : T 4
k

T . More precisely,

Tj Ek�j .T; x; k/ � E.T; x; k/ � T 4
1 : : : T 4

j Ek�j .T; x; k/

for 1 6 j < k. Indeed, by the inductive assumption (2), we can even

say that

Tj Ek�j .T; x; k/ � E.T; x; k/ � T 5
j Ek�j .T; x; k/:

Figure 3. One step in the enlarging algorithm – formation of E1.T; x; k/.

We proceed with the construction. Let BkC1 D .BkC1
1 ; BkC1

2 ; : : : ; BkC1
NkC1

/ be

an "kC1-dense family of blocks with domain Tk, occurring in Xk . Let NkC1 be

the cardinality of BkC1. Let xT D T 4
1 T 4

2 : : : T 4
k�1

Tk (note that by our inductive

assumptions, Tk � xT � T 2
k

). Apply Corollary 1.11 to the set H �1
k

xT obtaining for

every x 2 Xk some set C 0
kC1

.x/. Note that for distinct c; c0 2 C 0
kC1

.x/ each set

Hkg (g 2 G) intersects at most one of xT c, xT c0. Moreover, C 0
kC1

.x/ has positive

Banach density, therefore so do xT C 0
kC1

.x/ and TkC 0
kC1

.x/. Similarly as before,

choose mkC1 so big that for every g 2 G, x 2 X , the set FmkC1
g contains at

least NkC1 elements c 2 C 0
kC1

.x/ such that Tkc � FmkC1
g; we assume that

NkC1 jTk j2 < "kC1

ˇ

ˇFmkC1

ˇ

ˇ.

Apply again Corollary 1.11 to FmkC1
, obtaining for every x 2 Xk a set CkC1.x/.

Similarly as in previous steps, for every x 2 Xk and every c 2 CkC1.x/ the set

D D FmkC1
\ C 0

kC1
.x/c�1 contains a NkC1-element sequence �.DI NkC1/. Let

.d c
1 ; : : : ; d c

NkC1
/ D �.DI NkC1/c � FmkC1

c \ C 0
kC1.x/:
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For rows from �k to k we replace the current content of x within the domain

E WD E.Tkd c
j ; x; k � 1/ by the content of any block with domain E occurring in

Xk and containing BkC1
j as a subblock on coordinates from Tkd c

j . We also rewrite

the original trajectory of x to the .k C 1/st row. To be precise, for 1 6 j 6 NkC1

let

Dj .x/ D
®

d c
j W c 2 CkC1.x/

¯

:

Denote N.x; g/ D max¹j W xj;g 6D 0º and de�ne

‰kC1. Ox/n;g D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

� for n D �.k C 1/ and g 2 Dj .x/;

1 for n D �.k C 1/; g 2 Tkd

for some d 2 Dj .x/; but g 62 Dj .x/;

xN.x;g/;g for n D k C 1

and g 2 Tkd for some d 2 Dj .x/;

BkC1
j .gd �1/.n/ for n D �k; : : : ; k and g as above,

with the rest of E.Tkdj ; x; k � 1/

completed to a block

occuring in ‰k. yX/;

and ‰kC1. Ox/n;g D xn;g otherwise.

Let ˆkC1 D ‰kC1 ı ˆk , XkC1 D ˆkC1. yX/. Again it follows from the

construction that ‰kC1 and hence also ˆkC1 are conjugacies.

Since CkC1.x/ was chosen with use of Corollary 1.11, there is a set E such that

for every x 2 Xk and every g 2 G it holds that CkC1.x/ \ Eg 6D ¿. Enlarging

E we may assume that T 4
1 : : : T 4

k
� E. Let TkC1 D FmkC1

E. Replace TkC1 with

T �1
kC1

TkC1 if it was not symmetric. Then TkC1g contains some FmkC1
c, where

c 2 CkC1.x/, for every g 2 G. Consequently, any block with domain TkC1 in

XkC1 D ‰kC1.Xk/ has every block from BkC1 as a subblock.

Choose HkC1 using Lemma 1.8 for F D TkC1 and l D 5. Note that each

HkC1g contains TkC1g, so all blocks from BkC1 occur in each HkC1g. Also, all

changes in Step k C 1 were made on coordinates covered by sets of the form T 2
k

g,

where g are such that x.�.k C 1/; g/ D �.

Now we will show that also for each j D 1; : : : ; k all blocks from Bj occur

in any block with domain Hj g (g 2 G) in XkC1. Fix g 2 G, x 2 Xk and

c 2 CkC1.x/. For any set E of the form E.Tkd; x; k � 1/ (where d 2 Dj .x/

for some j ), there are three possibilities (indeed there is at most one such set for

which one of the latter two is true). The set Hj g \ E can be empty, can be the

whole of Hj g or it can be something else. In the �rst two cases, the construction of

‰kC1 implies that the block with domain Hj g is a block occurring in Xk , and thus

contains all blocks from Bj by the inductive assumption (4). Thus we need only

concern ourselves with the case when Hj g\E is not empty, but Hj g is not a subset
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of E (let us reiterate that this can happen for at most one E among the sets we

consider). The construction of E and our inductive assumptions imply that there

is some h for which either Tj h � Hj g n E or Tj h � Hj g \ E. Observe that Tj h

intersects no coordinates that were modi�ed after Step j : if it did, then it would

intersect a set of the form Tk0g0 (for j < k0 6 k and g0 such that x.�k0; g0/ D �),

but the enlarging algorithm would then cause Hj g to be a subset of E. It follows

that the block with domain Tj h is a block occurring in Xj , thus it (as well as the

larger block with domain Hj g) contains all blocks from Bj .

3. The isomorphism

Let zXe
k

be a subset of all x 2 X such that ˆkC1.x/e 6D ˆk.x/e . It is exactly the set

of points whose ˆk-image was modi�ed on coordinate e by ‰kC1. By the ergodic

theorem (see e.g. [6]), for each G-invariant ergodic measure � on X it holds that

�. zXe
k/ D lim

n!1

1

jFnj

X

g2Fn

1 zXe
k
.gx/ in L1.�/:

Let Fmk
denote the Følner sets selected during the construction. The code ‰kC1

introduces changes only on at most jBkC1jjTk j2 < "kC1jFmkC1
j coordinates of

each block x.FmkC1
c/, where c 2 CkC1.x/. We will estimate the number of

changes in a block x.Fn/ for su�ciently large n. We choose n so big that Fn

is .FmkC1
; "kC1/-invariant. For each c 2 CkC1.x/ \ Fn the set FmkC1

c is a

subset of FmkC1
Fn, the latter having less than .1 C "kC1/Fn elements. Since

Fmk
c \ Fmk

c0 D ¿ for c 6D c0, c; c0 2 CkC1.x/, the set Fn may contain at most
.1C"kC1/jFnj

jFmkC1
j

elements of CkC1.x/. Moreover, Fn may intersect FmkC1
c for some

c 2 C.x/ n Fn, but then c 2 F �1
mkC1

Fn D FmkC1
Fn. Total number of changes

made by ‰kC1 is thus less than

� .1 C "kC1/jFnj

jFmkC1
j

C "kC1jFnj
�

� jBkC1jjTk j2 < "kC1.1 C 2"kC1/jFnj:

Therefore, �. zXe
k
/ 6 "kC1.1 C 2"kC1/ < 2"kC1.

Let zX � X be the set of such x 2 X that for each g 2 G the sequence ˆk.x/g

is eventually constant, i.e.

zX D
\

g2G

1
[

kD1

1
\

j Dk

X n g. zXe
j / D X n

[

g2G

1
\

kD1

1
[

j Dk

g. zXe
j /

Since "k is summable, �.
S1

j Dk g. zXe
j // converges to zero when k goes to in�nity

and therefore zX has full measure. Consequently,

ˆ.x/ D lim
k!1

ˆk.x/
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is de�ned on a full subset of X (almost everywhere for each G-invariant measure).

Let Y be the closure of ˆ. zX/ in ƒG . Clearly, it is G-invariant. By essentially the

same argument as in [1] and [3] one can prove the following proposition.

Proposition 3.1. (1) ˆ. zX/ is a full subset of Y .

(2) ˆ is an equivariant Borel-measurable bijection onto a full set.

(3) ˆ� is an a�ne homeomorphism between simplices of invariant measures

on X and Y .

Proof. For y 2 Y take .yn/ � ˆ. zX/, yn D ˆ.xn/, converging to y. Let Y e
k

be

the set of all this y 2 Y for which y�k;e 6D 0. For su�ciently large n on the set

Fm the positions of symbols in y from �k up to level k coincide with those in yn.

Non-zero symbols appear on the �kth level of yn only at coordinates on which

xn was modi�ed by ‰k . Hence, for any G-invariant measure � on Y the number

�.Y e
k

/ is estimated similarly to the case of zXe
k
: the frequency of non-zero symbols

on �kth level of x.Fmk
/ is bounded by "k , and again by the ergodic theorem

�.Y e
k / D lim

m!1

1

jFmj

X

g2Fm

1Y e
k

.gx/ < "k:

Hence the set

zY D
\

g2G

1
[

kD1

1
\

j Dk

Y n g.Y e
k / D Y n

[

g2G

1
\

kD1

1
[

j Dk

g.Y e
k /;

is a full set. Notice that for each y 2 zY and every g 2 G the elements yn;g are

eventually zero (both when n ! 1 and n ! �1).

We need to show that ˆ maps zX onto zY . Choose y 2 zY . Let x 2 X

be the element lying on the last non-zero level of y�;e. Let y D limn!1 yn,

yn 2 ˆ. zX/, ˆ.xn/ D yn. Consider some Følner set Fk . On Fk the point y

has zeros on levels higher than some N . For n su�ciently large, all yn have

zeros on levels higher than N . Hence all coordinates of xn belonging to Fk were

changed at most N times. It means that ˆ.xn/l;g D ˆN .xn/l;g D ˆN Ci .xn/l;g

for g 2 Fk and i > 1. Since ˆn is a block code, it is continuous, thus

ˆN .x/ D limn!1 ˆN .xn/ D limn!1 ˆN Ci .xn/ D ˆN Ci .x/. Consequently,

in x coordinates g 2 Fk are modi�ed at most N times by codes ˆN . Since Fk is

an arbitrarily big Følner set, x 2 zX . At the same time, the content of x at these

coordinates coincides with the content of y D limn yn, so y D ˆ.x/.

Injectivity follows easily from the fact that the last non-zero levels of ˆ.x/

contain the orbit of x under the action of G.

The map ˆ is measurable, because it is a limit of (continuous) block codes.

Both spaces are compact, hence standard Borel, so the inverse is automatically

measurable. This ends the proof of (1) and (2).
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The map ˆ� is obviously a�ne, its bijectivity follows from the fact that ˆ is a

bijection between full sets, so it su�ces to show that it is continuous (note that sets

of invariant measures are compact). We skip this argument, because it is almost

identical to the one for the Z
d case presented in [3]. �

4. Minimality

Minimality of the system .Y; G/ follows from the following lemma.

Lemma 4.1. Let .Y; G/ be an array system, Y � ƒG . Let BY be the collection

of all blocks occuring in Y and let B0
Y � BY be a countable collection of blocks

such that for every " > 0 and every B 2 BY there exists B 0 2 B0
Y such that

D.B; B 00/ < " for some subblock B 00 of B 0.

If there exist a dense subset Y 0 of Y consisting of elements y in which every

B 2 B0
Y occurs syndetically then the symbolic system .Y; �/ is minimal.

Proof. Let us metrize the topology in ƒG , G D ¹g1; g2; : : : º, by

�.x; y/ D max
n2N

dƒ.x.gn/; y.gn//

n
:

We �x x 2 Y and aim to prove that the orbit ¹gxW g 2 Gº is dense in Y . Let " > 0

and let y 2 Y . We will show that �.gx; y/ < " for some g 2 G. Let y0 2 Y 0

satisfy �.y; y0/ < "
3
. Choose N 2 N such that 1

N
diam ƒ < "

3
and let F be a

Følner set containing ¹g1; : : : ; gN º. Denote by y.F 0/ a block being the restriction

of y0 to the domain F . It follows from the assumption that we can �nd a block

B 0 2 B 0
Y such that D.y0.F /; B 00/ < "

3
for some subblock B 00 of B 0. Note that B 00

occurs in each element z of Y 0 syndetically, i.e. there is a �nite set H � G such

that B 00 (possibly translated) is a subblock of z.Hg/ for each g 2 G. In particular,

it is so for g being the neutral element, i.e. there is h such that F h � H and

B 00 D z.F h/ D hz.F /. It follows that h 2 H , because Følner sets contain the

neutral element.

Since H is �nite, we can approximate a point x (�xed at the beginning)

by x0 2 Y 0 so that �.x; x0/ < ı, where delta is small enough to ensure that

�.hx; hx0/ < "
3

for all h 2 H . For some h0 2 H we have h0x0.F / D B 00,

hence for each f 2 F it holds that

dƒ..h0x0/.f /; y0.f // 6 D.h0x0.F /; y0.F // D D.B 00; y0.F // <
"

3
:

Since F � ¹g1; : : : ; gN º, for f 62 F we have 1
N

dƒ..h0x0/.f /; y0.f // < "
3
, so

�.h0x0; y0/ 6
"
3

and

�.h0x; y/ 6 �.h0x; h0x0/ C �.h0x0; y0/ C �.y0; y/ < ": �



Minimal models for actions of amenable groups 583

Note that in our case the union
S1

kD1 B.Xk/ is a collection of blocks with the

desired property. Indeed, each block occurring in ˆ. zX/ occurs already in one of

Xk , because each coordinate of zX was modi�ed only �nitely many times. Note

that the distance between blocks majorizes the distance between their subblocks

sharing the same domain. Since ˆ. zX/ is dense in Y , the main Theorem 1.2 is

proved.
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