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1. Introduction

In 1985, in a paper titled “A splitting theorem for spaces of nonpositive curvature”

([22]), Schroeder introduced a novel approach for studying Hadamard manifolds

that was based on the work of Eberlein and Chen ([7], [5], and [8]), and proved

a splitting theorem for non-positively curved manifolds of �nite volume that gen-

eralized previous results of Gromoll and Wolf ([12]) and Lawson and Yao ([18])

for non-positively curved compact manifolds. While Schroeder’s arguments were

di�erential in essence, they have inspired a host of splitting theorems for actions

on CAT.0/ spaces (cf. Theorem II.6.21 in [3] and Theorem 9 in [19]). In this

paper we adopt Schroeder’s approach to study group actions on spaces satisfy-

ing a weaker notion of non-positive curvature, namely Busemann non-positive

curvature (BNPC hereafter). We explore product decompositions and Cli�ord

isometries of BNPC spaces and extend several results, previously known to hold
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in some speci�c cases like CAT.0/ spaces, such as the product decomposition the-

orem (cf. Theorem II.2.14 in [3]), the de Rham decomposition theorem (cf. Theo-

rem II.6.15 in [3]), and the splitting theorem (cf. Theorem 9 in [19]). These results

are then combined in the smooth case to prove the following splitting theorem.

Theorem 1.1. Let M be a complete reversible Finsler manifold of Busemann

non-positive curvature and �nite Busemann–Hausdor� volume. Suppose that the

fundamental group � of M has a trivial center and that it splits as � D �1 � �2,

thatM has a compact isometry group, and that the induced metric on the universal

cover ofM is uniformly convex. ThenM is isometric to a productM1 �M2 with

�1.Mi / D �i .

A reversible Finsler manifold is a smooth manifold equipped with a norm

on the tangent space that varies smoothly (see precise de�nition below). The

natural analogue of the sectional curvature in the context of Finsler manifolds

is the �ag curvature. However, as discussed for example in [9], non-positive �ag

curvature is in some ways not truly analogous to non-positive sectional curvature,

and other notions of non-positive curvature may be more productive. In this work

we consider the notion of Busemann for non-positive curvature, which has the

advantage of being naturally comparable with the notion of CAT.0/. Many of the

techniques and proofs in this paper originate from the CAT.0/ case.

A manifold (resp. geodesic metric space) is said to be BNPC if locally (resp.

globally) the distance between any two constant speed geodesics is a convex func-

tion. A metric satisfying this property is said to be convex. BNPC spaces general-

ize CAT.0/ spaces in a similar manner as Banach spaces generalize Hilbert spaces

(cf. [11]). This notion of non-positive curvature was introduced by Busemann in [4]

and it originates from the observation that a complete connected Riemannian man-

ifold has non-positive sectional curvature if and only if its metric is locally convex.

The notions of non-positive �ag curvature and Busemann non-positive curvature

coincide in the context of Riemannian manifolds, or more generally, in the con-

text of Berwald manifolds, which are Finsler manifolds that are a�nely equiva-

lent to Riemannian manifolds (cf. [17] and [15]). However, in general these two

notions are not equivalent (cf. [14]). Kristály and Roth conjectured in [16] that ev-

ery Finsler manifold of Busemann non-positive curvature is necessarily a Berwald

manifold. See Section 2 below for a further discussion and additional de�nitions.

If M has in�nite volume or if � has a non-trivial center then the theorem fails

already when M is Riemannian (cf. Theorem 1 and Corollary 1 in [22], and the

discussion on Section 4.2 in [19]). The strategy used in [22], as well as in this

paper, is to consider the action of � on the universal cover X of M and then

show that X splits as X D X1 � X2 and that � respects this splitting in the

sense that �i acts trivially on X3�i . The main impediment is that the action of

� on X might have �xed points at in�nity. If M has �nite volume then the action
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of � on X has the duality property (see Section 8), which implies that all the

�xed points at in�nity lie on the boundary of some �at factor of X . The fact

that � has a trivial center ensures that X does not admit a non-trivial �at factor.

Note that if M is Riemannian then the isometry group of M is compact (cf. [7])

and the induced metric on the universal cover is CAT.0/ and hence uniformly

convex (see Section 2). Thus Theorem 1.1 indeed generalizes Schroeder’s splitting

theorem (cf. Theorem 2 in [22]). The author is not familiar with any example of

a complete reversible BNPC Finsler manifold of �nite volumeM such that I.M/

is not compact, or such that X is not UC. It is conceivable that Theorem 1.1 still

holds without these two assumptions.

Like in [22], the splitting of the manifold in Theorem 1.1 is attained via a

splitting of its universal cover, which by the Cartan–Hadamard theorem (Theo-

rem II.4.1.(1) of [3]) is a BNPC space. However, unlike the CAT.0/ case, there is

no canonical metric to associate to the Cartesian product of two BNPC spaces.

After providing the needed preliminaries in Section 2, and discussing the notion

of parallel subsets in BNPC spaces in Section 3, we turn explore product decom-

positions of BNPC spaces in Section 4. We note some of the desirable properties

of direct products of CAT.0/ spaces and consider several approaches for de�ning

product decompositions of BNPC spaces. On the basis of this discussion we sug-

gest two types of BNPC product decompositions, symmetric and non-symmetric,

according to the way the �bers in the ambient space intertwine. We prove that both

types of decompositions have many of the desirable properties of direct products

of CAT.0/ spaces. In Section 5 we prove the product decomposition theorem

(Theorem 5.3), which provides su�cient and necessary conditions for a cover of

a BNPC space to induce a product decomposition.

Section 6 studies the Cli�ord isometries of BNPC spaces. A Cli�ord isometry

is an isometry with a constant displacement function. We prove that a BNPC space

admits a Cli�ord isometry if and only if it admits a BNPC decomposition with a

�at factor. More generally, we prove an analogue of the de Rham decomposition

theorem (compare with Theorem II.6.15 in [3]).

Theorem 1.2 (de Rham decomposition theorem). Let X be a BNPC space. Then

X admits a BNPC product decomposition X D B � Y where B is a strictly

convex normed vector space and Y is a BNPC space with no non-trivial Cli�ord

isometries. Every �at factor of X is contained in B . Every isometry of X respects

this decomposition and every Cli�ord isometry of X acts trivially on Y and as a

translation on B . If X is complete then B is a Banach space. If X is geodesically

complete then the decomposition X D B � Y is symmetric.

In particular, Theorem 1.2 answers a�rmitvely a question raised in [11] (cf.

Remark 2.5) on whether the set of Cli�ord isometries of a BNPC space forms a

group.
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Theorem 1.3. The Cli�ord isometries of a BNPC space form an Abelian group.

In Section 7 we prove a splitting theorem for group actions on BNPC spaces

that generalizes previous splitting theorems on CAT.0/ spaces (compare with

Theorems II.6.21 and II.6.23 in [3] and Theorem 9 in [19]).

Theorem 1.4 (splitting theorem). Let X be a complete BNPC space which is

either locally compact or uniformly convex. Let G D G1 � : : : � Gn be a group

acting by isometries on X . If dG ! 1 then there exists a minimal closed,

convex, G-invariant subspace Z � X which has a G-equivariant symmetric

BNPC decomposition Z D Z1 � : : : � Zn and each Gi acts trivially on Zj when

j ¤ i .

Here dG ! 1 means that the action is non-weakly evanescent, which is the

analogue of having no �xed points at in�nity for actions on spaces that are not

locally compact. For the precise de�nition see Section 7 below. The proof of

Theorem 1.4 given here is an adaptation of the proof of Theorem 9 in [19].

In Section 8 we turn to study Busmenan non-positive curvature in the context

of smooth spaces, focusing on the duality property. We say that an action of a

group G on a geodesic space X has the duality property if for every geodesic

line cW R ! X there exists a sequence gn 2 G such that gnc.0/ ! c.1/ and

g�1
n c.0/ ! c.�1/. The duality property was �rst introduced by Chen and

Eberlein in [5] as a replacement for cocompactness. The principal example of

an action that satis�es this property is the action of the fundamental group of a

Hadamard manifold of �nite volume on the universal cover. The duality property

played an essential role in the proof of the splitting theorem in [22] and it is also

essential for the proof of Theorem 1.1. We prove the following theorem.

Theorem 1.5. Let .M; F / be a complete BNPC Finsler manifold of �nite volume.

Then the action of �1.M/ on the universal cover of M has the duality property.

Note that it is unknown whether the duality property extends to more general

classes of actions on CAT.0/ spaces. In particular, it remains an open question

whether a cocompact proper action on a geodesically complete CAT.0/ space

satis�es the duality property (cf. [1] and [2]).
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2. Preliminaries

The spaces considered in this work are uniquely geodesic spaces. This means that

every two points x; y are connected by a unique geodesic curve, i.e., a unique

isometry cW Œa; b� ! X such that c.a/ D x and c.b/ D y. We will usually make

no distinction between the map c and its image, which we denote by Œx; y�, and

will refer to either one as the geodesic (segment, curve, path, etc.) connecting

x and y. Geodesic rays and lines are de�ned similarly. A geodesic space X is

said to be (uniquely) geodesically complete if every geodesic segment in X can

be extended (in a unique way) to a geodesic line. A constant speed geodesic is a

curve cW Œ0; 1� ! X traveling at constant speed such that c.Œ0; 1�/ is a geodesic.

A geodesic metric space .X; d/ is said to be Busemann non-positively curved

(BNPC) if d is a convex metric, i.e., if for every two constant speed geodesics c; c0

we have

d
�
c
�1
2

�
; c0

�1
2

��
� 1

2
d.c.0/; c0.0//C 1

2
d.c.1/; c0.1//:

Standard examples of BNPC spaces include CAT.0/ spaces and strictly convex

normed vector spaces (“�at BNPC spaces” hereafter). Convex subsets and cer-

atin �nite products of BNPC spaces are also BNPC (cf. Example 4.2 below).

More generally, spaces of p-integrable maps to complete uniformly convex BNPC

spaces are BNPC, and are generally not CAT.0/ when p ¤ 2. (cf. [11]). Another

example of a BNPC space is an ellipse C in the plane endowed with the Hilbert

metric (see Example 2.4 below). The resulting metric space is a BNPC Finsler

manifold, which is CAT.0/ if and only if C is a circle. We note that in the case of

Finsler manifolds, Busemann’s notion of non-positive curvature is one of several

inequivalent notions that generalize sectional curvatue in di�ernt ways (cf. dis-

cussions in [15] and [9]).

Flat BNPC spaces and their linearly convex subsets (�at BNPC sets hereafter)

play an important role in the theory of BNPC spaces, similar to the role played

by �at CAT.0/ spaces (i.e., inner product spaces) in the theory of CAT.0/ spaces.

Following are two useful facts on the relation between �at sets and a�ne maps.

Recall that a function f WX ! R is said to be a�ne (resp. convex) if its composi-

tion with any geodesic curve in X is a�ne (resp. convex). More generally, a map

f WX ! Y between uniquely geodesic spaces is said to be an a�ne if the compo-

sition of f with any geodesic curve in X gives a constant speed geodesic curve in

Y . If in addition f is a bijection then X and Y are said to be a�nely equivalent.

The following observation follows from Proposition 3.3 in [10].

Proposition 2.1. Let X; Y be uniquely geodesic spaces and f WX ! Y a contin-

uous a�ne map. If A � X is a �at BNPC set then so is f .A/.

The following characterization of �at BNPC spaces was proved in [13].
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Theorem 2.2. Let X be a geodesic metric space. Then X is isometric to a

�at BNPC set if and only if a�ne maps separate points in X , i.e., if for every

x ¤ y 2 X there exists an a�ne map f WX ! R such that f .x/ ¤ f .y/.

It follows from the de�nition that BNPC spaces are uniquely geodesic spaces.

The midpoint of x; y 2 X is the unique point m 2 Œx; y� such that d.m; x/ D
d.m; y/ and we denote it by xCy

2
. Convex metrics are in fact strictly convex,

i.e., they satisfy d.x; y1Cy2

2
/ < d.x;y1/Cd.x;y2/

2
for every three non-aligned points

x; y1; y2 (cf. Proposition 8.2.5 of [20]). Occasionally we will require a stronger

notion of convexity, namely uniform convexity. X is said to be weakly uniformly

convex (WUC) if all its modulus of convexity functions ıx;"W .0;1/ ! R (x 2 X
and " > 0) are strictly positive when ıx;" is de�ned by

ıx;".r/ D

8
<
:

1 if Mx;";r D ;;

r � sup
°
d.x;

y1 C y2

2
/W .y1; y2/ 2 Mx;";r

±
else,

where

Mx;";r D ¹.y1; y2/W max¹d.x; y1/; d.x; y2/º � r and d.y1; y2/ � "rº:

We say thatX is uniformly convex (UC) if for every " > 0 there exists ı."/ > 0 such

that ıx;".r/ � ı."/r for every x and r . We note that in Theorems 1.1 and 1.4 the as-

sumption thatX is UC can be replaced with a slightly milder assumption, namely

that every modulus of convexity function ı";x satis�es lim infr!1

� ıx;".r/

r

�
> 0.

Recall that a metric space is said to be proper if every closed ball is compact.

By the Hopf–Rinow theorem (cf. Theorem I.3.7 in [3]) complete and locally

compact BNPC spaces are proper and thus WUC (cf. Corollary A.2 in [21]), but

generally not UC (cf. Corollary A.12 in [21]).

Proposition 2.3. Let X be a WUC BNPC space and suppose that C � X is a

non-empty complete convex subset of X then for every x 2 X there is a unique

point p.x/ 2 C such that d.x; p.x// D d.x; C / D inf¹d.x; c/W c 2 C º. The

projection X ! C given by x 7! p.x/ is continuous and convex.

The projection p is called the closest point projection. For a proof of the

proposition see Corollary A.3 in [21]. We stress that unlike the CAT.0/ case,

closest point projections in BNPC spaces need not be Lipschitz (cf. Theorem A.9

in [21]). However, there are a few special cases where closest point projections

are known to be Lipschitz, such as projections in 2-dimensional a�ne spaces

(cf. Theorem A.7 in [21]) or projections to �bers of product decompositions

(cf. Proposition 4.6 (a) below).
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Let M denote a connected smooth manifold M . A Finsler structure on M is

a continuous function F WTM ! Œ0;1/ which is smooth on TM n ¹0º and such

that for all p 2 M the restriction Fp of F to TpM is a Minkowski norm, i.e., Fp

is positively homogeneous of degree one and with positive de�nite Hessian:

g.u; v/ D 1

2

@2

@s@t
ŒF 2.y C suC tv/�jsDtD0

:

A Finsler manifold is a smooth connected manifold M along with a Finsler

structure F on M . If Fx is absolutely homogeneous (i.e., if Fx is a norm on

TxM ) for every x 2 M then .M; F / is said to be reversible. The Finsler structure

of reversible Finsler manifolds induces a length metric in the usual way. All

Finsler structures considered in this paper are assumed to be reversible. A Finsler

manifold .M; F / is siad to be of Busemann non-positive curvature if the induced

length metric dF ofM is locally convex, or equivalently, if the universal cover of

M is BNPC. The following is an example of a family of BNPC Finsler manifolds

that are not CAT.0/.

Example 2.4. LetC be a simple closed linearly convex subset in the plane. Given

two distinct points p and q inC , the unique straight line connecting them intersects

the boundary of C in two points, a and b, labeled so that japj < jaqj where j j
denoted the Euclidean distance. We de�ne the Hilbert distance between p; q by

d.p; q/ D 1

2
log

jqajjbpj
jpajbqj :

Then d de�nes a metric on C and in fact .C; d/ is a reversible Finsler manifold

of constant �ag curvature = -1 (cf. [15]).However .C; d/ is BNPC if and only the

boundary of C is an ellipse and it is CAT.0/ if and only if the boundary of C is a

circle (cf. [14]).

3. Parallel sets in BNPC spaces

Let X be BNPC. We say that the segments I1 D Œa1; b1� and I2 D Œa2; b2� in X

are parallel (denoted I1 k I2) if

d.a1; a2/ D d.b1; b2/ D d
�a1 C a2

2
;
b1 C b2

2

�
:

If in addition

d.a1; a2/ D d.I1; I2/ D inf¹d.x; y/ j x 2 I1; y 2 I2º;

then we say that I1 and I2 are opposite. The following lemma is due to Busemann

(cf. Theorem 3.14 in [4]).
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Lemma 3.1 (Busemann’s Lemma). LetX be BNPC and let I1; I2 be two geodesic

segments in X with parameterizations ci W Œ0; 1� ! Ii such that t 7! d.c1.t /; c2.t //

is a�ne. Then the set
S

t2Œ0;1�Œc1.t /; c2.t /� is convex and isometric to a �at BNPC

set.

Busemann’s lemma has several immediate implications. First note that parallel

segments in BNPC spaces are either collinear or the opposite sides of a rectangle

in some strictly convex normed plane. We therefore have the following corollary.

Corollary 3.2. Œa; b� k Œc; d � if and only if Œa; c� k Œb; d �.

In particular, parallel segments in BNPC spaces are of equal length. Note that

opposite segments cannot be collinear and thus opposite segments always span a

�at BNPC rectangle. We emphasize however that Corollary 3.2 does not remain

true if we replace “parallel” by “opposite,” as illustrated in the following example.

Example 3.3. First note that a normed vector space V is BNPC if and only if

the unit ball in V is strictly convex (cf. Remark II.1.18 in [3]), and that segments

in �at BNPC spaces are parallel if and only if one segment is a translation of

the other. Let k k be a strictly convex norm on the plane with a unit ball B

that satis�es k.0; 1/k D k.1; 0/k D 1 and B � ¹.x; y/ 2 R
2W jyj � 1º. Then

the restrictions on k k imply that k.t;�1/; .s; 1/k � 2 for every t; s and equality

occurs if and only if t D s. Thus the segments I1 D Œ.�1; 1/; .1; 1/� and

I2 D Œ.�1;�1/; .1;�1/� are opposite. On the other hand, a similiar argument

implies that I3 D Œ.�1; 1/; .�1;�1/� and I4 D Œ.1; 1/; .1;�1/� are opposite if and

only if B � ¹.x; y/ 2 R
2W jxj � 1º. Since the only additional restriction on B as

a unit ball is that it is symmetric (i.e., B D �B), it is fairly straight at this point

forward to produce examples of norms in which I3 and I4 are not opposite.

Note also that in general “being parallel” is not a transitive relation, not even in

the CAT.0/ case. For example, take two copies S1 and S2 of the Euclidean square

Œ0; 1� � Œ0; 1� and paste them together by identifying .x; y/ 2 S1 with .x; y/ 2 S2

whenever x � y. Let X be the quotient space endowed with the induced length

metric, then by Reshetnyak’s theorem (Theorem II.11.1 of [3]) X is CAT.0/. Let

pi WSi ! X denote the projection maps. Then on one hand, the two segments

p1.Œ.0; 1/; .1; 1/�/ and p2.Œ.0; 1/; .1; 1/�/ have exactly one point in common and

therefore these segments are not parallel in X . On the other hand, both these

segments are parallel in X to p1.Œ.0; 0/; .1; 0/�/D p2.Œ.0; 0/; .1; 0/�/. Thus “being

parallel” is not a transitive relation.

The notion of “being parallel” can be extended to convex sets. We say that two

convex subsets A;B � X are parallel if they admit a surjective parallel isometry,

i.e., a bijection f WA ! B such that Œa1; a2� is parallel to Œf .a1/; f .a2/� for every

a1; a2 2 A. Note that Corollary 3.2 implies that Œa1; f .a1/� k Œa2; f .a2/� and thus
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that f is indeed an isometry. If f is the closest point projection to B then we

say that A and B are opposite. Hereafter, the distance between two sets is de�ned

by d.A; B/ D inf¹d.x; y/ j x 2 A; y 2 Bº. In terms of distance, A and B are

opposite if and only if d.A; B/ is attained at every point in A [ B .

Next we list a few useful observations.

Proposition 3.4. LetX be a BNPC space,A;B � X two convex opposite subsets,

and C D conv.A [ B/ their convex hull. Then,

(a) C is the disjoint union of convex sets A˛ opposite to A;

(b) C admits closest point projections to the A˛ that are 2-Lipschitz;

(c) C is a�ne if and only if A is a�ne;

(d) C is complete if and only if A is complete.

The proof readily follows from the fact that C has a BNPC decomposition

C D A � Œ0; d.A; B/�. We will therefore postpone the proof of Proposition 3.4

to the end of Section 5, where we can use the properties of BNPC product

decompositions.

4. Product decompositions of BNPC spaces

In this section we de�ne product decompositions of BNPC spaces. We start by

discussing what product decompositions of BNPC spaces should look like. Our

�rst step is to characterize product decompositions of CAT.0/ spaces.

Let .X; d/ be a geodesic space and suppose X decomposes as X D Y � Z

where Y and Z are not reduced to a point. The Y -�bers (resp. Z-�bers) of this

decomposition are the subsets of the form Yz D Y �¹zº (resp.Zy D ¹yº�Z) and

we assume that they are convex in X . We say that the Z-�bers are transversal to

the Y -�bers, or thatZ is transversal inX to Y , if d..y; z/; .y; z0// D d.Yz; Yz0/ for

every y 2 Y and z; z0 2 Z. Given some �ber Yz (resp.Zy) we denote by dYz
(resp.

dZy
) the restriction of d to it. We say thatX is the direct product of Y andZ, and

denote X D Y ˚Z, if there exist �bers Yz and Zy such that d2 D d2
Yz

Cd2
Zy

. We

consider the following characterizations of X :

(i) X D Y ˚Z;

(ii) there exist some function f W R
2 ! R and some �bers Yz and Zy such that

d D f .dYz
; dZy

/;

(iii) the Z-�bers in X are transversal to the Y -�bers.
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Proposition 4.1. If d is convex then .i/ H) .ii/ H) .iii/. Furthermore, if (iii)

is satis�ed then dYz
and dZy

are independent on the choice of z and y and they

induce convex metrics on Y and Z. If, in addition, .X; d/ is CAT.0/ then (i), (ii),

and (iii) are equivalent.

Proof. Fix z1 ¤ z2 2 Z and y1 ¤ y2 2 Y . For i D 1; 2 let ci W Œ0; ri � ! X denote

the geodesic connecting y1 and y2 in Yzi
. .i/ H) .ii/ is clear.

Assume (ii). Note that d..y1; z1/; .y2; z1// D f .d..y1; z/; .y2; z//; 0/ is in-

dependent on z1. We conclude that dYz
is independent on z. Similarly, dZy

is

independent on y. Omitting the y and z from dYz
and dZy

respecively, we see

that the Y -�bers are isometric to the space .Y; dy/ and the Z-�bers are isometric

to the space .Z; dZ/. Let c.t/W Œ0; r� ! Y denote the geodesic connecting y1 and

y2 in Y then c1.t / D .c.t/; z1/ and c2.t / D .c.t/; z2/. For every �xed 0 < s < r

de�ne gs.t / D d.c1.s/; c2.t // D f .jt � sj; dZ.z1; z2//. Then gs.t / is strictly con-

vex and symmetric around s and thus obtains it minima at t D s. It follows that

d.c1.0/; c2.0// < d.c1.0/; c2.r/. As y1; y2; z1 and z2 were chosen arbitrarily, it

follows that Z is transversal to Y .

If Z is transversal to Y then d..y; z1/; .y; z2// D d
�
Yz1

; Yz2

�
is indepen-

dent of y and thus dZy
is independent of y. Let pWYz1

! Yz2
denote the clos-

est point projection. The transversality of Z implies that p..y0; z1// D .y0; z2/

for every y0 2 Y . Set mi D ci

�
ri

2

�
. Then by convexity of the metric,

d.m;m0/ � 1
2
.d.c1.0/; c2.0// C d.c1.r1/; c2.r2// D d.Yz1

; Yz2
/. We conclude

that Œc1.0/; c1.r1/� k Œc2.0/; c2.r2/�. By Corollary 3.2 it follows that r1 D r2. As

y1; y2; z1 and z2 were taken arbitrary it follows that dYz
is independent of z. Being

isometric to convex subsets of X , .Y; dYz
/ and .Z; dZy

/ are clearly BNPC.

Suppose X is CAT.0/. Then by the Sandwich Lemma (cf. Exercise II.2.12.2

in [3]) the segments Œ.y1; z1/; .y2; z1/� and Œ.y1; z2/; .y2; z2/� span an Euclidean

rectangle in X , isometric to the direct product of Œ.y1; z1/; .y2; z1/� � Œ.y1; z2/,

.y2; z2/�. It follows that d2..y1; z1/; .y2; z2// D d2
Yz
.y1; y2/ C d2

Zy
.z1; z2/. We

conclude that if X is CAT.0/ then (iii) H) (i). �

The following two examples demonstrate that (i), (ii), and (iii) are not equiva-

lent in the context of BNPC spaces.

Example 4.2. The lp-metric on the Cartesian product X D Y � Z is given by

dp..y1; z1/; .y2; z2// D k.dY .y1; y2/; dZ.z1; z2//kp

If Y and Z are BNPC and 1 < p < 1 then .Y � Z; lp/ is BNPC. Furthermore,

the Y and Z �bers of X D Y �Z are convex subsets of X , pairwise opposite and

transversal to one another. The restriction of dp to every Y -�ber (resp. Z-�ber)

coincides with dY (resp. dZ). In the terms of Proposition 4.1, the lp-metrics satisfy

conditions (ii) and (iii) but X is isometric to the direct product of Y and Z only
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if p D 2. We conclude that the products of BNPC spaces are not rigid in the

sense that the �bers can be composed together in various ways and there is no one

common structure for all products, as in CAT.0/ spaces.

Example 4.3. Let W be a �at Busemann space. Recall that given vectors v; w 2
W we say that v is transversal to w (denoted v a w) if kv C twk � kvk for

all t 2 R. Geometrically this means that the line v C tw supports the ball

¹u 2 W W kuk � kvkº. Equivalently, v a w if and only if Rv is transversal to

Rw in the plane Rv � Rw. Generally a is not a symmetric relation, i.e., v a w

does not implyw a v. Indeed, consider for example the caseW D .R2; k k/where

k k is given by k.x; y/k D
p
x2 C 2y2 C jyj and take v D .1; 0/ and w D .1; 1/.

Observing that the unit ball of k k is the intersection of the two Euclidean balls

or radius
p
2 around .0; 1/ and .0;�1/ it is clear that v is transversal to w but not

vise versa. Thus the decomposition W D Rw � Rv satis�es condition (iii) of

Proposition 4.1 but not condition (ii), since otherwise applying Proposition 4.1 on

the product W D Rv � Rw would imply that Rw is transversal to Rv.

Proposition 4.1 provides three possible de�nitions for product decompositions

while Examples 4.2 and 4.3 illustrate that they are not equivalent. The de�nition

suggested at Proposition 4.1 (iii) is the most general as it implied by the other

two. However, in Example 4.3 we saw that such de�nition would yield product

decompositions which are not symmetric in the sense that X D Y � Z may

be a decomposition while X D Z � Y might not. The reader may wonder

whether working with the most general de�nition is really essential. The next

example shows that if we want to generalize theorems such as the de Rham

decomposition theorem (cf. Theorem II.6.15 in [3]) then we must endure non-

symmetric decompositions.

Example 4.4. Let W; v; w and k k be as in Example 4.3. Observe that v and �v
are the only unit vectors transversal to w. Thus there is no vector u 2 W such that

u a w and w a u. De�ne V D ¹sv C tw j s; t 2 R jsj � 1º then V is a BNPC

space which admits Cli�ord isometries. If there exists a de Rham decomposition

of V it must be of the form V D Rw � U where U is some linear segment in W .

The observation above shows a decomposition of this sort satis�es condition (iii)

if and only if U D Œ�1; 1�v. Thus any de�nition for BNPC decomposition must

allow decompositions like V D Rw � Œ�1; 1�v which are not symmetric.

Following the discussion above we are now ready to de�ne product decompo-

sitions of BNPC spaces.

De�nition 4.5. Let .X; d/ be a BNPC space. We say that X D Y � Z is a

BNPC decomposition if the Y -�bers and Z-�bers are convex subsets of X and

if Z is transversal to Y . If in addition Y is transversal to Z then we say that the

decomposition is symmetric.
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Next we list several useful properties of BNPC product decompositions.

Proposition 4.6. Suppose X D Y � Z be a BNPC decomposition where Y and

Z are not reduced to a point.

(a) The factor maps �Y WX ! Y and �ZWX ! Z given by �Y .y; z/ D y and

�Z.y; z/ D z are Lipschitz. In particular, X is complete if and only if Y and

Z are complete.

(b) X is a�nely equivalent to the direct product Y ˚ Z. Furthermore, if cY .t /

and cZ.t / are constant speed geodesics in Y and Z respectively, then c.t/ D
.cY .t /; cZ.t // is a constant speed geodesic in X .

(c) If the BNPC decomposition is symmetric or if X is uniformly convex (UC)

then X is quasi-isometric to Y ˚Z.

(d) If A � Y and B � Z are �at subsets then so is A�B � X . In particular, X

is �at if and only if A and B are �at.

(e) Equality of slopes - Suppose c and c0 are parallel segments in X then the

projections of c and c0 to each factor are also parallel and in particular have

the same speed and length.

(f) If  is an isometry of X that permutes the Y -�bers then  preserves the

decomposition of X and acts on each factor separately as an isometry.

(g) X is (uniquely) geodesically complete if and only if both Y and Z are

(uniquely) geodesically complete. If X is UC then so are Y and Z.

(h) IfX D Y �Z is a symmetric decomposition then the same �bers induce also a

decomposition asX D Z�Y . Furthermore, ifZ has a BNPC decomposition

Z D Z1 �Z2 then X has a BNPC decomposition X D .Y �Z1/ �Z2.

Proof. (a) By de�nition Z is transversal to Y and thus, for any given x D .y; z/

and x0 D .y0; z0/,

dZ.pZ.x/; pZ.x
0// D d..y; z/; .y; z0// D d.Yz; Yz0/ � d.x; x0/

and

dY .pY .x/; pY .x
0// D d..y; z/; .y0; z// � d.x; x0/C d.Yz; Yz0/ � 2d.x; x0/:

The second part of the statement follows from the fact that the distance between

any two Y -factors or two Z-factors is positive which implies that the Y -factors

and Z-factors are closed subsets of X .

(b) Fix y1; y2 2 Y and z1; z2 2 Z and let cY .t / (resp. cZ.t /) denote the

geodesic curve connecting y1 and y2 in Y (resp. z1 and z2 in Z). We will

prove that the curve c.t/ D .cY .t /; cZ.t // is a constant speed geodesic in X .

Indeed, by de�nition of BNPC decompositions, the segments Œ.y1; z1/; .y2; z1/�

and Œ.y1; z2/; .y2; z2/� are opposite and thus, by Busemann’s lemma, their convex
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hull is isometric to a �at rectangle R. Under this identi�cation c.t/ travels on the

diagonal between .y1; z1/ and .y2; z2/ at constant speed and thus it is a constant

speed geodesic. We conclude that X is a�nely equivalent to Y ˚ Z.

(c) By the triangle inequality, d..y1; z1/; .y2; z2// � d.y1; y2/ C d.z2; z2/.

We will prove that there exists K > 0 such that, for all y1; y2 2 Y and z1; z2 2 Z,

K � k.d.y1; y2/; d.z1; z2//k1 � d..y1; z1/; .y2; z2//

If the decomposition is symmetric then the equation is true with K D 1. Suppose

then that X is UC with modulus of convexity function ı."/ such that ıx;".r/ �
ı."/r for all x; "; r . Let U denote the set of all strictly convex norms k k of the

plane satisfying

(i) k.0; 1/k D k.1; 0/k D 1 and

(ii) kxCy
2

k � 1�ı."/ for all x; y 2 R
2 such that kxk D kyk D 1 and kx�yk � ".

Note that U is not empty. Indeed, suppose z1 ¤ z2 2 Z and let cW Œ0; r� ! Y

be any geodesic segment in Y . Then Œc.0/; c.r/�� ¹z1º and Œc.0/; c.r/�� ¹z2º are

parallel segments. For every 0 � s � r let cs.t / denote the geodesic connecting

.c.s/; z1/ and .c.s/; z2/. Then, by Busemann’s Lemma 3.1, there exists some norm

on the plane such that d.cs.t /; cs0.t 0/ D k.s; t /; .s0; t 0/k for every s; t . This norm

necessarily belongs to U. Set k D sup¹kvk1W v 2 R
2 and kvk D 1 for some k k 2

Uº then k < 1 because the unit spheres of the normalized norms in U can not

“stretch” too long from the origin without getting too “�at” and violating condition

(ii). As d..y1; z1/; .y2; z2// equals the length of a diagonal of a rectangle in some

normed plane with a norm from U it follows that the inequality above holds for

K D .1=k/. We conclude that X is quasi-isometric to Y ˚Z.

(d) Let .a1; b1/ ¤ .a2; b2/ be two distinct points in A � B . Without loss of

generality assume that a1 ¤ a2 then by Theorem 2.2 there exists an a�ne function

f WA ! R such that f .a1/ ¤ f .a2/. Extend f to Of WA � B ! R by de�ning
Of .a; b/ D f .a/, then by the description of the geodesics in A � B � X given

in (b) it follows that Of is a�ne. Thus a�ne functions separate points in A � B

and by Theorem 2.2 A � B is �at.

(e) The description of geodesics in X given in (b) implies that the projection

maps �Y and �Z are a�ne maps. By Busemann’s lemma (Lemma 3.1) the convex

hull C of the segments c and c0 is isometric to a �at rectangle, and in particular it

is �at, and by Proposition 2.1 so are its projections �Y .C / and �Z.C /. It follows

by property (d) that the product �Y .C / � �Z.C / is a�ne. Thus we can reduce

to the case where Y;Z and X are �at sets but in this setting c is a translation of

c0 by some vector v. Thus c1 and c0
1 are parallel segments and in particular have

the same length which implies that they have the same speed as well. Similar

arguments apply to c2 and c0
2.

The proofs of (f), (g), and (h) follow readily and are left to the reader as a

simple exercise. �
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5. The product decomposition theorem

The product decomposition theorem (cf. Theorem II.2.14 in [3]) states that a

CAT.0/ space admits an Euclidean factor if and only if it can be covered by pair-

wise parallel lines. The theorem relies on the following lemma (cf. Lemma II.2.15

of [3]).

Lemma 5.1. LetX be a geodesic space and let ¹c˛º˛2I be a collection of pairwise

parallel geodesic lines in X then it is possible to parameterize each c˛ so that

d.c˛.t /; c˛0.t // D d.c˛.R/; c˛0.R// for every ˛; ˛0 2 I and t 2 R.

Lemma 5.1 motivates the following de�nition that characterizes those covers

which are �bers of some product decomposition.

De�nition 5.2. (a) Let C1; C2 be opposite sets. We say that x1 2 C1 and x2 2 C2

are opposite if d.x1; x2/ D d.C1; C2/.

(b) Let A D ¹C˛º˛2I be a collection of convex pairwise opposite subsets. We

say that A is transitively opposite if for any triplet ¹x1; x2; x3º 2 X3 .xi 2 C˛i
/ if

x1 and x2 are opposite and x2 and x3 are opposite then x1 and x3 are opposite.

(c) We say that A is a foliation of X if A is a transitively opposite collection of

convex subsets of X and X D
S
A.

Lemma 5.1 can now be restated to say that every collection of pairwise parallel

lines is transitively opposite. More generally, Lemma 5.1 implies that if A is any

collection of geodesically complete subsets which are pairwise opposite then A is

transitively opposite.

Theorem 5.3 (product decomposition theorem for BNPC spaces). Let X be a

BNPC space and suppose A D ¹Y˛º˛2I is a foliation of a convex subset X0 � X

then there exists a unique BNPC decomposition X0 D Y � Z of X0 such that A

coincides with the set of Y -�bers. If X; Y and Z are complete then so is X0.

Before getting to the proof of the theorem, we will �rst prove a useful lemma.

Note that given a subspace Y 2 A, every point X0 belong to a unique Y˛ and

thus has a unique opposite point in Y . We can therefore de�ne a “�ber map”

pY WX0 ! Y that maps a point to its opposite point in Y . By de�nition, pY is the

closest point projection to Y .

Lemma 5.4. Let X;A;X0 be as in Theorem 5.3. Suppose Y 2 A, y0 2 Y and

Z D p�1
Y .y0/. Then,

(1) X0 is convex if and only if Z is convex;

(2) if X and Y are complete then the closure of X0 in X is the union of the sets

of a transitively opposite collection that contains A and is equal to A if and

only if Z is complete.
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Proof. For every y 2 Y de�ne Zy D p�1
Y .y/. For every y 2 Y and ˛ 2 I

let y˛ 2 Zy \ Y˛ denote the opposite point of y in Y˛. Note that the ¹Zyºy2Y

are pairwise isometric. Indeed, given y1; y2 2 Y , by de�nition d.y˛
1 ; y

˛0

1 / D
d.Y˛; Y˛0/ D d.y˛

2 ; y
˛0

2 / and thus the map y˛
1 7! y˛

2 is an isometry between Zy1

andZy2
. We conclude that ifZ is either convex or complete then so isZy for every

y 2 Y . Fix y˛
1 ; y

˛0

2 inX0. Since the segments Œy˛
1 ; y

˛
2 � and Œy˛0

1 ; y
˛0

2 � are opposite it

follows by Busemann’s lemma that
y˛

1
Cy˛0

2

2
lies on the segment

�y˛
1

Cy˛
2

2
;

y˛0

1
Cy˛0

2

2

�

which is a subset of Zy˛
1

Cy˛
2

2

. Thus X0 is convex if and only if Z is convex.

Suppose that both X and Y are complete and let .xn/ be a Cauchy sequence

in X0. For every n write xn D y
˛n
n and zn D y

˛n

0 . Note that .zn/ is a Cauchy

sequence since d.zn; zm/ D d.Y˛n
; Y˛m

/ � d.xn; xm/. By assumption X is

complete and thus the sequence .zn/ converges to some element Oy0. We can repeat

the process to obtain Oy for each y 2 Y . Note that d. Oy; y/ D lim d.Y˛n
; Y / is

independent of y. Furthermore, for every y; w 2 Y we have byCw
2

D OyC Ow
2

by

the convexity of the metric. It follows that bY D ¹ OyW y 2 Y º is convex and by

construction Y and OY are opposite. Since the construction of Oy depended only

on the sets Zy and not on y itself we can replace Y in the arguments above with

any Y˛ and reach the same bY and the same conclusions. It follows that A [ ¹ OY º
is a transitively opposite collection in X0 [ OY . To complete the proof we will

see that the limit of .xn/n2N lies in OY . Note that the sequence .yn/ is Cauchy

since d.yn; ym/ � d.xn; xm/C d .Y˛n
; Y˛m

/ � 2d.xn; xm/. By assumption Y is

complete and thus .yn/ converges to some y 2 Y . We claim that Oy is the limit of

.xn/. Indeed, since d.xn; Oy/ � d.xn; Oyn/Cd. Oyn; Oy/ and as d.xn; Oyn/ D d.Yzn
; OY /

and d. Oyn; Oy/ D d.yn; y/ it follows that both summands tend to zero. �

Proof of Theorem 5.3. Fix Y 2 A, y0 2 Y and de�ne Z D p�1
Y .y0/. By

assumption X0 is convex and by Lemm 5.4 (1) below so is Z. By construction Z

is transversal to Y . Thus we indeed attained a BNPC decompositionX0 D Y �Z.

Suppose X0 D Y � Z0 is a BNPC decomposition and let Z0
0 be the Z0-�ber that

contain y0. By de�nition Z0
0 is transversal to Y and thus Z0

0 intersects each Y˛ in

the unique point in Y˛ that is opposite to y0. We conclude that Z0
0 D Z and thus

the BNPC decomposition X0 D Y � Z is unique. The last claim of the theorem

follows from Lemma 5.4 (2). �

Proof of Theorem 3.4. Let pWA ! B denote the parallel isometry, which by

de�nition is also the closest point projection, and set r D d.A; B/. For any

s 2 Œ0; r� and a 2 A let as denote the unique point on Œa; f .a/� of distance s

from a and de�neAs D ¹asºa2A. By Busemann’s lemma, given any a; a0 2 A, the

convex hull conv .Œa; a0�[ Œf .a/; f .a0/�/ is isometric to a �at rectangle. It follows

that Œa; f .a0/� lies in
S
As and also that for any given s, Œas ; a

0
s� is a subset of As.

If d.as ; a
0
s0/ < d.as ; as0/ for some a; a0; s and s0 then d.a0; a

0
r/ < .a0; ar/, which

contradicts the fact that f is closest point projection. We conclude that the As
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form a foliation of C and by Theorem 5.3 it follows thatC admits a decomposition

C D A � Œ0; r�. The proof now follows from Proposition 4.6. �

6. Cli�ord isometries and the de Rham decomposition theorem

The goal of this section is to prove de Rham decomposition theorem (Theo-

rem 1.2).

Recall that a Cli�ord isometry is an isometry  with a constant displacement

function d where d .x/ D d.x; .x//. Equivalently, a Cli�ord isometry is

an isometry that attains its minimal translation j j at every point where j j D
inf¹d .x/ j x 2 Xº. When dealing with CAT.0/ spaces the Cli�ord isometries

coincide with the translations of the maximal Euclidean factor and in particular

form an Abelian group. Theorem 1.2 provides an analogous result for Cli�ord

isometries of BNPC spaces. Before getting to the proof, we need to make a few

observations regarding Cli�ord isometries and BNPC decompositions.

Proposition 6.1. Let X denote a BNPC space then for any map  WX ! X the

following are equivalent:

(a)  is a Cli�ord isometry;

(b) Œx; y� k Œ.x/; .y/� for every x; y 2 X ;

(c) Œx; .x/� k Œy; .y/� for every x; y 2 X ;

(d)  is an isometry and the axes of  are pairwise parallel and cover X ;

(e) X admits a BNPC decomposition X D R � Y and  respects this splitting

and acts trivially on Y and as a translation on R.

Proof. (a) H) (b) follows by de�nition and (b) () (c) follows from Corol-

lary 3.2. Conversely, assume both .b/ and .c/. Then for every x; y 2 X .c/ implies

that d.x; y/ D d..x/; .y// and .b/ implies that d .x/ D d .y/. We conclude

that .a/ () .b/ () .c/.

Assume .a/ then by Proposition 11.4.2 in [20] every element of X lies in some

axis of  . As d.x; y/ D d.nx; ny/ for every n 2 Z it follows that the axes of

 are pairwise parallel. Thus (a) H) (d). Conversely, assume .d/. Then we can

parameterize the axes of  so that .c.t// D c.t C j j// for any axis c and every t .

As the axes are parallel it follows that (d) H) (c) and consequently (a) () (d).

Assume .d/ then by Lemma 5.1 the axes of  form a foliation of X and by

the product decomposition theorem (Theorem 5.3) X admits a decomposition

X D R � Y where the R-�bers are the axes of  . Thus .d/ H) .e/. Conversely,

assume .e/. Then the R-�bers of this decomposition are by de�nition pairwise

parallel axes of  that cover X . We conclude that .e/ () .d/. �
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Lemma 6.2. Let X D X1 � X2 be a BNPC decomposition. Let i be a Cli�ord

isometry of Xi . Then  D .1; 2/ is a Cli�ord isometry of X1 � X2.

Recall that Œa; b� k Œc; d � means that d.a; c/ D d.b; d/ D d
�

aCb
2
; cCd

2

�
.

Proof. By Proposition 6.1 it will su�ce to show that

Œx; y� k Œx; y� for all x; y 2 X: (1)

Fixing x D .x1; x2/; y D .y1; y2/ 2 X1 � X2 (1) comes down to

Œ.x1; x2/; .y1; y2/� k Œ.1x1; 2x2/; .1y1; 2y2/�: (2)

As 1 is a Cli�ord isometry of X1 it follows by Proposition 6.1 that

Œ.x1; x2/; .y1; y2/� k Œ.1x1; x2/; .1y1; y2/�: (3)

since

d.x1; 1x1/ D d.y1; 1y1/ D d
�x1 C y1

2
;
1x1 C 1y1

2

�
D j1j:

Here we used the fact that

1x1 C 1y1

2
D 1

�x1 C y1

2

�
:

Similar arguments imply that

Œ.1x1; x2/.1y1; y2/� k Œ.1x1; 2x2/; .1y1; 2y2/� (4)

Things would have been simple if “being parallel” was a transitive relation and

thus (3) and (4) would just imply (2). Unfortunately “being parallel” is not

necessarily a transitive relation, not even in the case of geodesic segments in

CAT.0/ spaces. However, Busemann’s lemma implies that the convex hull C1

of Œx1; y1� [ Œ1x1; 1y1� in X1 is �at and so is the convex hull C2 of Œx2; y2� [
Œ2x2; 2y2� in X2. By (d) of Proposition 4.6 the product C D C1 �C2 in X1 �X2

is also �at. As C contains the three segments in (3) and (4) and as k is a transitive

relation on segments in �at spaces, we conclude that (2) follows from (3) and (4)

and the lemma is proven. �

Lemma 6.3. Let X D X1 � X2 be a BNPC decomposition then every Cli�ord

isometry of X respects this decomposition and acts on the Xi as a Cli�ord

isometry.

Proof. Fix a Cli�ord isometry �. If � acts trivially on Y or Z then there is noth-

ing to prove. Otherwise let ¹c˛º˛2I denote the axes of �. For every ˛ there exist
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lines ci
˛.t /W R ! X (i D 1; 2) and constants r˛ and k˛ , such that c˛.t / D

.c1
˛.r˛t /; c

2
˛.k˛t //. By the equality of slopes property (Proposition 4.6 (e)) r˛

and k˛ are independent of ˛ and we can replace them by some constants r

and k respectively. The same property implies that the ci
˛ are pairwise parallel

lines which cover Xi . By de�nition �.c˛.t // D c˛.t C j�j/, which implies

that �.c1
˛.rt/; c

2
˛.kt// D .c1

˛.rt C r j�j/; c2
˛.kt C kj�j//. Thus � respects the

decomposition X D X1 � X2 and acts on X1 (resp. X2) by translation along

parallel lines with a �xed displacement r j�j (resp. kj�j). The lemma now follows

from Proposition 6.1. �

We are now ready to prove that the Cli�ord isometries of X form an Abelian

group.

Proof of Theorem 1.3. Let ; � be Cli�ord isometries of some BNPC space X .

Following Proposition 6.1 let X D R � Y be the product decomposition induced

by the axes of  . By Lemma 6.3, � respects this splitting and acts on Y as a Cli�ord

isometry and on R as a translation. It follows that  and � commute and that � ı 
acts as a Cli�ord isometry on each factor. Lemma 6.3 now implies that � ı  is a

Cli�ord isometry of X . �

Proof of Theorem 1.2. By Theorem 1.3 the Cli�ord isometries of X form an

Abelian group which we denote by CL.X/. CL.X/ can be naturally endowed

with a structure of a real vector space by setting r �  to be the Cli�ord isom-

etry translating along the axes of  by r j j. We can also endow CL.X/ with a

strictly convex norm by de�ning kk D j j. We denote the resulting space by B .

The proof that with these de�nitions B is indeed a strictly convex normed vector

space is very similar to the proof given in the CAT.0/ case and it is left to the

reader (cf. Theorem II.6.15 in [3]).

Observe that every orbit of CL.X/ in X is naturally isometric to B through

the map  7!  .x/ and in particular that all the orbits are geodesically complete.

Since every two orbits are of �nite Hausdor� distance from one another it follows

that the orbits of CL.X/ form a foliation of X by copies of B . By the product

decomposition theorem (Theorem 5.3)X has a BNPC decompositionX D B�Y ,

which we call the de Rham decomposition of X . By Lemma 6.2 every Cli�ord

isometry  of Y extends to a Cli�ord isometry .Id;  / of X . As each axis of

.Id;  / lies in some �ber of B it follows that  must the identity, i.e., that Y has

no non-trivial Cli�ord isometries. Next we prove that the de Rham decomposition

is unique. Suppose X D B 0 � Y 0 is another BNPC decomposition such that

B 0 is a�ne and Y 0 has no non-trivial Cli�ord isometries. By Theorem 5.3, it

will su�ce to show that B-�bers and the B 0-�bers coincide, or equivalently, that

CL.X/ coincides with the translations of B 0. On one hand, if  WX ! X acts on

B 0 as a translation and on Y 0 as the identity then by Lemma 6.2  2 CL.X/.

Conversely, if  2 CL.X/ then by Lemma 6.3  respects the decomposition
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X D B 0 � Y 0 and acts on B 0 and Y 0 by Cli�ord isometries. By assumption Y 0

does not admit non-trivial Cli�ord isometries and thus  is a translation of B 0.

We conclude that the de Rham decomposition is unique. If X is complete then

so are the orbits of CL.X/ and thus so is B . If X is geodesically complete then

so is Y and by Proposition 4.6 (g) it follows that the Y -�bers form a transitively

opposite collection. The symmetry of the decompositionX D B�Y follows from

the next lemma. �

Lemma 6.4. Let X D V � Y be a BNPC decomposition where V is �at. If the

Y -�bers are pairwise opposite and CL.Y / is trivial then the decomposition is

symmetric.

Proof. For every v 2 V let Yv denote the Y -�ber ¹vº � Y and let pvWY0 ! Yv

denote the closest point projection. For every y 2 Y0 and a unit vector v 2 V

de�ne a curve cy;v.t / D ptv.y/. Then ¹cy;v.R/º is a collection of parallel geodesic

lines that cover X . Indeed, �x s 2 R and let cW Œ0; r� ! X denote the geodesic

path connecting .0; y/ and cy;v.s/. By Proposition 4.6 (b) c. r
2
/ must belong to

Y s
2

v and since cy;v.
s
2
/ is by de�nition the closest point in Y s

2
v to .0; y/ it follows

that c. r
2
/ D cy;v.

s
2
/. By continuity c.˛r/ D cy;v.˛s/ for every 0 � ˛ � 1 and

as s was arbitrary it follows that cy;v.R/ is a geodesic line. The fact that the Y -

�bers are pairwise opposite implies that the projections pv are parallel isometries

and thus that the lines cy;v.R/ are pairwise opposite. It follows that ¹cy;vº are

the axes of some Cli�ord isometry  of X . Since Y does not admit non-trivial

Cli�ord isometries it follows that the axes of  lie in V which by construction

implies that V is transversal to Y0. As I so.X/ acts transitively on V it follows

that V is transversal to every Y -�ber, i.e., that X D V � Y is a symmetric BNPC

decomposition. �

7. The splitting theorem

In this section we prove the splitting theorem (Theorem 1.4). The proof given here

is an adaptation of the proof given in [19] for the CAT.0/ case (cf. Theorem 9).

Suppose G is some group acting by isometries on a BNPC space X . A non-

empty subset C � X is said to be a G-minimal subset if

C D conv.Gx/ for every x 2 C ,

i.e., if C is a minimal non-empty closed convexG-invariant subset of X . If X is a

complete BNPC space that is UC or locally compact and dG ! 1 then X admits

G-minimal subsets (cf. Lemma 2.10 in [11]). Recall that dG ! 1 means that the

action of G is non-weakly evanescent, i.e., that there exists a �nite subsetQ � G

such that dQ.xn/ ! 1 whenever xn ! 1. Here dQ.x/ D supq2Q d.qx; x/
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is the displacement function with respect to Q, and xn ! 1 means that xn is a

sequence of points in X that eventually leave every ball in X . If X is proper then

the action ofG is non-weakly evanescent if and only if it does not �x points at the

boundary of X (see [19] for more details).

Proof of Theorem 1.4. By the preceding paragraph and Proposition 4.6 (h) we can

reduce to the case where X is G-minimal and n D 2.

Step i. X admits a G1-minimal subset. Fix x0 2 X and de�ne

C D conv.G1 � x0/:

For any g2 2 G2 and x D g0
1x0 2 G1 � x0 we have dg2

.x/ D d.g2g
0
1x0; g

0
1x0/ D

d.g2x0; x0/ D dg2
.x0/. By the convexity and continuity of dg2

it follows that

dg2
.x/ � dg2

.xo/ for every x 2 C . If C is bounded then the action of G1 on C

is trivally non-weakly evanescent. Otherwise, let xn be a sequence in C such that

xn ! 1 then there is some g D g1g2 inG so that dg.xn/ is unbounded. It follows

by the triangle inequality and the fact that dg2
is bounded on .xn/ that dg1

must

be unbounded on .xn/. We conclude that the action of G1 on C is non-weakly

evanescent and thus C admits a G1-minimal subset.

Let † be the collection of all G1-minimal subsets of X and de�ne Z D
S
†.

Step ii. † is a foliation of Z . First note that the elements of † are transitively

opposite. Indeed, suppose Z1; Z2 2 † and z; z0 2 Z1 are such that d.z; Z2/ <

d.z0; Z2/ then ¹x 2 Z1 j d.x; Z2/ � d.z; Z2/º is a closed convex G1-invariant

proper subset of Z1, contradicting the fact that Z1 is G1-minimal. Next let

Z1; Z2; Z3 be G1-minimal and let pi denote the projection to Zi . De�ne  D
p1 ı p3 ı p2jZ1

then d is G1-equivariant and the same argument as above shows

that it must be constant, i.e.,  is a Cli�ord isometry. If  is non-trivial then it has

an axis l1 in Z1 on which it acts by translations. But l1; p2.l1/ and p3 ıp2.l1/ are

three parallel lines and by Lemma 5.1 they form a transitively opposite collection

meaning that the restriction of  to l1 is trivial, a contradiction. Thus  is the

identity and we conclude that † is transitively opposite. It remains to show that

Z is convex in X . It will su�ce to show that if Z1; Z2 2 † and zi 2 Zi then
z1Cz2

2
2 Z. By Busemann’s Lemma we have

°w1 C w2

2
Wwi 2 Zi

±
D

°w1 C w2

2
Wwi 2 Zi and d.w1; w2/ D d.Z1; Z2/

±
:

The left-hand set contains z1Cz2

2
and the right-hand set is G1-minimal and thus a

subset of Z.
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Step iii: Z has a (G1 �G2)-equivariant BNPC decomposition. Fix aG1-min-

imal subsetX1 and o 2 X1. Let p denote the projection toX1, restricted toZ, and

set X2 D p�1.o/. Then by the product decomposition theorem (Theorem 5.3) Z

has a BNPC decomposition Z D X1 � X2 where the X1-�bers are the G1-min-

imal subsets. Since G1 and G2 commute it follows that Z is G-invariant. We

claim that G1 acts trivially on X2 and G2 acts trivially on X1. The �rst assertion

is obvious since the X1-�bers are G1-invariant. We will see that the X2-�bers are

G2-invariant as well. For every h 2 G2 de�ne h�WX1 ! X1 by h�.x/ D p.h � x/.
Then h� is a G1-equivariant isometry of X1 and as X1 is G1-minimal it follows

that h� is a Cli�ord isometry. Fix g2 2 G2. If g�
2 does not act trivially on X1 then

it admits an axis c in X1. Every g1 2 G1 commutes with the action of g�
2 and

thus takes c to an opposite line. In particular, dg1
is bounded on c. Similarly, as

Cli�ord isometries commute (Theorem 1.3), it follows that g�
2 commutes with h�

for every h 2 G2. Thus and thus h� takes c to an opposite line. Since the restric-

tion of p to h � X1 is a parallel isometry it follows that h takes c to an opposite

line and thus dh is bounded on c. The triangle inequality now implies that dg is

bounded on c for every g 2 G, contradicting the fact that the action of G on X

is non-weakly evanescent. We conclude that the action of g�
2 must be trivial, i.e.,

that the X2-�bers are G2-invariant.

Step iv: Z=X. We saw that Z is a G-invariant convex subset of X . By the

minimality of theG-action it follows thatX D xZ. By Lemma 5.4,X has a foliation
x† that contains †. Recall from the proof of Lemma 5.4 that each set C 2 x† n†
is obtained from a sequence of sets Cn 2 † in the sense that every point c 2 C

is a limit of a Cauchy sequence of pairwise opposite points cn 2 Cn. Thus the

elements of x† are G1-invariant and being opposite to X1 they are G1-minimal.

We conclude that † D x† and that X has a foliation by G1-minimal sets, i.e.,

X D Z D X1 �X2.

Step v: X D X1 � X2 is a symmetric BNPC decomposition. As X is

G-minimal and the action of G on X is G1 � G2-equivariant it follows that the

X2-�bers are exactly the G2-minimal sets. Thus if we interchange G1 and G2 in

the previous steps then we will obtain a BNPC decomposition X D X2 �X1 with

the same �bers. We conclude that the decompositionX D X1 �X2 is symmetric.

This completes the proof. �

8. The duality property

All along this section let .M; F / denote a complete reversible Finsler manifold

of Busemann NPC and �nite volume. Let X denote the universal cover of M

endowed with the metric d induced by dF . By the Cartan–Hadamard theorem
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.X; d/ is a proper geodesically complete BNPC metric space. Set � D �1.M/

and note that � acts on X by isometries freely and properly discontinuously. The

aim of this section is to prove that the action of � satis�es the duality property

which we now de�ne.

De�nition 8.1. LetG be a group acting by isometries on a geodesically complete

BNPC space Y . We say that (the action of) G has the duality property if for every

geodesic line cW R ! Y there exists a sequence gn 2 G such that gnc.0/ ! c.1/

and g�1
n c.0/ ! c.�1/.

We start by expressing the duality property in terms of the geodesics of M .

The following lemma is due to Eberlein.

Lemma 8.2. � has the duality property if and only if for every line c.t/ in X

there exist sm 2 R, m 2 � and lines cm.t / in X such that sm ! 1, cm ! c and

mcm.t C sm/ ! c.t/.

Proof. Suppose � has the duality property. Then given a line c.t/ there exist

n 2 � such that n.x/ ! c.1/ and �1
n .x/ ! c.�1/ for every �xed x 2 X . For

every m; n 2 N de�ne geodesic segments cn;mW Œ�m; tn;m� ! Œc.�m/; n.c.m//�.

For every �xed m choose a minimal N.m/ 2 N such that N.m/ > N.m � 1/ and

such that for every n > N.m/,

(a) tn;m > 2m,

(b) d.c.m/; cn;m.m// <
1
m

,

(c) d.c.�m/; �1
n ı cn;m.tn;m � 2m//.

Such N.m/ exists because for every �xed m, ˙1
n .c.˙m// ! c.˙1/. For every

m let cm be the line extending cN.m/C1;m. Set sm D tn;m �m and note that sm > m.

Then, by construction, sm ! 1, cm ! c and mcm.t C sm/ ! c.t/.

Conversely, suppose that for any given line c there exist m, sm and cm like in

the statement of the lemma. Set c0
m.t / D m ı cm.t C sm/ then on one hand, by

the assumptions, c0
m ! c, which implies that m.cm.0// D c0

m.�sm/ ! c.�1/.

On the other hand, cm ! c implies that �1
m c0

m.0/ D cm.Csm/ ! c.1/. As

c0
m.0/ ! c.0/we conclude that �1

m c.0/ ! c.1/. As c was arbitrary we conclude

that � has the duality property. �

Corollary 8.3. � has the duality property if and only if for every geodesic line

c in M there exist lines cm in M and numbers sm ! 1 such that cm ! c and

cm.t C sm/ ! c.t/.

Let SM denote the unit bundle .F � 1/ of M . There is a one-to-one corre-

spondence between SM and the geodesic lines in M where v 2 SM corresponds

to the unique geodesic cvW R ! M such that Pcv.0/ D v. The geodesic �ow ft
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on SM is de�ned by ft .v/ D Pcv.t / 2 Scv.t/M . The unit bundle admits a mea-

sure, called the Liouville measure, which is invariant under the geodesic �ow.

When M has �nite volume then the Liouville measure is a �nite measure with

full support (cf. [24], [6], and [9]). We now have everything we need for proving

Theorem 1.5.

Proof of Theorem 1.5. By the discussion above SM has a �nite measure invariant

under the geodesic �ow. Suppose c is a line in M and denote v D Pc.0/. Then

by Poincaré recurrence theorem there exists a sequence sm ! 1 and vm 2 SM

such that vm ! v and fsm
.v/ ! v. Let cm denote the lines corresponding to cvn

respectively then by de�nition cm ! c and cm.t C sm/ ! c. By Corollary 8.3 we

conclude that � has the duality property. �

9. A splitting theorem for Finsler manifolds of �nite volume

We now turn to the proof of Theorem 1.1. The heart of the proof lies in the

following proposition which shows that all the �-�xed points at the boundary of

the universal cover lie in some �at factor (compare with Theorem 4.2 in [5]).

Proposition 9.1. Let M and � be as in Theorem 1.1 and let X be the universal

cover of M , endowed with the induced length metric. Then X has a symmetric

BNPC decomposition X D V � Y such that

(a) V is a linear subspace of the de Rham factor of X ;

(b) � respects the decomposition and acts on V by translations;

(c) the induced action of � on Y is without �xed point at in�nity;

(d) the centralizer of � in G D I so.X/ consists precisely of the Cli�ord isome-

tries of V .

Suppose �; � are points at the (visual) boundary of X , then we say that they

are visually opposite if there is a geodesic line cW R ! X such that c.1/ D � and

c.�1/ D �. If � has a unique visually opposite point then we denote it by ��.

Lemma 9.2. Let � be a �xed point in the boundary of X then � has a unique

visually opposite point.

Proof. Fix a visually opposite point � of � and suppose that � has another visually

opposite point � 0. Suppose cW R ! X is a geodesic line in X such that c.�1/ D �

and c.1/ D �. By the duality property there exists a sequence n such that

nx ! � 0 and �1
n x ! � for any x 2 X . We will prove that n.c.0// ! �.

The proof is quite technical so it may be helpful to start with an outline of

the argument. Intuitively speaking, we will show that the “angles” between the



24 A. Pinto

segments Œc.0/; n.c.0/� and the ray Œc.0/; �/ tend to zero. Formally, we will show

that for any �xed " > 0 and su�ciently large n, if rn D d.c.0/; n.c.0///, then

d.c.rn/; n.c.0/// < "rn. To ease the notation, for every t 2 R and n 2 N set

xt D c.t/ and rn D d.x0; 
�1
n .x0//, and let ft;nW Œ0; d.xt ; 

�1.x0//� ! X denote

the parameterizations of the segments Œ�1
n .x0/; xt �. With these notations we will

show that d.�1
n .xrn

//; x0/ < "rn for all su�ciently large n (see Figure 1). Note

that if n is �xed and t ! 1 then ft;n.rn/ ! �1
n .xrn

/. Thus, it will su�ce to

show that d.ft;n.rn/; x0/ < "rn for all su�ciently large n.

Figure 1

Fix " > 0 and s > 0 and set "n D d.x�s ; f0;n.rn � s//. The fact that

�1
n .x0/ ! � implies that "n ! 0 and that rn ! 1. Since the map u 7!
d.xt ; f0;n.u// is convex and as d.xt ; f0;n.rn � s// � t C s � "n it follows that

d.�1
n .x0/; xt/ � t C rn

tCs�"n�t
s

D t C rn � "nrn

s
. By assumption X is UC and

so there exists ı > 0 such that
ıx;".r/

r
> ı for every x and su�ciently large r .

Suppose that d.ft;n.rn/; x0/ � "rn. Then d
�
�1

n .x0/;
x0Cft;n.rn/

2

�
� rn � ı � rn.

Since d.xt ; x0/ D t and d.xt ; ft;n.rn// D d.xt ; 
�1.x0// � rn � t , it follows by

the convexity of d that d
�
xt ;

x0Cft;n.rn/

2

�
� t . We conclude that, for all su�ciently
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large n,

t C rn � "nrn

s
� d.�1

n .x0/; xt / � t C rn � ı � rn

and hence that ı < "n

s
, a contradiction since "n ! 0. Thus d.ft;n.rn/; x0/ < "rn

for all su�ciently large n, and as discussed above, this implies that n.xn/ ! �

and � 0 D �. �

Proof of Theorem 9.1. Let X D B � Z denote the de Rham decomposition of X

and let F denote the set of points at the boundary of X �xed by �. We start by

showing that every point of F lies on the boundary of B . Suppose g is a non-

trivial isometry of X which centralizes �. Since � has the duality property andX

is geodesically complete � acts minimally and thus g is a Cli�ord isometry. As g

and � commute it follows that � permutes the axes of g and globally �xes their

end-points. We conclude that the centralizer of� in I so.X/ is isometric to a linear

subspaceV ofB whose boundary is a subset ofF . Conversely, suppose � is a �xed

boundary point of � then by the previous lemma all the lines in X having one end

at � are parallel. By the product decomposition theorem (Theorem 5.3) it follows

that X admits a BNPC decomposition with a R-factor such that @R D ¹˙�º. As

� is a �xed point of � it follows that every  2 � permutes the R-�bers and

thus preserves the splitting and acts on the R-factor by translation. Thus every

translation of the R-factor centralizes � and we conclude that F coincides with

the boundary of V . For every x 2 B let Vx denote the minimal a�ne subspace of

B that contains x and whose boundary is F and let A denote the set of all such

subspaces. Note that the Vx are closed, convex and geodesically complete subsets

of B parallel to V . By the remark It follows by Lemma 5.1 that A is transitively

opposite, and thus a foliation of B . By the product decomposition theorem, B

admits a BNPC decomposition B D V � V . Set Y D W � Z. The action of �

on B permutes the Vx and thus � respects the splitting X D V � Y and acts on

V by translations and on Y without �xed points at in�nity. The induced actions

on W and Y still have the duality property. It remains to see that X D V � Y is

a symmetric BNPC decomposition. By Lemma 6.4, if the decomposition is not

symmetric thenW admits a non-trivial Cli�ord isometry that commutes with the

action of �. This contradicts the fact that the centralizer of � coincides with the

translations of V . �

Proof of Theorem 1.1. Let X D V � Y be the decomposition attained in Proposi-

tion 9.1. By (c) of that proposition the induced action of � on Y is without �xed

points at in�nity. We can now invoke the splitting theorem (Theorem 1.4) on the

action of � on Y and obtain a �-equivariant symmetric BNPC decomposition

Y D Y1 � Y2 where �i acts trivially on Y3�i . The desired decomposition of M

will now follow if we will show that dim.V / D 0 or equivalently that � has no

globally �xed points at the boundary of X . By (d) of Proposition 9.1 the Cli�ord

isometries of V coincide with the centralizer Z.�/ of �. Thus Z.�/ is connected
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and since � is discrete it follows that Z.�/ D N0.�/, the identity component of

the normalizer of �. I.M/ D N.�/=� is a Lie group (cf. [23]) and by assump-

tion it is compact and it follows that I0.M/ D N0.�/=� D Z.�/=� is a k-torus

where k D dim.V /. Since every circle group I0.M/ lifts to a group in Z.�/ it

follows that k is no greater then the rank of the center of � and we conclude that

dim.V / D 0. �
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