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Abstract. We show that for a closed n-manifold N admitting a quasiregular mapping from

Euclidean n-space the following are equivalent: (1) order of growth of �1.N / is n, (2) N

is aspherical, and (3) �1.N / is virtually Zn and torsion free.
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1. Introduction

In this note we consider closed n-Riemannian manifolds N admitting a quasiregu-

lar mapping from Rn, i.e. quasiregularly elliptic manifolds. A non-constant con-

tinuous mapping f WRn ! N is (K-)quasiregular if f belongs to the Sobolev

space W
1;n

loc .Rn; N / and satis�es the distortion inequality

jDf jn � KJf a.e. in Rn;

where Df is the di�erential of the map f and Jf the Jacobian determinant.

By Reshetnyak’s theorem, quasiregular mappings are branched covers, that is,

discrete and open mappings, see e.g. [20, Theorem I.4.1].

In dimensions n D 2; 3, closed quasiregularly elliptic manifolds are fully

understood. In dimension n D 2, the manifolds are the 2-sphere S2 and the 2-torus

T2 by the uniformization theorem and Stoilow factorization. In dimension n D 3,

the possible closed targets of quasiregular mappings from R3 are S3, S2 � S1, T3,

and their quotients. The completeness of this list follows from the geometrization

theorem; see Jormakka [15].

By Varopoulos’ theorem [23, pp. 146–147] the fundamental group of a quasi-
regularly elliptic n-manifold, n � 2, has polynomial growth of order at most n.

In particular, the fundamental group is virtually nilpotent by Gromov’s theorem,

see [10].

1 The authors are supported by the Academy of Finland project #256228.
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Our main theorem is the following characterization of quasiregularly elliptic

manifolds which are extremal in the sense of Varopoulos’ theorem. Recall that

a manifold N is aspherical if �k.N / D 0 for k > 1. We denote the degree of

polynomial growth of a �nitely generated group G by ord.G/.

Theorem 1.1. Let N be a closed quasiregularly elliptic n-manifold. Then the
following are equivalent:

(1) ord.�1.N // D n,

(2) N is aspherical, and

(3) �1.N / is virtually Zn and torsion free.

Given the classi�cation of quasiregularly elliptic manifolds in dimensions

n D 2; 3, we conclude that, in these dimensions, only manifolds N satisfying (1)

are quotients of the n-torus Tn. For n � 5, by deep rigidity theorems of Hsiang

and Wall [14] and Farrell and Hsiang [8] conditions (2) and (3) imply that N is

homeomorphic to a quotient of Tn; see also Freedman and Quinn [9, Section 11.5]

for the extension to n D 4. Since the n-torus has a unique Lipschitz structure for

n � 5 by Sullivan’s theorem [21, Theorem 2], we have the following corollary.

Corollary 1.2. Let N be a closed quasiregularly elliptic n-manifold, n � 2, with
ord.�1.N // D n. Then there exists a (topological) covering map Tn ! N .
For n ¤ 4, there exists a locally bilipschitz covering map Tn ! N .

Theorem 1.1 can be viewed as a (branched) quasiconformal Bieberbach the-
orem. By the classical Bieberbach theorem, an n-dimensional crystallographic
group � (that is, a cocompact discrete group of Euclidean isometries of Rn) is
virtually Zn and torsion free. By a classical result of Auslander and Kuranishi [1]

all groups which are virtually Zn and torsion free are crystallographic; see also

Thurston [22, Section 4.2].

Corollary 1.3. Let N be a closed orientable Riemannian n-manifold, n ¤ 4,
satisfying ord.�1.N // D n. Then N is quasiregularly elliptic if and only if N is
bilipschitz homeomorphic to Rn=�, where � is a crystallographic group.

In particular, we obtain a partial answer to a question of Bonk and Heinonen

[3, p. 222].

Corollary 1.4. Let N be a closed quasiregularly elliptic n-manifold satisfying
ord.�1.N // D n. Then

dim H �.N IQ/ � 2n:
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Finally, Theorem 1.1 bears a close resemblance to a result of Gromov on el-

liptic manifolds [11, Corollary 2.43]: the fundamental group of a closed aspher-
ical elliptic manifold is virtually Zn. A manifold N is called elliptic if there

exists a Lipschitz map Rn ! N of non-zero asymptotic degree. We refer

to [11, Section 2.41] for a detailed discussion on elliptic manifolds. By Theorem 1.1,

for quasiregularly elliptic manifolds, the topological assumption on asphericity

can be replaced by the geometric assumption on the Euclidean volume growth of

the universal cover.

1.1. Sketch of the proof of Theorem 1.1. The main content of Theorem 1.1

is that (1) implies (2). Well-known arguments in cohomological group theory

show that in this setting (2) implies (3) since the growth rate of the fundamental

group of a quasiregularly elliptic manifold is polynomial. Condition (3) trivially

implies (1).

The rest of the paper is devoted to the proofs of implications (1) H) (2) and

(2) H) (3). In Section 2 we discuss the observation that the universal cover zN

of N is a Loewner space in the sense of Heinonen and Koskela [13]. The proof

is based on the veri�cation of a .1; n/-Poincaré inequality on zN . Using a similar

argument as in [17], we give a simple proof for a .1; 1/-Poincaré inequality on
zN , which yields the required .1; n/-Poincaré inequality trivially; note that Salo�-

Coste’s .2; 2/-Poincaré inequality for �1.N / in [17] also su�ces.

Using the Euclidean volume growth and the Loewner property of zN , we show

that there exists a proper map Rn ! zN and that N is aspherical. Finally, in

Section 4, we discuss the implication that asphericity of N virtually detects the

group �1.N /. The argument is almost verbatim to the proof of Bridson and

Gersten in [4, Theorem 5.9] for quasi-isometric rigidity of Zn, although our

method allows us to detect the quasi-isometry type of �1.N / only posteriori.

Acknowledgements. We thank Juhani Koivisto and the referees for suggestions

and helpful remarks.

2. The Loewner property

A metric measure space .X; d; �/ is n-Loewner if there exists a function

�W .0; 1/ �! .0; 1/

such that

modn.E; F / � �.t/ (2.1)

whenever E and F are two disjoint, nondegenerate continua in X and

t �
dist .E; F /

min.diam E; diam F /
:
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Here modn.E; F / is the n-modulus of the family �.E; F / of all paths connecting

E and F , that is,

modn.E; F / D inf

ˆ

X

�n d�;

where the in�mum is taken over all nonnegative Borel functions �W X ! Œ0; 1�

satisfying
ˆ



� ds � 1

for all locally recti�able paths  2 �.E; F /.

In this section, we consider the Loewner property of universal covers zN of

closed Riemannian manifolds N satisfying ord.�1.N // D n. The Riemannian

metric induced by the covering zN ! N makes zN into a geodesic metric space

with Euclidean volume growth, that is, zN is Ahlfors n-regular:

H
n.B.x; r// � rn

for every ball B.x; r/ in zN of radius r > 0 about x 2 zN .

It seems that the following theorem has not been reported in the literature

although it is well-known to the experts.

Theorem 2.1. Let N be a closed and connected Riemannian n-manifold for n � 2

satisfying ord.�1.N // D n. Then the universal cover zN of N is n-Loewner.

Remark 1. Since zN is Ahlfors n-regular and geodesic, the Loewner property (2.1)

holds with � satisfying

�.t/ �

´

log.t / when t is small,

log.t /1�n when t is largeI

see [13, Theorem 3.6].

By a result of Heinonen and Koskela [13, Corollary 5.13], zN is n-Loewner if

and only if zN supports a weak .1; n/-Poincaré inequality: there exists C > 0 and

� � 1 for which

 

B.x;r/

jf � fB.x;r/j � C r

�
 

B.x;�r/

jrf jn
�

1

n

(2.2)

for all x 2 zN , r > 0 and f 2 C 1. zN /. Here we denote by fB.x;r/ the average

 

B.x;r/

f .y/ dy:
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The weak .1; n/-Poincaré inequality follows directly from Kleiner’s weak

.2; 2/-Poincaré inequality in [17, Theorem 2.2.] by Hölder’s inequality.

Laurent Salo�-Coste’s argument in [17] can, however, be used to show also

that zN satis�es a weak .1; 1/-Poincaré inequality. We give a short proof based

on [17, Theorem 2.2] and [6, p. 308–309] for the reader’s convenience. However,

see [19, Lemma 3.17].

Theorem 2.2. Let N be a closed Riemannian n-manifold with a polynomially
growing fundamental group. Let zN be the universal cover of N . Then there exists
C > 0 so that

 

B.x;r/

jf � fB.x;r/j � C r

 

B.x;3r/

jrf j (2.3)

for all x 2 zN , r > 0, and f 2 C 1. zN /.

The proof is based on the following lemma. In the statement, we assume that

we have chosen a �xed �nite (symmetric) generating set S for a group �, and

denote by

B.x; r/ D ¹xs1 � � � sr 2 �W si 2 S for i D 1; : : : ; rº

the ball of radius r > 0 about x in �, V.r/ D #B.e; r/,

fB.x;r/ WD
1

V .r/

X

y2B.x;r/

f .y/ and rf .y/ WD
X

z2yS

jf .z/ � f .y/j :

Lemma 2.3. Let � be a �nitely generated group. Then

X

y2B.x;r/

jf .y/ � fB.x;r/j � .2r C 1/
V .2r/

V .r/

X

y2B.x;3r/

jrf .y/j (2.4)

for all r > 0, x 2 �, and f W � ! R.

Proof. We �x for each g 2 G a geodesic g W ¹0; : : : ; jgjº ! � in � connecting

the neutral element e of � to g. For any r > 0 and w 2 B.x; 2r/ the mapping

B.x; r/ � ¹0; : : : ; jwjº ! B.x; 3r/; .y; i/ 7! yw.i/;

is at most .2r C 1/-to-1.
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Now we see that

X

y2B.x;r/

jf .y/ � fB.x;r/j �
1

V .r/

X

z;y2B.x;r/

jf .y/ � f .z/j

�
1

V .r/

X

y2B.x;r/

X

w2B.e;2r/

jf .yw.0// � f .yw.jwj//j

�
1

V .r/

X

w2B.e;2r/

X

y2B.x;r/

jwj�1
X

iD0

jrf .yw.i C 1//j

�
1

V .r/

X

w2B.e;2r/

.2r C 1/
X

z2B.x;3r/

jrf .z/j

D .2r C 1/
V .2r/

V .r/

X

z2B.x;3r/

jrf .z/j:

This proves the claim. �

Proof of Theorem 2.2. For every r > 0, the universal cover zN satis�es the local
.1; 1/-Poincaré inequality

ˆ

B.x;r/

jf .y/ � fB.x;r/j dy � ˇ

ˆ

B.x;r/

jrf j (2.5)

for f 2 C 1. zN /, where ˇ depends on r ; see Kanai [16, Lemma 8].

Since �1.N / has polynomial growth, the ratio V.2r/=V .r/ is uniformly

bounded for all x 2 �1.N / and r > 1. Thus, by Lemma 2.3, there exists C > 1 so

that
X

y2B.x;r/

jf .y/ � fB.x;r/j � C r
X

y2B.x;3r/

jrf .y/j

for all r > 0, x 2 � and f W � ! R.

The claim now follows from [7, Théorème 7.2.(3)]. �

This concludes the proof of Theorem 2.1.

3. Euclidean volume growth and asphericity

In this section we show that a closed quasiregularly elliptic manifold with maxi-

mally growing fundamental group is aspherical. We obtain this result by combin-

ing the following lemmas.
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Lemma 3.1. Suppose N is a closed quasiregularly elliptic n-manifold, n � 2,
with ord.�1.N // D n. Then there exists a proper quasiregular map Rn ! zN into
the universal cover zN of N .

Proof. By Zalcman’s lemma (see Bonk–Heinonen [3, Corollary 2.2]), there exists

a uniformly locally Hölder continuous quasiregular map f WRn ! N satisfying

ˆ

Bn.x;r/

Jf � C rn; (3.1)

where C > 0 is a constant independent of the ball Bn.x; r/ � Rn. Let Qf be a lift

of f to the universal cover zN of N . Since the universal covering map is a local

isometry, Qf again satis�es inequality (3.1).

Since zN is Ahlfors n-regular and n-Loewner, we have that, for every a 2 zN ,

d. Qf .x/; a/ ! 1 as jxj ! 1 by the Onninen–Rajala theorem [18, Theorem 12.1].

Indeed, (a) in [18, Theorem 12.1] can be replaced with (3.1); see Lemma 12.13

and (12.3) in [18]. Thus Qf is a proper map. �

Lemma 3.2. Let N be a connected and oriented Riemannian n-manifold. Then
N is aspherical if there exists a proper branched coverRn ! zN into the universal
cover zN of N .

Proof. Suppose there exists k � 2 for which �k. zN / ¤ 0. Let k � 2 be the smallest

such index. Then, by the Hurewicz isomorphism theorem, �k. zN / is isomorphic

to Hk. zN /.

If Hk. zN / is free abelian, the universal coe�cient theorem for cohomology

immediately yields H k. zN IZ/ ¤ 0. If Hk. zN / is not free, Ext.Hk. zN /;Z/ ¤ 0.

Thus H kC1. zN IZ/ ¤ 0 by the universal coe�cient theorem.

We conclude that there exists an index ` � 2 such that H `. zN IZ/ ¤ 0. Since
zN receives a proper branched cover from Rn, the fundamental group �1.N / is

in�nite and the universal cover zN is non-compact. Thus H 0
c . zN IZ/ D 0 and by

the Poincaré duality H n. zN IZ/ D 0. In particular, ` < n.

Let f WRn ! zN be a proper branched cover. Then

f �W H n
c . zN IZ/ �! H n

c .RnIZ/

is non-trivial.

By the Poincaré duality, there exist c 2 H `. zN IZ/ and c0 2 H n�`
c . zN IZ/

satisfying c [ c0 ¤ 0 2 H n
c . zN IZ/. Then

f �c [ f �c0 D f �.c [ c0/ ¤ 0 2 H n
c .RnIZ/:

This is a contradiction, since f �c D 0. Thus �k.N / D 0 for all k � 2. �
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4. Closed aspherical quasiregularly elliptic manifolds

In this section we show that (2) implies (3) in the setting of Theorem 1.1; see also

[11, Corollary 2.43]. The argument of the proof is almost identical to the proof of

theorem [4, Theorem 5.9.]: a �nitely generated group that is quasi-isometric to
the group Zn is virtually Zn. Due to the di�erences in the setting, we give a proof

for the reader’s convenience.

Lemma 4.1. Let N be a closed, connected, aspherical n-manifold with
ord.�1.N // � n. Then �1.N / is virtually Zn and torsion free.

Proof. Since N is aspherical, the cohomological dimension cd.�1.N // of �1.N /

is at most n by [5, Prop VIII.2.2]. Thus �1.N / has �nite cohomological dimension

and is torsion free by [5, Prop VIII.2.8].

Since �1.N / has polynomial growth, it is virtually nilpotent. Let yN be a �nite

cover of N having nilpotent fundamental group. Then �1. yN / has a lower central

series

�1. yN / D �0 � �1 � � � � � �m D ¹1º

with free abelian quotients �k�1=�k for k D 1; : : : ; m. Moreover, since �1. yN / is

�nitely generated, the cohomological dimension coincides with the Hirsh number

of �1. yN /, that is,

cd.�1. yN // D

m
X

kD1

rank .�k�1=�k/ : (4.1)

We refer to [12, Section 8.8] (especially Theorem 5) for these details.

On the other hand, by the growth formula for nilpotent groups (see Bass [2]),

we have

ord.�1. yN // D

m
X

kD1

k rank .�k�1=�k/ : (4.2)

Since cd. yN / D n by [5, Theorem VIII.8.1], we have

m
X

kD1

k rank .�k�1=�k/ D ord.�1. yN // � cd.�1. yN // D

m
X

kD1

rank .�k�1=�k/

(4.3)

by combining (4.1), (4.2), and (4.3). Thus

rank .�k�1=�k/ D 0

for all k D 2; : : : ; m and �1. yN / is abelian. Thus �1.N / is virtually Zn. �
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