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Yet another p-adic hyperbolic disc:

Hilbert distance for p-adic �elds

Antonin Guilloux

Abstract. We describe in this paper a geometric construction in the projective p-adic

plane that gives, together with a suitable notion of p-adic convexity, some open subsets of

P2.Qp/ naturally endowed with a “Hilbert” distance and a transitive action of PGL.2; Qp/

by isometries. �ese open sets are natural analogues of the hyperbolic disc, more precisely

of Klein’s projective model. But, unlike the real case, there is not only one such hyperbolic

disc. Indeed, we �nd three of them if p is odd (and seven if p D 2).

Let us stress out that neither the usual notion of convexity nor that of connectedness as

known for the real case are meaningful in the p-adic case. �us, there will be a rephrasing

game for the de�nitions of real convexity until we reach a formulation suitable for other

local �elds. It will lead us to a de�nition of p-adic convexity by duality. Although we will

not recover the beautiful behaviour of real convexity, we will still be able to de�ne the most

important tool for our goals, namely the Hilbert distance.

We construct our analogues of the hyperbolic disc (once again, via the projective model

of the hyperbolic plane) in a quite geometric, even naive, way. Our construction gives

2-dimensional objects over Qp. It is very di�erent, in spirit and in facts, of Drinfeld p-adic

hyperbolic plane [1]. �e possible relations between the two objects remain still unexplored.

Another object often viewed as an analogue of the hyperbolic disc is the tree of PGL.2; Qp/

[8]. We explore the relations between our discs and this tree, constructing a natural quasi-

isometric projection from the discs to the tree. Eventually we explore the transformation

groups of our discs. And, whereas the transformation group of the tree is huge, we prove

that only PGL.2; Qp/ acts on the discs preserving the convex structure.
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1. Looking for a two-sheeted hyperboloid

In this section we follow the usual construction of the hyperboloid model for the
hyperbolic space but over a local �eld k. �e point is to analyse the properties of
squares in k. We are mainly interested in the action of PGL.2; k/ on k3 via the
adjoint representation:

Ad W PGL.2; k/ �! SL.3; k/:

It is an isomorphism with the group SO.Q/, where Q denotes the quadratic form
on k3 given by

Q.x; y; z/ D xz � y2:

�is section describes the level surfaces of Q in k3 n ¹0º. Each of them is a sin-
gle PGL.2; k/-orbit (by Witt’s theorem). We look at their decomposition into
PSL.2; k/-orbits, like the two-sheeted hyperboloid in the real case. �ese level
sets can be of one of the three following types:

� the isotropic cone, which is a �nite union of PSL.2; k/-orbits,

� a single PSL.2; k/-orbit (a one-sheeted hyperboloid),

� the union of two PSL.2; k/-orbits (a two-sheeted hyperboloid).

�e latter case is the most interesting for our concerns. A hyperbolic disc will be,
in some sense, a positive cone on sheets of these hyperboloids (see Section 2.2).
We will achieve its construction in a fully elementary way. But, due to the lack
of connectedness argument, some proofs rely on direct algebraic computations ;
we will postpone it to an annex. Keeping in mind the real counterpart of these
results should guide the intuition. We begin by recalling some general facts about
orthogonal groups and gradually focus on the orthogonal group SO.Q/ described
above.



Yet another p-adic hyperbolic disc 11

1.1. Special orthogonal groups and level sets. Consider k a �eld of character-
istic di�erent from 2, an integer n � 1, a n C 1-dimensional k-vector space V and
a quadratic form q on V . �en Witt’s theorem [7, 42.F] implies that the special
orthogonal group SO.q/ acts transitively on each level set of q in V n ¹0º.

Consider the form

Q.x0; : : : ; xn/ D x0xn � x2
1 � � � � � x2

n�1

on V D knC1. �e isotropic cone C of Q, i.e. the set of vectors v with Q.v/ D 0,
decomposes into two orbits under the action of SO.Q/: the singleton ¹0º and its
complement.

Let us now assume that k has the following property: x2
1 C � � �C x2

n�1 is a non-
zero square for any non-zero vector .x1; : : : ; xn�1/ 2 kn�1 n ¹0º. �is holds for
any n if k D R and for any �eld k if n D 2. We prove then that the isotropic cone
contains a positive semi-cone de�ned by the fact that x0 is a square in k (“positive”
is an analogy with the real case in which the squares are the positive numbers).
�is semi-cone is stabilized by an explicit normal subgroup of SO.Q/ which is
of �nite index for any local �eld k. �e real case tells us a useful interpretation
for this �nite index subgroup: it becomes the connected component SOo.Q/ – in
the case k D R, the quadratic form Q has signature .1; n/. Let .k�/2 be the set of
squares (invertible) elements in k� and N̨ D ˛.k�/2 the class modulo the squares
of an element ˛ 2 k�. We get the following proposition.

Proposition 1.1. Consider the form Q over a �eld k (with char.k/ ¤ 2) where

x2
1 C � � � C x2

n�1 is a non-zero square for any non-zero vector .x1; : : : ; xn�1/ 2
kn�1 n ¹0º. For any class N̨ in k�=.k�/2, de�ne the semi-cones:

C N̨ D ¹.x0; : : : ; xn/ 2 C n ¹0º such that x0 and xn belong to N̨ [ ¹0ºº:

�en C n ¹0º decomposes into the disjoint union of the semi-cones over the

elements of k�=.k�/2. Moreover SO.Q/ acts by permutations on the set of semi-

cones and we have an isomorphism

SO.Q/= Stab.C N1/ ' k�=.k�/2:

Before proving the proposition, let us describe an avatar of Iwazawa decompo-
sition of the group SO.Q/. Let Q0 be the quadratic form x2

1 C� � �Cx2
n�1. Consider

the three following subgroups of SL.n C 1; k/:

� N C D

0

@

1 2twA Q0.w/

0 A w

0 0 1

1

A for A 2 SO.Q0/ and w 2 kn�1;
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� N � D

0

@

1 0 0

v B 0

Q0.v/ 2tvB 1

1

A for B 2 SO.Q0/ and v 2 kn�1;

� H D

0

@

x 0 0

0 Id 0

0 0 1
x

1

A (x 2 k�).

In the real case, the three following facts may be proven using geometric consid-
erations. But elementary linear algebra leads to the same conclusion and works
on any �eld.

Fact 1. (1) All three are subgroups of SO.Q/ and H normalizes both N C and N �.

(2) �e subgroup N C is the stabilizer of

v0 D

0

B

B

B

B

@

1

0
:::

0

1

C

C

C

C

A

in SO.Q/.

(3) �e group SO.Q/ decomposes as the product N �HN C.

With this fact, we are ready to proceed with the proof of the proposition.

Proof. We may remark that any non-zero isotropic element v D .x0; : : : ; xn/

belongs to one of the semi-cones. Indeed, v being isotropic, we have the equation

x0xn D Q0.x1; : : : ; xn�1/:

We assumed that Q0 takes only square values, hence x0xn is either zero when
.x1; : : : ; xn/ D 0 or a non-zero square. In the �rst case, as v ¤ 0, we get that
x0 ¤ 0 or xn ¤ 0. In the second case, the class Nx0 and Nxn are the same, as
x0xn 2 .k�/2. In any case, there is a unique class N̨ modulo square such that
N̨ [ ¹0º contains both x0 and xn. �is proves the �rst part of the proposition.

To prove the second point, let us remark that both N C and N � stabilize each
semi-cone. Let us justify this for N C by considering an arbitrary element

n D

0

@

1 2twA Q0.w/

0 A w

0 0 1

1

A :
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Consider an element

v D

0

B

@

x0

:::

xn

1

C

A

in Cn¹0º. If x0 ¤ 0 then v belongs to Cx0
. And n.v/ has the same �rst coordinate as

v. So it also belong to Cx0
. Otherwise, x0 vanishes and so do all the x1; : : : ; xn�1

(as Q.v/ D 0). In this case, v belongs to Cxn
, and n.v/ is the vector:

n.v/ D

0

@

Q0.w/xn

xnw

xn

1

A :

It still belongs to Cxn
.

�e isomorphism SO.Q/= Stab.C N1/ ' k�=.k�/2 is now easily obtained. In-
deed, using the previous fact, we may write:

SO.Q/= Stab.C N1/ D HN �N C= Stab.C N1/:

�e product N �N C is contained in Stab.C N1/. Hence we have a �rst isomorphism:

SO.Q/= Stab.C N1/ ' H= StabH .C N1/:

And the stabilizer in H of the semi-cone C N1 is clearly the subgroup:

0

@

x 0 0

0 Id 0

0 0 1
x

1

A for x 2 .k�/2:

Hence the quotient H= StabH .C N1/ is isomorphic to k�=.k�/2

1.2. �e groups Ad.PSL.2 ; k// and SO.Q/. We focus now our attention on the
case n D 2. We note Q.x; y; z/ D xz � y2. In this case, the adjoint representa-
tion is an isomorphism between PGL.2; k/ and SO.Q/. �e determinant modulo
squares gives an isomorphism:

PGL.2; k/= PSL.2; k/
��! k�=.k�/2:
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Under the adjoint representation, this isomorphism is exactly the same as the
one of Proposition 1.1. It translates into an isomorphism between the quotient
SO.Q/= Ad.PSL.2; k// and k�=.k�/2. For each class N̨ 2 k�=.k�/2 represented
by some ˛ 2 k�, the following diagonal matrix belongs to the corresponding class
in SO.Q/= Ad.PSL.2; k//:

d˛ D

0

@

˛

1

˛�1

1

A :

We denote by d N̨ the class d˛ Ad.PSL.2; k// in SO.Q/= Ad.PSL.2; k//. �e group
Ad.PSL.2; k// thus identi�es with the stabilizer of the semi-cones.

One may describe more precisely the case of k a non-archimedean local �eld
of characteristic ¤ 2. Recall that the group k�=.k�/2 is of order 4 and isomorphic
to .Z=2Z/2 if the characteristic p of the residual �eld is odd. So there are 4 semi-
cones in general. For characteristic 0 and residual characteristic 2, the situation
is more complicated [7]. Consider the case Q2: then there are 8 classes modulo
squares, and the group is isomorphic to .Z=2Z/3. So we have 8 semi-cones for Q2.

We have decomposed the isotropic cone into semi-cones. We may now look
at the hyperboloids, i.e. the decomposition of the other level sets of Q under the
action of the subgroup Stab.C N1/. Shall we recover the hyperboloids of one or two
sheets? Recall that we are looking for a model of the hyperbolic disc. In the real
case, the �rst step is to see the two-sheeted hyperboloids. From now on, the �eld
k is a non-archimedean local �eld of characteristic di�erent from 2.

1.3. Hyperboloids of one or two sheets. �roughout this section, k is a non-
archimedean local �eld of characteristic di�erent from 2.

�e homotheties of k3 change the value of Q by a square. So, up to homoth-
eties, there are Card.k�=.k�/2/ level surfaces for Q di�erent from the isotropic
cone. Let N̨ be a class in k�=.k�/2 and ˛ an element of N̨ . De�ne

v˛ D

0

@

˛

0

1

1

A :

�en we have Q.v˛/ D ˛. We want to understand the stabilizer in SO.Q/ of v˛,
in order to decompose the hyperboloid SO.Q/:v˛ into sheets. �e situation is as
follow.
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Proposition 1.2. Let N̨ be a class in k�=.k�/2 and ˛ an element of N̨ .

(1) If �1 belongs to N̨ , then SO.Q/:v˛ is a one-sheeted hyperboloid, i.e.

SO.Q/:v˛ D Ad.PSL.2; k//:v˛I

(2) else SO.Q/:v˛ is a two-sheeted hyperboloid, i.e. SO.Q/:v˛ decomposes in

two distinct PSL.2; k/-orbits.

Proof. F irst case. �1 belongs to N̨ : then the orbit SO.Q/:v˛ is homo-
thetic to the orbit SO.Q/:v�1. But we have Q.�1; 0; 1/ D Q.0; 1; 0/. Witt’s the-
orem implies that the orbit SO.Q/:v�1 coincide with the orbit

SO.Q/:

0

@

0

1

0

1

A:

One may see that this latter orbit is a one-sheeted hyperboloid: the group

Stab

0

@

0

1

0

1

A

contains all the matrices

dˇ D

0

@

ˇ

1

ˇ�1

1

A; for ˇ 2 k�:

Hence we have

Ad.PSL.2; k// Stab.0; 1; 0/ D SO.Q/;

which proves that

SO.Q/:.0; 1; 0/ D Ad.PSL.2; k//:.0; 1; 0/:

Second case. �1 does not belong to N̨ : then the stabilizer of v˛ is the
orthogonal group of Q restricted to v?

˛ . �e form Qjv?
˛

is equivalent to the form
Q˛.u; v/ D �˛u2 � v2. �e latter is anisotropic: Q.u; v/ D 0 would imply
˛ D � v2

u2 , so �1 would belong to N̨ . In order to understand Ad.PSL.2; k//Stab.v˛/,
we shall understand how the action of Stab.v˛/ permutes the semi-cones.
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Let P be the a�ne plane v?
˛ C 1

˛
v˛ . �e plane P is invariant under Stab.v˛/

and has equation
0

@

a

b

c

1

A 2 P () ˛c C a D 1:

Look at the intersection P \C of P and the isotropic cone. �e action of Stab.v˛/

on C will be transitive on the component of P \ C. So we compute the set of
Ň 2 k�=.k�/2 such that P intersects C Ň . A vector t .a; b; c/ belongs to P \ C if
and only if its entries satisfy

8

<

:

˛c C a D 1;

ac D b2:

We are only interested in the common class Ň modulo squares of a and c

(in order to determine the semi-cone C Ň the solution belongs to). �e Ň’s which
are solutions are exactly those verifying

1 2 Ň C ˛ Ň:

As �1 62 N̨ , this implies that 1 2 Ň or 1 2 ˛ Ň. So those Ň are exactly the elements
of

¹Œ˛ C y2� 2 k�=.k�/2 for y 2 k�º:

In other terms, this set is the norm group NŒkŒ
p

�˛�Ik� (modulo squares) of the

quadratic extension kŒ
p

�˛� (see [7]).
We know [7, 63:13a] that this set is always an index 2 subgroup of k�=.k�/2. As

said before, the subgroup Stab.v˛/ permutes the Cˇ ’s which intersect P

(by Witt’s theorem). Hence it has two distinct orbits among the C Ň ’s, and the
orbit of v˛ is a two-sheeted hyperboloid.

Remark. For the very last point in the above proof, and k D Qp, instead of
referring to [7], one may alternatively check the following without di�culties:

� P always intersects the semi-cone C N1 associated to the class of squares,

� if p is odd, and N̨ has an even valuation in k, P intersects the two C Ň ’s for Ň
of even valuation,

� if p is odd, and N̨ has an odd valuation, P intersects C1 and C N̨ ,

� if k D Q2, one veri�es for each class that P intersects four semi-cones.
For example, in Q2, if N̨ is the class of squares, P intersects C Ň for Ň equals
N1, N2, N5 and 10.
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Another way to state the previous proposition is that for each subgroup
xK of index 2 in k�=.k�/2, there is a vector v˛ in k3 such that the group

Stab.v˛/ Ad.PSL.2; k//= Ad.PSL.2; k// is isomorphic to xK. �ose subgroups xK
are the norm groups (modulo squares) of a quadratic extension of k. We get the
following corollary.

Corollary 1. Let xK be a subgroup of index 2 in k�=.k�/2.

�ere is a unique N̨ in k�=.k�/2 such that xK is the set

¹Œ˛ C y2� 2 k�=.k�/2 for y 2 k�º

for any ˛ in N̨ . �e group xK is equivalently described as the norm group (modulo

squares) of the extension kŒ
p

�˛�.

Moreover for every ˛ in this N̨ , the orbit SO.Q/:v˛ is a two-sheeted hyper-

boloid.

We prefer to work with subgroups of k� and we hereafter denote by K N̨ the
subgroup of k� such that, for any ˛ in N̨ ,

K N̨ D ¹˛x2 C y2 2 k� for x; y 2 k�º:

2. Projectivization and duality

A crucial point for the (real) projective model of the hyperbolic disc consists in the
fact that the positive semi-cone over one sheet of the two-sheeted hyperboloid is a
convex cone. It allows the construction of the natural Hilbert distance for an open
convex subset of the sphere which turns out to be exactly the hyperbolic distance.

2.1. �e positive semi-cones. We try here to understand the “positive semi-
cone” over one of the previously de�ned sheets. In other terms, we will projec-
tivize the geometry of the previous section, but only under action of “positive”
homotheties, i.e. with ratio in K N̨ . We �x an N̨ in k�=.k�/2 such that �1 does not
belong to N̨ . We are now interested in the orbits of K N̨ Ad.PSL.2; k// (the positive
semi-cones) among the set

¹v 2 k3 such that Q.v/ 2 N̨º:

Once again, we will study stabilizers of points and indices of subgroups to build
up the geometry of the situation.
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�e group k� SO.Q/ acts transitively on the latter set. �e index of the
subgroups K N̨ Ad.PSL.2; k// in k� SO.Q/ is 8 for odd residual characteristic
(16 if k D Q2). Consider the usual vector

v˛ D

0

@

˛

0

1

1

A

for some ˛ in N̨ . Of course we have Q.v˛/ D ˛ 2 N̨ . And the stabilizer of v˛ in
k� SO.Q/ is generated by its stabilizer in SO.Q/ and the diagonal matrix

d D

0

@

1

�1

1

1

A D �d�1:

We therefore get the following lemma.

Lemma 2.1. Consider the set

¹v 2 k3 such that Q.v/ 2 N̨ º:

�e number of disjoint K N̨ Ad.PSL.2; k//-orbits it decomposes into is

� 4 orbits if �1 belongs to K N̨ ;

� 2 orbits if �1 does not belong to K N̨ .

Proof. We have seen that Ad.PSL.2; k// Stab.v˛/ is of index 2 in SO.Q/. So the
index of the group

K N̨ Ad.PSL.2; k// Stab.v˛/

in k� SO.Q/ is 4 or 2 depending on whether d belongs to K N̨ Ad.PSL.2; k// or
not. Now, �1 belongs to K N̨ if and only if d belongs to K N̨ Ad.PSL.2; k//.

As we are interested in the semi-cones, we will need an ad-hoc sphere, rather
than the projective space.

De�nition 2.1. For N̨ in k�=.k�/2 such that �1 does not belong to N̨ , the N̨ -
sphere is

S N̨ D .k3 n ¹0º/=K N̨ :

Of course, the N̨ -sphere is a 2-covering of the projective space.
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2.2. Duality. We are now prepared to deal with convexity properties. Convexity,
in the usual real sense, may be interpreted as a positivity condition: a subset of the
plane is convex if it is an intersection of half-spaces; or equivalently if it is the set
of points which take positive values on a set of a�ne forms. We will here follow
this idea, translating “positive” into “belonging to K N̨ .”

�e polar form of Q is the bilinear form B de�ned by

B.v; v0/ D 1

2
ŒQ.v C v0/ � Q.v � v0/�:

Recall that C N1 is the semi-cone associated to the class of squares

C N1 D ¹.a; b; c/ 2 k3 n ¹0º such that ac D b2 and a and c are squaresº

First of all, for any ˛ in N̨ , and w 2 C N1, one checks that B.v˛; w/ belongs
to K N̨ . Using the action of K N̨ : Ad.PSL.2; k//, we even get the following duality
phenomenon:

B.v; w/ 2 K N̨ for all ˛ 2 N̨ , v 2 K N̨ Ad.PSL.2; k//:v˛, and w 2 C N1.

�e hope for a possible theory of p-adic convexity raises up with the following
theorem.

�eorem 2.2. Let N̨ be an element of k�=.k�/2 such that �1 62 N̨ . We have equality

between the two following sets:

(1) ¹K N̨ Ad.PSL.2; k//:v˛ for ˛ 2 N̨ º,

(2) H N̨ D ¹v 2 k3 such that for all w 2 C1, we have B.v; w/ 2 K N̨ º.

H N̨ is the union of one or two K N̨ Ad.PSL.2; Qp//-orbits: two if �1 belongs to

K N̨ , else one.

Remark. �e projectivization of H N̨ will be our hyperbolic discs. One should
not be disappointed by the possibility for them to be the union of two distinct
K N̨ Ad.PSL.2; k//-orbits. �is will even be our preferred case later on. Let us
recall, maybe in a yet cryptic way, that the tree of PSL.2; Qp/ is the union of two
disjoint orbits under PSL.2; Qp/.

Proof. �e set ¹v 2 k3 such that Q.v/ 2 N̨ º is a single k� SO.Q/-orbit. It splits
into H N̨ and its complementary, which is also the image of H N̨ under the following
matrix, for any y not belonging to K N̨ :

dy D

0

@

y

1

y�1

1

A :
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Both of them are K N̨ Ad.PSL.2; k//-invariant. Moreover, as dy normalizes
Ad.PSL.2; k//, they decompose in the same number of orbits under
K N̨ Ad.PSL.2; k//. Previous Lemma 2.1 implies that H N̨ splits into two orbits
if �1 belongs to K N̨ , else is a single orbit.

We found our hyperbolic discs ! �is section ends with the following de�ni-
tion:

De�nition 2.2. Let N̨ be an element of k�=.k�/2 such that �1 62 N̨ . �e N̨ -hyper-
bolic disc, denoted by D N̨ , is the projection of H N̨ to the N̨ -sphere S N̨ .

�ose are the main characters of our paper. We will endow them with a distance
and study their geometry. Let us stress out that for each �eld k one �nd several
hyperbolic discs: one for each class N̨ not containing �1. �ere are 3 of them if
the residual characteristic is odd and 7 for Q2. And they are di�erent, in the sense
that the action of PSL.2; k/ on them is di�erent. It may have one or two orbits and
the stabilizer of a point are not conjugated for di�erent classes N̨ .

3. Convexity and Hilbert distance for open sets

in the projective plane of local �elds

�e present section tries to lay down the basis of a Hilbert geometry over local
�elds. We �rst de�ne a notion of convexity inspired by (and applicable to) the
hyperbolic discs just constructed ; then a natural distance for these convex sets
(the Hilbert distance).

Hilbert geometries [6, 4, 2, 9] are fascinating and well-studied objects.
We deliberately focus in this text on the example of the hyperbolic discs and use
the convexity as a way to de�ne an interesting structure on our D N̨ . We neverthe-
less think that the existence of these examples gives a good motivation for studying
in a more systematic way the hereafter proposed notion of convexity. As another
example of a convex set and its Hilbert distance we describe the triangle.

3.1. Convexity in the setting of local �elds. We propose here a de�nition for
convexity in the setting of local �elds, hoping it will prove convenient and useful.
We choose to work in duality, copying the fact that a convex set in R2 may be
de�ned as the positive side of a set of a�ne forms. �is de�nition is also motivated
by our example of hyperbolic discs and by the possibility (to be seen afterwards)
to construct a Hilbert distance.



Yet another p-adic hyperbolic disc 21

Fix a local �eld k and H a subgroup of �nite index in the multiplicative
group k�. Choose an integer n � 2, V a n C 1-dimensional k-vector space and
de�ne the H -sphere of V :

SH .V / D .V n ¹0º/=H:

It is a �nite covering of the projective space P.V /. �e H -spheres of V and its
dual V � are naturally in duality: for a 2 SH .V / and b 2 SH .V �/ the class b.a/ is
well-de�ned in k�=H . We de�ne the (H -)dual �ı of a set � in SH .V / as the set
of forms taking values in H on points of �:

�ı D ¹f 2 SH .V �/ W f .x/ 2 H for all x 2 �º:

We may now take the bidual .�ı/ı. By de�nition, � is included in its bid-
ual .�ı/ı.

De�nition 3.1. A subset � of SH .V / is H -convex if � coincides with its bid-
ual .�ı/ı.

One can alternatively say that � is H -convex if there is some set �0 in SH .V �/

such that � is the H -side of �0: � is the set of ! such that for all !0 2 �0,
we have !0.!/ 2 H . Indeed, one take �0 D �ı.

�e previous de�nition immediately leads to the de�nition of a convex hull:

De�nition 3.2. �e convex hull of a subset C of SH .V / is the subset

Hull.C / D .C ı/ı

of SH .V /.

Observe that Hull.C / is the smallest of SH .V / containing C .

When k D R and H D R>0, De�nitions 3.1 and 3.2 coincide with the usual
de�nitions. When k is any �eld and H D k�, the projection to the H -sphere of the
complement to a �nite union of hyperplanes is an example of convex set. And, in
view of our �eorem 2.2, the hyperbolic discs D N̨ we just de�ned are K N̨ -convex.

Any polytope will be H -convex: take a �nite set of forms and their common
H -side. One may describe more precisely the triangle: for any local �eld k and a
�nite index subgroup H of k�, we de�ne the H -triangle TH : it is the set of points
Œx; y; z� in the H -sphere whose three coordinates are in H . �en TH is the dual
of set ¹e1; e2; e3º of the three coordinates forms.
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3.2. Hilbert distance, revisited. �is subsection is devoted to a rephrasing of
the Hilbert distance in the real case. We want to rede�ne it without any mention
to the ordering on R. �is is possible, even if the de�nition proposed might seem
highly arti�cial for this real case. We will then move on in the next subsection to
other �elds, trying to transpose our new de�nition.

We �x here an open, relatively compact and convex set � in the space Rn and
take V D RnC1, H D R>0. Via the adjunction of an hyperplane at in�nity to
Rn, � becomes an open and proper convex set in the projective space P.V /. So
we have a convex lift (still called �) in the (usual) sphere. �e Hilbert distance is
classically de�ned in the following way:

for x and y in �, let a and b be the intersections between the line .xy/ and
the frontier @� of �, such that a, x, y, b are in this order on the line .xy/

(see Figure 1). Consider (noting zt the distance between two points z and t ),

D�.x; y/ D Œa; b; x; y� D ay

ax

bx

by
;

and take its logarithm

d�.x; y/ D ln.Œa; b; x; y�/ D ln.
ay

ax

bx

by
/:

It is well known that d� is a distance [6, 2]. �e only point necessitating a proof is
the triangular inequality. Moreover, it is invariant under projective transformation.
Once again, we will not get further into the theory of Hilbert distance. We just
want to de�ne it in another way.

�e �rst problem of this de�nition for other �elds than R is the word “bound-
ary.” In totally disconnected �elds such boundaries tend to be void. We prefer to
use the duality. So if ' and '0 belong to V �, x and x0 belong to V with neither
'.x/ nor '0.x0/ null, we note:

Œ'; '0; x; x0� D '.x0/

'.x/

'0.x/

'0.x0/

�is formula is invariant under homothety on V or V �, and under the action
of GL.V / conjointly on V and V �.

Lemma 3.1. Let � be an open proper convex set in the sphere, �ı be its dual.

�en, for all x and y in �,

D�.x; y/ D max
'; '02�ı

Œ'; '0; x; y�:

So the Hilbert distance is the logarithm of this maximum.
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Figure 1. �e Hilbert distance on �.

Proof. Consider a0 (resp. b0) the intersection point between ker.'/ (resp. ker.'0/)
and the line .xy/. By convexity, and the fact that ' 2 �ı, a0 and b0 do not belong
to �. And the theorem of �ales implies that '.x/

'.y/
equals a0�x

a0�y
(see Figure 2)

and the same with '0 and b0. Hence we get the equality between Œ'; '0; x; y� and
Œa0; b0; x; y�. �e maximum of the latter is attained for a0 D a and b0 D b, i.e.
ker.'/ a supporting hyperplane of � through a, and ker.'0/ through b.

At this point we do not mention @� any more, which is the �rst step. But we
use the notion of maximum, unavailable in other �elds. �e following step is given
by this lemma.

Lemma 3.2. Let � be an open proper convex set in the sphere, �ı be its dual.

�en, for all x and y in �,

¹Œ'; '0; x; y� for '; '0 2 �ıº D ŒD�.x; y/�1; D�.x; y/�:
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Figure 2. Rewriting the Hilbert distance.

Proof. First of all, we check that Œ'; '0; x; y� D Œ'0; '; x; y��1, so the �rst set
contains D�.x; y/ (its maximum by the previous lemma) and D�.x; y/�1 and
is contained in the interval ŒD�.x; y/�1; D�.x; y/�. Now �ı is convex hence
connected. We conclude by continuity.

We may now rede�ne the Hilbert distance via the Haar measure on R�. Choose
the Haar measure � on R� de�ned by the following, for t > 1,

�Œt�1; t � D ln.t /:

�en, the previous lemma yields immediately:

Proposition 3.3. Let � be an open proper convex set in the sphere, �ı be its dual.

�en the distance d�.x; y/ is given by

d�.x; y/ D �.¹Œ'; '0; x; y� W '; '0 2 �ıº/:

We have reached our goal: the latter number may be de�ned on any �eld and
recovers the Hilbert distance in the real case.

Remark. In this form, the triangular inequality becomes easy, once we check that
(with obvious notation) Œ'; '0; x; y� D Œ'; '0; x; z�Œ'; '0; z; y� (see Lemma 3.5).
Easy indeed, but one still needs to use some properties of the real numbers, e.g.
an ordering. �is will be a further problem.
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3.3. A generalized Hilbert distance. We now come back to a more general
situation: let k be R or some non-archimedean local �elds k (of characteristic
di�erent from 2) and j:j its norm. Let H be a �nite index subgroup of k� and V

an n C 1-dimensional k-vector space. Fix a Haar measure � on k�. We de�ne a
notion of symmetric ball:

De�nition 3.3. �e symmetric ball of radius r is the set

¹x 2 k such that jx � 1j � r and jx�1 � 1j � rº:

We may also de�ne the notion of proper convex set, extending the notion of
properness in the real case:

De�nition 3.4. Let � be a H -convex set in SH .V /. �e set � is proper if the
intersection \'2�ı ker.'/ equals ¹0º.

We are now able to de�ne a Hilbert distance on proper convex sets.

�eorem 3.4. Let � be an open and proper H -convex set in SH .V /, �ı be its

dual. For x, y in �, de�ne d�.x; y/ as the measure for � of the smallest symmetric

ball containing ¹Œ'; '0; x; y� for '; '0 2 �ıº.
�en d� is a distance on �.

Proof. For this proof, we note B�.x; y/ the smallest symmetric ball containing
the set ¹Œ'; '0; x; y� for '; '0 2 �ıº.

First of all, if x 2 �, we have d�.x; x/ D �.¹1º/ D 0. Moreover, if x ¤ y

are in �, �x X and Y some representatives in V (recall that � lives in the H -
sphere). We cannot have some element l 2 k such that '.X/ D l'.Y / for all
' 2 �ı, because X � lY would be in every ker.'/, contradicting the properness.
Hence the set ¹Œ'; '0; x; y� for '; '0 2 �ıº is not restricted to ¹1º and the smallest
symmetric ball containing it has a non empty interior. Its measure is not 0 and
d�.x; y/ ¤ 0.

We have Œ'; '0; x; y� D Œ'0; '; y; x�. Hence we have B�.x; y/ D B�.y; x/ and
d� is symmetric: d�.x; y/ D d�.y; x/.

We have already mentioned that Œ'; '0; x; y� D Œ'; '0; x; z�Œ'; '0; z; y�. Hence,
B�.x; y/ is included in the set B�.x; z/:B�.z; y/. We check the following lemma.
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Lemma 3.5. If B and B 0 are two symmetric balls, then

�.BB 0/ � �.B/ C �.B 0/:

Proof. If k D R, the symmetric balls of radius t in R�
C is Œt�1; t � and we have

�.Œt�1; t �/ D ln.t / (up to a constant). Hence we have

�.Œt�1; t �Œs�1; s�/ D �.Œt�1s�1; st �/ D ln.t / C ln.s/:

If k is a non archimedean local �eld, note O the ring of integers, q�1 the
norm of an uniformizer (for k D Qp, this means O D Zp and q D p), let Bt

be the symmetric ball of radius qt , Bs of radius qs (with t � s integers). �en
�.Bt / D 1

q�1
qtC1 if t < 0 and t C 1 if t � 0 (normalizing � by �.O�/ D 1).

Moreover one checks that the product BtBs is Bs if t � 0 or BtCs . Hence the
results also hold in this case.

It yields that d� veri�es the triangular inequality, and even in the p-adic case,
an ultrametric inequality if a distance is lesser than 1.

Remark that in the real case, we just rede�ned the Hilbert distance, nothing
more. We hope that this de�nition may give some nice non-standard Hilbert ge-
ometries. We shall try to get some insights on the possible geometries elsewhere.
We focus in this paper on the �rst important examples, namely the hyperbolic
discs D N̨ . We study in the following section their geometry.

Let us discuss a bit the triangle before that. Let k D Qp and H be the subgroup
of squares. �en one checks that the dual .TH /ı of the triangle is composed of ex-
actly three points in the H -sphere of .Q3

p/0: the projection of the three coordinate
forms, denoted e1, e2 and e3.

As the dual is �nite, we really need to consider symmetric balls to �ll up the
sets of cross-ratios involved in the de�nition of distance. Indeed, if we had not
�lled up, we would always compute the measure of a �nite set. With the de�nition
we gave, take two points P1 D Œpn1x W 1 W pn2y� and P2 D Œpm1a W 1 W pm2b� in
the triangle (with x, y, a and b in Z�

p). Let N D n1 � m1, M D n2 � m2. �en
we have (normalizing the Haar measure � on Qp such that �.Z�

p/ D 1:

Proposition 3.6. �e distance in TH between P1 and P2 is the following:

� if N D M D 0, then the distance is less than 1;

� else, it is max ¹N; M; �N; �M; N � M; M � N º C 1.

Moreover, on the balls of radius 1, the distance is ultrametric.
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�e proof is a direct application of the de�nition. An interesting consequence
is the following one: with the notation above, one can de�ne a map � from TH to
ZŒj D e

2i�
3 � by sending Œpn1x W 1 W pn2y� to .n1 C n2j /. �is map shrinks the

balls Bn1;n2
of radius 1 in TH to a point in ZŒj �. But if you equip ZŒj � with the

hexagonal norm, the map sends two points of TH at distance d to two points in
ZŒj � at distance d � 1. Figure 3 shows the image of the ball of center Œ1 W 1 W 1�

and of radius 2. �is exhibits a striking analogy with the Hilbert distance on the
triangle in the real case, which is isometric to the hexagonal norm on the plane R2.

Figure 3. �e Hilbert distance on the triangle.

4. Geometry of the hyperbolic discs

�e hyperbolic discs give nice examples of convex sets. �e generalized Hilbert
distance is de�ned and endow them with a geometry. We will describe a bit this
geometry: what are their duals and isometry groups. �en we will actually com-
pute the Hilbert distance.

Recall the setting of Sections 1 and 2: we work in a non-archimedean local �eld
k of characteristic ¤ 2, N̨ is a �xed class in k�=.k�/2 which does not contain �1.
We associated to it a subgroup K N̨ of index 2 in k�=.k�/2. We studied the quadratic
form Q.x; y; z/ D xz � y2, and called B its polar form. We have de�ned the
isotropic semi-cone C N1 � k3 and we denoted C N̨ its projection in the K N̨ -sphere.1
�anks to B we have an identi�cation between k3 and its dual, and so between
their K N̨ -spheres. With the de�nitions of the previous section, the meaning of
�eorem 2.2 is that the disc D N̨ is the convex .C N̨ /ı.

1 It is only a slight abuse of notation, as the projections of the semi-cones CN1 and C N̨ in the
K N̨ -sphere are the same.
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4.1. �e duals. �e description of the duals of the discs is required to compute
the generalized Hilbert distance.

Proposition 4.1. If �1 is a square in k, or if N̨ ¤ 1, then the dual Dı
N̨ of D N̨ is

exactly the semi-cone C N̨ .
If �1 is not a square, and N̨ D 1, then the dual Dı

N1 is D N1 [ C N1.

Proof. We know by �eorem 2.2 that C N̨ is included in Dı
N̨ and even that D N̨ D C

ı
N̨ .

Moreover Dı
N̨ does not intersect C Ň for ˇ 62 K N̨ :

B..˛; 0; 1/; .ˇ; 0; 0// D ˇ 62 K N̨ :

Now, take some v outside of the isotropic cone. If v does not belong to D N̨ we may
use the action of PSL.2; k/ to send it (at the limit) in a semi-cone C Ň for Ň ¤ N̨
(the isotropic cone is the limit set for the action of PSL.2; k/ on P.k3/). Hence v

does not belong to Dı
N̨ .

If v belongs to D N̨ , up to the action of PSL.2; k/ (and homothety), one may
assume that v D .˛x2; 0; 1/ for some x 2 k. We then get that, for any v0 D
.a; b; c/ 2 D N̨ ,

B.v; v0/ D .˛x2c C a/ 2 K N̨ :

Choose v0 D .˛y2; 0; 1/. �en, we get B.v; v0/ D ˛.x2 C y2/. �is belongs to K N̨
for any y if and only if �1 is not a square, and N̨ D N1.

We conclude by the following: if �1 is not a square, and N̨ D N1, take,
v and w in D N1. �en up to the action of K N1 Ad.PSL.2; k//, one may assume
that v D .x2; 0; 1/ and w D .y2; 0; 1/ for some x, y in k. And we have
B.v; w/ D x2 C y2 2 K N1.

�e second situation described (�1 not a square, N̨ D N1) reminds us of the real
case. �e existence of the other ones shows the limits of the analogy. But in any
case, the dual is big enough and D N̨ is a proper and open K N̨ -convex set:

Corollary 2. �e hyperbolic disc D N̨ is a proper and open K N̨ -convex set.

It inherits a Hilbert distance dD N̨
.

We will e�ectively compute the distance in Section 4.4. Before that, let us try
to describe a bit the geometry and isometries of these discs.

4.2. Lines, short and long. We have a natural notion of line in the disc D N̨ .
Consider a point v 2 D N̨ . Any (linear) plane in k3 projects to a projective line
in S N̨ . We call line in D N̨ the intersection of a line in S N̨ with D N̨ .
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Hence through two distinct points in D N̨ , there is a unique line in D N̨ . But there
are two distinct kind of lines: short lines, which are compact in S N̨ , and long lines,
for which the closure intersects C N̨ in exactly two points.

Indeed, consider a point v 2 D N̨ . A line through v is determined by a vector w

in v?, such that the line is the projectivization of the plane Pw generated by v and
w. Now we have seen that Q restricted to v? is equivalent to the form �˛x2 �y2.
Hence it takes values exactly in �K N̨ . So there are two cases.

� If Q.w/ 2 � N̨ , then Q restricted to Pw is isotropic and the projection of Pw

in S N̨ intersects C N̨ in two points. We call it a long line.

� If Q.w/ 62 � N̨ , then Q restricted to Pw is anisotropic and the projection
of Pw in S N̨ does not intersect C N̨ . �en the projection of Pw in S N̨ is the
union of two disjoint compact sets: the points in D N̨ and its complementary.
We call it a short line.

For a line l in D N̨ , we note P.l/ the plane in k3 such that l is the projectivization
of P.l/ (intersected with D N̨ ). For two lines through a point v, there is a well-
de�ned notion of orthogonality, thanks to the bilinear form B:

De�nition 4.1. Two lines l1 and l2 through a point v in D N̨ are orthogonal if
P.l1/ \ v? and P.l2/ \ v? are orthogonal for B .

One checks that if �1 is not a square and N̨ D N1, then the orthogonal of a long
line is a long line.

4.3. �e projective isometry group. We are now able to describe the group of
projective isometries, and the transitivity of its action. We will discuss later (see
Section 6) the existence of non-projective isometries.

Proposition 4.2. �e group Isom.D N̨ / of projective maps in GL.3; k/=K N̨ pre-

serving D N̨ acts by isometries on D N̨ . It is isomorphic to PGL.2; k/, an element g

of PGL.2; k/ acting by det.g/ Ad.g/.

� Its action is transitive on D N̨ � C N̨ .

� Its action is transitive on the sets of long lines, and of short lines.

� Its action is transitive on the �ags “a point in a long line.”

� Its action preserves orthogonality.

Remark. From now on, the action of PGL.2; k/ on D N̨ will always be the one
described above.
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Proof. �e �rst part is classical in Hilbert geometry: a projective transformation
preserves D N̨ if and only if it preserves its dual. Hence it preserves the Hilbert
distance de�ned. Moreover, an element of GL.3; k/=K N̨ which preserves C N̨ pre-
serves the isotropic cone of Q. So it belongs to the projective orthogonal group
PO.Q/. As it shall preserve D N̨ , one easily sees that it is the group described.

Now the stabilizer of C N̨ is generated by Ad.PSL.2; k// and d˛ . Fix the point
K N̨ :.1; 0; 0/ in C N̨ . Its stabilizer is generated by d˛ and Ad.P / where P is the
parabolic subgroup

�x y

0 x�1

�

. Moreover any point in C N̨ , represented by a triple

.x2; xy; y2/ is the image of .1; 0; 0/ under Ad
�x 0

y
2

x�1

�

, proving the transitivity

of the action on C N̨ . Remark that any point in D N̨ is represented by a triple
.˛c�2 C c�2b2; cb; c2/ (up to the action of K N̨ ). By the action of Ad.P /, namely
of Ad

�

c b
0 c�1

�

, this point is sent to v˛ D .˛; 0; 1/. �is proves the �rst transitivity
claimed.

Now �x a short line l (resp a long line L) through v˛ . Take another short
line l 0 (resp. long line L0). Using the transitivity of Isom.D N̨ / on D N̨ , we send l 0

(resp. L0) on a short (resp. long) line through v˛. Eventually the stabilizer of v

acts transitively on the set of directions < w > in v? such that Q.w/ 62 � N̨ (resp.
Q.w/ 2 � N̨ ). So you may send l 0 to l , and L0 to L.

�e stabilizer of the long line ¹.x; 0; y/; x; y 2 K N̨ º acts transitively on this
line (indeed, it contains all the diagonal matrices with entries in K N̨ ). Using the
transitivity on the long lines, we get the transitivity on the �ags.

�e last point is straightforward.

We may describe more precisely the action of PGL.2; k/ on C N̨ .

Fact 2. �e action of PGL.2; k/ on C N̨ is isomorphic to its projective action on

P1.k/ via the bijection

K N̨ .x
2; xy; y2/l 7! k.x; y/:

4.4. �e Hilbert distance on the discs. Of course it is possible to e�ectively
compute the distance. We only prove the result when k D Qp with p ¤ 2 and N̨ has
even valuation. Here we choose the Haar measure on Qp such that �.Z�

p/ D 1 and
�x ˛ 2 N̨ of valuation 0. �anks to the transitivity of the isometry group, we just
have to compute two distances: �rst the distance between the point v˛ D .˛; 0; 1/

and a point v1 D .˛x2; 0; 1/ (for which v˛ and v1 de�ne a long line), second the
distance between v˛ and some v2 D ..1 � ay/˛; 1; 1 C ay/, where a 2 Z�

p is such
that 1 C ˛a2 does not belong to � N̨ . Indeed in the second case, one checks that
v˛ and v2 de�ne a short line.
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Proposition 4.3. Assume p ¤ 2 and N̨ has even valuation.

First case. �e Hilbert distance dD N̨
between the points v˛ D .˛; 0; 1/ and

v1 D .˛x2; 0; 1/ on a long line is given by

� dD N̨
.v˛; v1/ D 2n C 1, if max.jx2 � 1j; jx�2 � 1j/ D p2n � 1;

� dD N̨
.v˛; v1/ D 1

p�1
pnC1, if max.jx2 � 1j; jx�2 � 1j/ D pn < 1.

Second case. �e Hilbert distance dD N̨
between the points v˛ D .˛; 0; 1/ and

v2 D ..1 � ay/˛; y; .1 C ay// on a short line is always lesser than one. If jyj D 1,

it is 1. If jyj D pn < 1, it is given by 1
p�1

pnC1.

Remark. If N̨ has an odd valuation, one checks that the only modi�cations needed
are the following. In the �rst case (long line), if max.jx2�1j; jx�2�1j/ D p2n � 1,
then one gets dD N̨

.v˛; v1/ D 2n C 1
2
. In the second case (short line), if jyj D 1,

the distance becomes 1
2
.

Proof. We sketch the computation.

First case. Fix w D .a; b; c/ and w0 D .a0; b0; c0/ in the dual Dı
N̨ , choosing a,

a0, c and c0 squares in Zp. We want to evaluate the cross-ratio

B.w; v1/

B.w; v˛/

B.w0; v˛/

B.w; v1/
D ˛cx2 C a

˛c C a

˛c0 C a0

˛c0x2 C a0 :

Taking w D .1; 0; 0/ and w0 D .0; 0; 1/, the cross-ratio takes the value x2. Per-
muting w and w0, it equals x�2. Let us show that all the cross-ratios belong to the
smallest symmetric ball containing x2.

Suppose �rst that jx2j D p2n � 1. It is easily seen that the �rst ratio has a
norm between 1 and p2n (recall that there is no simpli�cation between a square
and ˛ times a square). �e second ratio has a norm between p�2n and 1. Hence
the cross-ratio has a norm between p�2n and p2n. �is means it belongs to the
symmetric ball in K N̨ containing x2 and x�2. And this symmetric ball is the union

[

�n�k�n

p2kZ�
p :

It has the stated measure.
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If we have jx2 � 1j D pn < 1, i.e. x2 D 1 C x0, then we may rewrite the
cross-ratio

B.w; v1/

B.w; v˛/

B.w0; v˛/

B.w; v1/
D

1 C x0 ˛c

˛c C a

1 C x0 ˛c0

˛c0 C a0

:

It is closer to 1 than x2, so belongs to the smallest symmetric ball containing x2,
i.e. to 1 C pnZp. It has measure 1

p�1
pnC1.

Second case. �rst of all, we have Q.v2/ D ˛ � .1 C ˛a2/y. As it belongs to
N̨ and we supposed that �.1 C ˛a2/ does not belong to N̨ , it implies that jyj � 1.
Fix w D .d; e; f / and w0 D .d 0; e0; f 0/ in Dı

N̨ . We compute the cross-ratio

B.w; v2/

B.w; v˛/

B.w0; v˛/

B.w; v2/
D

1 � ay
�

1 C 2e

a. f̨ C d/

�

1 � ay
�

1 C 2e0

a. f̨ 0 C d 0/

�

:

One sees that the smallest symmetric ball containing these cross-ratios is Z�
p

if jyj D 1, else 1 C jyjZp .

A remark on this proposition: the values taken by dD N̨
are 1

p�1
pnC1 for neg-

ative n, and 2n C 1 for positive n (or 2n C 1
2
). It proves that this distance is

ultrametric at distance less than one. We will see that at large scales, it is not any
more ultrametric. We de�ne the ultrametric locus around a point:

De�nition 4.2. For some point ! in D N̨ , we denote by U.!/ its ultrametric neigh-
bourhood:

U.!/ D ¹!0 such that dD N̨
.!; !0/ � 1º:

Remarky that, for two points in a long line, we have a much more precise notion
than the distance:

De�nition 4.3. Let v and v0 be two points in D N̨ de�ning a long line L. Let
w and w0 be the two intersection points between L and the isotropic semi-cone,
' D B.w; :/ and '0 D B.w0; :/.

We denote by D N̨ .v; v0/ the set ¹Œ'; '0; v; v0�; Œ'0; '; v; v0�º, and call it the mul-
tiplicative (Hilbert) distance between v and v0.

�e Hilbert distance d N̨ is a function of D N̨ , justifying the name of multiplica-
tive distance.



Yet another p-adic hyperbolic disc 33

Fact 3. Let v and v0 be two points in D N̨ de�ning a long line. Let ¹x; x�1º D
D N̨ .v; v0/. Let pn D max¹jx � 1j; jx�1 � 1jº.

�en d N̨ is given by n C 1 if n � 0, else by 1
p�1

pnC1.

5. Links with the tree

We clarify here the links between the hyperbolic disc associated to an N̨ of even
valuation in Qp with p ¤ 2 and the more classical tree T of PSL.2; Qp/. We will
not treat the case of a general non-archimedean local �eld in order to avoid heavy
notations. However, it should be clear that the same phenomenon occurs in this
more general case. �e situation is a bit di�erent for the discs associated to an N̨
of odd valuation. Let us recall brie�y that the tree may be de�ned as follows [8]:

� the vertices are the orders (up to isometry) in Q2
p , i.e. the free Zp-modules of

rank 2. it is also the set PGL.2; Qp/= PGL.2; Zp/;

� two orders are linked by an edge if they are of index p one in the other.

�e action of PSL.2; Qp/ has two distinct orbits: the orbit of Z2
p and the orbit

of Zp � .1; 0/ ˚ Zp � .0; p/. Two linked vertices belongs to di�erent orbits. One
sees that this graph is a complete p C 1-tree2. Its boundary at in�nity is naturally
identi�ed with P1.Qp/. Two distinct points in P1.Qp/ represented by vectors v1

and v2 de�ne a unique geodesic in the tree, composed by the orders of the form
Zp � xv1 ˚ Zp � yv2.

�e hyperbolic disc D N̨ and the tree are both homogeneous sets under
PGL.2; Qp/. �e normalizer of a point in D N̨ is a compact subgroup, so it is
included in a conjugate of PGL.2; Zp/. We will check (by a tedious computation,
unfortunately) that it is included in only one maximal compact subgroup. �is
holds because we supposed N̨ has even valuation. Hence, we have a well-de�ned
and natural map from D N̨ to T which turns out to be the collapse of each ultramet-
ric locus on a vertex in the tree. �is map is a covariant quasi-isometry:

�eorem 5.1. For any v 2 D N̨ , there is a unique point p WD � N̨ .v/ 2 T such that

the stabilizer of p in PGL.2; Qp/ contains the stabilizer of v in PGL.2; Qp/. �e

projection � N̨ W D N̨ ! T de�nes a quasi-isometry covariant for the action of

PGL.2; Qp/.

Moreover, � N̨ induces a bijection between the set of long lines in D N̨ and the

set of geodesics in T.

2 Let us also mention that one may interpret the whole tree (edges included) as the set of
norms on Q2

p [5].
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Remark. Before going on with the proof, let us point out the similarity with the
case of the triangle (see Section 3.3): in both cases, the projection collapsing the
ultrametric loci maps our convex to a discretized version of their real counterpart.
For the triangle, the vertices of an hexagonal net re�ected the hexagonal norm
on the plane, and here the vertices of a tree look very much like a discretized
hyperbolic disc.

Proof. I have no other proof of the �rst point than a direct computation: choose
some ˛ 2 N̨ of valuation 0. �e stabilizer Stab.v˛/ of v˛ D .˛; 0; 1/ in GL.2; Qp/

is composed of the elements g of the form

�

a ˛�c

c ˛a

�

;

where � D det.g/ D ˙1 and a and c are tied by the relation c2 D 1
˛

.� � a2/.

As �˛ is not a square, it yields that a 2 Zp and then g 2 PGL.2; Zp/.

Now take an element of h 2 PGL.2; Qp/, represented by a matrix

�

x y

z ˛t

�

in GL.2; Qp/ of determinant D verifying jDj D 1 or p. �e assumption

h Stab.v˛/h�1 � PGL.2; Qp/

gives us the system of conditions:

a.tx � �yz/ C c.ty C ˛�yz/ 2 DZp;

axy.� � 1/ � c.y2 C ˛�x2/ 2 DZp;

atz.�� C 1/ C c.t2 C ˛�z2/ 2 DZp;

a.�zy C �tx/ � c.ty C ˛�zx/ 2 DZp:

It should be veri�ed for every � D ˙1 and a, c tied by the relation c2 D 1
˛

.� �a2/.
We deduce that x2, y2, z2, t2, tx, yz, ty... belong to DZp. So jDj D 1 and x, y,
z and t belong to Zp. We conclude that h belongs to PGL.2; Zp/.

�is proves that the only maximal compact subgroup of PGL.2; Qp/ contain-
ing Stab.v˛/ is PGL.2; Zp/. As all the stabilizers are conjugated, the �rst point is
proven.
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�e covariance is clear. So it is enough to understand � N̨ along a long line,
using the transitivity of PGL.2; Qp/. One easily identi�es the projection along
the long line between .1; 0; 0/ and .0; 0; 1/:

� N̨ .˛x2; 0; 1/ D Zp:.x; 0/ ˚ Zp :.0; 1/:

Hence if v and v0 are at distance d in D N̨ , their projections � N̨ .v/ and � N̨ .v/

are at distance E.d
2

/. �e projection is a quasi-isometry. It is nothing else than
the collapse of the ultrametric loci in D N̨ to points in the tree.

�e projection � N̨ extends to the bijection K N̨ .a2; ab; b2/ 7! Œa W b� from the
isotropic cone C N̨ to P1.Qp/. As a long line (above) or a geodesic (in the tree) is
uniquely de�ned by its ends in (respectively) C N̨ and P1.Qp/, the projection � N̨
de�nes a covariant bijection between the long lines and the geodesics.

Remark. We won’t be precise, but when the valuation of N̨ is odd and �1 is not
a square, then each point in D N̨ has a well-de�ned projection to an edge of T.
It explains why PSL.2; Qp/ may act transitively on these D N̨ .

6. �e group of automorphisms

We show here that a transformation of D N̨ that preserves the multiplicative Hilbert
distance is projective ; i.e. it belongs to Isom.D N̨ /. It does not hold under the
weaker hypothesis of preserving the Hilbert distance because the latter lacks pre-
cision. For example, the Hilbert distance by itself does not allow to de�ne long
lines as “geodesics”, whereas the multiplicative Hilbert distance does.

�roughout this section, N̨ is a �xed element in k�=.k�/2, represented by some
˛ 2 k�.

6.1. Multiplicative Hilbert distance. Recall that we de�ned the notion of mul-
tiplicative Hilbert distance (De�nition 4.3). �is notion will be enough to char-
acterize in the following the action of PGL.2; k/. Of course the multiplicative
Hilbert distance is invariant under the action of PGL.2; k/.

�e action of PGL.2; k/ becomes transitive on the pair of points at equal mul-
tiplicative distance,
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Lemma 6.1. For any x in k�, the action of PGL.2; k/ on the set

¹.v; v0/ 2 D2
N̨ such that D.v; v0/ D ¹x; x�1ºº

is transitive

Proof. Fix a pair .v; v0/ of points such that D.v; v0/ D ¹x; x�1º. �e group
PGL.2; k/ acts transitively on the �ags (i.e. a point in a long line) by Lemma 4.2,
hence it sends v on v˛ D K N̨ .˛; 0; 1/, and v0 on a point of the form K N̨ .˛y2; 0; 1/.
As PGL.2; k/ preserves the multiplicative distance, we have either y D x or
y D x�1. �e action of

� 0 �x
1
x

0

�

�xes v˛ and maps K N̨ .˛x2; 0; 1/ to K N̨ .˛; 0; x2/ D
K N̨ .˛x�2; 0; 1/.

So the action of some element in PGL.2; k/ maps the points v and v0 to
K N̨ .˛; 0; 1/ and K N̨ .˛x2; 0; 1/, proving the transitivity.

We de�ne now the notion of automorphism of D N̨ by asking that it preserves
the multiplicative Hilbert distance. Indeed it seems reasonable to consider that
this multiplicative distance is a natural invariant for two points in D N̨ lying on a
long line. So a transformation of D N̨ which preserves its convex structure should
preserve the multiplicative Hilbert distance:

De�nition 6.1. Let T be a transformation of D N̨ . It is an automorphism of D N̨ if
it preserves the multiplicative distance, i.e.

� if v and v0 lie on a long line, so do T .v/ and T .v0/;

� for any v and v0 on a long line, we have D.T .v/; T .v0// D D.v; v0/.

�e next section shows that any automorphism is indeed given by an element
of PGL.2; k/.

6.2. Every automorphism is projective

�eorem 6.2. Consider an automorphism T of D N̨ .

�en T is a projective transformation preserving the quadratic form Q, i.e.

T belongs to Isom.D N̨ /.

�e proof is the same as in the real case: up to the action of Isom.D N̨ /, we may
assume that T has a pointwise �xed long line and another �xed point. We prove
that the multiplicative distance to these �xed points characterize any point in D N̨ .
We will need the notion of circle.
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De�nition 6.2. Let v be a point in D N̨ and x 2 k�. �e circle centered at v and of
multiplicative radius ¹r; r�1º is the set

C.v; r/ D ¹v0 2 D N̨ such that D.v; v0/ D ¹r; r�1ºº:

Remark. �e multiplicative Hilbert distance is de�ned for points on a long line.
So for any v0 in the circle C.v; r/, the line .vv0/ is a long one.

We then study intersections of circles:

Lemma 6.3 (two circles intersect in at most two points). Consider two distinct

points v and v0 in D N̨ on a long line. Fix r and r 0 in k� n ¹1º.
�en there are at most two points in the intersection between the circles

C.v; r/ and C.v0; r 0/. If there are e�ectively two points, there is an involution

g 2 Isom.D N̨ / which �xes v and v0 and permutes these two points.

Proof. Once again, one may assume that we have v D K N̨ .˛; 0; 1/ and v0 D
K N̨ .˛x2; 0; 1/ and the proof is a calculus. �e idea is that both circles are curves
of degree 2, hence may intersect in at most two points.

�e circle C.v; r/ is the orbit of K N̨ .˛r2; 0; �1/ under Stab.v/. And one may
similarly see the circle C.v0; r 0/ as the orbit

0

@

x2 0 0

0 x 0

0 0 1

1

A Stab.v/ : K N̨ .˛r 02; 0; 1/:

We have already described Stab.v/:

Stab.v/ D
²

Ad

�

a �˛�c

c �a

�

for � D ˙1 and ˛c2 D � � a2

³

:

Note that in the previous description one may transform .a; c/ in .�a; �c/ without
changing the element in Stab.v/. Hence the elements of C.v; r/ have coordinates:

.˛�a2r2 C .1 � �a2/I .r2 � 1/�acI .1 � �a2/r2 C �a2/;
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where � D ˙1 and ˛c2 D � � a2. For C.v0; r 0/ we get

.x2.˛�0a02r 02 C .1 � �0a02//I .r 02 � 1/�0a0c0I ..1 � �0a02/r 02 C �0a02//;

where �0 D ˙1 and ˛c02 D �0 � a02. As v and v0 are distinct, we have x ¤ 1.
Hence the equality of the �rst and the third coe�cients gives a linear system in
the unknowns �a2 and �0a02 which has at most one solution. Using the equality be-
tween the second coe�cient, there are at most two solutions .r; s; t / and .r; �s; t /.
Hence these two solutions are mapped one onto the other by the matrix

0

@

1 0 0

0 �1 0

0 0 1

1

A 2 Stab.v/ \ Stab.v0/:

We are now able to see that three multiplicative distances are enough to de�ne
a point in D N̨ :

Lemma 6.4 (a point is de�ned by three multiplicative distances). Let v1, v2 and

v3 be three distinct points in D N̨ , any two of them lying on a long line, but the three

of them not lying on the same long line.

�en, for any r1, r2 and r3 in k� there is at most one point in D N̨ at multiplicative

distance ¹ri ; r�1
i º of the point vi for i D 1, 2 and 3.

Proof. Fix the vi ’s and ri ’s. Suppose by contradiction that two points v ¤ v0 in
D N̨ are at multiplicative distances ¹ri ; r�1

i º of the point vi for i D 1, 2 and 3. One
may assume that all the ri are di�erent of 1, because if ri D 1, the only possible
solution is vi .

One of the vi , say v2, does not belong to the line .vv0/, because the vi ’s do
not belong to the same line. Using the previous lemma, for any i ¤ j there is
an involution tij in Isom.D N̨ / �xing vi and vj such that tij .v/ D v0. Hence t12t23

�xes the three distinct points v, v0 and v2 which are not on the same line. Hence
t12t23 is a projective transformation of k3 which �xes pointwise the two distinct
projective lines .vv0/ and .vv2/. Hence it is an homothety. We get t12 D t23.

It implies that the lines .v1v2/ and .v2v3/ are the same, which contradicts the
assumption that the vi ’s do not belong to the same line.

�e proof of the theorem follows.

Proof of �eorem 6.2. Consider an automorphism T . Consider 3 points v1, v2

and v3, two of them de�ning a long line, but the three of them not belonging to
the same line.
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�e group Isom.D N̨ / acts transitively on the couple of points at same multi-
plicative distance (Lemma 6.1). So there is an element g1 in Isom.D N̨ / such that
g1T �xes v1 and v2. As g1T is still an automorphism, it sends v3 to one of the
at most two points at distance D.v1; v3/ of v1 and D.v2; v3/ of v2. One then may
choose, using Lemma 6.3, some g2 in Isom.D N̨ / such that g2g1T �xes v1, v2, and
v3. By the Lemma 6.4, g2g1T is the identity.

It proves that T is a projective map, i.e. it belongs to Isom.D N̨ /.

Conclusion

It seems to the author that the construction described along this paper raises nu-
merous questions. �e notions of p-adic convexity and of Hilbert distance may
not be suitably de�ned her ; but it would at least be interesting to test it on other
examples and to see how rich p-adic Hilbert geometries are. As for the hyper-
bolic discs, their existence gives a geometric object whose transformation group
is PGL.2; k/. �ey also deserve further studies. One may wonder if some prob-
lems or applications around the hyperbolic disc may be given a p-adic analogue.
Here are three questions that seem worth exploring to me.

First of all, as mentioned in the introduction, the automorphisms of the tree
form a huge group. We proved that if such an automorphism comes from an auto-
morphism of the discs, then it acts as an element of PGL.2; k/. But the geometry
of the discs gives us a lot of invariants. For example, we get a notion of pencil
of geodesics: a pencil of geodesics in the tree is (the projection of) a set of lines
passing through a point in the disc above. What does the group of automorphisms
of the tree which map pencils to pencils looks like? And there are other notions
to study, e.g. orthogonality of long lines.

Secondly, one is tempted to see a lattice in PGL.2; k/ as the fundamental group
of the quotient of hyperbolic discs by its action. Can we describe the p-adic sur-
faces that one obtains by this construction? In other words, what are the surfaces
uniformized by the p-adic hyperbolic discs?

Eventually, and that was the starting point of this work, the notion of convexity
in the real projective plane (and projective spaces of higher dimension) is the very
starting point of the theory of divisible convex sets and relates with the Hitchin
component of representations of a surface group (see [3] for a survey on divisible
convex sets). �ough we lack the mere notion of connectedness, are we able to
develop an analogue of some parts of these beautiful theories?
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Annex: Proof of Fact 1

Recall the setting of our Iwazawa decomposition of the group SO.Q/. Let Q0 be
the quadratic form x2

1 C � � � C x2
n�1. Consider the three following subgroups of

SL.n C 1; k/:

� N C D

0

@

1 2twA Q0.w/

0 A w

0 0 1

1

A for A 2 SO.Q0/ and w 2 kn�1.

� N � D

0

@

1 0 0

v B 0

Q0.v/ 2tvB 1

1

A for B 2 SO.Q0/ and v 2 kn�1.

� H D

0

@

x 0 0

0 Id 0

0 0 1
x

1

A (t 2 k�).

�e three following facts may be proven with geometric considerations in the real
case. But elementary linear algebra leads to the same conclusion and works on
any �eld.

Fact 4. (1) All three are subgroups of SO.Q/ and H normalizes both N C

and N �.

(2) �e subgroup N C is the stabilizer of

v0 D

0

B

B

B

B

@

1

0
:::

0

1

C

C

C

C

A

in SO.Q/.

(3) �e group SO.Q/ decomposes as the product N �HN C.

Proof. Let P be the matrix representing the quadratic form 2Q in the standard
basis of knC1:

P D

0

@

0 0 1

0 �2Id 0

1 0 0

1

A ;

such that Q.v/ D 1
2

tvP v for any v 2 knC1. �e group SO.Q/ is the group of
matrices M in SL.n C 1; k/ verifying tMPM D P .

It is clear that H preserves Q and normalizes N � and N C.
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Let us prove that N C is the stabilizer of v0 in SO.Q/ (it will also prove it is
indeed a subgroup of SO.Q/!): a matrix in SO.Q/ stabilizing the vector v0 also
stabilizes its orthogonal. �e latter is the subspace kn � ¹0º of vectors having the
last coordinate equals to 0. Hence a matrix M stabilizing v0 has a �rst column

0

B

B

B

B

@

1

0
:::

0

1

C

C

C

C

A

and the last line

.0; : : : ; 0; x/

for some x 2 k. In other words, one may write:

M D

0

@

1 tv y

0 A w

0 0 x

1

A

where A is a .n � 1/ � .n � 1/-matrix, and v, w belong to kn�1. A straightforward
computation gives

tMPM D

0

@

0 0 x

0 �2tAA xv � 2tAw

x t .xv � 2tAw 2xy � 2tww

1

A :

�e equality tMPM D P leads to, successively, x D 1, v D 2tAw, t AA D Id,
y D tww. �e last two may be translated into: A 2 SO.Q0/ and y D Q0.w/,
which proves the fact. One may prove along the same lines that N � is the stabilizer
of the vector

0

B

B

B

B

@

0
:::

0

1

1

C

C

C

C

A

:

For the third claim, one shows that the product N �H D HN � send v0 to any
isotropic vector

v D

0

B

@

x0

:::

xn

1

C

A
2 C n ¹0º:
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Let

v0 D

0

B

@

x1

:::

xn�1

1

C

A

and de�ne the following matrix of N �:

n� D

0

@

1 0 0

v0 Id 0

Q0.v0/ 2tv0 1

1

A :

�en

n�.v0/ D

0

@

1

v0

Q0.v0/

1

A :

Now v is isotropic, i.e. Q.v/ D x0xn � Q0.v0/ D 0, so x0xn D Q0.v0/. It remains
to consider the following matrix of H :

h D

0

B

@

x0 0 0

0 Id 0

0 0 1
x0

1

C

A
:

It veri�es hn�.v0/ D v.

We may conclude: let g be an element of SO.Q/ and choose two elements n�

and h such that n�h.v0/ D g.v0/. �en .n�h/�1g �xes v0. So it belongs to N C

and g belongs to n�hN C.
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