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Abstract. Jacobi/Poisson algebras are algebraic counterparts of Jacobi/Poisson manifolds. We
introduce representations of a Jacobi algebra A and Frobenius Jacobi algebras as symmetric
objects in the category. A characterization theorem for Frobenius Jacobi algebras is given in
terms of integrals on Jacobi algebras. For a vector space V a non-abelian cohomological type
objectJH2 .V; A/ is constructed: it classifies all Jacobi algebras containingA as a subalgebra of
codimension equal to dim.V /. Representations ofA are used in order to give the decomposition
of JH2 .V; A/ as a coproduct over all JacobiA-module structures on V . The bicrossed product
P ‰ Q of two Poisson algebras recently introduced by Ni and Bai appears as a special case
of our construction. A new type of deformations of a given Poisson algebra Q is introduced
and a cohomological type object HA2

�
P; Q j .G; F; (; */

�
is explicitly constructed as a

classifying set for the bicrossed descent problem for extensions of Poisson algebras. Several
examples and applications are provided.
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Introduction

Noncommutative geometry as well as quantum group theory is based on the same
idea: instead of working with points on a given space M which can be a compact
topological group, a Lie group, an algebraic group, a manifold, etc. we can work
equivalently with the algebra Fun .M/ of functions on M . The definition of the
algebra of functions depends on the category of spaces that we are dealing with: for
instance, ifM is a compact topological group then Fun .M/ WD R .M/, the algebra
of real-valued continuous representative functions on M , while if M is a manifold
then Fun .M/ WD C1.M/, the algebra of all real smooth functions on M . Thus
there exists a contravariant functor Fun .�/, which very often is in fact a duality of
categories, between a certain category of spaces and a certain category of algebras
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endowed with additional structures compatible with the algebra structure such as
coalgebras (i.e. Hopf algebras), Lie brackets (i.e. Poisson algebras) etc. Adopting this
categorical viewpoint, purely geometric concepts sat at the foundation of a research
program started at the end of the 80’s which deals with their algebraic counterparts:
the functor Fun .�/ being the tool throughwhich geometrical problems can be restated
and approached in algebraic language by way of a certain category of algebras. The
present paper fits within this context: we deal with Jacobi algebras which are abstract
algebraic counterparts of Jacobi manifolds. Jacobi manifolds, as generalizations
of symplectic or more generally Poisson manifolds, were introduced independently
by Kirillov [30] and Lichnerowicz [33]. A Jacobi manifold is a smooth manifold
endowed with a bivector field ƒ and a vector field E satisfying some compatibility
conditions. When the vector field E identically vanishes, the Jacobi manifold is
just a Poisson manifold. Equivalently, a Jacobi manifold is a smooth manifold M
such that the commutative algebra A WD C1.M/ of real smooth functions onM is
endowed with a Lie bracket Œ�;�� such that Œab; c� D a Œb; c�C Œa; c� b�ab Œ1A; c�,
for all a, b, c 2 A. Such an algebraic object A is called a Jacobi algebra while a
Poisson algebra is just a Jacobi algebra such that Œ1A; a� D 0, for all a 2 A.
Poisson algebras appear in several areas of research situated at the border between
mathematics and physics such as: Hamiltonian mechanics, differential geometry, Lie
groups and representation theory, noncommutative algebraic/diferential geometry,
(super)integrable systems, quantum field theory, vertex operator algebras, quantum
groups and so on – see the recent papers [15,23,32] and the references therein. If we
look at Poisson algebras as the ’differential’ version of Hopf algebras, then, mutatis-
mutandis, Jacobi algebras can be seen as generalizations of Poisson algebras in the
same way as weak Hopf algebras [10] generalize Hopf algebras. It is therefore natural
to expect that Jacobi algebras will play an important role in all fields enumerated
above. For further details on the study of Jacobi algebras from geometric view point
we refer to [20, 22, 23, 38, 45].

The paper is organized as follows: in Section 1 we survey the basic concepts that
will be used throughout the paper. In particular, we recall the classical concept of
a Frobenius algebra together with the corresponding notion for Lie algebras which
we will call Frobenius Lie algebra. The latter were previously studied both in
mathematics [28, 40] and physics [17, 42] under the name of self-dual or metric Lie
algebras. The property of being Frobenius reflects a certain natural symmetry: for
instance, a functor F W C ! D is called Frobenius [13] if F has the same left and
right adjoint functor, while a finite dimensional algebra A is called Frobenius [27] if
A Š A�, as right A-modules, which is the module version of the classical problem
of Frobenius asking when two canonical representations of A are equivalent. This
idea will be used in Section 2 in the definition of Frobenius Jacobi algebras. For
more details on the importance of Frobenius algebras as well as their applications
to topology, algebraic geometry and 2D topological quantum field theories we refer
to [29], for their categorical generalization at the level of various types of (co)modules
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to [11, 13] and for recent contributions and their relevance to other fields (category
theory, Hochschild cohomology or graph theory, etc.) see [8, 25, 31] and their
references. In Section 2 we present basic properties of Jacobi algebras: in particular,
we classify all complex Jacobi algebras of dimension 2 or 3. The conformal
deformation of a Jacobi algebra A (Proposition 2.6) is the Jacobi version of the
Drinfel’d twist deformation of a quantum group. We introduce the category JMA

A

of Jacobi A-modules which is an equivalent way of defining representations of a
Jacobi algebra A and based on this concept we define a Frobenius Jacobi algebra as
a Jacobi algebra A such that A Š A�, as Jacobi A-modules. A weaker version of
this notion, at the level of Poisson algebras, was recently introduced in [47] where
the term Frobenius Poisson algebra is used to denote Poisson algebras A such that
A Š A�, isomorphism of right A-modules. The concept of integral on a Jacobi
algebra is introduced in Definition 2.13 having the Hopf algebra theory as source of
inspiration and it is used in the characterization theorem of Frobenius Jacobi algebras
(Theorem 2.16): a Jacobi algebra A is Frobenius if and only if there exists a non-
degenerate integral on A; in the finite dimensional case, this is also equivalent to the
existence of a so-called Jacobi–Frobenius pair of A, which allows us to define the
Euler–Casimir element associated to any finite dimensional Frobenius Jacobi algebra.

The classification of finite dimensional Poisson manifolds is a difficult task: the
first steps towards the classification of low dimensional Poisson manifolds were
taken in [21, 32] using mainly differential geometry tools. It is natural to ask a more
general question namely that of classifying Jacobi manifolds of a given dimension.
Following the viewpoint of this paper we look at its algebraic counterpart by asking
about the classification of all Jacobi algebras of a given dimension. The problem
is very difficult since it contains as subsequent questions the classical problems of
classifying all associative (resp. Lie) algebras of a given dimension. For updates on
the progressmade so far and the geometrical significancewe refer to [7,39] (resp. [43])
and their list of references - we just mention that the classification of all complex
associative (resp. Lie) algebras is known only up to dimension 5 (resp. 7). One of the
main tools which was intensively used in the classification of finite ‘objects’ is the
famous extension problem initiated at the level of groups by Hölder and developed
later on for Lie algebras, associative algebras, Hopf algebras, Poisson algebras, etc.
A more general version of the extension problem is the extending structures problem
(ES-problem) introduced in [3] for arbitrary categories. Section 3 is devoted to the
study of the ES-problem for Jacobi algebras which consists of the following question:

Let A be a Jacobi algebra and E a vector space containing A as a
subspace. Describe and classify the set of all Jacobi algebra structures
that can be defined on E such that A becomes a Jacobi subalgebra
of E.

If we fix V a complement of A in the vector space E then the ES-problem
can be rephrased equivalently as follows: describe and classify all Jacobi algebras
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containing A as a subalgebra of codimension equal to dim.V /. The answer to the
ES-problem is given in three steps: in the first step (Theorem 3.2) we shall construct
the unified product A Ë V associated to a Jacobi algebra A and a vector space V
connected through four ’actions’ and two ’cocycles’. The unified product is a very
general construction containing as special cases the semi-direct product, the crossed
product or the bicrossed product. The second step (Proposition 3.4) shows that a
Jacobi algebra structure .E;�E ; Œ�; ��E / on E contains A as a Jacobi subalgabra if
and only if there exists an isomorphism of Jacobi algebras .E;�E ; Œ�; ��E / Š AËV .
Finally, the theoretical answer to the ES-problem is given in Theorem 3.7: for a fixed
complement V of A in E, a non-abelian cohomological type object JH2 .V; A/ is
explicitly constructed; it parameterizes and classifies all Jacobi algebras containingA
as a subalgebra of codimension equal to dim.V /. The classification obtained in this
theorem follows the viewpoint of the extension problem: that is, up to an isomorphism
of Jacobi algebras that stabilizesA and co-stabiliezesV . For the sake of completeness
we also write down the corresponding results for Poisson algebras. Computing the
classifying object JH2 .V; A/, for a given Jacobi algebra A and a vector space V
is a highly nontrivial question. If A WD k, the base field viewed as a Jacobi algebra
with the trivial bracket, then JH2 .V; k/ classifies in fact all Jacobi algebras of
dimension 1 C dim.V /, which is of course a hopeless question for vector spaces
of large dimension. For this reason we shall assume from now on that A ¤ k. A
very important step in computing JH2 .V; A/ is given in Corollary 3.9, where a
decomposition of it as a coproduct over all Jacobi A-modules structures on V is
given. Section 4 is devoted to computing JH2 .V; A/ for what we have called flag
Jacobi algebras over A: that is, a Jacobi algebra structure on E such that there
exists a finite chain of Jacobi subalgebras E0 WD A � E1 � � � � � Em WD E,
such that each Ei has codimension 1 in EiC1. All flag Jacobi algebras over A can
be completely described by a recursive reasoning where the key step is settled in
Theorem 4.6: several applications and examples are given at the end of the section.
In particular, ifA is a Poisson algebra we indicate the difference betweenJH2 .V; A/

andPH2 .V; A/, the latter being the classifying object of the ES-problem for Poisson
algebras.

Section 5 has as starting point the following remark: the necessay and sufficient
axioms for the construction of the unified product, applied for (not necessarily unital)
Poisson algebras and for trivial cocycles reduces precisely to the definition of the
matched pairs of Poisson algebras (Definition 5.1) which were recently introduced
by Ni and Bai [41, Theorem 1] using the equivalent language of representations.
Moreover, the associated unified product in this case is precisely the bicrossed
product of Poisson algebras. Proposition 5.2 shows that the bicrossed product is
the construction responsible for the factorization problem at the level of Poisson
algebras. The rest of the section is devoted to the converse of the factorization
problem — we call it the bicrossed descent (or the classification of complements)
problem [2, 4] which for Poisson algebras comes down to the following question:
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Let P � R be an extension of Poisson algebras. If a P -complement
inR exists (i.e. a Poisson subalgebraQ � R such thatR D PCQ and
P \Q D f0g), describe explicitly, classify all P -complement inR and
compute the cardinal of the isomorphism classes of all P -complements
in R (which will be called the factorization index ŒR W P �f of P in R).

Let Q be a given P -complement and
�
P; Q; G; F; (; *

�
the associated

canonical matched pair (Proposition 5.2). In Theorem 5.6 a general deformation
of the Poisson algebra Q is introduced: it is associated to a deformation map
r W Q ! P in the sense of Definition 5.4. Theorem 5.6 proves that in order to
find all complements of P in R it is enough to know only one P -complement:
all the other P -complements are deformations of it. The answer to the bicrossed
descent problem is given in Theorem 5.9: there exists a bijection between the
isomorphism classes of allP -complements ofR and a new cohomological type object
HA2

�
P; Q j .G; F; (; */

�
which is constructed and the formula for computing the

factorization index ŒR W P �f is given. Examples are also provided: in particular, an
extensionP � R of Poisson algebras such thatP has infinitelymany non-isomorphic
complements in R is constructed in Proposition 5.10.

1. Preliminaries

For a family of sets .Xi /i2I we shall denote by ti2I Xi their coproduct in the
category of sets, that is ti2I Xi is the disjoint union of Xi , for all i 2 I . Unless
otherwise specified all vector spaces, (bi)linear maps, tensor products are over an
arbitrary field k. A map f W V ! W between two vector spaces is called trivial
if f .v/ D 0, for all v 2 V . V � D Homk.V; k/ and Endk.V / denote the dual,
respectively the endomorphisms ring of a vector space V . Throughout we use the
following convention: except for the situation when we deal with Poisson algebras
as in Section 5, by an algebra A D .A;mA/ we will always mean an associative,
commutative and unital algebra over k; the unit of A will be denoted by 1A while
the multiplication mA is denoted by juxtaposition mA.a; b/ D ab. All morphisms
of algebras preserve units and any left/right A-module is unitary. For an algebra A
we shall denote by AMA the category of all A-bimodules, i.e. triples .V; *; G/
consisting of a vector space V and two bilinear maps * W A � V ! V , G W V �
A ! V such that .V;*/ is a left A-module, .V;G/ is a right A-module and a *
.x G b/ D .a * x/ G b, for all a, b 2 A and x 2 V . Although all algebras
considered in this paper are commutative we will maintain the adjectives left/right
when defining modules in order to clearly indicate the way actions are defined. For
unexplained concepts pertaining to Lie algebra theory we refer to [24]. In particular,
representations of a Lie algebra gwill be viewed as right Lie g-modules. Explicitly, a
right Lie g-module is a vector space V together with a bilinear map( W V � g! V
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such that x ( Œa; b� D .x ( a/ ( b � .x ( b/ ( a, for all a, b 2 g and x 2 V .
Left Lie g-modules are defined analogously and the category of right Lie g-modules
will be denoted by LMg.

An algebra A is called a Frobenius algebra if A Š A� as right A-modules,
where A� is viewed as a right A-module via .a� � a/.b/ WD a�.ab/, for all a� 2 A�
and a, b 2 A. For the basic theory of Frobenius algebras we refer to [27]. The Lie
algebra counterpart of Frobenius algebras was studied under different names such
as self-dual, metric or Lie algebras having a non-degenerate invariant bilinear form.
In this paper we will call them Frobenius Lie algebras: a Frobenius Lie algebra is
a Lie algebra g such that g Š g� as right Lie g-modules, where g and g� are right
Lie g-modules via the canonical actions: b ( a WD Œb; a� and

�
a� Ô a

�
.b/ WD

a�
�
Œa; b�

�
, for all a, b 2 g and a� 2 g�. We can easily see that a Lie algebra g

is Frobenius if and only if there exists a non-degenerate invariant bilinear form
B W g � g ! k, i.e. B.Œa; b�; c/ D B.a; Œb; c�/, for all a, b, c 2 g. In light of
this reformulation, the second Cartan’s criterion shows that any finite dimensional
complex semisimple Lie algebra is Frobenius since its Killing form is non-degenerate
and invariant. Let h.2n C 1; k/ be the .2n C 1/-dimensional Heisenberg algebra:
it has a basis fx1; � � � ; xn; y1; � � � ; yn; zg and the only non-zero Lie brackets are
Œxi ; yi � WD z, for all i D 1; � � � ; n. Then h.2n C 1; k/ is not Frobenius: if B W
h.2nC 1; k/ � h.2nC 1; k/! k is an invariant bilinear form then we can see that
B.z; �/ D 0, that is B is degenerate. Besides the mathematical interest in studying
Frobenius Lie algebras [28, 40], they are also important and have been intensively
studied in physics [17, 42] — in particular for the construction of Wess–Zumino–
Novikov–Witten models.

A Poisson algebra is a triple A D .A; mA; Œ�; ��/, where .A;mA/ is a (not
necessarily unital) commutative algebra, .A; Œ�; ��/ is a Lie algebra such that the
Leibniz law

Œab; c� D a Œb; c�C Œa; c� b

holds for any a, b, c 2 A. For further details concerning the study of Poisson algebras
arising from differential geometry see [32] and the references therein. If a Poisson
algebraA has a unit 1A, then by taking a D b D 1A in the Leibniz law we obtain that
Œ1A; c� D Œc; 1A� D 0, for all c 2 A. Any non unital Poisson algebra embeds into a
unital Poisson algebra. If A is a unital Poisson algebra, then using that Œa; 1A� D 0

and the Jacobi identity, we can easily prove that the map

R W A˝ A! A˝ A; R.a˝ b/ WD b ˝ aC 1A ˝ Œa; b�

for all a, b 2 A is a solution of the quantum Yang–Baxter equation R12R23R12 D
R23R12R23 in Endk.A˝ A˝ A/. A (right) Poisson A-module [35, 47] is a vector
space V equipped with two bilinear maps G W V � A ! V and (W V � A ! V

such that .V; G/ is a right A-module, .V; (/ is a right Lie A-module satisfying the
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following two compatibility conditions for any a, b 2 A and x 2 V :

x ( .ab/ D .x ( a/ G b C .x ( b/ G a;

x G Œa; b� D .x G a/ ( b � .x ( b/ G a
(1.1)

We denote by PMA
A the category of right Poisson A-modules having as morphisms

all linear maps which are compatible with both actions.

Unified products for associative/Lie algebras. We recall some concepts and
constructions from [5,7] that will be used from Section 3 on.

Definition 1.1. Let A be an algebra and V a vector space. An algebra extending
system ofA through V is a system�.A; V / D

�
G; F; f; �

�
consisting of four bilinear

maps G W V � A ! V , F W V � A ! A, f W V � V ! A, � W V � V ! V

satisfying the following six compatibility conditions for any a, b 2 A, x, y, z 2 V :

(A1) f and � are symmetric, .V;G/ is a right A-module and x F 1A D 0

(A2) x � .y � z/ � .x � y/ � z D z G f .x; y/ � x G f .y; z/

(A3) .x � y/ G a D x G .y F a/C x � .y G a/

(A4) x F .ab/ D a.x F b/C .x G b/ F a

(A5) .x � y/ F a D x F .y F a/C f .x; y G a/ � f .x; y/a

(A6) f .x; y � z/ � f .x � y; z/ D z F f .x; y/ � x F f .y; z/

Let �.A; V / D
�
G; F; f; �

�
be an extending system of A through V and

A Ë�.A;V / V WD A � V with the multiplication � defined for any a, b 2 A and x,
y 2 V by:

.a; x/ � .b; y/ WD
�
ab C x F b C y F aC f .x; y/; x G b C y G aC x � y

�
(1.2)

ThenA Ë�.A;V /V D .A Ë�.A;V /V; �/ is a commutative algebra having .1A; 0V /
as a unit, called the unified product of A and �.A; V /. In fact, there is more to be
said: .A Ë�.A;V / V; �/ is a commutative algebra with the unit .1A; 0V / if and only
if�.A; V / is an extending system of A through V – this is the commutative version
of [7, Theorem 2.2]. Any unified product A Ë�.A;V / V contains A Š A � f0g as
a subalgebra. Conversely, let A be an algebra and E a vector space containing A
as a subspace. Then, any algebra structure � on E containing A as a subalgebra is
isomorphic to a unified product, that is .E; �/ Š A Ë�.A;V / V , for some extending
system of A through V – this is [7, Theorem 2.4] applied for the special case of
commutative algebras.



1302 A. L. Agore and G. Militaru

Example 1.2. Let A be an algebra. Then there is a bijection between the set of all
algebra extending systems ofA through k and the set of all 4-tuples .ƒ; �; f0; u/ 2
A� � Endk.A/ � A � k satisfying the following compatibilities for any a, b 2 A:

(FA1) ƒ W A! k is an algebra map and ƒ ı� D 0

(FA2) �.ab/ D a�.b/Cƒ.b/�.a/

(FA3) �2.a/ D u�.a/C f0 a �ƒ.a/ f0
The bijection is given such that the algebra extending system�.A; k/ D

�
G; F; f; �

�
associated to .ƒ; �; f0; u/ is defined for any x, y 2 k and a 2 A by:

x G a WD x ƒ.a/; x F a WD x �.a/; f .x; y/ WD xy f0; x � y WD xyu (1.3)

A 4-tuple .ƒ; �; f0; u/ satisfying (FA1)-(FA3) is called a flag datum of A and we
denote by F.A/ the set of all flag datums of A. The unified product A Ë�.A;k/ k
associated to a flag datum .ƒ; �; f0; u/ will be denoted by A.ƒ;�;f0; u/ and
coincides with the vector space A � k having the multiplication given for any a,
b 2 A, x, y 2 k by:

.a; x/ � .b; y/ WD
�
ab C x�.b/C y�.a/C xy f0; xƒ.b/C yƒ.a/C xyu

�
An algebra B contains A as a subalgebra of codimension 1 if and only if B Š
A.ƒ;�;f0; u/, for some flag datum .ƒ; �; f0; u/ 2 F.A/ [7, Section 4].

The Lie algebra counterpart of the extending structures were introduced in [5] as
follows:

Definition 1.3. Let A D .A; Œ�; ��/ be a Lie algebra and V a vector space. A
Lie extending system of A through V is a system ƒ.A; V / D

�
(; *; �; f�; �g

�
consisting of four bilinear maps(W V �A! V , *W V �A! A, � W V �V ! A,
f�; �g W V � V ! V satisfying the following compatibility conditions for any a,
b 2 A, x, y, z 2 V :

(L1) .V; (/ is a right Lie A-module, �.x; x/ D 0 and fx; xg D 0

(L2) x * Œa; b� D Œx * a; b�C Œa; x * b�C .x ( a/ * b � .x ( b/ * a

(L3) fx; yg( a D fx; y ( ag C fx ( a; yg C x ( .y * a/ � y ( .x * a/

(L4) fx; yg* a D x * .y * a/ � y * .x * a/C Œa; �.x; y/�

C�.x; y ( a/C�.x ( a; y/

(L5)
P
.c/ �

�
x; fy; zg

�
C
P
.c/ x * �.y; z/ D 0

(L6)
P
.c/fx; fy; zgg C

P
.c/ x ( �.y; z/ D 0

where
P
.c/ denotes the circular sum.
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The concept of extending system of a Lie algebra A through a vector space V
generalizes the concept of a matched pair of Lie algebras as defined in [36,37]: if � is
the trivial map, thenƒ.A; V / D

�
(; *; � WD 0; f�; �g

�
is a Lie extending system

of A through V if and only if .V; f�; �g/ is a Lie algebra and .A; V;(; */ is a
matched pair of Lie algebras. Let ƒ.A; V / D

�
(; *; �; f�; �g

�
be an extending

system of a Lie algebraA through a vector space V and letA Ëƒ.A;V /V be the vector
space A � V with the bracket Œ�; �� defined for any a, b 2 A and x, y 2 V by:

Œ.a; x/; .b; y/� WD
�
Œa; b�Cx * b�y * aC �.x; y/; fx; ygCx ( b�y ( a

�
(1.4)

Then A Ëƒ.A;V / V is a Lie algebra called the unified product of A and ƒ.A; V /.
Moreover, [5, Theorem 2.2] proves that .A Ëƒ.A;V / V; Œ�; ��/ with the bracket
given by (1.4) is a Lie algebra if and only if ƒ.A; V / is a Lie extending system
of A through V . The Lie algebra A Ëƒ.A;V / V contains A Š A � f0g as a Lie
subalgebra. Conversely, let A be a Lie algebra, E a vector space such that A is a
subspace of E. Then, any Lie algebra structure Œ�; �� on E containing A as a Lie
subalgebra is isomorphic to a unified product: i.e., .E; Œ�; ��/ Š A Ëƒ.A;V / V ,
for some ƒ.A; V / D

�
(; *; �; f�; �g

�
, an extending system of A through V

([5, Theorem 2.4]).

Example 1.4. Let A D .A; Œ�; ��/ be a Lie algebra. [5, Proposition 4.4] proves
that there is a bijection between the set of all Lie extending system of A through k
and the set TwDer.A/ of all twisted derivations of A, which is the set of all pairs
.�; D/ 2 A� � Endk.A/ satisfying the following compatibilities for any a, b 2 A:

(FL1) �.Œa; b�/ D 0

(FL2) D.Œa; b�/ D ŒD.a/; b�C Œa; D.b/�C �.a/D.b/ � �.b/D.a/

The bijection is given such that the Lie extending system ƒ.A; k/ D
�
(; *;

�; f�; �g
�
associated to a twisted derivation .�; D/ is defined for any x, y 2 k and

a 2 A by:

x ( a WD x �.a/; x * a WD x D.a/; �.x; y/ WD 0; fx; yg WD 0 (1.5)

TwDer.A/ contains the usual space of derivations Der.A/ via the canonical
embedding Der.A/ ,! TwDer.A/; D 7! .0;D/. We point out that the above
canonical embedding is bijective if A is a perfect Lie algebra. The unified product
A Ëƒ.A;k/ k associated to .�; D/ 2 TwDer.A/ is denoted by A.�;D/ and it is the
vector space A � k with the bracket defined for any a, b 2 A and x, y 2 k by:

Œ.a; x/; .b; y/� WD
�
Œa; b�C xD.b/ � yD.a/; x�.b/ � y�.a/

�
A Lie algebra g contains A as a Lie subalgebra of codimension 1 if and only if
g Š A.�;D/, for some .�; D/ 2 TwDer.A/ [5, Section 4].
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2. Basic concepts, (bi)modules, integrals and Frobenius Jacobi algebras

We recall the definition of Jacobi algebras [20,38] as the abstract algebraic counterpart
of Jacobi manifolds:
Definition 2.1. A Jacobi algebra is a quadruple A D .A; mA; 1A; Œ�; ��/, where
.A;mA; 1A/ is a unital algebra, .A; Œ�; ��/ is a Lie algebra such that for any a, b,
c 2 A:

Œab; c� D a Œb; c�C Œa; c� b � ab Œ1A; c� (2.1)
Any unital Poisson algebra is a Jacobi algebra. Any algebra A is a Jacobi algebra

with the trivial bracket Œa; b� D 0, for all a, b 2 A – such an Jacobi algebra will be
called abelian and will be denoted by A0. A morphism between two Jacobi (resp.
Poisson) algebras A and B is a linear map ' W A! B which is both a morphism of
algebras as well as a morphism of Lie algebras. We denote by kJac (resp. kPoss) the
category of Jacobi (resp. unitary Poisson) algebras over a field k. A Jacobi ideal of
a Jacobi algebra A is a linear subspace I which is both an ideal with respect to the
associative product as well as a Lie ideal of A. If I is a Jacobi ideal of A then A=I
inherits a Jacobi algebra structure in the obvious way.
Remarks 2.2. .1/ The category kPoss of unital Poisson algebras is a reflective
subcategory in the category of Jacobi algebras, i.e. the inclusion functor � W kPoss ,!
kJac has a left adjoint which we will denote by .�/poss W kJac ! kPoss and whose
construction goes as follows: for any Jacobi algebra A we define Aposs WD A=Iposs,
where Iposs is the Jacobi ideal of A generated by all brackets Œ1A; a�, for all a 2 A.
Then, Aposs is a Poisson algebra and the quotient map A! Aposs, a 7!ba is universal
among the maps fromA to any unital Poisson algebra which are morphisms of Jacobi
algebras. We mention that it is possible that Aposs D 0 - this happens when Iposs
contains an invertible element of A. An example is the Jacobi algebra J 2; 2 defined
in Example 2.3 below.

.2/ The category kJac D
�
kJac; �˝�; k; ��;�

�
is braided monoidal: ifA andB

are Jacobi algebras, then A˝ B is a Jacobi algebra via

.a˝ b/ � .a0˝ b0/ WD aa0˝ bb0; Œa˝ b; a0˝ b0� WD aa0˝ Œb; b0�C Œa; a0�˝ bb0

for all a, a0 2 A and b, b0 2 B , the base field k viewed with the abelian Lie
bracket is the unit and the braiding is the usual flip �A;B W A ˝ B ! B ˝ A,
�A;B.a˝ b/ WD b ˝ a.

The classification of Jacobi algebras of a given finite dimension is the first non-
trivial question which arises as the algebraic counterpart of the classification of
finite dimensional Jacobi manifolds. Of course, any 1-dimensional Jacobi algebra
is isomorphic to the abelian Jacobi algebra k0. The 2-dimensional case is covered
below and it reveals an interesting fact namely that two Jacobi algebras can be
isomorphic both as algebras and Lie algebras (through different isomorphisms) but
not isomorphic as Jacobi algebras. A similar result holds for Hopf algebras as well.
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Example 2.3. Let k be a field of characteristic¤ 2. If k D k2 WD fq2 j q 2 kg then,
up to an isomorphism, there exist four 2-dimensional Jacobi algebras over k. These
are the Jacobi algebras denoted by J 2; 1, J 2; 2, J 2; 3, J 2; 4 having f1; xg as a basis
and the multiplication and the bracket defined by:

J 2; 1 W x2 D 0; Œ1; x� D 0I J 2; 2 W x2 D 0; Œ1; x� D 1

J 2; 3 W x2 D x; Œ1; x� D 0I J 2; 4 W x2 D 0; Œx; 1� D x

If k ¤ k2, besides the four Jacobi algebras listed above there exists another one-
parameter 2-dimensional Jacobi algebra J 2

d
defined by:

J 2d W x
2
D d; Œ1; x� D 0

for all d 2 S , where S � k n k2 a system of representatives for the following
equivalence relation on k n k2: d � d 0 if and only if there exists q 2 k� such that
d D q2d 0.

Indeed, we will fix f1; xg as a basis in a two dimensional Jacobi algebra. The
proof follows from the classical classification of 2-dimensional Lie algebras [34] and
from the well known classification of 2-dimensional associative algebras [46] (for
arbitrary fields see [7, Corollary 4.5]). Indeed, the classification follows by a routine
computation based on checking the compatibility condition (2.1). We only mention
that the algebra defined by the multiplication x2 D x (or x2 D d , for some d 2 S , if
k ¤ k2) together with the Lie bracket Œ1; x� D 1 or Œ1; x� D x is not a Jacobi algebra
since the compatibility condition (2.1) fails for a D b D c WD x. We observe that
J 2; 2 and J 2; 4 are Jacobi non-Poisson algebras, .J 2; 2/poss D 0 and .J 2; 4/poss Š k0.
Moreover, the Jacobi algebras J 2; 2 and J 2; 4 are isomorphic as associative algebras
as well as Lie algebras but they are not isomorphic as Jacobi algebras.

In particular, if k D C there are four isomorphism classes of 2-dimensional Jacobi
algebras, while if k D R there exist five types of 2-dimensional Jacobi algebras, the
fifth one being the Jacobi algebra J 2�1.

Example 2.4. Using the classical classification of 3-dimensional associative
(resp. Lie) algebras from [46] (resp. [26, 34]) over the complex field C and the
same strategy as in Example 2.3 we can prove that, up to an isomorphism, there are
exactly 11 families of complex Jacobi algebras of dimension 3: they have f1; x; yg
as a basis and the multiplication and the bracket as listed in Table 1.

Subsequent to the problem of classifying Jacobi algebras of a given dimension
is the following question: for a given algebra (resp. Lie algebra) A, describe and
classify all Lie brackets Œ�; �� (resp. all possible multiplicationsmA) which endowA
with a Jacobi algebra structure. Some examples are given below:
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Jacobi algebra Algebra structure Lie bracket
J 31 x2 D y2 D xy D yx D 0 abelian
J 32 x2 D y, y2 D 0, xy D yx D 0 abelian
J 33 x2 D x, y2 D 0, xy D yx D 0 abelian
J 34 x2 D x, y2 D y, xy D yx D 0 abelian
J 35 x2 D y2 D xy D yx D 0 [x, 1] = x
J 36 x2 D y2 D xy D yx D 0 [x, y] = x
J 37 x2 D y2 D xy D yx D 0 [x, 1] = x+y, [y, 1] = y
uJ 38 , u 2 k� x2 D y2 D xy D yx D 0 [x, 1] = x, [y, 1] = u y
J 39 x2 D y, y2 D 0, xy D yx D 0 [x, 1] = x, [y, 1] = 2 y
J 310 x2 D y, y2 D 0, xy D yx D 0 [x, 1] = 2�1 x, [y, 1] = y
J 311 x2 D x, y2 D 0, xy D yx D 0 [y, 1] = y

Table 1. Jacobi algebras of dimension 3 over C.

Examples 2.5. .1/ Let Cn be a cyclic group of order n � 2 generated by c. Then the
group algebra kŒCn� can be made into a Jacobi algebra as follows:

.1/ If char .k/ D 0 or char .k/ D p > 0 and .p; n � 1/ D 1, then the
only Lie bracket which makes kŒCn� into a Jacobi algebra is the trivial one, i.e.
kŒCn� D kŒCn�0;

.2/ If char .k/ D p jn � 1, then any y 2 kŒCn� induces a unique Lie bracket
given by Œci ; cj � D .j � i/ cjCi�1 y, for all i , j D 1; 2; :::; n which makes kŒCn�
into a Jacobi algebra.

Indeed, let Œ�; �� be a Lie bracket that endows the group algebra kŒCn� with a
Jacobi algebra structure and we denote y WD Œ1; c�. By using (2.1) and the induction
we obtain that Œci ; cj � D .j � i/ cjCi�1 y, for all i , j D 1; 2; :::; n. Therefore, since
Œcn; c� D y we obtain .n � 1/ y D 0, which brings us to the two cases considered
above. If char .k/ D p and pjn � 1, then it can be easily seen that Jacobi’s identity
is also fulfilled.

.2/ Let C1 be the infinite cyclic group generated by c. Then, for any y 2 kŒC1�,
the group algebra kŒC1� admits a Jacobi algebra structure with the bracket given by
Œci ; cj � D .j � i/ cjCi�1 y, for all i , j 2 Z.

.3/ Let sl .2; C/ be the complex special linear algebra of dimension 3. Since
sl .2; C/ is perfect as a Lie algebra, a careful analysis of the Lie brackets on
3-dimensional Jacobi algebras given in Table 1 brings us to the conclusion that
the Lie algebra sl .2; C/ can not be endowed with an algebra structure to make it into
a Jacobi agebra.

The following construction is the algebraic counterpart of conformal deformations
of Jacobi manifolds [38]. Mutatis-mutandis it can be seen as the Jacobi version of
the Drinfel’d twist deformation for quantum groups [16].
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Proposition 2.6. Let A D .A; mA; Œ�; ��/ be a Jacobi algebra and u 2 U.A/ an
invertible element ofA. ThenAu WD .A; mA; Œ�; ��u/ is a Jacobi algebra called the
u-conformal deformation of A, where the bracket Œ�; ��u is given for any x, y 2 A
by:

Œx; y�u WD u
�1 Œu x; u y� (2.2)

Proof. The bilinear map Œ�; ��u is a Lie bracket on A since for any x, y, z 2 A we
have:�
x; Œy; z�u

�
u
C
�
y; Œz; x�u

�
u
C
�
z; Œx; y�u

�
u

D u�1
�
ux; Œuy; uz�

�
Cu�1

�
uy; Œuz; ux�

�
Cu�1

�
uz; Œux; uy�

�
D 0

Now, the compatibility condition (2.1) is equivalent to Œuxy; uz� D Œux; uz� y C

x Œuy; uz� � xy Œu; uz�, for all x, y, z 2 A. The right hand side gives:

Œux; uz� y C x Œuy; uz� � xy Œu; uz�

.2:1/
D Œux; uz� y C x

�
u Œy; uz�C Œu; uz� y � uy Œ1A; uz�

�
�xy Œu; uz�

D Œux; uz� y C ux Œy; uz� � ux yŒ1A; uz�

.2:1/
D Œuxy; uz�

as needed, where the last equality follows by applying (2.1) for the bracket Œ�; �� in
ux, y and respectively uz.

Describing and classifying all u-conformal deformations of a given Jacobi
algebra A is an interesting question that will be addressed somewhere else. In
what follows we provide an example which shows that a u-conformal deformation of
a Jacobi algebra can be a Poisson algebra.

Example 2.7. Let A be the 3-dimensional Jacobi non-Poisson algebra over of field
of characteristic ¤ 2 having f1; x; yg as a basis and the multiplication and the non-
trivial brackets given by x2 WD 0, xy D yx WD x, y2 WD 2y � 1, Œ1; y� D

Œx; y� WD x (A is the Jacobi algebra denoted by J 3; 52; 0;�1;�1 in Proposition 4.10
below). The group U.A/ of units of A coincides with the set of elements of the form
u D ˛ C ˇ x C  y, with ˛ C  ¤ 0 and the space of all u-conformal deformations
ofA is in bijectionwith the three-parameter Jacobi algebras having the bracket defined
by:

Œ1; x�u D � x; Œ1; y�u D .˛ C ˇ C / x; Œx; y�u D .˛ C 2/ x

for all ˛, ˇ,  2 k such that ˛ C  ¤ 0. In particular, the u-conformal deformation
of A corresponding to u WD ˛ .1 � x/, for any ˛ 2 k� is a Poisson algebra.
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(Bi)Modules, integrals and Frobenius Jacobi algebras. We shall introduce the
representations of a Jacobi algebra using the equivalent notion of modules.
Definition 2.8. Let A be a Jacobi algebra. A right Jacobi A-module is a vector
space V equipped with two bilinear maps G W V � A ! V and (W V � A ! V

such that .V; G/ is a right A-module, .V; (/ is a right Lie A-module satisfying the
following two compatibility conditions for any a, b 2 A and x 2 V :

x ( .ab/ D .x ( a/ G b C .x ( b/ G a � .x ( 1A/ G .ab/ (2.3)
x G Œa; b� D .x G a/ ( b � .x ( b/ G aC .x G a/ G Œ1A; b� (2.4)

A right Jacobi A-bimodule is a right Jacobi A-module which in addition satisfies the
following compatibility condition for any a, b 2 A and x 2 V :

x ( .ab/ D .x G a/ ( b C .x G b/ ( a � .x G .ab// ( 1A (2.5)

Let JMA
A (resp. JBAA) be the category of right Jacobi A-modules (resp. Jacobi

A-bimodules) having as morphisms the linear maps which are compatible with both
actions.

The categories AAJM (resp. A
AJB) of left Jacobi A-(bi)modules are defined

analogously and there exists an isomorphism of categories AAJM Š JMA
A and

A
AJB Š JBAA .
Remarks 2.9. .1/ The compatibility conditions (2.3)–(2.4) defining the category
JMA

A are the Jacobi version of the compatibility conditions (1.1) defining Poisson
modules over a Poisson algebra: they are precisely axioms (J2) and (J4) from the
construction of the unified product (Theorem 3.2). On the other hand, axiom (2.5)
defining Jacobi bimodules has another explanationwhichwill be given inLemma2.11
below.

.2/ Rephrasing Definition 2.8 in terms of representations can be done as follows:
a representation of a Jacobi algebra A on a vector space V is a pair . ; '/ consisting
of a representation  of the associative algebra A on V , that is an algebra map
 W A! Endk.A/ and a representation ' of a Lie algebra A on V , i.e. a Lie algebra
map ' W A! gl.V /, satisfying the following two compatibilities for any a, b 2 A:

'.ab/ D  .b/ ı '.a/ �  .a/ ı '.b/C  .ab/ ı '.1A/ (2.6)
 
�
Œa; b�

�
D  .a/ ı '.b/ � '.b/ ı  .a/C  

�
Œ1A; b� a

�
(2.7)

Representations of a Jacobi algebra A and right Jacobi A-modules are two different
ways of describing the same structure: more precisely, there exists an equivalence
of categories JMA

A Š Rep.A/, where Rep.A/ is the category of representations
of A with the obvious morphisms. The one-to-one correspondence between right
Jacobi A-modules .G; (/ on V and representations . ; '/ of A on V is given by
the two-sided formulas:  .a/.x/ WDW x G a and '.a/.x/ WDW �x ( a, for all a 2 A
and x 2 V .
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Examples 2.10. .1/ Any Jacobi algebra A has a canonical structure of a Jacobi
A-bimodule via: x G a WD xa and x ( a WD Œx; a�, for all x, a 2 A. Indeed, for
these actions, axioms (2.3) and (2.4) are both equivalent to the compatibility condition
(2.1) defining a Jacobi algebra. On the other hand, axiom (2.5) is equivalent to

Œx; ab� D Œxa; b�C Œxb; a� � Œxab; 1A�

which follows trivially by applying several times the compatibility condition (2.1).
.2/ Any vector space V can be viewed as a Jacobi A-bimodule via the trivial

actions: x G a WD x and x ( a WD 0, for all x 2 V , a 2 A. We shall denote by V0
the vector space V equipped with these trivial actions.

.3/ There exist a bijection between the set of all right Jacobi A-module structures
.G; (/ that can be defined on k and the set of all pairs .ƒ; �/ 2 A� �A�, consisting
of an algebra map ƒ W A ! k and a Lie algebra map � W A ! k satisfying the
following two compatibility conditions for any a, b 2 A:

�.ab/ D �.a/ƒ.b/C �.b/ƒ.a/ � �.1A/ƒ.ab/;

ƒ.Œa; b�/ D ƒ.a/ƒ.Œ1A; b�/
(2.8)

The bijection is given such that the JacobiA-module structure .G; (/ on k associated
to .ƒ; �/ 2 A� � A� is defined by x G a WD x ƒ.a/ and x ( a WD x �.a/, for all
a 2 A, x 2 k. The actions associated to such a pair .ƒ; �/ endow k with a Jacobi
A-bimodule structure since (2.5) also holds thanks to the first compatibility condition
of (2.8).

The proof of the next lemma provides a motivation for introducing axiom (2.5) in
Definition 2.8: without it the linear dual of a right JacobiA-module is not necessarily
a right Jacobi A-module.

Lemma 2.11. Let A be a Jacobi algebra and .V; G; (/ 2 JBAA a Jacobi
A-bimodule. Then the k-linear dual V � D .V �; J; Ô/ 2 JBAA is a Jacobi
A-bimodule, where the actions J, Ô are defined for any v� 2 V �, a 2 A and x 2 V
by:

.v� J a/.x/ WD v�.x G a/; .v� Ô a/.x/ WD �v�.x ( a/ (2.9)

In particular, there exists a well defined contravariant functor .�/� W JBAA ! JBAA
which for finite dimensional Jacobi A-bimodules provides a duality of categories.

Proof. .V �; Ô/ is a right LieA-module and .V �; J/ is a rightA-module sinceA is
a commutative algebra. A straightforward computation shows that the compatibility
condition (2.3) holds for .V �; J; Ô/ if and only if (2.5) holds for .V; G; (/
and similar (2.5) holds for .V �; J; Ô/ if and only if (2.3) holds for .V; G; (/.
Finally, (2.4) for .V �; J; Ô/ is equivalent to (2.4) for .V; G; (/.
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We shall view the Jacobi algebra A as an object in JBAA via the actions
x G a WD xa and x ( a WD Œx; a�, for all x, a 2 A. It follows from Lemma 2.11 that
the k-linear dual A� is a Jacobi A-bimodule whose actions take the following form:

.a� J a/.x/ WD a�.ax/; .a� Ô a/.x/ WD a�.Œa; x�/ (2.10)

From now on we will see A and A� as objects in JBAA via the above structures.
Definition 2.12. A finite dimensional Jacobi algebra A is called Frobenius if there
exists an isomorphism A Š A� in JBAA , i.e. an isomorphism of right A-modules
and right Lie A-modules.

Any Frobenius Jacobi algebra is Frobenius as an associative algebra and as a Lie
algebra. Now we introduce the concept of integral on a Jacobi algebra: as in the case
of Hopf algebras [44], integrals will be intimately related to the property of being
Frobenius.
Definition 2.13. An integral on a Jacobi algebra A is an element � 2 A� such that

�
�
Œa; b� c

�
D �

�
a Œb; c�

�
(2.11)

for all a, b, c 2 A. We denote by
R
A
the space of integrals on a Jacobi algebra A. An

integral � is called non-degenerate if: �.ax/ D 0, for all x 2 A implies a D 0.
If � is an integral on A then by taking b D c D 1A in (2.11) we obtain that

�
�
Œa; 1�

�
D 0.

Examples 2.14. .1/ If A is an abelian Jacobi algebra, then
R
A
D A�.

.2/ LetA be a unital Poisson algebra and � 2
R
A
. Then by taking c D 1A in (2.11)

we obtain that �.x/ D 0, for any x 2 A0 WD ŒA; A�. In particular, it follows thatR
A
D 0, for any Poisson algebra A which is perfect as a Lie algebra.
.3/ The trace map Tr W Mn.k/ ! k satisfies (2.11) since Tr

�
ŒA; B� C

�
D

Tr
�
A ŒB; C �

�
, for all n � n-matrices A, B , C . Thus, for any finite dimensional

Jacobi algebra A which is also a subalgebra of Mn.k/ and a Lie subalgebra of
gl.n; k/, the restriction of the trace map TrjA is an integral on A.

.4/ Let u 2 U.A/ be an invertible element of a Jacobi algebra A. Then the mapZ
A

�!

Z
Au

; � 7! �u WD �.u
2
�/

is a bijection between the integrals onA and those on theu-conformal deformationAu.
Indeed, we can easily prove that �u.a/ WD �.u2a/ is an integral on Au for any
integral � on A and the inverse of the map � 7! �u is given by � 7! �.u�2 �/ —
we note that .Au/u�1 D A. We can also prove that an integral � on A remains an
integral on Au if and only if 2 Œu; x� D 2u Œ1A; x�, for all x 2 A.

.5/ Let J 2;4 be the Jacobi algebra of Example 2.3. Then � is an integral on J 2;4
if and only if �.1/ D ˛ and �.x/ D 0, for some ˛ 2 k, i.e.

R
J 2;4 Š k.

.6/ Let J 311 be the Jacobi algebra from Table 1. Then � is an integral on J 311 if
and only if �.1/ D ˛, �.x/ D �.y/ D 0, for some ˛ 2 k, i.e.

R
J 3

11
Š k.
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Lemma 2.15. Let A be a Jacobi algebra. There exists a bijection between
R
A
and

the space of all (symmetric) associative, invariant bilinear forms on A, i.e. bilinear
maps B W A � A! k satisfying the following compatibility conditions for any a, b,
c 2 A:

B.ab; c/ D B.a; bc/; B.Œa; b�; c/ D B.a; Œb; c�/ (2.12)

Proof. Any bilinear form B satisfying (2.12) is symmetric since A is a commutative
algebra: B.a; b/ D B.1A; ab/ D B.1A; ba/ D B.b; a/, for all a, b 2 A. If � 2

R
A

is an integral onA, thenB�.a; b/ WD �.ab/ is an associative, invariant, bilinear form
on A; conversely, if B is such a form then �B W A ! k, �B.a/ WD B.a; 1A/ D

B.1A; a/ is an integral on A and the correspondence .� 7! B� ; B 7! �B/ is clearly
bijective.

The equivalences .1/ � .2/ � .4/ in the theorem below can be seen as the
Jacobi versions of the classical characterization of Frobenius algebras ([13]). The
equivalence .1/ � .3/ is the Jacobi counterpart of Sullivan’s theorem [44] for Hopf
algebras: a Hopf algebra H is co-Frobenius if and only if there exists a non-zero
integral onH .

Theorem 2.16. Let A be a finite dimensional Jacobi algebra. The following are
equivalent:

.1/ A is a Frobenius Jacobi algebra;

.2/ there exists a nondegenerate associative, invariant, bilinear form on A;

.3/ there exists a nondegenerate integral on the Jacobi algebra A;

.4/ there exists a pair .�; e D
P
e1˝ e2/, consisting of an integral � 2

R
A
on A

and an element e D
P
e1 ˝ e2 2 A˝ A such that for any a 2 A we have:X

ae1 ˝ e2 D
X

e1 ˝ e2a;
X

�.e1/e2 D
X

e1�.e2/ D 1A (2.13)

We call such a pair .�; e D
P
e1 ˝ e2/ 2

R
A
� .A ˝ A/ a Jacobi–Frobenius pair

and !A WD
P
e1e2 2 A the Euler–Casimir element of A.

Proof. .1/ , .2/ Follows from the one-to-one correspondence between the set of
all k-linear isomorphisms f W A ! A� and the set of all nondegenerate bilinear
forms B W A � A ! k given by the two-sided formula f .a/.b/ WDW B.a; b/, for all
a, b 2 A. Under this bijection, the right A-module (resp. right Lie A-module) maps
f W A! A� correspond to those bilinear forms B W A � A! k that satisfy the left
(resp. right) hand part of (2.12).

.2/ , .3/ Follows from Lemma 2.15 since under the bijective correspondence
.� 7! B� ; B 7! �B/ nondegenerate forms on A correspond to nondegenerate
integrals on A. We note that the isomorphism of right Jacobi A-modules f D
f� W A! A� associated to a nondegenerate integral � is defined by f�.a/ WD � J a,
i.e. f�.a/.x/ D �.ax/, for all a, x 2 A. Conversely any nondegenerate integral
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� D �f on A arises from an isomorphism of right Jacobi A-modules f W A ! A�

via �f WD f .1A/.
.1/, .4/ Let fei ; e�i j i D 1; � � � ; ng be a dual basis of A and f W A! A� and

isomorphism of Jacobi A-bimodules. Then, � WD f .1A/ is a Jacobi integral and by
a straightforward computations we can see that .f .1A/; e WD

Pn
iD1 ei ˝ f

�1.e�i /

is a Jacobi–Frobenius pair. Conversely, if .�; e D
P
e1˝ e2/ is a Jacobi–Frobenius

pair then the map f D f� W A ! A�, f .a/.b/ WD �.ab/, for all a, b 2 A is
an isomorphism of Jacobi A-bimodules with the inverse f �1 W A� ! A given by
f �1.a�/ WD

P
a�.e1/ e2, for all a� 2 A�.

Remarks 2.17. .1/ Integrals on a unital Poisson algebra A are defined exactly as
in Definition 2.13 and a Poisson algebra A is called Frobenius if there exists an
isomorphism of Poisson modules A Š A�. The Poisson version of Theorem 2.16
has the same statement and we can rephrase this characterization by saying that a
Poisson algebra is Frobenius if and only if it is Frobenius when viewed as a Jacobi
algebra.

.2/ Let � 2
R
A

be a nondegenerate integral on a finite dimensional Jacobi
algebra A. It follows from Theorem 2.16 that .A�;J/ is free as a right A-module
having f�g as a basis, i.e. A� D � J A. This is the Jacobi version of a well-know
result for Hopf algebras ( [44, Corollary 10.6.6]).

.3/Using .1/, .2/ of Theorem 2.16we obtain that the abelian Jacobi algebraA0
is Frobenius as a Jacobi algebra if and only ifA is Frobenius as an associative algebra.

.4/ Let A be a finite dimensional Frobenius Jacobi algebra with the Jacobi–
Frobenius pair .�; e D

P
e1˝ e2/. In the case of associative Frobenius algebras the

element !A WD
P
e1e2 2 A does not depend on the choice of the Jacobi–Frobenius

pair and it is called in [1] the Euler (characteristic) element of A since it is the
algebraic counterpart of the Euler class of a connected, oriented, finite dimensional
and compact manifold. In the context of finite dimensional Lie algebras equipped
with an invariant bilinear form, the same element viewed in the enveloping algebra, is
called the Casimir element [9, Proposition 11]. These explain the terminology used
in .4/ of Theorem 2.16.

Examples 2.18. .1/ Let Cn be the cyclic group of order n and k a field such that
char .k/ D p jn � 1. Let A WD kŒCn� be the Jacobi algebra with the bracket
Œci ; cj � WD .j � i/cjCi , for all i , j D 0; � � � ; n � 1. Then

R
kŒCn�

D 0. Indeed,
let � 2

R
kŒCn�

. By applying (2.11) in a D b WD c0 D 1 and c WD ci , we obtain
�.ci / D 0, for any i D 0; � � � ; n � 1. Since any group algebra kŒG� of a finite group
G is Frobenius [27], we obtain that kŒCn� is Frobenius as an associative algebra and
using Theorem 2.16 we obtain that it is not Frobenius as a Jacobi algebra.

.2/ Let u 2 U.A/ be an invertible element of a Jacobi algebra A. Then, the
u-conformal deformation Au is a Frobenius Jacobi algebra if and only if A is
a Frobenius Jacobi algebra. The result follows from Theorem 2.16 and .4/ of
Example 2.14 since the bijection there preserves the non-degeneration of integrals.
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.3/ The equivalence .1/� .3/ of Theorem 2.16 provides a very efficient criterion
for deciding when a given Jacobi algebra is Frobenius. For instance, the only
2-dimensional Frobenius Jacobi algebras are J 2;1, J 2;3 and J 2

d
: for each of them the

linear map � defined by �.1/ WD 0 and �.x/ WD 1 is a non-degenerate integral. In
the same manner, we can easily prove that among the eleven types of 3-dimensional
complex Jacobi algebras given in Example 2.4 there are only three Frobenius Jacobi
algebras, namely J 32 , J 33 and J 34 . For each of them the linear map � defined by
�.1/ WD a1, �.x/ WD a2 and �.y/ WD a3 is a non-degenerate integral, for all a1, a2,
a3 2 k such that a2a3 ¤ 0 and a1 ¤ a2 C a3.

We end the section with the following two questions:

Question 1. Does there exist a finite dimensional Jacobi algebraAwhich is Frobenius
both as an associative algebra and as a algebra Lie, but is not Frobenius as a Jacobi
algebra?

Question 2. Let A be a finite dimensional Frobenius Jacobi algebra such that
the Euler–Casimir element !A is invertible in A. Is every right Jacobi A-module
completely reducible (i.e. is A semisimple as a Jacobi algebra)?

3. Unified products for Jacobi algebras

In this section we shall answer the extending structures ES-problem for Jacobi
algebras: i.e. we shall describe and classify all Jacobi algebras containing a given
Jacobi algebraA as a subalgebra of a fixed codimension. We start by explaining what
we mean by classification within the ES-problem. Let A be a Jacobi algebra, E a
vector space such thatA is a subspace ofE and letV be a fixed complement ofA inE,
i.e. V is a subspace of E such that E D AC V and A \ V D f0g. Let J .A; E/

be the category whose objects are all Jacobi algebra structures .�E ; Œ�;��E / that
can be defined on E such that A becomes a Jacobi subalgebra of .E; �E ; Œ�;��E /.
A morphism ' W .�E ; Œ�;��E / ! .�0E ; Œ�;��

0
E / in J .A; E/ is a morphism of

Jacobi algebras ' W .E; �E ; f�; �gE / ! .E; �0E ; f�; �g
0

E / which stabilizes A and
co-stabilizes V , i.e. the diagram

A
i //

Id
��

E
� //

'

��

V

Id
��

A
i // E

� // V

(3.1)

is commutative, where � W E ! V is the canonical projection of E D AC V on V
and i W A ! E is the inclusion map. In this case we say that the Jacobi algebra
structures .�E ; Œ�;��E / and .�0E ; Œ�;��

0
E / onE are cohomologous and we denote this

by .�E ; f�; �gE / � .�0E ; f�; �g
0

E /. Any linear map ' which makes diagram (3.1)
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commutative is bijective, thus the categoryJ .A; E/ is a groupoid, i.e. anymorphism
is an isomorphism. In particular, we obtain that � is an equivalence relation on the
set of objects of J .A; E/ and we denote by ExtdJ .E; A/ the set of all equivalence
classes, i.e. ExtdJ .E; A/ WD J .A; E/= �. ExtdJ .E; A/ is the classifying object
for the ES-problem: it classifies all Jacobi algebra structures that can be defined onE
containing A as a Jacobi subalgebra up to an isomorphism that stabilizes A and co-
stabilizes V . The answer to the ES-problem will be provided by explicitly computing
ExtdJ .E; A/ for a given Jacobi algebra A and a vector space E. From geometrical
point of view this means to give the decomposition of the groupoid J .A; E/ into
connected components and to indicate a ’point’ in each such component. The main
result of this section proves that ExtdJ .E; A/ is parameterized by a non-abelian
cohomological type object JH2 .V; A/ that will be explicitly constructed and the
bijection between JH2 .V; A/ and ExtdJ .E; A/ will be indicated.
Definition 3.1. Let A be a Jacobi algebra and V a vector space. An extending datum
of A through V is a system ‡.A; V / D

�
G; F; f; �; (; *; �; f�; �g

�
consisting

of eight bilinear maps

G W V � A! V; F W V � A! A; f W V � V ! A; � W V � V ! V

( W V � A! V; * W V � A! A; � W V � V ! A; f�; �g W V � V ! V

Let ‡.A; V / D
�
G; F; f; �; (; *; �; f�; �g

�
be an extending datum of a

Jacobi algebraA through a vector space V . We denote byA Ë‡.A;V /V D A ËV the
vector space A �V together with the multiplication � and the bracket Œ�; �� defined
by:

.a; x/ � .b; y/ WD
�
ab C x F b C y F aC f .x; y/; x G b C y G aC x � y

�
(3.2)

Œ.a; x/; .b; y/� WD
�
Œa; b�C x * b � y * aC �.x; y/;

x ( b � y ( aC fx; yg
� (3.3)

for all a, b 2 A and x, y 2 V . The object A Ë V is called the unified product of A
and‡.A; V / if it is a Jacobi algebra with the multiplication defined by (3.2), the unit
.1A; 0V / and the bracket given by (3.3). In this case the extending datum ‡.A; V /

is called a Jacobi extending structure of A through V .
The next theorem provides the necessary and sufficient conditions that need to be

fulfilled by an extending datum ‡.A; V / such that A Ë V is a unified product.
Theorem 3.2. Let A D .A; mA; Œ�; ��/ be a Jacobi algebra, V a vector space and
‡.A; V / D

�
G; F; f; �; (; *; �; f�; �g

�
an extending datum of A through V .

Then A Ë V is a unified product if and only if the following compatibilities hold:

.J 0/
�
G; F; f; �/ is an algebra extending system of the associative algebraA through
V and

�
(; *; �; f�; �g

�
is a Lie extending system of the Lie algebra A

through V ;
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.J1/ x * .ab/ D .x * a/ b C .x ( a/ F b C a .x * b/C .x ( b/ F a

� ab .x * 1A/ � .x ( 1A/ F .ab/

.J 2/ x ( .ab/ D .x ( a/ G b C .x ( b/ G a � .x ( 1A/ G .ab/

.J 3/ x F Œa; b� D Œx F a; b�C .x G a/ * b � a .x * b/ � .x ( b/ F a

C .x F a/Œ1A; b�C .x G a/ F Œ1A; b�

.J 4/ x G Œa; b� D .x G a/ ( b � .x ( b/ G aC .x G a/ G Œ1A; b�

.J 5/ fx; yg F a D �.x G a; y/ � a �.x; y/C f .y ( a; x/

�f .x G a; y ( 1A/ � y * .x F a/C x F .y * a/ � .x F a/.y * 1A/

� .x Ga/F .y * 1A/� .y ( 1A/F .x Fa/

.J 6/ fx; yg G a D fx G a; yg � y ( .x F a/C x G .y * a/C .y ( a/ � x

� .x Ga/G .y * 1A/� .y ( 1A/G .x Fa/� .x Ga/ � .y ( 1A/

.J 7/ .x � y/ * a D x F .y * a/C y F .x * a/C f .x ( a; y/

Cf .x; y ( a/�Œf .x; y/; a��f .x; y/Œ1A; a��.x�y/FŒ1A; a�

.J 8/ .x � y/ ( a D x � .y ( a/C .x ( a/ � y C x G .y * a/

Cy G .x * a/� .x � y/G Œ1A; a�

.J 9/ �.x � y; z/ D x F �.y; z/C y F �.x; z/C z * f .x; y/C f
�
fx; zg; y

�
Cf

�
x; fy; zg

�
Cf .x; y/.z * 1A/C .x �y/F .z * 1A/

C .z ( 1A/ F f .x; y/C f .x � y; z ( 1A/

.J10/ fx � y; zg D x � fy; zg C fx; zg � y C z ( f .x; y/C x G �.y; z/

Cy G �.x; z/C .x � y/ G .z * 1A/C .z ( 1A/ G f .x; y/

C .x � y/ � .z ( 1A/

for all a, b 2 A, x, y, z 2 V .

Proof. We have already noticed in Preliminaries that .A Ë V; �/ is a commutative
algebra with unit .1A; 0/ if and only if

�
G; F; f; �/ is an algebra extending system

of the algebra A through V and .A Ë V; Œ�; ��/ is a Lie algebra if and only if�
(; *; �; f�; �g

�
is a Lie extending system of the Lie algebraA through V . These

are the assumptions from (J0) which from now on we assume to be fulfilled. Then,
.AË V; �; Œ�; ��/ is a Jacobi algebra if and only if the following compatibility holds
for any a, b, c 2 A and x, y, z 2 V

Œ.a; x/ � .b; y/; .c; z/� D .a; x/ � Œ.b; y/; .c; z/�C Œ.a; x/; .c; z/� � .b; y/

� .a; x/ � .b; y/ �
�
Œ1A; c� � z * 1A; �z ( 1A

�
If we denote the last equation by (J), the proof relies on a detailed analysis
of this identity. Since in A � V we have .a; x/ D .a; 0/ C .0; x/ it follows
that (J) holds if and only if it holds for all generators of A � V , i.e. for the set
f.a; 0/ j a 2 Ag [ f.0; x/ j x 2 V g. However, since the computations are rather
long but straightforward we will only indicate the main steps of the proof, the details
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being available upon request. First, we notice that (J) holds for the triple .a; 0/,
.b; 0/, .c; 0/ since A is a Jacobi algebra. The left hand side of (J) evaluated in .a; 0/,
.b; 0/, .0; x/ is equal to

�
�x * .ab/; �x ( .ab/

�
while the right hand side of (J)

evaluated in the same triple comes down to:

�
�
.x * a/ b C .x ( a/ F b; .x ( a/ G b

�
�
�
a .x * b/C .x ( b/ F a; .x ( b/ G a

�
C
�
ab .x * 1A/C .x ( 1A/ F .ab/; .x ( 1A/ G .ab/

�
We obtain that (J) holds for the triple .a; 0/, .b; 0/, .0; x/ if and only if (J1) and (J2)
hold. Similar computations show the following: (J) holds for the triple .a; 0/, .0; x/,
.b; 0/ if and only if (J3) and (J4) hold; (J) holds for the triple .a; 0/, .0; x/, .0; y/
if and only if (J5) and (J6) hold; (J) holds for the triple .0; x/, .0; y/, .a; 0/ if and
only if (J7) and (J8) hold and finally, (J) holds for the triple .0; x/, .0; y/, .0; z/ if
and only if (J9) and (J10) hold. Moreover, since A is commutative, we observe that
the Jacobi compatibility (2.1) holds for the triple .a; b; c/ if and only if it holds for
the triple .b; a; c/. Based on this remark we obtain that (J) holds for the triple .0; x/,
.a; 0/, .b; 0/ whenever it holds for .a; 0/, .0; x/, .b; 0/ and (J) holds for the triple
.0; x/, .a; 0/, .0; y/ whenever it holds for .a; 0/, .0; x/, .0; y/. The proof is now
finished.

From now on a Jacobi extending structure of a Jacobi algebra A through a vector
space V will be viewed as a system ‡.A; V / D

�
G; F; f; �; (; *; �; f�; �g

�
satisfying the compatibility conditions (J0)-(J10). We denote by J E.A; V / the set
of all Jacobi algebra extending structures of A through V . Theorem 3.2 takes a
simplified form at the level of Poisson algebras:
Corollary 3.3. Let A D .A; mA; Œ�; ��/ be a unital Poisson algebra, V a vector
space and ‡.A; V / D

�
G; F; f; �; (; *; �; f�; �g

�
an extending datum of A

through V . Then A Ë V D .A Ë V; �; Œ�; ��/ is a Poisson algebra with .1A; 0V / as
a unit if and only if the following compatibilities hold for any a, b 2 A, x, y, z 2 V :

.P 0/
�
G; F; f; �/ is an algebra extending system of the associative algebra A
trough V and

�
(; *; �; f�; �g

�
is a Lie extending system of the Lie

algebra A trough V

.P1/ x * .ab/ D .x * a/ b C .x ( a/ F b C a .x * b/C .x ( b/ F a

.P2/ x ( .ab/ D .x ( a/ G b C .x ( b/ G a

.P3/ x F Œa; b� D Œx F a; b�C .x G a/ * b � a .x * b/ � .x ( b/ F a

.P4/ x G Œa; b� D .x G a/ ( b � .x ( b/ G a

.P5/ fx; yg F a D �.x G a; y/ � a �.x; y/C f .y ( a; x/ � y * .x F a/

C x F .y * a/

.P 6/ fx; yg G a D fx G a; yg � y ( .x F a/C x G .y * a/C .y ( a/ � x



Jacobi and Poisson algebras 1317

.P 7/ .x � y/ * a D x F .y * a/C y F .x * a/C f .x ( a; y/

Cf .x; y ( a/ � Œf .x; y/; a�

.P 8/ .x � y/ ( a D x � .y ( a/C .x ( a/ � y C x G .y * a/C y G .x * a/

.P 9/ �.x � y; z/ D x F �.y; z/C y F �.x; z/C z * f .x; y/C f
�
fx; zg; y

�
Cf

�
x; fy; zg

�
.P10/ fx �y; zg D x � fy; zgCfx; zg �yCz ( f .x; y/CxG�.y; z/Cy G�.x; z/

An extending datum ‡.A; V / D
�
G; F; f; �; (; *; �; f�; �g

�
of a unital

Poisson algebra A through a vector space V satisfying the axioms (P0)-(P10) is
called a Poisson extending structure of A through V and we denote by PE.A; V / the
set of all Poisson extending structures of A through V .

Let ‡.A; V / D
�
G; F; f; �; (; *; �; f�; �g

�
2 J E.A; V / be a Jacobi

extending structure of a Jacobi algebra A through a vector space V . Then A
is a Jacobi subalgebra of the unified product A Ë V through the identification
A Š iA.A/ D A � f0g, where iA W A ! A Ë V , iA.a/ D .a; 0/ is the canonical
injection. Conversely, the following result provides the answer to the description part
of the ES-problem:

Proposition 3.4. Let A be a Jacobi algebra, E a vector space containing A as
a subspace and .�E ; Œ�; ��E / a Jacobi algebra structure on E such that A is a
subalgebra of .E; �E ; Œ�; ��E /. Then there exists a Jacobi extending structure
‡.A; V / D

�
G; F; f; �; (; *; �; f�; �g

�
of A through a subspace V of E and an

isomorphism of Jacobi algebras .E;�E ; Œ�; ��E / Š A Ë V that stabilizes A and
co-stabilizes V .

Proof. Since k is a field, there exists a linear map p W E ! A such that p.a/ D a,
for all a 2 A. Then V WD Ker.p/ is a complement of A in E. Using the retraction p,
we define the extending datum ‡.A; V / D

�
G; F; f; �; (; *; �; f�; �g

�
of A

through V by the following formulas for any a 2 A and x, y 2 V :

x F a WD p.x �E a/; x G a WD x �E a � p.x �E a/

f .x; y/ WD p.x �E y/; x � y WD x �E y � p.x �E y/

x * a WD p
�
Œx; a�E

�
; x ( a WD Œx; a�E � p

�
Œx; a�E

�
�.x; y/ WD p

�
Œx; y�E

�
; fx; yg WD Œx; y�E � p

�
Œx; y�E

�
Then by arguments similar to those used for Lie algebras in [5, Theorem 2.4] and
associative algebras in [7, Theorem2.4]we can prove that‡.A; V / D

�
G; F; f; �; (;

*; �; f�; �g
�
is a Jacobi extending structure of A through V and the linear

map ' W A Ë V ! .E;�E ; Œ�; ��E /, '.a; x/ WD a C x, is an isomorphism of
Jacobi algebras that stabilizes A and co-stabilizes V , i.e. the following diagram
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is commutative:

A
i //

Id
��

A Ë V q //

'

��

V

Id
��

A
i // E

� // V

where q W A Ë V ! V , q.a; x/ WD x is the canonical projection.

Proposition 3.4 reduces the classification of all Jacobi algebra structures onE that
containA as a subalgebra to the classification of all unified productsA Ë V , associated
to all Jacobi extending structures ‡.A; V / D

�
G; F; f; �; (; *; �; f�; �g

�
, for a

fixed complement V of A in E. First we need the following technical result:
Proposition 3.5. Let A be a Jacobi algebra, ‡.A; V / D

�
G; F; f; �; (; *;

�; f�; �g
�

and ‡ 0.A; V / D
�
G0; F0; f 0; �0; (0; *0; � 0; f�; �g0

�
two Jacobi

extending structures of A through V . Let A Ë V and A Ë0 V be the unified products
associated to the Jacobi extending structures ‡.A; V / and respectively ‡ 0.A; V /.
The following are equivalent:

.1/ There exists  W A Ë V ! A Ë0 V a morphism of Jacobi algebras which
stabilizes A and co-stabilizes V ;

.2/ G0 D G, (0D( and there exists a linear map r W V ! A such that F0, f 0,
�0, *0, � 0 and f�; �g0 are implemented by r via the following formulas for any
a 2 A, x, y 2 V :

x F0 a D x F aC r.x G a/ � r.x/ a;

x �0 y D x � y � x G r.y/ � y G r.x/

f 0.x; y/ D f .x; y/C r.x � y/C r.x/r.y/ � x F r.y/ � r
�
x G r.y/

�
� y F r.x/ � r

�
y G r.x/

�
x *0 a D x * aC r

�
x ( a

�
� Œr.x/; a�;

fx; yg0 D fx; yg � x ( r.y/C y ( r.x/

� 0.x; y/ D �.x; y/C r
�
fx; yg

�
C Œr.x/; r.y/�C y * r.x/ � x * r.y/

C r
�
y ( r.x/

�
� r
�
x ( r.y/

�
Proof. There exists a bijection between the set of all linear maps W A�V ! A�V

which stabilize A and co-stabilize V and the set of all linear map r W V ! A

given as follows:  7! r , where r .x/ WD  .0; x/ respectively r 7!  r , where
 r.a; x/ WD .a C r.x/; x/, for all a 2 A and x 2 V . We denote by  r D  , the
linear map associated to r W V ! A. We prove that  D  r W A Ë V ! A Ë0 V is
a morphism of Jacobi algebras if and only if the compatibility conditions from .2/

hold. Indeed, first we can see that  
�
.a; 0/ � .0; x/

�
D  .a; 0/ �0  .0; x/ if and only

if G0 D G and x F0 a D x F a C r.x G a/. Taking these two compatibilities into
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account, we can easily see that  
�
.0; x/ � .0; y/

�
D  .0; x/ �0  .0; y/ if and only if

x �0 y D x �y�x G r.y/�y G r.x/ and f 0.x; y/ D f .x; y/C r.x �y/C r.x/r.y/�
x F r.y/ � r

�
x G r.y/

�
�y F r.x/ � r

�
y G r.x/

�
, for all x, y 2 V . This shows that

 D  r W A Ë V ! A Ë0 V is a morphism of associative algebras if and only if
G0 D G and the first three compatibility conditions of .2/ hold. In a similar fashion,
we can prove that  D  r W A Ë V ! A Ë0 V is a morphism of Lie algebras if and
only if(0D( and the last three compatibility conditions of .2/ hold.

The Jacobi algebra morphism  r W A � V ! A � V defined in the proof of
Proposition 3.5 is bijective. This allows us to introduce the following equivalence
relation :

Definition 3.6. Let A be a Jacobi algebra and V a vector space. Two Jacobi
extending structures ‡.A; V / D

�
G; F; f; �; (; *; �; f�; �g

�
and ‡ 0.A; V / D�

G0; F0; f 0; �0; (0; *0; � 0; f�; �g0
�
are called cohomologous, and we denote this

by ‡.A; V / � ‡ 0.A; V /, if G0 D G, (0D( and there is a linear map r W V ! A

such that F0, f 0, �0, *0, � 0 and f�; �g0 are implemented by r via the formulas
given in .2/ of Proposition 3.5.

The theoretical answer to the ES-problem for Jacobi algebras now follows:

Theorem 3.7. Let A be a Jacobi algebra, E a vector space which contains A as
a subspace and V a complement of A in E. Then � is an equivalence relation on
the set J E.A; V / of all Jacobi algebra extending structures of A through V . If we
denote by JH2 .V; A/ WD J E.A; V /= �, then the map1

JH2 .V; A/! ExtdJ .E; A/;
�
G; F; f; �; (; *; �; f�; �g

�
7�! A Ë V

is bijective, whereAËV is the unified product associated toA and
�
G; F; f; �; (; *;

�; f�; �g
�
.

Proof. Proposition 3.5 proves that ‡.A; V / � ‡ 0.A; V / if and only if there exists
an isomorphism of Jacobi algebras  W A Ë V ! A Ë0 V which stabilizes A and co-
stabilizes V . This shows that� is an equivalence relation onJ E.A; V /. The last part
follows from this observation together with Theorem 3.2 and Proposition 3.4.

Remark 3.8. The Poisson version of Theorem 3.7 has the following form. Let A
be a unital Poisson algebra, E a vector space which contains A as a subspace,
V a complement of A in E and let PE.A; V / be the set of all Poisson extending
structures ofA throughV in the sense of Corollary 3.3. We denote byPH2 .V; A/ WD

PE.A; V /= �, where� is the equivalence relation onPE.A; V / defined exactly as in
Definition 3.6 and by ExtdP .E; A/ the set of all equivalence classes of isomorphism

1

�
G; F; f; �; (; *; �; f�; �g

�
denotes the equivalence class of

�
G; F; f; �; (; *;

�; f�; �g
�
via�.
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of all Poisson algebra structureswhich can be defined onE that contain and stabilizeA
as a Poisson subalgebra and co-stabilize V . Then the map

PH2 .V; A/! ExtdP .E; A/;
�
G; F; f; �; (; *; �; f�; �g

�
7�! A Ë V

is bijective.

Computing the classifying object JH2 .V; A/ for a given Jacobi algebra A
and a given vector space V is a highly nontrivial problem. However, the first
step in computing JH2 .V; A/ is suggested by the first part of Definition 3.6: if
two Jacobi extending structures ‡.A; V / D

�
G; F; f; �; (; *; �; f�; �g

�
and

‡ 0.A; V / D
�
G0; F0; f 0; �0; (0; *0; � 0; f�; �g0

�
are cohomologous, then we must

have G0 D G, (0D(. Thus, in order to compute JH2 .V; A/ we can fix
the right A-module action G and the right Lie A-module action ( such that
.V; G; (/ is a right Jacobi module as defined in Definition 2.8 – we observe
that the compatibility conditions (2.3) and (2.4) of Definition 2.8 coincide with
axioms (J2) and (J4) of Theorem 3.2 defining the Jacobi extending structures.
Hence, we can decompose the object JH2 .V; A/ as follows. Let A be a Jacobi
algebra, V a vector space and let .V; G; (/ be a fixed right Jacobi A-module. Let
J E.G;(/.A; V / be the set of all .G; (/-Jacobi extending stuctures of A through
.V; G; (/ which is the set of all 6-tuples

�
F; f; �; *; �; f�; �g

�
consisting of

six bilinear maps such that
�
G; F; f; �; (; *; �; f�; �g

�
is a Jacobi extending

structure ofA through V . Two elements
�
F; f; �; *; �; f�; �g

�
and

�
F0; f 0; �0; *0;

� 0; f�; �g0
�
of J E.G;(/.A; V / are .G; (/-cohomologous and we denote this

by
�
F; f; �; *; �; f�; �g

�
�l

�
F0; f 0; �0; *0; � 0; f�; �g0

�
if
�
G; F; f; �; (; *;

�; f�; �g
�
�

�
G; F0; f 0; �0; (; *0; � 0; f�; �g0

�
. Then �l is an equivalence

relation on J E.G;(/.A; V / and we denote by JH2 ..V; G; (/; A/ the quotient
set J E.G;(/.A; V /= �l . Theorem 3.7 and the above considerations provide the
following decomposition of JH2 .V; A/:

Corollary 3.9. Let A be a Jacobi algebra and V a vector space. Then

JH2 .V; A/ D t.G;(/ JH2
�
.V; G; (/; A

�
(3.4)

where the coproduct in the right hand side is in the category of sets over all possible
right Jacobi A-module structures .G; (/ on V .

The decomposition given by (3.4) is a very important step in computing
the classifying object JH2 .V; A/. However, even computing every object
JH2

�
.V; G; (/; A

�
, for a fixed right Jacobi A-module .V; G; (/ is a problem

far from being trivial. However the decomposition is important as some of the
components in the right hand side of (3.4) might be equal to the empty set as the
following example shows. Several explicit examples of computing JH2 .V; A/ are
provided in Section 4.
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Example 3.10. We consider the trivial right Jacobi A-module structure on V , that
is x G a WD x and x ( a WD 0, for all x 2 V , a 2 A. This right Jacobi A-module
structure on V was denoted by V0. If V ¤ f0g, then JH2

�
V0; A

�
D ;. We will

prove that in fact the corresponding set J E.G;(WD0/ .A; V / is empty. Indeed, if�
F; f; �; *; �; f�; �g

�
2 J E.G;(WD0/ .A; V /, then taking into account that G acts

trivially on V , if follows from axiom (A3) that x � y D x C x � y, for all x, y 2 V ,
thus V D 0 and we have reached a contraction.

4. Flag Jacobi algebras. Examples

In this section we will test the efficiency of Theorem 3.7 and the decomposition given
by (3.4) in order to compute JH2 .V; A/ for the class of Jacobi algebras defined
below:
Definition 4.1. Let A be a Jacobi algebra and E a vector space containing A as a
subspace. A Jacobi algebra structure on E is called a flag extending structure of A
to E if there exists a finite chain of Jacobi subalgebras of E

E0 WD A � E1 � � � � � Em WD E (4.1)

such that Ei has codimension 1 in EiC1, for all i D 0; � � � ; m � 1. A Jacobi algebra
that is a flag extending structure of the Jacobi algebra k D k0 is called a flag Jacobi
algebra.

All flag extending structures of a given Jacobi algebraA to a vector spaceE can be
completely described by a recursive reasoning where the key step is the case when A
has codimension 1 in E. This step will provide the description and classification of
all unified productsAËk of Jacobi algebras. Then, by replacingAwith each of these
unified products A Ë k, we go on with the recursive process in m steps, where m is
the codimension of A in E. The tool that will play the key role in the description of
flag extending structures is the following:
Definition 4.2. Let A be a Jacobi algebra. A Jacobi flag datum of A is a 6-tuple
.ƒ; �; f0; u; �; D/, consisting of fourk-linearmapsƒ,� W A! k,�,D W A! A

and two elements f0 2 A and u 2 k satisfying the following compatibilities for any
a, b 2 A:
(JF0) .ƒ; �; f0; u/ is a flag datum of the associative algebra A and .�; D/ is a

twisted derivation of the Lie algebra A;
(JF1) D.ab/ D D.a/ b C aD.b/C �.a/�.b/C �.b/�.a/ � �.1A/�.ab/

� ab D.1A/

(JF2) �.ab/ D �.a/ƒ.b/C �.b/ƒ.a/ � �.1A/ƒ.ab/
(JF3) �.Œa; b�/ D Œ�.a/; b�Cƒ.a/D.b/ � aD.b/ � �.b/�.a/C�.a/Œ1A; b�

Cƒ.a/�.Œ1A; b�/
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(JF4) ƒ.Œa; b�/ D ƒ.a/ƒ.Œ1A; b�/
(JF5) �

�
D.a/

�
�D

�
�.a/

�
D �.a/D.1A/Cƒ.a/ �.1A/ f0 � �.a/ f0

Cƒ.a/�
�
D.1A/

�
C�.1A/�

2.a/

(JF6) ƒ
�
D.a/

�
��
�
�.a/

�
D ƒ.a/ƒ

�
D.1A/

�
C�.1A/ƒ.a/ u � �.a/ u

(JF7) 2�
�
D.a/

�
C2 �.a/ f0 D uD.a/C Œf0; a�C f0 Œ1A; a�C u�.Œ1A; a�/

(JF8) 2ƒ
�
D.a/

�
D ��.a/ uC uƒ.Œ1A; a�/

(JF9) D.f0/C f0D.1A/C u�
�
D.1A/

�
C�.1A/�.f0/C u�.1A/ f0 D 0

(JF10) �.f0/C uƒ
�
D.1A/

�
C�.1A/ƒ.f0/C u

2 �.1A/ D 0

We denote by JF .A/ the set of all Jacobi flag datums of A.
For further computations we point out that for any .ƒ; �; f0; u; �; D/ 2

FJ .A/ we have �.1A/ D 0 and ƒ.1A/ D 1.
Proposition 4.3. LetA be a Jacobi algebra. Then there exists a bijection between the
set J E .A; k/ of all Jacobi extending structures of A through k and JF .A/ given
such that the unified product AË.ƒ;�;f0; u; �;D/ k corresponding to the Jacobi flag
datum .ƒ; �; f0; u; �; D/ 2 JF .A/, denoted by A.ƒ;�;f0; u; �;D/, is the vector
space A � k with the Jacobi algebra structure given for any a, b 2 A and x, y 2 k
by:

.a; x/ � .b; y/ D
�
ab C x�.b/C y�.a/C xy f0; xƒ.b/C yƒ.a/C xy u

�
(4.2)

Œ.a; x/; .b; y/� D
�
Œa; b�C xD.b/ � yD.a/; x�.b/ � y�.a/

�
(4.3)

Furthermore, a Jacobi algebra B contains A as a Jacobi subalgebra of
codimension 1 if and only if B Š A.ƒ;�;f0; u; �;D/, for some Jacobi flag datum
.ƒ; �; f0; u; �; D/ of A.

Proof. We have to compute the set of all bilinear maps

G W k � A! k; F W k � A! A; f W k � k ! A; � W k � k ! k

( W k � A! k; * W k � A! A; � W k � k ! A; f�; �g W k � k ! k

satisfying the compatibility conditions (J0)–(J10) in Theorem 3.2. To start with, the
first part of axiom .J 0/ tells us that .G; F; f; �/ is an algebra extending system of A
through k and Example 1.2 proves that there is a bijection between the set of all such
maps .G; F; f; �/ and the set of all 4-tuples .ƒ; �; f0; u/ 2 A� �Endk.A/�A� k
that are flag datums of the associative algebra A: the bijection is given such that
the algebra extending system

�
G; F; f; �

�
associated to .ƒ; �; f0; u/ 2 F.A/ is

defined by the formulas (1.3). Secondly, the last assertion of .J 0/ tells us that
.(; *; �; f�; �g/ is a Lie extending system of the Lie algebra A through the
vector space k and Example 1.4 shows that there is a bijection between this set
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and the space TwDer.A/ of all twisted derivations of A; the bijection is given such
that the Lie extending system

�
(; *; �; f�; �g

�
associated to a twisted derivation

.�;D/ 2 TwDer.A/ is defined by the formulas (1.5). Hence, there exists a bijection
between the set of all bilinearmaps .G; F; f; �; (; *; �; f�; �g/ satisfying (J0) and
the set of all 6-tuples .ƒ; �; f0; u; �; D/ as defined in Definition 4.2 satisfying the
compatibility conditions (JF0) and the bijection is given by the formulas (1.3)–(1.5).
The rest of the proof is a long but straightforward computation which shows that,
under this bijection, the compatibility conditions (J1)–(J10) of Theorem 3.2 take
the equivalent forms given by (JF1)–(JF10). Finally, the Jacobi algebra defined by
(4.2)–(4.3) is exactly the associated unified product A Ë k defined by (3.2)–(3.3)
written in this context. Finally, the last statement follows from the first part and
Proposition 3.4.

Let fei j i 2 I g be a basis of a Jacobi algebra A and .ƒ; �; f0; u; �; D/ 2
JF .A/ a Jacobi flag datum. Then A.ƒ;�;f0; u; �;D/ is the Jacobi algebra having
fE; ei j i 2 I g as a basis with the multiplication and the bracket defined for any i 2 I
by:

ei � ej WD ei �A ej ; E � ei D ei �E WD �.ei /Cƒ.ei /E; E2 WD f0 C uE

(4.4)�
ei ; ej

�
WD
�
ei ; ej

�
A
; ŒE; ei � WD D.ei /C �.ei /E (4.5)

where �A (resp. Œ�; ��A) is the multiplication (resp. the bracket) onA. The existence
of these Jacobi algebras depends on the Jacobi algebra A. An interesting fact is the
following:
Corollary 4.4. Let A be a perfect Poisson algebra, i.e. ŒA; A� D A. Then, there is
no Jacobi algebra which contains A as a subalgebra of codimension 1.

Proof. It follows from Proposition 4.3 if we prove that the set JF .A/ is empty.
Indeed, let .ƒ; �; f0; u; �; D/ 2 JF .A/. Since Œ1A; a� D 0, for all a 2 A, it
follows from axiom (JF4) that ƒ.Œa; b�/ D 0, for all a, b 2 A. As A is perfect as a
Lie algebra, we obtain thatƒ.x/ D 0, for any x 2 A, contrary to axiom (FA1) which
ensures that ƒ.1A/ D 1.

Remark 4.5. A basic invariant of a finite dimensional Lie algebra g is the Schur
invariant defined by ˛.g/ WD the maximal dimension of an abelian subalgebra of g.
There is a vast literature devoted to computing this number for several classes of
Lie algebras such as (semi)simple, (super)solvable, etc. — see [12, 14] and their
references. Lie algebras for which ˛.g/ D dim.g/ � 1 are fully described in [19]:
below we give the Jacobi algebra version of this result. For a finite dimensional
Jacobi algebra J we define the Schur invariant by the formula:

˛.J / WD max f dim .A/ j A is an abelian Jacobi subalgebra of J g
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Using Proposition 4.3 we obtain that a .n C 1/-dimensional Jacobi algebra J has
˛.J / D dim.J /�1 if and only ifJ Š A.ƒ;�;f0; u; �;D/, whereA is ann-dimensional
algebra with basis fei j i D 1; : : : ; ng and A.ƒ;�;f0; u; �;D/ is the Jacobi algebra
having fE; ei j i D 1; : : : ; ng as a basis and the multiplication and the bracket is
given for any i , j D 1; : : : n by:

ei � ej WD ei �A ej ; E � ei D ei �E WD �.ei /Cƒ.ei /E;

E2 WD f0 C uE; ŒE; ei � WD D.ei /C �.ei /E

for some 6-tuple .ƒ; �; f0; u; �; D/ 2 JF .A/with .D; �/ ¤ .0; 0/. Wemention
that in this case the axioms (JF0)–(JF10) which need to be fulfilled by the 6-tuples
.ƒ; �; f0; u; �; D/ take a simplified form as the Lie bracket on A is trivial.

Now we will classify the algebras A.ƒ;�;f0; u; �;D/ by providing the first explicit
classification result of the ES-problem for Jacobi algebras:

Theorem 4.6. Let A be a Jacobi algebra of codimension 1 in the vector space E.
Then there exist a bijection

ExtdJ .E; A/ Š JH2 .k; A/ Š JF .A/= � (4.6)

where� is the equivalence relation on the set JF .A/ of all Jacobi flag datums of A
defined as follows: .ƒ; �; f0; u; �; D/ � .ƒ0; �0; f 00 ; u

0; �0; D0/ if and only if
ƒ0 D ƒ, �0 D �, u0 D u and there exists ˛ 2 A such that for any a 2 A we have:

�0.a/ D �.a/Cƒ.a/˛ � a˛ (4.7)
f 00 D f0 C ˛

2
C u˛ � 2ƒ.˛/˛ � 2�.˛/ (4.8)

D0.a/ D D.a/C �.a/˛ � Œ˛; a� (4.9)

The bijection between JF .A/= � and ExtdJ .E; A/ is given by

.ƒ; �; f0; u; �; D/ 7! A.ƒ;�;f0; u; �;D/;

where .ƒ; �; f0; u; �; D/ is the equivalence class of .ƒ; �; f0; u; �; D/ via the
relation�.

Proof. Let .ƒ; �; f0; u; �; D/, .ƒ0; �0; f 00 ; u0; �0; D0/ 2 JF .A/ and‡.A; V /,
respectively ‡ 0.A; V / be the corresponding Jacobi algebra extending structures.
Since dimk.V / D 1, any linear map r W V ! A is uniquely determined by an
element ˛ 2 A such that r.x/ D ˛, where fxg is a basis in V . We can easily see
that the compatibility conditions from Proposition 3.5 applied to Jacobi flag datums
take precisely the form given in the statement and hence the proof follows from
Theorem 3.7 and Proposition 4.3.
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Remark 4.7. In practice, in order to compute the quotient set JF .A/= �

constructed in Theorem 4.6 we shall use the decomposition (3.4) obtained in
Corollary 3.9 by going through the following steps. First of all, we shall fix a
pair .ƒ; �/ 2 A� � A�, consisting of an associative algebra map ƒ W A ! k

and a Lie algebra map � W A ! k satisfying the compatibility conditions (2.8).
Secondly, for a given such pair .ƒ; �/ we fix a scalar u 2 k and compute the
set JFu

.ƒ;�/
.A/ consisting of all triples .�; f0; D/ 2 Endk.A/ � A � Endk.A/

such that .ƒ; �; f0; u; �; D/ is a Jacobi flag datum of A. Two triples
.�; f0; D/ and .�0; f 00 ; D0/ 2 JFu

.ƒ;�/
.A/ are equivalent and we denote this

by .�; f0; D/ �
u
.ƒ;�/

.�0; f 00 ; D
0/ if and only if there exists ˛ 2 A such

that (4.7)–(4.9) hold. Finally, we compute the quotient set JFu
.ƒ;�/

.A/= �u
.ƒ;�/

— JH2 .k; A/ will be the coproduct of these quotients sets over all triples
.ƒ; �; u/ — and then we list the isomorphism classes of the associated Jacobi
algebras A.ƒ;�;f0; u; �;D/ using (4.4)–(4.5). To conclude, using Theorem 4.6 and
Corollary 3.9, we obtain:
Corollary 4.8. Let A be a Jacobi algebra. Then:

JH2 .k; A/ Š t.ƒ;�/

�
tu

�
JFu

.ƒ;�/ .A/= �
u
.ƒ;�/

��
(4.10)

where the coproducts in the right hand side are made in the category of sets over all
possible pairs .ƒ; �/ consisting of an associative algebra mapƒ W A! k and a Lie
algebra map � W A! k satisfying (2.8) and over all scalars u 2 k.

Remark 4.9. LetA be a Poisson algebra. The Poisson algebra version of Theorem 4.6
and Corollary 4.8 for computing PH2 .k; A/ defined in Remark 3.8 are obtained as
follows. First, we define the set PF .A/ of all Poisson flag datums of A: it coincides
with the set of all 6-tuples .ƒ; �; f0; u; �; D/, consisting of four k-linear mapsƒ,
� W A ! k, �, D W A ! A and two elements f0 2 A and u 2 k satisfying the
following compatibilities for any a, b 2 A:
(PF0) .ƒ; �; f0; u/ is a flag datum of the associative algebra A and .�; D/ is a

twisted derivation of the Lie algebra A;
(PF1) D.ab/ D D.a/ b C aD.b/C �.a/�.b/C �.b/�.a/
(PF2) �.ab/ D �.a/ƒ.b/C �.b/ƒ.a/
(PF3) �.Œa; b�/ D Œ�.a/; b�Cƒ.a/D.b/ � aD.b/ � �.b/�.a/
(PF4) ƒ.Œa; b�/ D 0, D.f0/ D 0, �.f0/ D 0

(PF5) D
�
�.a/

�
��

�
D.a/

�
D �.a/ f0, �

�
�.a/

�
�ƒ

�
D.a/

�
D �.a/ u

(PF6) 2�
�
D.a/

�
C2 �.a/ f0 D uD.a/C Œf0; a�, 2ƒ

�
D.a/

�
D ��.a/ u

Then there exists a bijectionPH2 .k; A/ Š PF .A/= �, where� is the equivalence
relation defined exactly as in Theorem 4.6, but on the set PF .A/ of all Poisson flag
datums of the Poisson algebra A.
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Jacobi algebra Algebra structure Lie bracket
J
3;1
.�1; �2; u/

x2 D 0 Œy; 1� D �2�1�1uC �1y

.�1; �2; u/ 2 k � k
� � k yx D xy D 2�1 ux Œy; x� D �2�1�2uC �2y

y2 D �4�1 u2 C uy

J
3;2
.�1; u; f /

x2 D 0

.�1; u; f / 2 k
� � k2 yx D xy D 2�1 ux Œy; 1� D �2�1 �1uC �1 y

y2 D �4�1 u2 C f x C uy

J
3;3
ı

, ı 2 k� x2 D 0, y2 D ı2 abelian
yx D xy D ı x

J
3;4
u , u 2 k� x2 D 0, y2 D uy abelian

yx D xy D 0

J
3;5
.u; f; d1; d2/

x2 D 0 Œy; 1� D d1x

.u; f; d1; d2/ 2 k
4 yx D xy D 2�1ux Œy; x� D d2x

y2 D �4�1u2 C f x C uy

Table 2. Flag Jacobi algebras over J 2; 1.

Now, we will illustrate by examples the efficiency of Corollary 4.8 in classifying
flag Jacobi algebras. The strategy followed will be that of Remark 4.7 imposed by the
decomposition of JH2 .k; A/ given in (4.10). Moreover, if A is a Poisson algebra
we will also describe PH2 .k; A/ in order to illustrate the difference between it and
JH2 .k; A/. The model is given below and we make the following convention: all
undefined bracket or multiplication of two elements of a basis is zero. Let J 2; 1 be
the 2-dimensional Jacobi algebra of Example 2.3.

Proposition 4.10. Let k be a field of characteristic¤ 2. Then:

JH2 .k; J 2; 1/ Š .k � k� � k/ t .k� � k2/ t k� t k� t k4 (4.11)

and the equivalence classes of all 3-dimensional flag Jacobi algebra over J 2; 1 are the
Jacobi algebras J 3;1

.�1; �2; u/
, J 3;2

.�1; u; f /
, J 3;3

ı
, J 3;4u , J 3;5

.u; f; d1; d2/
having f1; x; yg

as a basis and the multiplication and the bracket defined in Table 2.

Proof. To start with, we should notice that there is only one algebra map
ƒ W J 2; 1 ! k namely the one given by ƒ.1/ D 1 and ƒ.x/ D 0. We denote
�.1/ D �1 and �.x/ D �2, for some .�1; �2/ 2 k2. Then � W J 2; 1 ! k is a Lie
algebra map (the Lie brackets on J 2; 1 and k are both abelian) and moreover (2.8) is
fulfilled. Thus, the set of all pairs .ƒ; �/ consisting of an algebra mapƒ W J 2; 1 ! k

and a Lie algebra map � W J 2; 1 ! k satisfying (2.8) is in bijection with k2. From
now on we fix a pair .�1; �2/ 2 k2 and a scalar u 2 k. We will describe the set
JFu

.ƒ;�/
.J 2; 1/ consisting of all triples .�; f0; D/ such that .ƒ; �; f0; u; �; D/

is a Jacobi flag datumofJ 2; 1. We identify the k-linearmaps� andD W J 2; 1 ! J 2; 1
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with their associated matrices with respect to the basis f1; xg:

� D

�
�11 �12
�21 �22

�
D D

�
d11 d12
d21 d22

�
f0 D f1 C f2 x

for some .�ij / 2 k4, .dij / 2 k4, .f1; f2/ 2 k2. We have to determine all these
scalars such that axioms (JF0)-(JF10) are fulfilled for a fixed triple .�1; �2; u/ 2 k3.
Since this comes down to a laborious computation we will only provide a sketch
of it. For instance, we can easily obtain that axiom (JF0) holds for a fixed triple
.�1; �2; u/ 2 k

3 if and only if .�; f0; D/ is given by

� D

�
0 0

0 ı

�
D D

�
d11 d12
d21 d22

�
f0 D ı.ı � u/C f x (4.12)

for some ı, f 2 k and .dij / 2 k4 such that �1d12 D �2d11 and �1d22 D �2d21. We
continue in similarmanner by testing the remaining compatibilities: for instance (JF2)
and (JF4) hold automatically for such a triple .�; f0; D/while we can easily see that
(JF1) (resp. (JF3)) holds if and only if d12 D ��2ı (resp. d11 D ��1ı). On the other
hand we can prove that (JF5) holds if and only if �2 f D 0 and �2 ı.2ı � u/ D 0.
Moreover, (JF8) holds if and only if d11 D �2�1 �1u and d12 D �2�1 �2u). By
eliminating the redundant compatibilities we can conclude that axioms (JF0)-(JF10)
are fulfilled if and only if the triple .�; f0; D/ given by (4.12) satisfies the following
equations:

d11 D ��1ı D �2
�1 �1u; d12 D ��2ı D �2

�1 �2u; �1d22 D �2d21
(4.13)

�2f D �2.2 ı � u/ D �1ı.2 ı � u/ D fd22 D 0 (4.14)
d21.2 ı � u/ D d22.2 ı � u/ D 0; �1.2 ı

2
C ı u � u2/ D 0 (4.15)

Now, based on (4.14) we can decompose the set of all Jacobi flag datums of J 2; 1 as
follows

JF .J 2; 1/ D J1 t J2 t J3

where J1 are those flag datums corresponding to �2 ¤ 0, J2 are associated to the
case �2 D 0 and �1 ¤ 0 while J3 correspond to the case �2 D �1 D 0.

In what follows we only provide details for the first case, namely the one
corresponding to �2 ¤ 0 – the other two cases are settled using an analogous
treatment. If we denote d22 WD d 2 k, then equations (4.13)-(4.15) hold if and only
if f D 0, ı D 2�1 u and d21 D ��12 �1d . Thus, J1 Š k�k��k2 and the bijection is
given such that the Jacobi flag datum .ƒ; �; f0; u; �; D/ 2 JF .J 2; 1/ associated
to .�1; �2; u; d/ 2 k � k� � k2 is given by

ƒ.1/ D 1; ƒ.x/ D 0; �.1/ D �1; �.x/ D �2 ¤ 0 (4.16)

� D

�
0 0

0 2�1u

�
D D

�
�2�1 �1u �2�1 �2u

��12 �1d d

�
f0 D �4

�1 u2 (4.17)
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Now, an elementary computation shows that the equivalence relation of Theorem 4.6
given by (4.7)–(4.9) on the Jacobi flag datums written for the set of triples k�k��k2
becomes: .�1; �2; u; d/ � .�01; �

0
2; u

0; d 0/ if and only if �01 D �1, �02 D �2,
u0 D u and there exists q 2 k such thatd 0 D dC�2q. Since,�2 ¤ 0, there exists such
a q, namely q WD ��12 .d

0 � d/. This shows that .�1; �2; u; d/ � .�1; �2; u; 0/,
for any d 2 k and the quotient set k�k��k2= � Š k�k��k�f0g Š k�k��k,
which is the first component of JH2 .k; J 2; 1/ in formula (4.11). The 3-parameter
Jacobi algebra J 3;1

.�1; �2; u/
is precisely the unified product J 2; 1 Ë k associated to the

Jacobi flag datum corresponding to .�1; �2; u; 0/ via the formulas (4.16)–(4.17),
with the multiplication and the bracket as defined by (4.4)–(4.5). In a similar fashion
we can prove that J2 Š k� � k3 and the bijection is given such that the Jacobi flag
datum .ƒ; �; f0; u; �; D/ 2 JF .J 2; 1/ associated to .�1; u; f; d/ 2 k� � k3 is
given by

ƒ.1/ D 1; ƒ.x/ D 0; �.1/ D �1 ¤ 0; �.x/ D 0 (4.18)

� D

�
0 0

0 2�1u

�
D D

�
�2�1 �1u 0

d 0

�
f0 D �4

�1 u2 C f x (4.19)

and k� � k3= � Š k� � k2 since .�1; u; f; d/ Š .�01; u
0; f 0; d 0/ if and only if

�01 D �1, u0 D u, f 0 D f and there exists q 2 k such that d 0 D dC�1q. The Jacobi
algebra J 3;2

.�1; u; f /
is the unified product J 2; 1 Ë k associated to .�1; u; f; d WD 0/.

Finally, one can show in an analogous manner that J3 Š .k� t k�/ t k4 and the
corresponding Jacobi algebras are the last three families of Table 2: J 3;3

ı
, J 3;4u and

respectively J 3;5
.u; f; d1; d2/

.

Remarks 4.11. .1/ J 2; 1 is a Poisson algebra and hence we can also compute the
classifying object PH2 .k; J 2; 1/. By testing which of the Jacobi algebras listed in
Proposition 4.10 are Poisson algebras, we obtain that

PH2 .k; J 2; 1/ Š .k� � k/ t k� t k� t k3

and the equivalence classes of all 3-dimensional flag Poisson algebras over J 2; 1 are
the following four families of Poisson algebras J 3;1

.0; �2; u/
, J 3;3
ı

, J 3;4u and J 3;5
.u; f; 0; d2/

of Table 2.
.2/ Similar to Proposition 4.10 we can describe all flag Jacobi algebras over any

2-dimensional Jacobi algebra listed in Example 2.3. In some cases the computations
are straightforward: for instance we can immediately see that JH2 .k; J 2; 2/ D ¿
and, if k ¤ k2, then JH2 .k; J 2

d
/ D ¿, for all d 2 S � k n k2. Indeed, if

ƒ W J 2; 2 ! k is an algebra map then,ƒ.x/ D 0 since x2 D 0 in J 2; 2. By applying
axiom (JF4) for a WD x and b WD 1, we obtain that ƒ.1/ D 0 and we have reached
a contradiction as ƒ is a unitary algebra map. Thus, we obtained that there is no
3-dimensional Jacobi algebra containing J 2; 2 or J 2

d
as Jacobi subalgebras. The
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remaining two Jacobi algebras of Example 2.3 can be treated in a similar manner and
are left to the reader.

The recursive algorithm can be continued in order to describe all 4-dimensional
flag Jacobi algebras. For instance, computations similar to those performed in
Proposition 4.10 give the following:

Example 4.12. Consider the Jacobi algebra J 311 described in Table 1. Then:

JH2 .k; J 311/ Š f�g t k t k
3
t k2 t k2 t .k�nf1g/ t k t k t k t k t .k�nf1g/

where f�g is the singleton set. The equivalence classes of all 4-dimensional flag
Jacobi algebras over J 311 are the Jacobi algebras with basis f1; x; y; zg and the
multiplication and the bracket defined below:

J 4;1 W x2 D x; y2 D 0; z2 D 0; xy D yx D 0; zy D yz D 0; zx D xz D z;

Œy; 1� D y; Œz; 1� D 2 z; Œz; x� D 2I

J 4;2 W x2 D x; y2 D 0; z2 D 0; xy D yx D 0; zy D yz D 0;

zx D xz D  y C z; Œy; 1� D y; Œz; 1� D z; Œz; x� D � y C z;

where  2 kI
J 4;3˛; u; v W x2 D x; y2 D 0; xy D yx D 0; zx D xz D ˛ � ˛ x C z;

zy D yz D �˛ y; z2 D ˛2 C ˛ uC v x C uz; Œy; 1� D y;

Œz; y� D ˛ y;where .˛; u; v/ 2 k3I

J
4;4
˛; b
W x2 D x; y2 D 0; xy D yx D 0; zx D xz D 0; zy D yz D ˛ y;

z2 D �˛2 C ˛2 x C 2 ˛ z; Œy; 1� D y; Œz; y� D by;

where .˛; b/ 2 k2I
J 4;5˛; u W x2 D x; y2 D 0; xy D yx D 0; zx D xz D 0; zy D yz D ˛ y;

z2 D ˛ .˛ � u/ � ˛.˛ � u/ x C u z; Œy; 1� D y; Œz; y� D �˛ y;

where .˛; u/ 2 k2I

J
4;6
�
W x2 D x; y2 D 0; xy D yx D 0; zx D xz D x; zy D yz D 0;

z2 D x; Œy; 1� D y; Œz; 1� D ��x C � z;

where� 2 k� � f1gI
J 4;7a W x2 D x; y2 D 0; xy D yx D 0; zx D xz D x; zy D yz D 0;

z2 D x; Œy; 1� D y; Œz; 1� D �x C ay C z; where a 2 kI

J
4;8
b
W x2 D x; y2 D 0; xy D yx D 0; zx D xz D x; zy D yz D 0;

z2 D x C by; Œy; 1� D y; Œz; 1� D � 2�1 x C 2�1 z;

where b 2 kI
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J 4;9a W x2 D x; y2 D 0; xy D yx D 0; zx D xz D x; zy D yz D 2�1 y;

z2 D �4�1 C 4�1 x C ay C z; Œy; 1� D y; Œz; y� D � 2�1y;

Œz; 1� D � 4�1 � 4�1 x C 2�1 z; where a 2 kI
J 4;10a W x2 D x; y2 D 0; xy D yx D 0; zx D xz D x; zy D yz D 2�1 y;

z2 D �4�1 C 4�1 x C z; Œy; 1� D y; Œz; y� D �2�1 y;

Œz; 1� D � 2�1 � 2�1 x C ay C z; where a 2 kI

J
4;11
�
W x2 D x; y2 D 0; xy D yx D 0; zx D xz D x; zy D yz D 2�1 y;

z2 D �4�1 C 4�1 x C z; Œy; 1� D y; Œz; y� D �2�1 y;

Œz; 1� D � 2�1 � � 2�1 �x C � z; where � 2 k� � f1g:

5. Bicrossed products for Poisson algebras. Applications

In this section we deal with a special case of the unified product for Poisson algebras,
namely the bicrossed product and its main applications. Throughout this section the
associative algebras are commutative but not necessarily unital. Let P andQ be two
given Poisson algebras. A Poisson algebraR factorizes through P andQ if P ,Q are
Poisson subalgebras of R such that R D P CQ and P \Q D f0g. In this case Q
is called a Poisson complement of P in R or a P -complement of R.

We recall from [36,37] that amatched pair of Lie algebras is a system
�
P; Q; (;

*
�
consisting of two Lie algebras P andQ and two bilinear maps(W Q�P ! Q

and *W Q � P ! P such that .Q; (/ is a right Lie P -module, .P; */ is a left
LieQ-module such that for any a, b 2 P and x, y 2 Q

x * Œa; b�P D Œx * a; b�P C Œa; x * b�P C .x ( a/ * b � .x ( b/ * a

(5.1)
fx; ygQ ( a D fx; y ( agQ C fx ( a; ygQ C x ( .y * a/ � y ( .x * a/

(5.2)

The associative algebra counterpart of the matched pair was introduced in [7,
Definition 3.6] for non-commutative algebras. A slightly more general definition can
be found in [2] where the unitary assumption on the algebras is dropped. In the case of
commutative algebraswe arrive at the following simplified definitionwhich originates
in [8]: a matched pair of commutative algebras is a system

�
P; Q; G; F/ consisting

of two commutative algebras P and Q and two bilinear maps G W Q � P ! Q and
F W Q � P ! P such that .Q; G/ is a right P -module, .P; F/ is a left Q-module
satisfying the following compatibility conditions for any a, b 2 P and x, y 2 Q:

.xy/ G a D x G .y F a/C x.y G a/; x F .ab/ D a.x F b/C .x G b/ F a
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It is worth pointing out that these axioms are exactly what remains from (A1)–(A6)
of Definition 1.1 if we ask for �.P;Q/ D

�
G; F; f WD 0; �

�
to be an algebra

extending system of the algebra P by a vector space Q, where f WD 0 is the trivial
map. The concept of a matched pair of Poisson algebras was recently introduced
in [41, Theorem 1] - we recall the definition following our notations and terminology
since it will be a special case of the axioms (P1)-(P10) appearing in Corollary 3.3.
Definition 5.1. Amatched pair of Poisson algebras is a system .P; Q; G; F; (; */
consisting of two Poisson algebras P andQ and four bilinear maps

G W Q � P ! Q; F W Q � P ! P; (W Q � P ! Q; *W Q � P ! P

such that
�
P; Q; G; F/ is a matched pair of commutative algebras,

�
P; Q; (; *

�
is a matched pair of Lie algebras satisfying the following compatibility conditions
for any a, b 2 P and x, y 2 Q:

x * .ab/ D .x * a/ b C .x ( a/ F b C a .x * b/C .x ( b/ F a (5.3)
x ( .ab/ D .x ( a/ G b C .x ( b/ G a (5.4)

x F Œa; b�P D Œx F a; b�P C .x G a/ * b � a .x * b/ � .x ( b/ F a (5.5)
x G Œa; b�P D .x G a/ ( b � .x ( b/ G a (5.6)
fx; ygQ F a D x F .y * a/ � y * .x F a/ (5.7)
fx; ygQ G a D fx G a; ygQ � y ( .x F a/C x G .y * a/C .y ( a/x (5.8)
.xy/ * a D x F .y * a/C y F .x * a/ (5.9)
.xy/ ( a D x.y ( a/C .x ( a/y C x G .y * a/C y G .x * a/ (5.10)

The axioms defining a matched pair of Poisson algebras in Definition 5.1
are derived from axioms (P1)-(P10) of Corollary 3.3 if we ask for ‡.P;Q/ D�
G; F; f WD 0; �; (; *; � WD 0; f�; �g

�
to be a Poisson extending structure of

the Poisson algebra P through Q, where the cocycles f and � are both trivial:
f .x; y/ D �.x; y/ WD 0, for all x, y 2 Q.

Let
�
P; Q; G; F; (; *

�
be a matched pair of Poisson algebras. Then P ‰

Q WD P �Q is a Poisson algebra with the multiplication and the bracket defined for
any a, b 2 P and x, y 2 Q by:

.a; x/ � .b; y/ WD
�
ab C x F b C y F a; x G b C y G aC xy

�
(5.11)

Œ.a; x/; .b; y/� WD
�
Œa; b�P C x * b � y * a; x ( b � y ( aC fx; ygQ

�
(5.12)

called the bicrossed product associated to the matched pair
�
P; Q; G; F; (; *

�
.

The bicrossed product of Poisson algebras is exactly the unified product P Ë Q

associated to a Poisson extending structure of the Poisson algebra P through Q
having both cocyles trivial f D � WD 0. The bicrossed product is the construction
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responsible for the so-called factorization problem which formulated at the level of
Poisson algebras comes down to the following: for two given Poisson algebras P
and Q describe and classify all Poisson algebras which factorize through P and Q.
The next result is [41, Theorem 1]. For the reader’s convenience we also include a
short and different proof of it based on Proposition 3.4.

Proposition 5.2. Let P andQ be two given Poisson algebras. A Poisson algebra R
factorizes troughP andQ if and only if there exists

�
P; Q; G; F; (; *

�
amatched

pair of Poisson algebras such thatR Š P ‰ Q, an isomorphism of Poisson algebras.

Proof. First we observe that any bicrossed product P ‰ Q factorizes through
P Š P � f0g and Q Š f0g �Q and, via this identification, P and Q are Poisson
subalgebras of P ‰ Q such that P ‰ Q D P CQ and P \Q D f0g. Conversely,
assume that R D .R; �R; Œ�; ��R/ is a Poisson algebra that factorizes through P
and Q. Let � W P ! R be the inclusion map and � W R ! P the canonical
k-linear retraction of �, i.e. �.p C q/ WD p. Since Q D Ker.�/ is a Poisson
subalgebra of R we obtain that the cocycles f and � W Q � Q ! P constructed
in the proof of Proposition 3.4 are both trivial: i.e. f .x; y/ WD �.x �R y/ D 0 and
�.x; y/ WD �.Œx; y�R/ D 0, for all x, y 2 Q. Thus, the actions .G; F; (; */
defined for any a 2 P and x 2 Q by:

x F a WD �.x �R a/; x G a WD x �R a � �.x �R a/

x * a WD �
�
Œx; a�R

�
; x ( a WD Œx; a�R � �

�
Œx; a�R

�
make

�
P; Q; G; F; (; *

�
a matched pair of Poisson algebras while ' W P ‰

Q! R, '.a; x/ WD aC x becomes an isomorphism of Poisson algebras.

As we have seen in the proof of Proposition 5.2, if a Poisson algebra R factorizes
throughP andQ then we can construct a matched pair of Poisson algebras as follows:

x F aC x G a D xa; x * aC x ( a D Œx; a� (5.13)

for all a 2 P and x 2 Q. Throughout, the above matched pair will be called
the canonical matched pair associated with the factorization of R through P andQ.
Proposition 5.2 allows for a computational reformulation of the factorization problem
as follows: for two given Poisson algebrasP andQ describe and classify all bicrossed
products P ‰ Q associated to all possible matched pairs

�
P; Q; G; F; (; *

�
.

The problem is far from being a trivial one.

Example 5.3. Let k0 be the trivial 1-dimensional Poisson algebra with basis fXg
and H the 3-dimensional Heisenberg Lie algebra with basis fH1;H2;H3g and the
bracket defined by ŒH1; H2� D H3. H admits a Poisson algebra structure with
the associative multiplication given by H 2

1 D H3. It can be easily seen by a
straightforward computation that the bicrossed products corresponding to all matched
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pairs of Poisson algebras
�
k0; H; G; F; (; *

�
are the 4-dimensional Poisson

algebras with basis fX; H1; H2; H3g listed below:

H1
.ˇ; ˛;�; �/ W X2 D 0; H 2

1 D H3; XH1 D H1X D ˛H3; XH2 D H2X D ˇH3;

ŒH1; H2� D H3; ŒH1; X� D �H3; ŒH2; X� D �H3;

for .ˇ; ˛; �; �/ 2 k� � k3

H2
.�;�; �/ W X2 D 0; H 2

1 D H3; ŒH1; H2� D H3;

ŒH1; X� D � X C �H2 C �H3 for .�; �; �/ 2 k3

H3
.�;�; �/ W X2 D 0; H 2

1 D H3; ŒH1; H2� D H3; ŒH2; X� D �H3;

ŒH1; X� D �H2 C � H3; for .�; �; �/ 2 k� � k2

H4
.˛;�; �;�/ W X2 D 0; H 2

1 D H3; XH1 D H1X D ˛H3; ŒH1; H2� D H3;

ŒH1; X� D �H2 C � H3; ŒH2; X� D �H3;

for .˛; �; �; �/ 2 k� � k3

H5
.�;�; �/ W X2 D 0; H 2

1 D H3; ŒH1; H2� D H3; ŒH1; X� D �H3;

ŒH2; X� D � X C �H3; for .�; �; �/ 2 k� � k2

H6
.�; ;�; �/ W X2 D 0; H 2

1 D H3; ŒH1; H2� D H3;

ŒH1; X� D � X C � 
�1 �H2 C �H3;

ŒH2; X� D  X C �H2 C �
�1 .� C 1/ �H3;

for .�; ; �; �/ 2 .k�/2 � k2

The rest of the section we deal with the converse of the factorization problem,
called the bicrossed descent (or the classification of complements) problem andwhose
statement was given in the introduction. First we need to introduce the following
concept:

Definition 5.4. Let
�
P; Q; G; F; (; *

�
be a matched pair of Poisson algebras. A

k-linear map r W Q ! P is called a deformation map of the above matched pair if
the following compatibilities hold for all p, q 2 Q:

r.p/r.q/ � r.pq/ D r
�
q G r.p/C p G r.q/

�
�q F r.p/ � p F r.q/ (5.14)

r
�
Œp; q�

�
�
�
r.p/; r.q/

�
D r

�
q ( r.p/ � p ( r.q/

�
Cp * r.q/ � q * r.p/

(5.15)

We denote byDM
�
P; Q j .G; F; (; */

�
the set of all deformation maps of the

matched pair
�
P; Q; G; F; (; *

�
.



1334 A. L. Agore and G. Militaru

Example 5.5. Consider the following matched pair between k0 andH:

H1 GX D H3; H2 GX D H3; H1 ( X D H3; H2 ( X D H3

where the undefined actions are all equal to 0. The corresponding bicrossed product
is the Poisson algebraH1

.1; 1; 1; 1/
fromExample 5.3. Any deformationmap associated

to the above matched pair is given as follows:

r.a1; a2/ W H! k0; r.a1; a2/.h1/ D a1X;

r.a1; a2/.h2/ D a2X; r.a1; a2/.h3/ D 0

for some a1, a2 2 k.

The next result shows that to any deformation map r we can associate a new
Poisson algebra called the r-deformation and, moreover, all complements of a given
Poisson algebra extension P � R can be described as r-deformations of a given
complement.

Theorem 5.6. Let P be a Poisson subalgebra of R and Q a given P -complement
of R with the associated canonical matched pair

�
P; Q; G; F; (; *

�
.

.1/ Let r W Q ! P be a deformation map of the above matched pair. Then
Qr WD Q, as a vector space, with the new Poisson algebra structure defined for any
q, t 2 Q by:

q �r t D qt C t G r.q/C q G r.t/ (5.16)
Œq; t �r D Œq; t �C q ( r.t/ � t ( r.q/ (5.17)

is a Poisson algebra called the r-deformation ofQ andQr is a P -complement of R.
.2/ Q is a P -complement of R if and only if there exists an isomorphism of

Poisson algebras Q Š Qr , for some deformation map r W Q ! P of the above
canonical matched pair.

Proof. Let P ‰ Q be the bicrossed product associated to the canonical matched
pair

�
P; Q; G; F; (; *

�
. It follows form Proposition 5.2 that R Š P ‰ Q as

Poisson algebras.
.1/ Although this claim can be proven by a very long but straightforward

computation, we will provide a different and more natural approach. Given a
deformation map r W Q ! P , we consider fr W Q ! P ‰ Q to be the k-linear
map defined for all q 2 Q by:

fr.q/ D
�
r.q/; q

�
It turns out that eQ WD Im.fr/ is a P complement of R Š P ‰ Q.



Jacobi and Poisson algebras 1335

We start by proving that eQ is a Poisson subalgebra of P ‰ Q. Indeed, for all p,
q 2 Q we have:�

r.p/; p
��
r.q/; q

�
D
�
r.p/r.q/C p F r.q/C q F r.p/;

p G r.q/C q G r.p/C pq
�

.5:16/
D
�
r.pq C p G r.q/C q G r.p//;

p G r.q/C q G r.p/C pq
�

Œ.r.p/; p/; .r.q/; q/� D
�
Œr.p/; r.q/�C p * r.q/ � q * r.p/;

p ( r.q/ � q ( r.p/C Œp; q�
�

.5:17/
D
�
r.Œp; q�C p ( r.q/ � q ( r.p//;

p ( r.q/ � q ( r.p/C Œp; q�
�

Therefore eQ is a Poisson subalgebra of P ‰ Q. Consider now .p; q/ 2 P \ eQ.
Since in particular we have .p; q/ 2 eQ then p D r.q/. As we also have
.r.q/; q/ 2 P we obtain q D 0 and thus P \ eQ D f0g. Furthermore, for any
.p; q/ 2 R D P ‰ Q we can write .p; q/ D .p � r.q/; 0/C .r.q/; q/ 2 P C eQ.
Hence, we have proved that eQ is a P -complement of P ‰ Q. We are left to prove
that Qr and eQ are isomorphic as Poisson algebras. To this end, we denote by ef r
the linear isomorphism fromQ to eQ induced by fr . As we will see, ef r is a Poisson
algebra map if we consider Q endowed with the Poisson structures given by (5.16)
and (5.17). Indeed, for all q, t 2 Q we have:

f r.q �r t /
.5:16/
D f r.qt C t G r.q/C q G r.t//

D
�
r.qt C t G r.q/C q G r.t//; qt C t G r.q/C q G r.t/

�
.5:14/
D
�
r.q/r.t/C q F r.t/C t F r.q/; qt C t G r.q/C q G r.t/

�
.5:11/
D
�
r.q/; q

��
r.t/; t

�
D f r.q/f r.t/

and

f r
�
Œq; t �r

�.5:16/
D f r

�
Œq; t �C q ( r.t/ � t ( r.q/

�
D
�
r.Œq; t �C q ( r.t/ � t ( r.q//; Œq; t �C q ( r.t/ � t ( r.q/

�
.5:15/
D
�
Œr.q/; r.t/�C q * r.t/ � t * r.q/;

Œq; t �C q ( r.t/ � t ( r.q/
�

.5:12/
D
��
r.q/; q

�
;
�
r.t/; t

��
D

h
f r.q/; f r.t/

i
Hence we can conclude thatQr is a Poisson algebra and this finishes the proof.
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.2/ Let Q be an arbitrary P -complement of R. As R D P ˚Q D P ˚Q we
can find four k-linear maps:

a W Q! P; b W Q! Q; c W Q! P; d W Q! Q

such that for all q 2 Q and t 2 Q we have:

q D a.q/˚ b.q/; t D c.t/˚ d.t/ (5.18)

It follows by an easy computation that b W Q ! Q is an isomorphism of vector
spaces. We will denote by eb W Q ! P ‰ Q the composition eb WD i ı b, where
i W Q ! R D P ‰ Q is the canonical inclusion. Thus, by (5.18) we haveeb.t/ D .�a.t/; t/ for all t 2 Q. We will prove that r WD �a is a deformation map
andQ Š Qr . Indeed,Q D Im.b/ D Im.eb/ is a Poisson subalgebra ofR D P ‰ Q

and we have:�
r.q/; q

��
r.t/; t

�.5:11/
D
�
r.q/r.t/C q F r.t/C t F r.q/;

q G r.t/C t G r.q/C qt
�
D
�
r.t 0/; t 0

���
r.q/; q

�
;
�
r.t/; t

��.5:12/
D
�
Œr.q/; r.t/�C q * r.t/ � t * r.q/;

q ( r.t/ � t ( r.q/C Œq; t �
�
D
�
r.t 00/; t 00

�
for some t 0, t 00 2 Q. Hence, we have:

r.t 0/ D r.q/r.t/C q F r.t/C t F r.q/; t 0 D q G r.t/C t G r.q/C qt

(5.19)
r.t 00/ D Œr.q/; r.t/�C q * r.t/ � t * r.q/; t 00 D q ( r.t/ � t ( r.q/C Œq; t �

(5.20)

By applying r to the second part of (5.19), respectively (5.20), we obtain that r is a
deformation map. Moreover, by a straightforward computation using (5.16), (5.17),
(5.19) and respectively (5.20) it follows that b W Qr ! Q is a Poisson algebra map
and the proof is now finished.

Examples 5.7. Let k be an algebraically closed field of characteristic zero
and let H1

1;1;1;1 be the bicrossed product described in Example 5.3. For any
.a1; a2/ 2 k

2 consider r.a1; a2/ W H! k0 the associated deformation map described
in Example 5.5. Then, the corresponding r.a1; a2/-deformation Hr.a1; a2

/ of the
Heisenberg Poisson algebra has the associative algebra structure and the Lie bracket
given as follows:

Hr.a1; a2
/ W H 2

1 D .2a1 C 1/H3; H1H2 D .a1 C a2/H3;

ŒH1; H2� D .a2 � a1 C 1/H3
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If a1 D a2 D 0 thenHr.0; 0/ coincides withH. Moreover, for any a 2 k � f2�1g the
r.a;�a/-deformationHr.a;�a/

is isomorphic to the Heisenberg Poisson algebraH, the
isomorphism of Poisson algebras being given by:

' W Hr.a;�a/
! H; '.H1/ D ˛H1;

'.H2/ D .�2aC 1/˛
�1H2; '.H3/ D H3

where ˛ is a square root of .2a C 1/. However, if we consider a1 D 1 and a2 D 0
then we obtain the Poisson algebra Hr.1; 0/

with the trivial Lie bracket and the
multiplication given by: H 2

1 D 3H3; H1H2 D H3. Therefore, H and Hr.1; 0/
are

not isomorphic as Poisson algebras as a consequence of not being isomorphic as Lie
algebras.

As the previous example shows it, different deformation maps can give rise
to isomorphic deformations. Therefore, in order to provide the classification of
complements we need to introduce the following:
Definition 5.8. Let

�
P; Q; G; F; (; *

�
be a matched pair of Poisson algebras.

Two deformation maps r , r 0 W Q ! P are called equivalent and we will denote this
by r � r 0 if there exists � W Q ! Q a linear automorphism of Q such that for any
q, t 2 Q we have:

�.qt/ � �.q/�.t/ D �.q/ G r 0
�
�.t/

�
C�.t/ G r 0

�
�.q/

�
� �

�
q G r.t/

�
��
�
t G r.q/

�
�
�
Œq; t �

�
�
�
�.q/; �.t/

�
D �.q/ ( r 0

�
�.t/

�
��.t/ ( r 0

�
�.q/

�
C �

�
t ( r.q/

�
��
�
q ( r.t/

�
The main result of this section which provides the answer to the bicrossed descent

problem now follows:
Theorem 5.9. Let P be a Poisson subalgebra of R, Q a P -complement of R
and

�
P; Q; G; F; (; *

�
the associated canonical matched pair. Then � is an

equivalence relation on the set DM
�
P; Q j .G; F; (; */

�
and the map

HA2
�
P; Q j .G; F; (; */

�
WD DM

�
P; Q j .G; F; (; */

�
= �! F.P; R/;

r 7! Qr

is a bijection, whereF.P; R/ is the set of isomorphism classes of allP -complements
of R. In particular, the factorization index of P in R is computed by the formula:

ŒR W P �f D jHA2
�
P; Q j .G; F; (; */

�
j

Proof. Two deformation maps r and r 0 are equivalent in the sense of Definition 5.8
if and only if the corresponding Poisson algebras Qr and Qr 0 are isomorphic. The
conclusion follows by Theorem 5.6.
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Inwhat follows, for anya 2 k, we denote byHa the deformation of theHeisenberg
Poisson algebra described in Example 5.7 associated to the pair .0; a/ 2 k2. More
precisely, the Poisson algebra structure onHa is as follows:

Ha W H 2
1 D H3; H1H2 D aH3; ŒH1; H2� D .aC 1/H3

Our next result provides a classification result for the k0-complements of H1
1;1;1;1

from Example 5.3. In particular, the deformations Ha provide an infinite family of
non-isomorphic three dimensional Poisson algebras - for a similar result in the setting
of Lie algebras see [6].
Proposition 5.10. Let k be an algebraically closed field of characteristic zero and
a, b 2 k � f�1; �2�1; 0g. Then Ha and Hb are isomorphic as Poisson algebras
if and only if a D b or a D �b.2b C 1/�1. In particular, the factorization index
ŒH1

1;1;1;1 W k0�
f is infinite.

Proof. Suppose ' W Ha ! Hb is a Poisson algebra isomorphism, where '.H1/ D
†3iD1˛iHi , '.H2/ D †3iD1ˇiHi , '.H3/ D †3iD1iHi , ˛i , ˇi , i 2 k. Thus
Theorem 5.9 implies r.0; a/ � r.0; b/ and we obtain:

1 D 2 D 0; ˛21 C 2 ˛1 ˛2 b D 3; ˇ21 C 2 ˇ1 ˇ2 b D 0 (5.21)
˛1 ˇ1 C .˛1 ˇ2 C ˛2 ˇ1/ b D a 3; .˛1 ˇ2 � ˛2 ˇ1/ .b C 1/ D .aC 1/ 3

(5.22)

To start with, we point out that since ' is an isomorphism we must have 3 ¤ 0. The
last part of (5.21) implies ˇ1 D 0 or ˇ1 C 2 ˇ2 b D 0. Assume first that ˇ1 D 0.
As ' is an isomorphism it follows that ˛1 ¤ 0. Then the first part of (5.22) comes
down to ˇ2 D ab�1 ˛�11 3. Using the second part of (5.21) we obtain

ˇ2 D ab
�1 ˛�11 3

.5:21/
D ab�1 ˛�11 .˛21 C 2 ˛1 ˛2 b/ D ab

�1 .˛1 C 2 ˛2 b/

Using the second part of (5.21) and the above formulae for ˇ2, the last part of (5.22)
becomes:

.aC 1/ 3 D ˛1 ab
�1 .˛1 C 2 ˛2 b/.b C 1/ D ab

�1 .˛21 C 2 ˛1 ˛2 b/.b C 1/

.5:21/
D ab�1 3 .b C 1/

As 3 ¤ 0 we obtain ab�1 .bC 1/ D aC 1 which implies a D b. Assume now that
ˇ1 ¤ 0. Therefore, by the last part of (5.21) we get ˇ1 D �2 ˇ2 b. Now using this
formulae for ˇ1, (5.22) becomes:

�ˇ2 b.˛1 C 2 ˛2 b/ D a 3; ˇ2 .˛1 C 2 ˛2 b/ D .aC 1/.b C 1/
�1 3

As 3 ¤ 0, we obtain �a D b.a C 1/.b C 1/�1 which gives a D �b.2b C 1/�1.
Therefore we proved that Ha and Hb are isomorphic Poisson algebras if and only if
a D b or a D �b.2b C 1/�1. Together with the fact algebraically closed fields are
infinite we obtain ŒH1

1;1;1;1 W k0�
f is infinite. This finishes the proof.
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