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Abstract. From N -tensor powers of the Toeplitz algebra, we construct a multi-pullback
C*-algebra that is a noncommutative deformation of the complex projective space PN.C/.
Using Birkhoff’s Representation Theorem, we prove that the lattice of kernels of the canoni-
cal projections on components of the multi-pullback C*-algebra is free. This shows that our
deformation preserves the freeness of the lattice of subsets generated by the affine covering of
the complex projective space.
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Introduction

0.1. Motivation. The procedure of decomposing complicated spaces into the union
of simple subsets and applying Mayer–Vietoris type arguments to understand thus
decomposed spaces from the gluing data of simple pieces is commonly used in math-
ematics. Manifolds without boundary fit particularly well this piecewise approach
because they are defined as spaces that are locally diffeomorphic to Rn. A manifold
is assembled from standard pieces by the gluing data. The standard pieces are con-
tractible – they are homeomorphic to a ball. They encode only the dimension of a
manifold. All the rest, topological properties of the manifold included, are described
by the gluing data.

Recall that to study topological spaces, one typically uses open coverings. They
are, however, hard to describe in purely C*-algebraic terms. On the other hand, the
Gelfand transform turns closed coverings of a compact Hausdorff space X into an
appropriate set of surjections from the C*-algebra C.X/ of continuous functions on
X onto other C*-algebras. Hence it is easier and more natural to consider closed
coverings if one wants a noncommutative generalisation in terms of C*-algebras.
More specifically, one can define a covering of a quantum space to be a family of
C*-algebra surjections whose kernels intersect to zero (cover the whole space). We
refer to [14] and references therein for a more in-depth discussion of this issue.
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The aim of this article is to explore the method of constructing noncommutative
deformations of manifolds by deforming the standard pieces. This method is an
alternative to the global deformation methods. Thus it is expected to yield new
examples or provide a new perspective on already known cases. Our deformation of
the complex projective spaces is related to but different from a much studied quantum-
group example. (See the last section for details.) By construction, it is particularly
suited for developing and testing a definition of the fiber-product of spectral triples
that should describe a gluing of smooth (noncommutative) geometries along their
boundaries.

Finally, let us note that complex projective spaces are topologically interesting
manifolds equipped with non-trivial tautological line bundles. It seems very plau-
sible that our Toeplitz projective spaces enjoy the same type of topological non-
triviality and lead to interesting K-theoretic computations. They should also lead to
non-crossed product U.1/-C*-algebras (non-trivial U.1/ quantum principal bundles).
Using index theory, this has already been achieved for N D 1, i.e., for the mirror
quantum sphere [16].

0.2. Main result. Our main result concerns a new noncommutative deformation of
the complex projective space and the lattice generated by its affine covering. The
guiding principle of our deformation is to preserve the gluing data of this manifold
while deforming the standard pieces. We refine the affine covering of a complex
projective space to the Cartesian powers of unit disks, and replace the algebra of
continuous functions on the disk by the Toeplitz algebra commonly regarded as the
algebra of a quantum disk [19]. The main point here is that we preserve the free-
ness property enjoyed by the lattice generated by the affine covering of the complex
projective space:

Theorem 3.5. LetC.PN .T // � QN
iD0 T ˝N be the C*-algebra of the Toeplitz quan-

tum projective space, and let �i W C.PN .T // ! T ˝N , i 2 f0; : : : ; N g, be the family
of restrictions of the canonical projections onto the components. Then the family of
ideals fker �igi2f0;:::;N g generates a free distributive lattice.

0.3. Notation and conventions. In this article, the tensor product means the
C*-completed tensor product. Accordingly, we use the Heynemann–Sweedler nota-
tion (with the summation sign suppressed) for the completed tensor product. Since
all C*-algebras that we tensor are nuclear, this completion is unique. Therefore, it is
also maximal, which guarantees the exactness of the completed tensor product. We
use this property in our arguments. Since the subsets f0; : : : ; N g � N,N 2 N, occur
in abundance throughout this paper, for the sake brevity we use the notation

N ´ f0; : : : ; N g:
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1. Preliminaries

1.1. Free lattices and Birkhoff’s Representation Theorem. We first recall defini-
tions and simple facts about ordered sets and lattices to fix terminology and notation.
Our main references on the subject are [7], [8], [29].

A setP together with a binary relation 6 is called a partially ordered set, or a poset
in short, if the relation 6 is (i) reflexive, i.e., p 6 p for any p 2 P , (ii) transitive, i.e.,
p 6 q and q 6 r implies p 6 r for any p; q; r 2 P , and (iii) anti-symmetric, i.e.,
p 6 q and q 6 p implies p D q for any p; q 2 P . If only the conditions (i)-(ii) are
satisfied we call 6 a preorder. For every preordered set .P;6/ there is an opposite
preordered set .P;6/op given by P D P op and p 6op q if and only if q 6 p for any
p; q 2 P .

A poset .P;6/ is called a semi-lattice if for every p; q 2 P there exists an
element p_ q such that (i) p 6 p_ q, (ii) q 6 p_ q, and (iii) if r 2 P is an element
which satisfies p 6 r and q 6 r then p _ q 6 r . The binary operation _ is called
the join. A poset is called a lattice if both .P;6/ and .P;6/op are semi-lattices.
The join operation in P op is called the meet, and traditionally denoted by ^. One
can equivalently define a lattice P as a set with two binary associative commutative
and idempotent operations _ and ^. These operations satisfy two absorption laws:
p D p_ .p^q/ and p D p^ .p_q/ for any p; q 2 P . A lattice .P;_;^/ is called
distributive if one has p ^ .q _ r/ D .p ^ q/ _ .p ^ r/ for any p; q; r 2 P . Note
that one can prove that the distributivity of meet over join we have here is equivalent
to the distributivity of join over meet.

Let .P;6/ be a preordered set, and let "p ´ fq 2 P j p 6 qg for any p 2 P .
As a natural extension of notation, we define "U ´ S

p2U "p for any U � P . The
subsets U � P that satisfy U D "U are called upper sets or dual order ideals.

Next, let ƒ be any lattice. An element c 2 ƒ is called meet irreducible if

(i) c D a ^ b H) .c D a or c D b/; (ii) 9 � 2 ƒ W � 66 c:

The set of meet irreducible elements of the lattice ƒ is denoted M.ƒ/. The join
irreducibles J.ƒ/ are defined dually. Birkhoff’s Representation Theorem [6] states
that, if ƒ is a finite distributive lattice, then the map

ƒ 3 a 7�! fx 2 M.ƒ/ j x > ag D M.ƒ/ \ "a 2 Up.M.ƒ//

assigning to a the set of meet irreducible elements > a is a lattice isomorphism
between ƒ and the lattice Up.M.ƒ// of upper sets of meet-irreducible elements of
ƒ with \ and [ as its join and meet, respectively. We refer to this isomorphism as
the Birkhoff transform. Let us observe that it is analogous to the Gelfand transform:
every finite distributive lattice is the lattice of upper sets of a certain poset just as
every unital commutative C*-algebra is the algebra of continuous functions on a
certain compact Hausdorff space.

As an immediate consequence of Birkhoff’s Representation Theorem, one sees
that two finite distributive lattices are isomorphic if and only if their posets of meet
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irreducibles are isomorphic. In particular, consider a free distributive lattice generated
by �0; : : : ; �N , i.e., a lattice enjoying the universal property that it admits a lattice
homomorphism into any distributive lattice generated by N C 1 elements. It is
isomorphic to the lattice of non-empty upper sets of the set of non-empty subsets of
N (e.g., see [15], Sect. 2.2). The elements of the form

W
i2I �i , where ; ¤ I ¨ N ,

are all meet irreducible and partially ordered byW
i2I

�i 6
W
j2J

�j if and only if I � J; 8 I; J ¤ ;; I; J ¨ N: (1)

Hence they are all distinct. Furthermore, all meet irreducible elements must be of the
form

W
i2I �i , where ; ¤ I ¨ N .

Note that the latter property holds for any finite distributive lattice. Indeed, sup-
pose the contrary, i.e., that there exists a meet-irreducible element whose any pre-
sentation

W
a2˛

V
i2a �i is such that there is a set a0 2 ˛ that contains at least two

elements. Now, the finiteness allows us to apply induction, and the distributivity com-
bined with irreducibility allows us to make the induction step yielding the desired
contradiction.

Thus we conclude the following lemma:

Lemma 1.1. Afinitely generated distributive lattice is free if the joins of its generators
fWi2I �ig;¤I¨N are all meet irreducible and satisfy (1).

1.2. Closed covering of PN.C/ as an example of a free lattice. In [15], a closed
refinement of the affine covering of PN.C/ was constructed as an example of a finite
closed covering of a compact Hausdorff space. Let us recall this construction. The
elements of this covering are given by

Vi ´ fŒx0 W : : : W xN � j jxi j D maxfjx0j; : : : ; jxN jgg; i 2 N:
It is easy to see that the family fVigi2N of closed subsets of PN.C/ is a covering of

PN.C/, i.e.,
S
i Vi D PN.C/. This covering is interesting because of its following

property:

Proposition 1.2. The distributive lattice ƒ generated by the subsets Vi � PN.C/,
i 2 N , is free.

Proof. We prove the freeness of ƒ by showing that ƒ is isomorphic as a lattice with
the lattice ‡ of non-empty upper sets of non-empty subsets of N , which is a well-
known model of a free distributive lattice (see, e.g., [7]). For brevity, if ; ¤ a � N ,
we write Va ´ T

i2a Vi . Note that any V 2 ƒ can be written as V D S
a2A Va

for some set A of subsets of N . We want to show that the following two maps are
mutually inverse lattice isomorphisms:

R W ‡ 3 X 7�! S
a2X

Va 2 ƒ; L W ƒ 3 V 7�! fa 2 N j Va � V g 2 ‡:
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For a proof that R is a lattice map see, e.g., [15], Sect. 2.2. The equality R B L D id
is immediate.

The other equality L BR D id can be proven as follows. Take any

za ´ Œx0 W : : : W xN � 2 PN.C/; where jxi j D maxfjx0j; : : : ; jxN jg () i 2 a.

Then one can easily see that za 2 Vb () b � a. Hence za 2 V () Va � V ,
for all V 2 ƒ. Therefore, a 2 L.R.X// if and only if za 2 R.X/, for all X 2 ‡ .
Finally, using again the property za 2 Vb () b � a and the fact thatX is an upper
set, we see that za 2 R.X/ if and only if a 2 X .

Now we use the covering fVigi2N to present PN.C/ as a multi-pushout, and,

consequently, its C*-algebra C.PN.C// as a multi-pullback. To this end, we first
define a family of homeomorphisms

 i W Vi �! D�N ´ D � � � � �D„ ƒ‚ …
N times

;

Œx0 W : : : W xN � 7�!
�
x0

xi
; : : : ;

xi�1
xi

;
xiC1
xi

; : : : ;
xN

xi

�
;

for all i 2 N , from Vi onto the Cartesian product of N -copies of the unit disk. The
inverses of the maps  i are given explicitly by

 �1
i W D�N 3 .d1; : : : ; dN / 7�! Œd1 W : : : W di W 1 W diC1 W : : : W dN � 2 PN.C/:

Pick indices 0 6 i < j 6 N and consider the following commutative diagram:

PN.C/

D�N

����������
Vi

 i��
��

���������
Vj

 j ��
� �

���������

D�N

��� � � � � � � �

D�j�1 � S1 �D�N�j��

��

Vi \ Vj
� �

���������
��

		������� ij��  ji �� D�i � S1 �D�N�i�1.
� �

��
(2)

Here, for

k D
´
n if m < n;

nC 1 if m > n;

we have

 mn ´  mjVm\Vn
W Vm \ Vn �! D�k�1 � S1 �D�N�k :

In other words, counting from 1, the unit circle S1 appears on the kth position among
disks. It follows immediately from the definition of  i that the maps

‡ij ´  j i B  �1
ij W D�j�1 � S1 �D�N�j �! D�i � S1 �D�N�i�1; i < j;
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can be explicitly written as

‡ij .d1; : : : ; dj�1; s; djC1; : : : ; dN /
D .s�1d1; : : : ; s�1di ; s�1; s�1diC1; : : : ; s�1dj�1; s�1djC1; : : : ; s�1dN /:

(3)

One can see from the diagram (2) that PN.C/ is homeomorphic to the disjoint unionFN
iD0D�N

i of .N C 1/-copies of D�N divided by the identifications prescribed by
the following diagrams indexed by i; j 2 N , i < j ,

D�N
i

D�N
j

D�j�1 � S1 �D�N�j
� �

��

‡ij �� D�i � S1 �D�N�i�1:
� �

��
(4)

Consequently, one sees that the C*-algebra C.PN.C// of continuous functions
on PN.C/ is isomorphic with the subalgebra of

QN
iD0 C.D/

˝N
i defined by the com-

patibility conditions given by the diagrams dual to the diagrams (4):

C.D/˝Ni







C.D/˝Nj






C.D/˝j�1 ˝ C.S1/˝ C.D/�N�j C.D/˝i ˝ C.S1/˝ C.D/˝N�i�1.

‡�
ij��

(5)

2. The multi-pullback C*-algebra of PN .T /

As a starting point for our noncommutative deformation of a complex projective
space, we take the diagrams (5) from Section 1.2 and replace the algebra C.D/ of
continuous functions on the unit disk by the Toeplitz algebra T considered as the
algebra of continuous functions on a quantum disk [19]. Recall that the Toeplitz
algebra is the universal C*-algebra generated by z and z� satisfying z�z D 1. There
is a well-known short exact sequence of C*-algebras

0 �! K �! T
��! C.S1/ �! 0:

Here � is the so-called symbol map defined by mapping z to the unitary generator u
of the algebra C.S1/ of continuous functions on a circle. Note that the kernel of the
symbol map is the algebra K of compact operators.

Viewing S1 as the unitary group U.1/, we obtain a compact quantum group
structure on the algebra C.S1/. Here the antipode is determined by S.u/ D u�1,
the counit by ".u/ D 1, and finally the comultiplication by �.u/ D u ˝ u. The
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Hopf-algebraic structure exists on the C*-level due to the commutativity of C.S1/.
The coaction of C.S1/ on T comes from the gauge action of U.1/ on T that rescales
z by the elements of U.1/, i.e., z 7! �z. Explicitly, we have:

� W T ! T ˝C.S1/ Š C.S1; T /; �.z/ ´ z˝u; �.z/.�/ D �z; �.t/ μ t .0/˝t .1/:
Next, we employ the multiplication map m of C.S1/ and the flip map

C.S1/˝ T ˝n 3 f ˝ t1 ˝ � � � ˝ tn
�n7�! t1 ˝ � � � ˝ tn ˝ f 2 T ˝n ˝ C.S1/

to extend � to the diagonal coaction �n W T ˝n �! T ˝n˝C.S1/ defined inductively
by

�1 D �; �nC1 D .idT ˝nC1 ˝m/ B .idT ˝ �n ˝ idC.S1// B .�˝ �n/:

Furthermore, for all 0 6 i < j 6 N , we define an isomorphism ‰ij by

	j B‰ B 	�1
iC1 W T ˝i ˝ C.S1/˝ T ˝N�i�1 ‰ij�! T ˝j�1 ˝ C.S1/˝ T ˝N�j :

Here 	j is given by

idT ˝j �1 ˝ ��1
N�j W T ˝N�1 ˝ C.S1/

�j�! T ˝j�1 ˝ C.S1/˝ T ˝N�j

and ‰ by

.idT ˝N �1 ˝ .S Bm// B .�N�1 ˝ idC.S1// W T ˝N�1 ˝C.S1/
‰�! T ˝N�1 ˝C.S1/:

Before proceeding further, let us prove the unipotent property of ‰, which we shall
need later on.

Lemma 2.1. ‰ B‰ D idT ˝N �1˝C.S1/ .

Proof. For any
N
16i<N ti ˝ h 2 T ˝N ˝ C.S1/, we compute:

.‰ B‰/� N
16i<N

ti ˝ h
� D ‰

� N
16i<N

t
.0/
i ˝ S.

Q
16i<Nt

.1/
i h/

�
D N
16i<N

t
.0/
i ˝ S

�
.

Q
16i<N

t
.1/
i /S.

Q
16j<N

t
.2/
j h/

�
D N
16i<N

t
.0/
i ˝ S

�
.

Q
16i<N

.t
.1/
i /S.t

.2/
i //S.h/

�
D N
16i<N

ti ˝ h:

Finally, to justify our construction of a quantum complex projective space, observe
that the map ‰ij can be easily seen as an analogue of the pullback of the map ‡ij
of (3).
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Definition 2.2. We define the C*-algebra C.PN .T // as the limit of the diagram:

0 : : : i : : : j : : : N

T ˝N : : : T ˝N

�j





: : : T ˝N

�iC1





: : : T ˝N

: : : : : : T ˝j �1 ˝ C.S1/˝ T ˝N �j T ˝i ˝ C.S1/˝ T ˝N �i�1
‰ij�� : : : : : : .

(6)

Here we take all i; j 2 N , i < j , and define �k ´ idT ˝k�1 ˝ � ˝ idT ˝N �k ,
k 2 f1; : : : ; N g. We call PN .T / a Toeplitz quantum complex projective space.

Note that by definitionC.PN .T // � QN
iD0 T ˝N . We will denote the restrictions

of the canonical projections on the components by

�i W C.PN .T // �! T ˝N ; 8 i 2 N: (7)

Since these maps are C*-homomorphisms, the lattice generated by their kernels is
automatically distributive. On the other hand, it follows from Lemma 3.2 that any
element in the Toeplitz cube T ˝n can be complemented into a sequence that is an
element of C.PN .T //. This means that the maps (7) are surjective. Hence they form
a covering of C.PN .T //.

The construction of PN .T / is a generalization of the construction of the mirror
quantum sphere [16], p. 734, i.e., P1.T / is the mirror quantum sphere:

C.P1.T // ´ f.t0; t1/ 2 T � T j �.t0/ D S.�.t1//g:

Removing S from this definition yields the C*-algebra of the generic Podleś sphere
[23]. The latter not only is not isomorphic with C.P1.T // but also is not Morita
equivalent to C.P1.T // [16], Prop. 2.3. We conjecture that, by similar changes in
maps ‰ij , we can create non-equivalent quantum spaces also for N > 1.

3. The defining covering lattice of PN .T / is free

The goal of this section is to demonstrate that the distributive lattice of ideals generated
by the kernels ker �i is free. To this end, we will need to know whether the tensor
products T ˝N of Toeplitz algebras glue together to form PN .T / in such a way that
a partial gluing can always be extended to the full space. The following result gives
sufficient conditions:
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Proposition 3.1 ([9], Prop. 9). Let fBigi2N and fBij gi;j2N; i¤j be two families of

C*-algebras such thatBij D Bj i , and let f� ij W Bi ! Bij gij be a family of surjective
C*-algebra maps. Also, let �i W B ! Bi , i 2 N , be the restrictions to

B ´ f.bi /i 2 Q
i2N Bi j � ij .bi / D �

j
i .bj /; 8 i; j 2 N; i ¤ j g

of the canonical projections. Assume that, for all triples of distinct indices i; j; k 2 N ,

(1) � ij .ker � i
k
/ D �

j
i .ker �j

k
/,

(2) the isomorphisms � ij
k

W Bi=.ker � ij C ker � i
k
/ �! Bij =�

i
j .ker � i

k
/ defined as

bi C ker � ij C ker � ik 7�! � ij .bi /C � ij .ker � ik/

satisfy

.� ikj /
�1 B �kij D .�

ij

k
/�1 B �j i

k
B .�jki /�1 B �kji :

Then,

8 .bi /i2I 2 Q
i2I

Bi ; I � N; such that � ij .bi / D �
j
i .bj /; 8 i; j 2 I; i ¤ j;

9 .ci /i2N 2 Q
i2N

Bi W � ij .ci / D �
j
i .cj /; 8 i; j 2 N; i ¤ j; and ci D bi ;8 i 2 I:

In the case of quantum projective spaces PN .T /, we can translate algebras and
maps from Proposition 3.1 as follows:

Bi D T ˝N ; Bij D T ˝j�1 ˝ C.S1/˝ T ˝N�j ; where i < j;

� ij D
´
�j when i < j;

‰j i B �jC1 when i > j:

It follows that

ker � ij D
´

ker �j D T ˝j�1 ˝ K ˝ T ˝N�j when i < j;

ker �jC1 D T ˝j ˝ K ˝ T ˝N�j�1 when i > j:

Since �.K/ � K ˝ C.S1/ and ‰ is an isomorphism by Lemma 2.1, it follows that

‰.T ˝j�1 ˝ K ˝ T ˝N�j�1 ˝ C.S1// D T ˝j�1 ˝ K ˝ T ˝N�j�1 ˝ C.S1/:

Now we can formulate and prove the following:

Lemma 3.2. If .bi /i2I 2 Q
i2I�N T ˝N satisfies � ij .bi / D �

j
i .bj / for all i; j 2 I ,

i ¤ j , then there exists an element b 2 C.PN .T // such that �i .b/ D bi for all
i 2 I .
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Proof. It is enough to check that the assumptions of Proposition 3.1 are satisfied.
For the sake of brevity, we will omit the tensor symbols in the long formulas in what
follows. We will also write � instead of C.S1/. Here we prove the first condition
of Proposition 3.1:

(1) �ji .ker �j
k
/ D .	j B‰ B 	�1

iC1 B �iC1/.ker �kC1/
D .	j B‰ B 	�1

iC1/.T i�T k�i�1KT N�k�1/
D 	j .T

k�1KT N�k�1�/
D T k�1KT j�k�1�T N�j

D �j .ker �k/

D � ij .ker � i
k
/; when i < k < j .

(2) �ji .ker �j
k
/ D .	j B‰ B 	�1

iC1 B �iC1/.ker �k/

D .	j B‰ B 	�1
iC1/.T i�T k�i�2KT N�k/

D 	j .T
k�2KT N�k�/

D T j�1�T k�j�1KT N�k

D �j .ker �k/

D � ij .ker � i
k
/; when i < j < k.

(3) �ji .ker �j
k
/ D .	j B‰ B 	�1

iC1 B �iC1/.ker �kC1/
D .	j B‰ B 	�1

iC1/.T kKT i�k�1�T N�i�1/
D 	j .T

kKT N�k�2�/
D T kKT j�k�2�T N�j

D �j .ker �kC1/
D � ij .ker � i

k
/; when k < i < j .

For the second condition, note first that for any multi-valued map f W Bj ! Bi
we can define the map

Œf �
ij

k
W Bj =.ker �ji C ker �j

k
/ �! Bi=.ker � ij C ker � ik/;

bj C ker �ji C ker �j
k

7�! f .bj /C ker � ij C ker � ik;
(8)

whenever the assignment (8) is unique. In particular, since the condition (1) of Propo-
sition 3.1 is fulfilled, the map 
ij

k
´ .�

ij

k
/�1 B �j i

k
exists, and we can write it as

Œ.� ij /
�1 B �ji �ijk . Explicitly, in our case, this map reads:



ij

k
D

´
Œ��1
j B 	j B‰ B 	�1

iC1 B �iC1�ijk when i < j;

Œ��1
jC1 B 	jC1 B‰ B 	�1

i B �i �ijk when i > j:
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We need to prove that



ij

k
D 
ikj B 
kji ; for all distinct indices i; j; k:

Since .
ij
k
/�1 D 


j i

k
and, for any invertible elements g, h, k, the equality k D gh can

be written as h D g�1k, etc., one can readily see that it is enough to limit ourselves
to the case when i < k < j . Next, let us denote the class of .t1 ˝ � � � ˝ tN / DN
16n6N tn 2 T ˝N in T ˝N=.ker �ji C ker �j

k
/ by Œ

N
16n6N tn�

j

ik
. Then, using the

Heynemann–Sweedler notation for completed tensor products, we compute



ij

k

�
Œ

N
16n6N

tn�
j

ik

� D Œ��1
j B 	j B‰ B 	�1

iC1 B �iC1�ijk
�
Œ

N
16n6N

tn�
j

ik

�
D �

.��1
j B 	j B‰/� N

16n6N
n¤iC1

tn ˝ �.tiC1/
��i
jk

D �
.��1
j B 	j /

� N
16n6N
n¤iC1

t
.0/
n ˝ S

�
�.tiC1/

Q
16m6N
m¤iC1

t
.1/
m

���i
jk

D � N
16n6j
n¤iC1

t
.0/
n ˝ .��1 B S/��.tiC1/ Q

16m6N
m¤iC1

t
.1/
m

� ˝ N
jC16s6N

t
.0/
s

�i
jk
:

Applying the above formula twice (with the non-dummy indices changed), we obtain

.
ikj B 
kji /
�
Œ

N
16n6N

tn�
j

ik

�
D 
ikj

�� N
16n6j
n¤kC1

t
.0/
n ˝ .��1 B S/��.tkC1/

Q
16m6N
m¤kC1

t
.1/
m

� ˝ N
jC16s6N

t
.0/
s

�k
ji

�
D

h N
16n6k
n¤iC1

t
.0/
n
.0/ ˝ .��1 B S/

�
�.t

.0/
iC1/

�
.��1 B S/��.tkC1/

Q
16m6N
m¤kC1

t
.1/
m

��.1/ Q
16w6N
w¤iC1
w¤kC1

t
.0/
w
.1/

	

˝ N
kC26r6j

t
.0/
n
.0/ ˝ �

.��1 B S/��.tkC1/
Q

16m6N
m¤kC1

t
.1/
m

��
.0/ ˝ N

jC16s6N
t
.0/
s
.0/

ii
jk
:

Now, as ��1 W C.S1/ ! T =K is colinear, S is an anti-coalgebra map, and � is an
algebra homomorphism, we can move the Heynemann–Sweedler indices inside the
bold parentheses:h N

16n6k
n¤iC1

t
.0/.0/
n ˝ .��1 B S/

�
�.t

.0/
iC1/S

�
�.tkC1/.1/

Q
16m6N
m¤kC1

t
.1/.1/
m

� Q
16w6N
w¤iC1
w¤kC1

t
.0/.1/
w

	

˝ N
kC26r6j

t
.0/.0/
n ˝ .��1 B S/��.tkC1/.2/

Q
16m6N
m¤kC1

t
.1/.2/
m

� ˝ N
jC16s6N

t
.0/.0/
s

ii
jk
:

Here we can renumber the Heynemann–Sweedler indices using the coassociativity
of �. We can also use the anti-multiplicativity of S to move it inside the bold
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parentheses in the first line of the above calculation. Finally, we use the commutativity
of C.S1/ in order to reshuffle the argument of ��1 B S in the first line to obtainh N

16n6k
n¤iC1

t
.0/
n ˝ .��1 B S/

�
�.t

.0/
iC1/S.t

.1/
iC1/S.�.tkC1/.1//

Q
16w6N
w¤iC1
w¤kC1

�
t
.1/
w S.t

.2/
w /

�	

˝ N
kC26r6j

t
.0/
n ˝ .��1 B S/��.tkC1/.2/t .2/iC1

Q
16m6N
m¤kC1
m¤iC1

t
.3/
m

� ˝ N
jC16s6N

t
.0/
s

ii
jk
:

We can simplify the expression in the bold parentheses in the first line using
h.1/S.h.2// D ".h/ and ".h.1//h.2/ D h. This results inh N

16n6k
n¤iC1

t
.0/
n ˝ .��1 B S/��.t .0/iC1/S.t .1/iC1/S.�.tkC1/.1//

�
˝ N
kC26r6j

t
.0/
n ˝ .��1 B S/��.tkC1/.2/t .2/iC1

Q
16m6N
m¤kC1
m¤iC1

t
.1/
m

� ˝ N
jC16s6N

t
.0/
s

ii
jk
:

By the colinearity of � , we can substitute in the above expression

�.t
.0/
iC1/˝ t

.1/
iC1 7! �.tiC1/.1/ ˝ �.tiC1/.2/;

�.tkC1/.1/ ˝ �.tkC1/.2/ 7! �.t
.0/

kC1/˝ t
.1/

kC1;

to deriveh N
16n6k
n¤iC1

t
.0/
n ˝ .��1 B S/��.tiC1/.1/S.�.tiC1/.2//S.�.t .0/kC1//

�
˝ N
kC26r6j

t
.0/
n ˝ .��1 B S/�t .1/

kC1�.tiC1/
.3/

Q
16m6N
m¤kC1
m¤iC1

t
.1/
m

� ˝ N
jC16s6N

t
.0/
s

ii
jk
:

Applying again the antipode and counit properties yields the desired:h N
16n6k
n¤iC1

t
.0/
n ˝ .��1 B S/�S.�.t .0/

kC1//
�

˝ N
kC26r6j

t
.0/
n ˝ .��1 B S/�t .1/

kC1�.tiC1/
Q

16m6N
m¤kC1
m¤iC1

t
.1/
m

� ˝ N
jC16s6N

t
.0/
s

ii
jk

D
h N

16n6k
n¤iC1

t
.0/
n ˝ t

.0/

kC1

˝ N
kC26r6j

t
.0/
n ˝ .��1 B S/�t .1/

kC1�.tiC1/
Q

16m6N
m¤kC1
m¤iC1

t
.1/
m

� ˝ N
jC16s6N

t
.0/
s

ii
jk
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D
h N

16n6j
n¤iC1

t
.0/
n ˝ .��1 B S/��.tiC1/ Q

16m6N
m¤iC1

t
.1/
m

� ˝ N
jC16s6N

t
.0/
s

ii
jk

D 

ij

k

�
Œ

N
16n6N

tn�
j

ik

�
:

Our next step is to prove that the assumptions of Lemma 1.1 hold, so that we can
take advantage of Birkhoff’s Representation Theorem to conclude the freeness of the
lattice generated by the ideals ker �i .

Lemma 3.3. For all non-empty subsets I; J � NT
i2I

ker �i � T
j2J

ker �j if and only if I � J:

Proof. The “if”-implication is obvious. For the “only if”-implication, take 0 ¤ x 2
K˝N and, for any non-empty I � N , define

xI ´ .xi /i2N 2 T
i2I

ker �i ; where xi ´
´
x if i … I;
0 if i 2 I:

Let I; J � N be non-empty, and assume that I n J is non-empty. Then it follows
that

xJ 2 .T
j2J

ker �j / n .T
i2I

ker �i / ¤ ;:

This means that
T
j2J ker �j 6� T

i2I ker �i , as desired. Therefore
T
i2I ker �i are

all distinct.

Lemma 3.4. The ideals
T
i2I ker �i are all meet (sum) irreducible for arbitrary

; ¤ I ¨ N .

Proof. We proceed by contradiction. Suppose that
T
i2I ker �i is not meet irreducible

for some ; ¤ I ¨ N . By Lemma 3.3,
T
i2I ker �i ¤ f0g because I ¤ N . Hence

there exist ideals

a� D P
J2J�

T
j2J

ker �j ; J� � 2N ; � 2 f1; 2g;

such that T
i2I

ker �i D a1 C a2 and a1; a2 ¤ T
i2I

ker �i :

In particular, a� � T
i2I ker �i , � 2 f1; 2g. On the other hand, if I 2 J�, then

a� � T
i2I ker �i . Hence a� D T

i2I ker �i , contrary to our assumption. It follows
that, if

T
i2I ker �i is not meet irreducible, thenT

i2I
ker �i D P

J2J

T
j2J

ker �j ; for some J � 2N n fI g: (9)
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Suppose next that I nJ0 is non-empty for some J0 2 J, and let k 2 I nJ0. Then

f0g D �k.
T
i2I

ker �i / D �k.
P
J2J

T
j2J

ker �j / � �k.
T
j2J0

ker �j /:

However, from Lemma 3.3 we see that .
T
j2J0

ker �j /n ker �k is non-empty. Hence
�k.

T
j2J0

ker �j / is not f0g, and we have a contradiction. It follows that for all
J0 2 J the set I n J0 is empty, i.e., 8 J0 2 J W I ¨ J0.

Finally, let m 2 N n I , and let

T Im ´ t1˝� � �˝ tN ; where 0 ¤ tn 2
´

K if m < n 2 I or m > n � 1 2 I;
T n K if m < n … I or m > n � 1 … I:

Note that �m
k
.T Im/ D 0 if and only if k 2 I . Hence, by Lemma 3.2, there exists

pm 2 ��1
m .T Im/ \ T

i2I ker �i . Next, we define

�mI ´ f1 ˝ � � � ˝ fN ; where fn ´
´

idT if m < n 2 I or m > n � 1 2 I;
� if m < n … I or m > n � 1 … I;

so that �mI .�m.pm// ¤ 0. On the other hand, by our assumption (9), and the property
that J0 © I for all J0 2 J, we have

0 ¤ pm 2 T
i2I

ker �i � P
J©I

T
j2J ker �j : (10)

Furthermore, for any x 2 C.PN .T //
�mI .�m.x// D 0 if �mk .�m.x// D 0 for some k … I: (11)

Now, for any J © I , we choose kJ 2 J n I , so that

�mkJ
.�m.

T
j2J©I

ker �j // � �
kJ
m .�kJ

.ker �kJ
// D f0g:

Combining this with (11), we obtain �mI .�m.
T
j2J©I ker �j // D f0g for all J © I .

Consequently, �mI .�m.
P
J©I

T
j2J ker �j // D f0g, which contradicts (10) and ends

the proof.

Summarizing, Lemma 3.3 and Lemma 3.4 combined with Lemma 1.1 yield the
main result of this paper:

Theorem 3.5. LetC.PN .T // � QN
iD0 T ˝N be the C*-algebra of the Toeplitz quan-

tum projective space, defined as the limit of diagram (6), and let

�i W C.PN .T // �! T ˝N ; i 2 N;
be the family of restrictions of the canonical projections onto the components. Then
the family of ideals fker �igi2N generates a free distributive lattice.
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4. Other quantum projective spaces

Let us first compare our construction of quantum complex projective spaces with
the construction coming from quantum groups. Then we complete this comparison
by describing other noncommutative versions of complex projective spaces that we
found in the literature.

4.1. Noncommutative projective spaces as homogeneous spaces over quantum
groups. Complex projective spaces are fundamental examples of compact manifolds
without boundary. They can be viewed as the quotient spaces of odd-dimensional
spheres divided by an action of the group U.1/ of unitary complex numbers. This
presentation allows for a noncommutative deformation coming from the world of
compact quantum groups via Soibelman–Vaksman spheres. This approach has been
widely explored, and recently entered the very heart of noncommutative geometry
via the study of Dirac operators on the thus obtained quantum projective spaces [11].

Recall that the C*-algebra C.CPNq / of functions on a quantum projective space,
as defined by Soibelman andVaksman [33], is the invariant subalgebra for an action of
U.1/ on the C*-algebra of the odd-dimensional quantum sphereC.S2NC1

q / (cf. [22]).
By analyzing the space of characters, we want to show that this C*-algebra is not
isomorphic to the C*-algebra C.PN .T // of the Toeplitz quantum projective space
proposed in this paper, unless N D 0. To this end, we first observe that one can
easily see from Definition 2.2 that the space of characters on C.PN .T // contains the
N -torus. On the other hand, since C.CPNq / is a graph C*-algebra [17], its space
of characters is at most a circle. Hence these C*-algebras can coincide only for
N D 0; 1. For N D 0, they both degenerate to C, and for N D 1, they are known
to be the standard Podleś and mirror quantum spheres, respectively. The latter are
non-isomorphic, so that the claim follows.

Better still, one can easily show that the C*-algebras of the quantum-group pro-
jective spaces admit only one character. Indeed, these C*-algebras are obtained by
iterated extensions by the ideal of compact operators, i.e., for anyN , there is the short
exact sequence of C*-algebras [17], eq. 4.11:

0 �! K �! C.CPNq / �! C.CPN�1
q / �! 0:

On the other hand, any character on a C*-algebra containing the ideal K of compact
operators must evaluate to 0 on K , as otherwise it would define a proper ideal in K ,
which is impossible. Therefore, not only any character on C.CPN�1

q / naturally
extends to a character on C.CPNq /, but also any character on C.CPNq / naturally
descends to a character on C.CPN�1

q /. Hence the space of characters on C.CPNq /
coincides with the space of characters on C.CPN�1

q /. Recalling that C.CP 0q / D C,
we conclude the claim.
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4.2. Noncommutative projective schemes. Projective spaces à la Artin–Zhang [3]
and Rosenberg [24] are based on Gabriel’s Reconstruction Theorem [12], Ch. VI,
(cf. [25]) and Serre’s Theorem [26], Prop. 7.8 (cf. [13], vol. II, 3.3.5). The former
theorem describes how to reconstruct a scheme from its category of quasi-coherent
sheaves. The latter establishes how to obtain the category of quasi-coherent sheaves
over the projective scheme corresponding to a conical affine scheme. First, one
constructs a graded algebra A of polynomials on this conical affine scheme and then,
according to Serre’s recipe, one divides the category of graded A-modules by the
subcategory of graded modules that are torsion. Such graded algebras corresponding
to projective manifolds have finite global dimension, admit a dualizing module, and
their Hilbert series have polynomial growth. All this means that they are, so called,
Artin–Schelter regular algebras, or AS-regular algebras in short [1] (cf. [2]). This
property makes sense for algebras which are not necessarily commutative, so that we
think about noncommutative algebras of this sort as of generalized noncommutative
projective manifolds. One important subclass of such well-behaving algebras are
Sklyanin algebras [28]. Among other nice properties, they are quadratic Koszul,
have finite Gelfand–Kirillov dimension [27], and are Cohen–Macaulay [21]. Another
class of AS-regular algebras worth mentioning is the class of hyperbolic rings [24],
which are also known as generalized Weyl algebras [4], or as generalized Laurent
polynomial rings [10].

4.3. Quantum deformations of Grassmannian and flag varieties. In [30], Taft
and Towber develop a direct approach to quantizing the Grassmannians, or more gen-
erally, flag varieties. They define a particular deformation of algebras of functions on
the classical Grassmannians and flag varieties using an explicit (in terms of generators
and relations) construction of affine flag schemes defined by Towber [31, 32]. Their
deformation utilizes q-determinants [30], Defn. 1.3, (cf. [18], p. 227, and [20], p. 312)
used to construct a q-deformed version of the exterior product [30, Sect. 2]. This
yields a class of algebras known as quantum exterior algebras [5]. These quantum
exterior algebras are different from Weyl algebras or Clifford algebras. They provide
counterexamples for a number of homological conjectures for finite dimensional al-
gebras, even though they are cohomologically well behaved. See [5], Sect. 1, for
more details.
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