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Wreath products of finite groups by quantum groups
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Abstract. We introduce a notion of partition wreath product of a finite group by a partition
quantum group, a construction motivated on the one hand by classical wreath products and on
the other hand by the free wreath product of J. Bichon. We identify the resulting quantum group
in several cases, establish some of its properties and show that when the finite group in question
is abelian, the partition wreath product is itself a partition quantum group. This allows us to
compute its representation theory, using earlier results of the first named author.
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1. Introduction

When quantum groups first appeared in mathematics in the 1980s (with some
developments obviously possible to be traced back to much earlier days), they
were described via their “algebras of functions”. Soon after that, S.L.Woronowicz
developed in [26] his extension of the Tannaka–Krein duality, showing that a compact
quantum group can be fully described via its representation theory viewed as a certain
C*-tensor category (see the book [20] for a precise description). This development,
far from being purely of theoretical interest, made it possible to construct new
examples of quantum groups and study properties of the ones that had already
been known. In particular, starting with the article [6] it has become clear that an
important role is played in this context by the categories of partitions, which led
to the introduction of the so-called easy quantum groups. In fact, the use of the
combinatorics of partitions in representation theory has a long history with origins
in classical works of R. Brauer and H.Weyl from the early twentieth century. For
the description of these developments and also for a full characterization of partition
quantum groups — of which in a sense canonical examples are the free permutation
groups SCN of S.Wang [24] — we refer to a recent article [13] of the first-named
author.

One of the well-known constructions in classical group theory is that of a wreath
product, a specific instance of a semidirect product based on the action of a given
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groupH on several copies of another group G by permutations. One often assumes
from the beginning that H itself is a group of permutations, as this does not form
an essential constraint. In [8] J. Bichon generalised this construction to the quantum
group setting, replacing G by an arbitrary compact matrix quantum group G andH
by a quantum permutation group H, that is a quantum subgroup of a free permutation
group of Wang. This “free” wreath product, G o�H, defined in an algebraic manner,
via its “algebra of functions” and the related fundamental representation, has turned
out to have several interesting properties, which were later studied by T. Banica,
J. Bichon, F. Lemeux, P. Tarrago and others (see for example [18]). All these were
later extended by P. Fima and L. Pittau in [11] (see also [22]) to the setting where G is
an arbitrary compact quantum group and H is the quantum automorphism group of a
finite-dimensional C*-algebra. One needs to note that the construction of J. Bichon,
although clearly inspired by the classical wreath product, does not reduce to it even
in the case when G is a classical group and H D SN .

The aim of this paper is the study of a new construction inspired by the above-
mentioned works, which we call partition wreath product. Instead of defining it
through a universal C*-algebra, as J. Bichon did for his free wreath products in [8],
we choose in a sense a converse path, defining it via the associated C*-tensor category,
in the spirit of [6]. The input data consists of a finite group G and a category of
partitions C . The associated category is built by averaging the morphisms coming
from C using the group G. In fact, there is strong evidence (in particular coming
from [18]) that such a construction can be extended, with G replaced by an arbitrary
compact (quantum) group. The resulting quantum group is denoted by G oGN .C/,
where GN .C/ denotes the N th partition quantum group associated to the category
of partitions C . It is worth noting that this approach to quantum wreath products is
suggested by classical results of [9] and [16].

In the particular cases when C is the category of all partitions (respectively
of all non-crossing partitions), GN .C/ is the permutation group SN (respectively
the free permutation quantum group SCN ) and we recover the usual wreath product
G o SN (respectively the free wreath product G o� SCN ). We are also able to
identify some further cases, so that for example for the quantum hyperoctahedral
groups HCN we have G o HCN ' .G � Z2/ o� S

C

N . A key tool allowing us to
study the algebraic and probabilistic properties of the partition wreath product is
that of a sudoku representation, introduced in the study of the family of quantum
hyperoctahedral groups H sC

N (isomorphic to free wreath product Zs o� S
C

N ) by
T. Banica and R.Vergnioux in [7].

The detailed plan of the paper is as follows: in Section 2 we introduce some
background on compact quantum groups and partitions. We then define the partition
wreath product in Section 3 and study its basic properties. In particular we present
there the sudoku picture and compute the law of the character of the fundamental
representation. We then turn in Section 4 to the case of abelian finite groups G for
which we show that the resulting partition wreath product is itself a partition quantum
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group in the sense of [13]. This allows us to use the results of [13] to fully describe
the representation theory of G oGN .C/. Eventually, we introduce in Section 5 some
examples of possible generalisations of our setting and discuss certain open questions
arising from this work.

Acknowledgements. The first author was partially supported by the ERC advanced
grant “Noncommutative distributions in free probability”. The second author was
partially supported by the NCN grant 2014/14/E/ST1/00525.

2. Preliminaries

In this preliminary section, we gather material on compact quantum groups and the
combinatorics of partitions which will be used throughout the paper. Our aim is
to give the necessary definitions and results in a concise way, as well as to fix the
notations. References for details will be given in the text. All along the paper, scalar
products will always be left-linear.

2.1. Partitions and linear maps. Our main tool in this work will be partitions
of finite sets. The use of these for the study of representation theory has a long
history, relying on a particular graphical representation (see, for instance, [13] for
some references). Let P.k; l/ be the set of partitions of the set f1; 2; : : : ; kC lg. We
represent such partitions in the following way: we draw a line of k points above a
line of l points and then connect the points which belong to the same subset of the
partition. This pictorial description makes it in particular easy to work on the blocks
of the partitions, which we now define.
Definition 2.1. Let p be a partition.
� A maximal set of points which are all connected (i.e. one of the subsets defining
the partition) is called a block of p.

� If b contains both upper and lower points (i.e. the subset contains an element
of f1; : : : ; kg and an element of fk C 1; : : : ; k C lg), then it is called a through-
block.

� Otherwise, it is called a non-through-block.
We will write b � p if b is a block of p.

The total number of blocks of p is denoted by b.p/ and its number of through-
blocks is denoted by t .p/. In the present paper, we will be particularly interested in
non-crossing partitions.
Definition 2.2. Let p be a partition. A crossing in p is a tuple k1 < k2 < k3 < k4
of integers such that:
� k1 and k3 are in the same block.
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� k2 and k4 are in the same block.
� The four points are not in the same block.
If there is no crossing in p, then it is said to be a non-crossing partition. The set
of non-crossing partitions with k upper points and l lower points will be denoted by
NC.k; l/.

The set of all partitions can be endowed with several operations:
� The tensor product of two partitions p 2 P.k; l/ and q 2 P.k0; l 0/ is the partition
p˝ q 2 P.kC k0; l C l 0/ obtained by horizontal concatenation, i.e. the first k of
the kC k0 upper points are connected by p to the first l of the l C l 0 lower points,
while q connects the remaining k0 upper points to the remaining l 0 lower points.

� The composition of two partitions p 2 P.l;m/ and q 2 P.k; l/ is the partition
pq 2 P.k;m/ obtained by vertical concatenation: we connect k upper points by q
to l middle points and then continue the lines by p to m lower points. This yields
a partition connecting k upper points with m lower points. By the composition
procedure, certain loops might appear resulting from blocks around the middle
points. More precisely, consider the set L of elements in f1; : : : ; lg which are not
connected to a lower point of p nor to an upper point of q. The upper row of p
and the lower row of q both induce partitions of the set L. The maximum (with
respect to inclusion of blocks) of these two partitions is the loop partition of L,
its blocks are called loops and their number is denoted by rl.p; q/. To finish the
operation, we remove all the loops in order to produce a partition in P.k;m/.

� The involution of a partition p 2 P.k; l/ is the partition p� 2 P.l; k/ obtained
by flipping p upside down.

� We also have a rotation on partitions. Let p 2 P.k; l/ be a partition connecting k
upper points with l lower points. Rotating the leftmost upper point to the left of
the lower row (or the converse) gives rise to a partition in P.k � 1; l C 1/ (or in
P.k C 1; l � 1/), called a rotated version of p. Rotation may also be performed
on the right.

These operations are called the category operations. We will be interested in
collections of partitions which are stable under these operations.
Definition 2.3. A collection C of subsets C.k; l/ � P.k; l/ (for every k; l 2 N)
is a category of partitions if it is stable under all the category operations and if the
identity partition j 2 P.1; 1/ is in C.1; 1/.

The interplay between partitions and quantum groups is based on a natural way
of associating linear maps to partitions.
Definition 2.4. Let N > 1 be an integer and let .e1; : : : ; eN / be a basis of CN . For
any partition p, we define a linear map

TpW .C
N /˝k 7! .CN /˝l
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by the following formula:

Tp.ei1 ˝ � � � ˝ eik / D

NX
j1;:::;jlD1

ıp..i1; : : : ; ik/; .j1; : : : ; jl//ej1 ˝ � � � ˝ ejl ;

where ıp..i1; : : : ; ik/; .j1; : : : ; jl// D 1 if and only if all the strings of the
partition p connect equal indices of the multi-index .i1; : : : ; ik/ in the upper row
with equal indices of the multi-index .j1; : : : ; jl/ in the lower row. Otherwise,
ıp..i1; : : : ; ik/; .j1; : : : ; jl// D 0.

We will have to do several computations involving multi-indices as in the formula
above. We therefore introduce some notations to simplify these expressions. We will
use bold letters to denote multi-indices, for instance i D .i1; : : : ; ik/. We also set
ei D ei1 ˝ � � � ˝ eik . The definition of the map Tp then reads

Tp.ei / D
X
j

ıp.i ; j /ej :

The interplay between the category operations on partitions and the assignment
p 7! Tp was studied by T. Banica and R. Speicher in [6, Prop. 1.9]. It can be
summarized as follows:

Proposition 2.5. The assignment p 7! Tp satisfies

(1) T �p D Tp�;

(2) Tp ˝ Tq D Tp˝q;

(3) TpTq D N rl.p;q/Tpq .

The case when the partitions are non-crossing will be important later on because
of the following Proposition (see for instance [14, Lem. 4.16] for a proof):

Proposition 2.6. Let N > 4 be an integer and let k; l 2 N. Then, the linear maps
.Tp/p2NC.k;l/ are linearly independent.

2.2. Compact quantumgroups. The aim of this work is to use partitions to produce
compact quantum groups as defined by S.L.Woronowicz in [27]. We therefore recall
some basic definitions and results of this theory.

Definition 2.7. A compact quantum group is a pair G D .C.G/;�/ where C.G/ is
a unital C*-algebra,

�WC.G/! C.G/˝ C.G/

is a unital �-homomorphism such that .�˝ id/ ı� D .id˝�/ ı�, and the linear
spans of�.C.G//.1˝C.G// and�.C.G//.C.G/˝ 1/ are dense in C.G/˝C.G/
(all the tensor products of C*-algebras are spatial).
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Compact quantum groups have a rich and well-behaved representation theory.
In particular, finite-dimensional representations carry enough information to recover
the whole quantum group, which is the reason why we will focus on these.

Definition 2.8. Let G be a compact quantum group and let n 2 N. A representation
of G of dimension n is a matrix .uij /16i;j6n 2Mn.C.G// ' C.G/˝Mn.C/ such
that

�.uij / D

nX
kD1

uik ˝ ukj

for every 1 6 i; j 6 n. Moreover,
� the representation u is said to be unitary if it is a unitary element ofMn.C.G//.
� the contragredient xu of u is the representation defined by xuij D u�ij .

An intertwiner between two representations u and v of dimension respectively n
and m is a linear map T WCn ! Cm such that

.id˝T /u D v.id˝T /:

The set of intertwiners between u and v is denoted by HomG.u; v/, or simply
Hom.u; v/ if there is no ambiguity. If there exists a unitary intertwiner between u
and v, then u and v are said to be unitarily equivalent. A representation u is said to
be irreducible if Hom.u; u/ D C: id. The tensor product of two representations u
and v is the representation

u˝ v D u12v13 2 C.G/˝Mn.C/˝Mm.C/ ' C.G/˝Mnm.C/;

where we used the leg-numbering notation: for an operator X acting on a twofold
tensor product, Xij is the extension of X acting on the i th and j th tensors of a
triple tensor product. As for compact groups, it is possible to reconstruct a compact
quantum group from a C*-tensor category equipped with some additional structure.
This is S.L.Woronowicz’s Tannaka–Krein theorem proved in [26]. In particular,
starting with a category of partitions, it is possible to build such a C*-tensor category.
The associated compact quantum group will then be completely determined by the
combinatorics of the initial set of partitions. Let us state this result in the spirit of
[6, Prop. 3.12].

Theorem 2.9. Let N > 1 be an integer and let C be a category of partitions. Then,
there exists a compact quantum group G together with a finite-dimensional unitary
representation u such that
� The coefficients of u generate a dense subalgebra of C.G/
� For any k; l 2 N, HomG.u

˝k; u˝l/ D SpanfTp; p 2 C.k; l/g

Moreover, the group G is unique up to isomorphism and is denoted by GN .C/.
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Let us mention that the quantum groups defined by this theorem, as well as all the
ones that we are going to study in this work, are of Kac type (see [27, Thm. 1.5] for
a list of equivalent characterizations of this property).
Remark 2.10. We will need several times a notion of quantum subgroup — if G
and H are compact quantum groups, then we say that H is a (closed) quantum
subgroup of G if there exists a unital surjective �-homomorphism from C.G/
onto C.H/ intertwining the respective coproducts (precisely speaking we require
that the morphism acts on the universal level — for a detailed discussion we refer for
example to [10]).

2.3. Wreath products. As explained in the introduction, we will study generali-
sations of the wreath product construction. We therefore briefly recall the classical
construction, as well as its free (quantum) counterpart due to J. Bichon.
Definition 2.11. LetG be a group and letN > 1 be an integer. The (permutational)
wreath product of G by SN is the semi-direct product G o SN D GN Ì SN , where
the action of SN on GN is given by permutation of the factors.

The construction above can be extended by replacing SN by any group acting
on the set f1; : : : ; N g by permutations. There are several examples of groups which
can be decomposed as wreath products. In particular the complex reflection groups
G.s; 1;N / are isomorphic to Zs o SN . The main drawback of this definition from a
quantum group perspective is the appearance of the semi-direct product, for which
there is no good analogue when SN is replaced by a compact quantum group. To
remedy this, note that abstractly speaking, an element of G o SN may be seen as
the product of a permutation matrix and a diagonal matrix with coefficients in G,
the matrix product then inducing the group law. To make this more precise, we
will resort to a specific “permutation representation” of G o SN . Let us consider the
vector space V spanned by vectors .egi /16i6N;g2G . For each 1 6 i 6 N , we define
a representation �i of G by

�i .g/e
h
j D

(
e
gh
j if i D j ;
ehj if i ¤ j ;

for any 1 6 j 6 N and h 2 G. We also define a representation � of SN on V
by �.�/.egi / D e

g

��1.i/
, 1 6 i 6 N , g 2 G. This gives us a new characterization of

the wreath product.
Proposition 2.12. The subgroup of GL.V / generated by �.SN / and �i .G/

for 1 6 i 6 N is isomorphic to the wreath product G o SN .

Proof. Noticing that the representations �i and �j commute when i ¤ j , we can
identify the subgroup generated by the images of �i .G/ for all 1 6 i 6 N with
the group of diagonal N � N matrices with coefficients in G. Since � is just the
permutation representation of SN , the result is clear.
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Remark 2.13. The proposition above suggests a way of defining a wreath product
of a group G by an arbitrary linear group H � GL.N/ (N 2 N). Indeed, we can
repeat the construction above and define the “linear” wreath product G o H to be
the subgroup of GL.V / generated by �.H/ and �i .G/ for 1 6 i 6 N , where �
denotes an appropriate amplification of the identity representation of H . The above
proposition implies that when H � SN , then we obtain the usual (permutational)
wreath product. The precise relation of this construction with the partition wreath
products we introduce in the next section is not clear.

Schur–Weyl duality for wreath products by SN has a combinatorial description
using partitions, introduced by M.Bloss in [9]. This description was reformulated
in a setting closer to ours by A.J. Kennedy and M. Parvathi in [16]. There is also a
quantum analogue of the wreath product, introduced by J. Bichon in [8], which we
now describe. It involves the free (or quantum) permutation group SCN defined by
S.Wang in [24].
Definition 2.14. Let G be a compact quantum group with a fundamental
representation u and let v be the fundamental representation of SCN . Consider the
free product C.G/�N �C.SCN / and let, for 1 6 k 6 N , �k be the inclusion of C.G/
as the kth factor of the free product. The free wreath product algebra is the quotient
of C.G/�N � C.SCN / by the relations

�i .a/vij D vij �i .a/

for all a 2 C.G/ and 1 6 i; j 6 N . By [8, Thm. 3.2], the free wreath product
algebra admits a natural compact quantum group structure, called the free wreath
product of G by SCN and denoted by G o� S

C

N .
The representation theory of free wreath products was studied by F. Lemeux and

P. Tarrago in [18] and by P. Fima and L. Pittau in [11] using partition methods.

3. Partition wreath product

In this section we introduce our construction of partition wreath products. We will
give several characterizations of these objects so as to be able to study them and
compare them to known constructions. The basic ingredients for the construction
are a finite group G and a category of partitions C and we will therefore use these
symbols without further reference. We will moreover denote by e the neutral element
of G.

3.1. Averaged partitions. The construction starts by colouring the partitions in C

with the elements of G. This means that we now consider partitions with the
additional data of an element of G attached to each point. The set of all such
partitions will be denoted by CG .
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Definition 3.1. Let k; l 2 N and let p 2 CG.k; l/. The upper colouring of p is the
sequence cu.p/ of colours of the upper points of p, read from left to right. Similarly,
the lower colouring of p is the sequence cd .p/ of colours of the lower points, also
read from left to right.

The category operations can be extended to CG with the only constraint that two
partitions p and q can only be composed (in this order) if the lower colouring of q is
the same as the upper colouring of p. We then get a category of coloured partitions
in the sense of [13, Def. 3.1.2], but we will not need this general framework for the
moment. The assignment p 7! Tp can be extended to this setting in the following
way: fix a copy V g of CN for each g 2 G. Then, if p 2 CG has upper colouring
g1; : : : ; gk and lower colouring h1; : : : ; hl , the same formula as for the uncoloured
case yields a map

TpWV
g1 ˝ � � � ˝ V gk ! V h1 ˝ � � � ˝ V hl :

We are now going to use the action of G on itself to produce new objects. More
precisely, let p 2 CG and order its blocks b1; : : : ; bb.p/ according to their leftmost
point. Then, a tuple .g1; : : : ; gb.p// of elements of G acts on p by multiplying the
colours of all the points of bi by gi on the left, for all 1 6 i 6 b.p/. We denote this
new partition by .g1; : : : ; gb.p//:p. If there is an element g 2 G such that gi D g

for all 1 6 i 6 b.p/, then we are simply multiplying all the colours of p by g on the
left, and the result is denoted by g:p.
Definition 3.2. Let N > 1 be an integer. For p 2 CG , we define the averaged
operators Lp andMp by

Lp D
X
g2G

Tg:p

Mp D

X
.g1;:::;gb.p//2G

b.p/

T.g1;:::;gb.p//:p:

One may expect the sum to be divided by the number of elements in the definition
above. However, this would make the formula for the composition much more
complicated, so we will rather use the above expression. As for the operators Tp , our
aim is to produce a C*-tensor category with the averaged operators, so that there is an
associated compact quantum group. We would like to build categories C�.C ; G;N /
and Co.C ; G;N / whose objects are non-negative integers and whose morphisms are

HomC�.C ;G;N/.k; l/ D SpanfLp; p 2 CG.k; l/g;

HomCo.C ;G;N/.k; l/ D SpanfMp; p 2 CG.k; l/g:

The first step in analysing these categories is to understand the composition of
morphisms. For operators of the form Lp , this was done in [13, Lem. 4.2.9]. For
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operators of the formMp , the computation is more involved. Let us introduce some
notations. If p 2 C.k; l/ and if g D .g1; : : : ; gk/ and h D .h1; : : : ; hl/ are tuples of
elements of G, we denote by p.g;h/ the partition obtained by colouring the lower
points of p by g (from left to right) and the upper points of p by h (also from left to
right). We also write u 6 p to indicate that u D .u1; : : : ; ub.p// is a tuple indexed
by the blocks of p.
Lemma 3.3. Let p 2 P.l;m/, q 2 P.k; l/ and let g;h; s; t be suitable tuples of
elements of G. If there exist tuples x D .x1; : : : ; xb.p// and y D .y1; : : : ; yb.q// of
elements of G such that cu.x:p.g;h// D cd .y:q.s; t// then

Mp.g;h/Mq.s;t/ D .jGjN/
rl.p;q/Mpq.cd .x:p.g;h//;cu.y:q.s;t///:

Otherwise,Mp.g;h/Mq.s;t/ D 0.

Proof. Using the definition of the averaged operators, we have

Mp.g;h/Mq.s;t/

D N rl.p;q/
X

u6p;v6q

ı
�
cu.u:p.g;h//; cd .v:q.s; t//

�
Tpq.cd .u:p.g;h//;cu.v:q.s;t///:

The condition on x and y in the statement means precisely that

ı
�
cu.x:p.g;h//; cd .y:q.s; t//

�
¤ 0:

If no such tuples x and y exist, then the ı-symbol always vanishes and the result
is 0. Otherwise, let x0 and y 0 be other tuples for which the ı-symbol does not vanish
and let us consider an integer 1 6 i 6 l . The point i in the upper row of p belongs
to a certain block b, while the point i in the lower row of q belongs to another
block d . Since we know that the ı-symbol is non-zero, the colours of i are the same
in both partitions. In other words, xbhi D yd si and x0bhi D y0

d
si , implying that

x0
b
x�1
b
D y0

d
y�1
d

. This equality holds for any blocks b and d having a common
point, hence also for any blocks b and d satisfying the following conditions:
� b contains an upper point of p;
� d contains a lower point of q;
� b and d get connected when composing p and q.
Therefore, we can find two tuples w D .w1; : : : ; wb.p// and z D .z1; : : : ; zb.q//

which coincide on blocks of p and q which get connected in the composition and
such that x0 D wx and y 0 D zy . Reciprocally, any such tuples w and z yield tuples
x0 and y 0 such that the ı-symbol is non-zero. Summarizing, we can write

Mp.g;h/Mq.s;t/ D N
rl.p;q/

X
w;z

Tpq.cd .wx:p.g;h//;cu.zy:q.s;t///:
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The data of the tuplesw and z is almost the same as a tuple of colours corresponding
to the blocks of pq. More precisely, let us associate to each pair .w; z/ the unique
tuple a D .a1; : : : ; ab.pq// which matches w and z in a natural way. Then, two pairs
give the same a if and only if they only differ on upper non-through-blocks of p and
lower non-through-block of q. But since we know that w and z are constant on all
blocks which are connected, they only differ by an element of G on each loop of the
composition. Thus, each tuple a will appear jGjrl.pq/ times in the sum. We are then
left with a sum over colourings of the blocks of pq, hence the result.

Proposition 3.4. The categories C�.C ; G;N / and Co.C ; G;N / are concrete C*-ten-
sor categories with duals.

Proof. This was proved in [13, Lem. 4.2.9] for C�.P;G;N /. For Co.P;G;N / the
same strategy works for the horizontal concatenation, the involution and the rotation.
The only difficulty is the stability under composition, which was established in
Lemma 3.3.

By S.L. Woronowicz’s Tannaka–Krein theorem, each of these concrete C*-tensor
categories is the category of finite-dimensional representations of a compact quantum
group. To understand the resulting compact quantum groups, we will compare them
to those arising in the wreath product construction. So let us fix an integer N 2 N
and consider the vector space V spanned by elements .egi /16i6N;g2G . There is a
natural representation � of G on V given by

�.g/ehj D e
gh
j :

Seeing V as CN ˝CjGj, we note that � D id˝�G , where �G denotes the left regular
representation of G. We will also consider the representations .�i /16i6N defined
in Subsection 2.3. These representations can be used to characterize the averaged
operators.

Proposition 3.5. Let k; l be two integers and consider an operator

X 2 SpanfTp; p 2 PG.k; l/g:

Then,
� �.g�1/˝lıXı�.g/˝kDX for allg2G if and only ifX 2SpanfLp; p2PG.k; l/g;

� �i .g
�1/˝l ı X ı �i .g/

˝k D X for all 1 6 i 6 N and g 2 G if and only if
X 2 SpanfMp; p 2 P

G.k; l/g.

Proof. The first assertion is a direct consequence of [13, Lem. 4.2.8] and the second
one was proved in [9, Lem. 6.1].
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Remark 3.6. It was proved in [13, Prop. 4.3.1] that for any category of partitions C ,
the set of linear combinations of operators Tp for p 2 C which are invariant under
conjugation by � is precisely the span of the operators Lp for p 2 C . When
considering conjugation by �i instead, we can only deduce from Proposition 3.5 that
the set of invariant elements is SpanfMp; p 2 P

G.k; l/g\SpanfTp; p 2 CG.k; l/g.
Whether this space is the same as SpanfMp; p 2 CG.k; l/g remains an open problem.

Using Proposition 3.5, we can identify some of the compact quantum groups
associated to the C*-tensor categories defined above.

Corollary 3.7. For any category of partitions C , the compact quantum group
associated to C�.C ; G;N / is the direct productG�GN .C/. Moreover, the compact
group associated to Co.P;G;N / is the wreath product G o SN .

Proof. The first assertion was proved in [13, Prop. 4.3.1]. The second statement is a
consequence of [16, Thm. 4.1.4] and the results of [9].

The last result justifies the notations C� and Co, as well as the following definition.

Definition 3.8. Let N > 1 be an integer and let C be a category of partitions. We
denote by G o GN .C/ the compact quantum group associated to Co.C ; G;N / and
call it the partition wreath product of G by GN .C/.

Remark 3.9. It is clear that the fundamental representation ofG oGN .C/ is invariant
under conjugation by the representations �i and � . The question of Remark 3.6
is whether partition wreath products are the only quantum groups satisfying this
property.

The partition wreath product has links to the free wreath products of J. Bichon,
even though the two constructions are different in essence. This will be easier to see
once we have some results on the structure of the C*-algebra C.G oGN .C//, which
is the reason why we postpone this discussion to the end of Subsection 3.4.2.

3.2. Sudoku matrices. We now want to give a description ofG oGN .C/ as a com-
pact matrix quantum group. This means that we want to describe a fundamental
representation of G o GN .C/ as a matrix with coefficients in C.G o GN .C//, and
provide a description of these coefficients as generators of a universal �-algebra
satisfying certain algebraic conditions. The main idea is a generalisation of the
sudoku matrices introduced in [7].

Definition 3.10. Let N > 1 be an integer. A .G;N /-sudoku matrix is a matrix
U 2 MN�jGj.A/, for some C*-algebra A, of the form ŒQh�1g �g;h2G for matrices
Qg 2MN .A/.

Remark 3.11. In the case G D Zs , this definition is equivalent to the one of a
.s; N /-sudoku matrix given in [7, Def. 2.2].
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LetC be a category of partitions and letN > 1 be an integer. Then,C.GN .C// is
the universal C*-algebra generated by a N �N unitary matrix U whose coefficients
satisfy relations which are given by the partitions in C , and therefore do not depend
on N . Let us call these relations the C -relations.
Definition 3.12. Let N > 1 be an integer. We define AN .G;C/ to be the
universal C*-algebra generated by a unitary .G;N /-sudoku matrix U satisfying
the C -relations. The map

�W .Qh/i;j 7!

NX
kD1

X
g2G

.Qg/ik ˝ .Qhg�1/kj

turns AN .G;C/ into a compact quantum group.
Our aim in this subsection is to prove that this compact quantum group is

G oGN .C/. To do this, we first provide a different presentation of AN .G;C/.
Lemma3.13. LetBN .G;C/be the universalC*-algebra generated by aN jGj�N jGj
matrix V satisfying the C -relations and such that for all 1 6 i; j 6 N and all
g; h; s 2 G,

V
j;h
i;g D V

j;hs
i;gs :

Then, BN .G;C/ ' AN .G;C/. Moreover, the image of the coproduct on AN .G;C/
is given by

�.V
j;h
i;g / D

NX
kD1

X
s2G

V
k;s
i;g ˝ V

j;h

k;s
:

Proof. Let us set B D BN .G;C/. For g 2 G defineQg 2MN .B/ by

.Qg/i;j D V
j;g
i;e

for i; j D 1; : : : ; N , and let U be the associated .G;N /-sudoku matrix. This means
that for any g; h 2 G and i; j D 1; : : : ; N ,

U
h;j
g;i D .Qhg�1/i;j D V

j;hg�1

i;e D V
j;h
i;g :

Thus, U arises from V via a permutation of the rows and columns, corresponding
to identifying two different orderings (.i; g/ $ .g; i/) of the indexing set of the
canonical orthonormal basis of CN�jGj. It is clear that unitarity and the C -relations
are preserved by this operation. Moreover, this operation is invertible since if U is a
.G;N /-sudoku matrix, then setting for all g; h 2 G and i; j D 1; : : : ; N

V
j;h
i;g D U

h;j
g;i D .Qhg�1/i;j

yields a unitary matrix V satisfying the conditions of the statement. The formula for
the coproduct then follows from a simple translation of the correspondence between
the coefficients of U and V .
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We are now ready for the main result of this subsection.
Theorem 3.14. Let N > 1 be an integer, let C be a category of partitions and let G
be a finite group. Then, C.G oGN .C// ' AN .G;C/.

Proof. We will in fact prove that C.G o GN .C// ' BN .G;C/ and conclude by
Lemma 3.13. We therefore have to prove that imposing on a unitary matrix V

the relations making Mp 2 Hom.V˝k;V˝l/ for all p 2 CG.k; l/ is the same as
imposing the relations in the statement of Lemma 3.13. For p 2 C , let us denote
by zp 2 CG the partition obtained by colouring all the points of p with e. Let q 2 CG

and let p be the non-coloured partition underlying q. It is clear that Mq can be
obtained by composing M zp with partitions of the form Mjeg . Thus, the defining
relations of C.G o GN .C// are exactly the ones coming from M zp and Mjeg for
all p 2 C and g 2 G. This enables us to split the proof into two parts.

Recall that V is the vector space with basis .egi /16i6N;g2G . If we identify V with
CN�jGj, then any partition p 2 C.k; l/ defines a linear map zTpWV ˝k ! V ˝l in the
usual way. We claim that this map is equal toM zp . In fact,

zTp.e
g1
i1
˝ � � � ˝ e

gk
ik
/

D

NX
j1;:::;jlD1

X
h1;:::;hl2G

ıp.i ; j /ıp
�
.g1; : : : ; gk/; .h1; : : : ; hl/

�
e
h1
j1
˝ � � � ˝ e

hl
jl

since under our identification of V both the indices and the colours must be constant
on the blocks ofp to give a non-zero contribution. But the right-hand side is precisely
equal to the vector arising from the action of M zp on eg1i1 ˝ � � � ˝ e

gk
ik

, proving the
claim. Therefore, imposing the relations making all M zp’s intertwiners is the same
as imposing the C -relations to the matrix V .

We now further claim that the fact that Mjeg is an intertwiner of V means
exactly that V

j;h
i;s D V

j;hg
i;sg for all h; s 2 G and i; j D 1; : : : ; N . Indeed, let us

fix i 2 f1; : : : ; N g and h 2 G. On the one hand,

V ı .id˝Mjeg /.1˝ e
h
i / D V.1˝ e

gh
i / D

NX
jD1

X
s2G

V
j;s

i;hg
˝ esj ;

while on the other hand

.id˝Mjeg / ı V.1˝ ehi / D

NX
jD1

X
s2G

V
j;s

i;h
˝Mjeg .e

s
j /

D

NX
jD1

X
s2G

V
j;s

i;h
˝ e

sg
j D

NX
jD1

X
s2G

V
j;sg�1

i;h
˝ esj :
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Thus, the second claim is proved. To conclude, simply notice that � is the unique
coproduct turning V into a (fundamental) representation.

To conclude this subsection, we describe the abelianization procedure. Let G
be any compact quantum group and consider the maximal abelian quotient C.G/ab
of C.G/. The coproduct factorizes through this quotient, endowing C.G/ab with
the structure of an “algebra of continuous functions” on a compact quantum group.
Because C.G/ab is commutative by definition, [25, Thm. 1.5] implies that it comes
from a compact group G, which is called the abelianization of G. This operation
easily translates at the level of partition wreath products.

Proposition 3.15. Let G be a finite group, let C be a category of non-crossing
partitions and let N 2 N. Then, the abelianization of G oGN .C/ is G oGN .Cab/,
where Cab is the category of partitions generated by C and the crossing =n 2 P.2; 2/.
Note that GN .Cab/ is precisely the abelianization of GN .C/.

Proof. According to the proof of Theorem 3.14, the only relations we add on the
matrix V are the ones making zT=n an intertwiner. But this operator is an intertwiner
if and only if all the entries of the matrix commute with one another, hence the
result.

3.3. Laws of characters. Before turning to examples, we will compute the law of
the character of the fundamental representation V in some particular cases. By this
we mean analysing the element

�V D .id˝Tr/.V/ 2 C.G oGN .C//

as a noncommutative random variable, and more specifically investigating its
distribution (given by its moments) with respect to the Haar state. It was conjectured
in [2, Conj. 3.4] that when G1 and G2 are compact quantum subgroups of SCN , then
the law of the character of the fundamental representation of G1 o� G2 is the free
multiplicative convolution (see for instance [21, Def. 14.1 and Rem. 14.5] for the
definition) of the laws of the characters of the fundamental representations of G1

and G2. This was proved for free wreath products of arbitrary compact quantum
groups by SCN in [18, Cor 4.4]. As we will see however, the corresponding statement
is false when the right-hand side is not a quantum subgroup of SCN . Because of our
description of the intertwiner spaces, the computation of the moments reduces to a
counting problem on partitions. To lighten the formulæ, we will write Cn for C.0; n/.

Proposition 3.16. Let C be a category of partitions and let N 2 N be such that for
all k; l 2 N the collection of linear maps fTp W p 2 C.k; l/g is linearly independent.
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Then for any finite group G the moments .mn.�V //n2N of the character �V of the
fundamental representation V ofG oGN .C/ with respect to the Haar state are given
by the following formula:

mn.�V / D
X
p2Cn

Y
b�p

jbjjGj�1:

Proof. It follows from the results of S.L. Woronowicz in [25] that the moments in
question are given by the formula

mn.�V / D dim.Hom.";V˝n//; (3.1)

where " denotes the trivial representation. Let us denote byCGn .e/ the set of partitions
in CGn for which the leftmost colour in every block of p is the neutral element e. For
any p 2 CGn , there is a unique q 2 CGn .e/ such thatMp D Mq , so that the space on
the right-hand side of Equation (3.1) is spanned by fMp W p 2 CGn .e/g. We claim
that these operators are linearly independent. To prove it, let us consider a vanishing
linear combination

X D
X

p2Cn.e/

�pMp D 0:

Using the definition ofMp , we can expand this sum as

X D
X

p2Cn.e/

�p
X
x6p

Tx:p:

Wewill now reorder the terms of this sum according to the colouring of the arguments
of the T ’s. Note that for any tuple g D .g1; : : : ; gn/ of elements of G and for each
p 2 Cn.e/, there is at most one x 6 p such that x:p has colouring g. Let us
write p � g if such an x exists and let us denote by xp the uncoloured partition
underlying p. Then,

X D
X
g

� X
p�g

p2Cn.e/

�pT xp.g/

�
D

X
g

X.g/:

The operatorsX.g/ for different tuples g act on orthogonal subspaces so thatX D 0
impliesX.g/ D 0 for each g. When considering a fixedX.g/, the colouring is fixed
so that we can use the linear independence assumption to conclude that �p D 0 for
all p � g, proving the linear independence. We can now compute

mn.�V / D jC
G
n .e/j D

X
q2Cn

jfp 2 CGn .e/ W xp D qgj D
X
q2Cn

Y
b�q

jGjjbj�1;

where the last equality is obtained by counting all the possible colourings.
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By Proposition 2.6, the assumptions of Proposition 3.16 are satisfied if C is a
category of non-crossing partitions and N > 4. Let us denote by �G 2 C.G/ the
character of the left regular representation ofG and by �G its law with respect to the
Haar measure. This yields a probability measure depending only on the cardinality
of G. Since it will be convenient to express the results in terms of �G , we recall the
explicit formula (see for instance [2, Prop. 4.1]):

�G D

�
1 �

1

jGj

�
ı0 C

1

jGj
ıjGj:

We start with the case of quantum permutations, i.e. C D NC .
Corollary 3.17. Assume that C D NC , let N > 4 and let G be a finite group. Then
the moments .mn.�V //n2N of �V are given by

mn.�V / D
X

p2NC.n/

Y
b�p

jGjjbj�1:

Using the formalism of free cumulants (see for instance [21, Def. 11.3]), we see
that the nth free cumulant of the distribution of the character �V is equal to jGjn�1
for every n 2 N. In other words, the law of �V is a free compound Poisson law with
initial law �G and parameter 1. This recovers a particular case of [18, Prop. 4.3]. In
particular, the law of �V is the free multiplicative convolution of �G and the law of
the fundamental representation of SCN (which is a free Poisson law with parameter 1).
The situation is quite different if we consider only non-crossing pair partitions, i.e. the
case of OCN .
Corollary 3.18. Assume that C D NC2, letN > 4 and letG be a finite group. Then
the even moments .m2n.�V //n2N of �V are given by

m2n.�V / D
X

p2NC2.2n/

jGjn

and the odd moments vanish.
Again this is easily interpreted in terms of cumulants: k2.�V / D jGj and all other

cumulants vanish. Thus, �V is a centred semi-circular variable with variance jGj.
By [21, Ex. 14.21] (see also [2, Thm. 4.4]), the free multiplicative convolution of �G
and any probability distribution � is given by

�G � � D
�
1 �

1

jGj

�
ı0 C

1

jGj
��jGj:

The free additive convolution of semi-circular laws is the semicircular law whose
variance is the sum of the variances. Thus, the law of �V is not the free multiplicative
convolution of �G and the law of the fundamental representation of OCN (which
is a centred semi-circular law with variance 1). Our last example will be the
hyperoctahedral case, were C D NCev is the category of all non-crossing partitions
with blocks of even size.
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Corollary 3.19. Assume that C D NCev , let N > 4 and let G be a finite group.
Then, the even moments .m2n.�V //n2N of �V are given by

m2n.�V / D
X

p2NCev.2n/

Y
b�p

jGjjbj�1

and the odd moments vanish.
As in the quantum permutation case, this is a compound free Poisson law with

parameter 1. The initial law � has vanishing odd moments and even moments equal
to jGjn�1. The only probability measure with these moments is

� D
1

2jGj
ı�jGj C

�
1 �

1

jGj

�
ı0 C

1

2jGj
ıjGj:

Note that this measure can be obtained as the classical multiplicative convolution
of �G by the Bernoulli measure

� D
1

2
ı�1 C

1

2
ı1:

3.4. Two examples. In some cases, it is possible to relate our construction to usual
(free) wreath products by the (free) permutation groups. This can be seen using the
sudoku picture explained above.

3.4.1. The hyperoctahedral case. Our first example is the partition wreath product
with the hyperoctahedral quantum group HCN . This corresponds to the category of
partitions C D NCev consisting of all non-crossing partitions with blocks of even
size.
Theorem 3.20. LetN > 1 be an integer and letG be a finite group. Then, G o�HCN
is isomorphic to .G � Z2/ o S

C

N .

Proof. Let AN .G;NC2/ be the C*-algebra of Definition 3.12. Recall that it is
generated by an N jGj � N jGj unitary matrix U satisfying the NCev-relations
(i.e. each entry is a self-adjoint partial isometry) and such that it has the form
U D .Qh�1g/g;h2G for some N �N matrices of operators .Qr/r2G . We are going
to use a “doubling trick” to produce a bigger sudoku matrix. Let us set, for every
g; h 2 G and i; j D 1; : : : ; N ,

.U
i;j

g;h
/C D

1

2

�
U
i;j

g;h
C .U

i;j

g;h
/2
�

and .U
i;j

g;h
/� D

1

2

�
U
i;j

g;h
� .U

i;j

g;h
/2
�
:

We will denote by UC the matrix obtained by replacing the coefficients by their “C”
part and by U� the one obtained with the “�” part. It follows from the proof of
point .2/ of [7, Thm. 3.4] (with s D 2) that the matrix

W D

�
UC U�

U� UC

�



Wreath products of finite groups by quantum groups 47

is a magic unitary of size 2N jGj D N jG � Z2j and that the unique coproduct
turning W into a representation is compatible with that of AN .G;C/. Consider now
for every r 2 G and for t D 0; 1 the following N by N matrices:

Pr;t D

(
QCr ; if t D 0;
Q�r ; if t D 1:

Then, W is equal to the sudoku matrix .P.h;t/�1.g;u//.g;u/;.h;t/2G�Z2 . The procedure
transforming U into W is clearly reversible, hence the C*-algebra AN .G;NCev/ is
isomorphic to the C*-algebra AN .G �Z2; NC/ and the isomorphism preserves the
respective coproducts. Applying Theorem 3.14 now yields the result.

Remark 3.21. We will prove in Theorem 3.23 that G o SCN is in fact isomorphic
to G o� SCN for any finite group G. Thus, Theorem 3.20 really gives an explicit
description of the partition wreath product G oHCN . Moreover, it shows that there is
no general “associativity” property of the partition wreath product since

G oHCN D G o .Z2 o S
C

N / D .G � Z2/ o S
C

N ¤ .G o Z2/ o S
C

N :

Note that the isomorphism of Lemma 3.13 between AN .G;C/ and BN .G;C/
does not change the character of the defining fundamental representation, whereas the
procedure used in the above proof does. With the notations used above, the character
of U in G o� HCN has the form

� D jGj

NX
iD1

Qi;i
e

whereas the character of W in .G � Z2/ o� S
C

N is

Q� D 2jGj

NX
iD1

.Q.i;i/
e /C D jGj

NX
iD1

�
Q.i;i/
e C .Q.i;i/

e /2
�
:

This is the reason why the initial law of the character ofV computed in Subsection 3.3
is not �G�Z2 . Using abelianization, we can also describe the classical case.
Corollary 3.22. Let N > 1 be an integer and let G be a finite group. Then, G oHN
is isomorphic to .G � Z2/ o SN .

Proof. This follows from Theorem 3.20 and Proposition 3.15.

3.4.2. The case of free permutations. Recall that our justification for the notation
G oGN .C/was that when GN .C/ is the permutation group SN , we recover the usual
wreath product G o SN . To conclude this section, we will now prove that if GN .C/

is the quantum permutation group SCN , then our construction yields the free wreath
product G o� SCN .
Theorem 3.23. Let N > 1 be an integer and let G be a finite group. The quantum
group G oGN .NC/ is isomorphic to the free wreath product G o� SCN .
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Proof. The proof is a generalisation of the one of [7, Thm. 3.4]. Recall that
the NC -relations are the so-called magic relations, i.e. the matrix U is unitary
and all its coefficients are orthogonal projections. Let us first consider the free
wreath product G o� SCN , where the fundamental representation u 2 MjGj.C.G//
of C.G/ is given by ug;h.t/ D ı.h; tg/. Notice that u is a magic unitary
matrix and that ug;h D ue;hg�1 . Considering the i th copy u.i/ of this fundamental
representation, we set

.Qg/ij D u
.i/
e;gvij :

Then, U
h;j
g;i D u

.i/

g;h
vij D .Qhg�1/ij is a .G;N /-sudoku matrix. Because u.i/

commutes with vij for all 1 6 j 6 N and both u and .vij /ij are magic unitaries, U

is a magic unitary matrix. Thus, there is a surjective �-homomorphism

ˆWAN .G;NC/ �! C.G o� S
C

N /

given by ˆ.Uh;j
g;i / D u

.i/

g;h
vij .

Consider now the generating .G;N /-sudoku matrix U D .Qh�1g/g;h2G of
AN .G;NC/ and set, for 1 6 i; j 6 N and g; h 2 G,

u
.i/

g;h
D

NX
kD1

.Qhg�1/ik and vij D
X
g2G

.Qg/ij :

Because U is magic unitary, .vij /ij is a magic unitary matrix. Using the fact
that u.i/

g;h
D u

.i/

e;hg�1
and that U is magic unitary, we see that for a fixed i , the

elements fu.i/
g;h
W g; h 2 Gg are commuting pairwise orthogonal projections summing

up to 1. This means that the algebra generated by these elements is of the form C.H/
for some subgroup H of SjGj. Moreover, the equality u.i/

g;h
D u

.i/

e;hg�1
implies that

in factH D G. Thus, there is a unique surjective �-homomorphism

‰WC.G/�N � C.SCN / �! AN .G;NC/

such that the fundamental representation of SCN is sent to .vij /ij and the fundamental
representation of the i th copy of C.G/ is sent to .u.i/

g;h
/g;h. Using the fact that the

.G;N /-sudoku matrix U is magic, we have for all i; j D 1; : : : ; N; g; h 2 G

u
.i/

g;h
vij D

� NX
kD1

.Qhg�1/ik

��X
t2G

.Qt /ij

�
D

NX
kD1

X
t2G

ı.t; hg�1/ı.k; j /.Qhg�1/ik.Qt /ij D .Qhg�1/ij

D

�X
t2G

.Qt /ij

�� NX
kD1

.Qhg�1/ik

�
D viju

.i/

g;h
:
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Thus, ‰ factorizes through a surjective �-homomorphism

z‰WC.G o� S
C

N / �! AN .G;NC/:

Checking that ˆ and z‰ are inverse to each other is now routine calculation.

Remark 3.24. Note that here we are considering the finite group G as a compact
group. The compact quantum group G o SCN is therefore not the same as the free
wreath product yG o� SCN studied by F. Lemeux in [17]. It however fits into the more
general setting of free wreath products of compact quantum groups by SCN treated by
F. Lemeux and P. Tarrago in [18]. By restricting to finite groups, our approach gives
a different description of the situation.

Remark 3.25. Note that combining Theorem 3.23 with the abelianization result of
Proposition 3.15, we recover the classical case of Corollary 3.7.

Remark 3.26. Part of the proof of Theorem 3.23 applies in full generality, i.e.
not only when C D NC . Indeed, one can easily check that the formula vij DP
g2G.Qg/ij always defines a copy of the fundamental representation of GN .C/

inside C.G oGN .C//. Moreover,

u
.i/

g;h
D

NX
kD1

.Qhg�1/ik

always defines a unitary matrix .u.i/
g;h
/g;h2G with coefficients in A.G;C/. However,

this unitary matrix will not be magic if U is not assumed to be magic, hence it is
not a copy of the regular representation of G. As some examples of Subsection 4.4
will show, one cannot in general recover canonical copies of the algebra C.G/ inside
C.G oGN .C//.

To end this section, let us point out the two main differences between our partition
wreath product and the free wreath product:

(1) Our construction is a generalisation of the wreath product in the sense that
when GN .C/ is a classical group, the construction yields a classical group. On
the contrary, the free wreath product G o� SN is not isomorphic to the wreath
product G o SN as soon as G is non-trivial.

(2) The definition of the free wreath product only yields a compact quantum group
when the right-hand side is a quantum subgroup of SCN (or a specific quantum
subgroup of a quantum automorphism group). Our construction works for many
compact quantum groups which are not quantum subgroups of SCN but does not work
for arbitrary quantum subgroups of SCN .
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4. Partition wreath products of abelian groups as partition quantum groups

In this section, we will give yet another picture of the partition wreath product
G oGN .C/ whenG is abelian. More precisely, we will show thatG oGN .C/ is then
isomorphic to a partition quantum group. This means that its representation theory
can be described using the results of [14], as explained in [13]. The drawback of this
approach is of course the restriction to abelian groups. We will explain in the end of
the section why this restriction seems necessary.

4.1. Basic representations. The first step is to decompose the fundamental rep-
resentation V into a sum of irreducible representations. The latter will then be our
building blocks for the study of G o GN .C/. To do this, we have to find minimal
projections in the algebra Hom.V ;V/. Recall that G is now assumed to be abelian
and set, for a character � 2 yG,

P� D
1

jGj

X
g2G

�.g/Mjge :

We denote the trivial character in yG by ".
Lemma 4.1. The operators P� are pairwise orthogonal self-adjoint projections
summing to 1. Moreover, for every non-trivial � 2 yG the projection P� is minimal in
Hom.V ;V/ and P" is either minimal in Hom.V ;V/ (when C.1; 1/ does not contain
the two-block partition) or decomposes into two minimal projections (if C.1; 1/

contains the two-block partition).

Proof. Note that for all g; h 2 G we have the equality

MjgeMjhe
DM

j
gh
e
:

The fact that the operatorsP� are self-adjoint projections is straightforward, pairwise
orthogonality follows from the orthogonality relations for characters and the fact that
the projections sum to 1 is a consequence of the equality

P
�2 yG

�.g/ D jGjıe;g for
all g 2 G. Moreover, Hom.V ;V/ is spanned by the operators Mjge (and possibly
also the one corresponding to the partition p in C.1; 1/ consisting of the two one-
point sets, if the corresponding partition is in the category), hence has dimension at
most jGj, or jGj C 1 (in the second case). Thus in the case where p is not in C all
the projections P� are minimal, and when p 2 C it is easy to see that P" contains
non-trivially the projection corresponding to p.

We can now decompose V . Set, for � 2 yG, u� D .id˝P�/.V/. By Lemma 4.1,
the representations u� are pairwise non-equivalent irreducible representations
(if the two-block partition does not belong to C.1; 1/ — otherwise all u� for
� ¤ " are irreducible and the representation u" decomposes into two irreducible
representations, one of which is trivial), whose direct sum is V . Let us give a name
to these representations.
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Definition 4.2. The representations u� are called the basic representations of
G oGN .C/.

Because V can be completely decomposed using basic representations, it is
enough to study tensor products of these basic representations to understand the full
representation theory of G o GN .C/. Let �1; : : : ; �k and �1; : : : ; �l be characters
of G. Then,

Hom.u�1 ˝ � � � ˝ u�k ; u�1 ˝ � � � ˝ u�l /

D .P�1 ˝ � � � ˝ P�k /Hom.V
˝k;V˝l/.P�1 ˝ � � � ˝ P�l /:

To give a better description of this space, we will first define some specific operators
in Hom.V˝k;V˝l/.

4.2. Averaging morphisms by characters. We now introduce operators in
Hom.V˝k;V˝l/ obtained by taking linear combinations whose coefficients are given
by characters of G. This definition involves many parameters and is therefore
complicated to write down. To keep things tractable, we first introduce some
additional notations. Recall that to a non-coloured partition p 2 P.k; l/ and two
tuples g D .g1; : : : ; gk/, h D .h1; : : : ; hl/ of elements of G we can associate a
coloured partition p.g;h/ by colouring (from left to right) the lower points of p
by g and its upper points (also from left to right) by h. If � D .�1; : : : ; �k/ is a
tuple of characters of G, we set, for a tuple g D .g1; : : : ; gk/ of elements of G,
�.g/ D �1.g1/ : : : �k.gk/.
Definition 4.3. Let p 2 P.k; l/ be a partition and let � D .�1; : : : ; �k/ and
� D .�1; : : : ; �l/ be tuples of characters of G. The associated averaged operator is

Fp.�;�/ D
X

gD.g1;:::;gk/

X
hD.h1;:::;hl /

�.g/x�.h/Mp.g;h/:

The first important fact about the map Fp is that it is 0 unless the tuples
of characters satisfy a certain compatibility condition which will be called
p-admissibility. To explain this condition, let us first introduce some notations.
If b is a block of a partition p 2 P.k; l/ and if a D .a1; : : : ; ak/ is any tuple, then
we denote by ab the restriction of the tuple a to the indices which belong to the
upper row of b. Similarly, if a D .a1; : : : ; al/ then we denote by ab its restriction
to the indices which belong to the lower row of b. If � D .�1; : : : ; �k/ is a tuple of
characters of G, we set

Q
� D �1 : : : �k .

Definition 4.4. Let p 2 P.k; l/ and consider two tuples � D .�1; : : : ; �k/ and
� D .�1; : : : ; �l/ of characters of G. The pair .�;�/ is said to be p-admissible if for
any block b of p,

Q
�b D

Q
�b .

Lemma 4.5. Let p 2 P.k; l/ and let � D .�1; : : : ; �k/ and � D .�1; : : : ; �l/ be two
tuples of characters of G. If .�;�/ is not p-admissible, then Fp.�;�/ D 0.
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Proof. If x D .x1; : : : ; xb.p//, thenMx:p.g;h/ DMp.g;h/. Thus,

Fp.�;�/ D
X
g;h

�.g/x�.h/jGj�b.p/
X
x6p

Mx:p.g;h/

where as in Lemma 3.3 the notation x 6 p means that we are considering a tuple
x D .x1; : : : ; xb.p//. Making the changes of variables g0 D xdg and h0 D xuh

yields

Fp.�;�/ D jGj
�b.p/

X
g0;h0

X
x6p

�..xd /�1g0/x�..xu/�1h0/Mp.g0;h0/:

We can rename the variables to remove the primes and make the change of variables
x 7! x�1 to lighten the expression, thus obtaining

Fp.�;�/ D jGj
�b.p/

X
g;h

�X
x6p

�.xd /x�.xu/

�
�.g/x�.h/Mp.g;h/:

Let us consider the term in parenthesis. We are summing over tuples x which are
indexed by the blocks of p. Thus, the sum can be written as a product over the blocks:Y

b�p

�X
x2G

�Y
�b
�
.x/
�Y
x�b
�
.x/

�
:

Because of the orthogonality relations for characters, this product vanishes as soon
as there is a block b for which

Q
�b ¤

Q
�b , hence the result.

The main feature of the maps Fp is their interplay with the category operations
and in particular with the composition.
Proposition 4.6. Let p 2 P.l;m/, q 2 P.k; l/ and fix tuples .�;�/ and .�0;�0/.
Then,

Fp.�;�/Fq.�
0;�0/ D jGjb.p/Cb.q/�b.pq/ClN rl.p;q/ı.�;�0/Fpq.�;�

0/:

Proof. First note that because of Lemma 4.5, we can assume that .�;�/ and .�0;�0/
are p-admissible since otherwise both sides of the equality vanish. Let us also make
a simple remark: in Lemma 3.3 the resulting averaged operator does not depend
on the choice of x and y . Thus, we can sum over all possible such colourings of
the blocks. If the composition is non-zero, then there are exactly jGjrl.p;q/Cb.pq/
colourings giving the same averaged operator. Thus, Lemma 3.3 can be restated as
follows:

Mp.g;h/Mq.s;t/ D jGj
�b.pq/N rl.p;q/

�

X
x6p

X
y6q

ı
�
cu.x:p.g;h//; cd .y:q.s; t//

�
Mpq.cd .x:p.g;h//;cu.y:q.s;t///:
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Using this, the product Fp.�;�/Fq.�0;�0/ becomes

jGj�b.pq/N rl.p;q/

�

X
g;h;s;t

X
x6p;y6q

�
�.g/x�.h/�0.s/x�0.t/ı

�
cu.x:p.g;h//; cd .y:q.s; t//

�
Mpq.cd .x:p.g;h//;cu.y:q.s;t///

�
:

We make the following changes of variables:

g0 D xd :g;h0 D xu:h; s0 D yd :s; t 0 D yu:t

to get

jGj�b.pq/N rl.p;q/
X

g0;h0;s0;t0

X
x6p;y6q

�
ı.h0; s0/�..xd /�1:g0/x�..xu/�1:h0/

�0..yd /�1:s0/x�0..yu/�1:t 0/Mpq.g0;t0/

�
:

Because of the ı-symbol, one tuple in the sum disappears. Let us rename the
variables without primes and make the changes of variables x 7! x�1 and y 7! y�1.
Reordering the terms yields

jGj�b.pq/N rl.p;q/
X
g;t

X
x6p;y6q

�X
h

x�.xu:h/�0.yu:h/

�
�.xd :g/x�0.yu:t/Mpq.g;t/:

Using the orthogonality relations for characters, the term in parenthesis can be
computed: X

h

x�.xu:h/�0.yd :h/ D jGjlı.�0;�/x�.xu/�0.yd /:

We therefore now have to compute

X.g; t/ D
X

x6p;y6q

�.xd :g/x�.xu/�0.yd /x�0.yu:t/

D

�X
x6p

�.xd /x�.xu/

��X
y6q

�0.yd /x�0.yu/

�
�.g/x�.t/

Each term in parenthesis is a sum over colourings of the blocks of p or q, hence splits
as a product over the blocks:X

x6p

�.xd /x�.xu/ D
Y
b�p

�X
x2G

�b.x/x�
b.x/

�
D jGjb.p/

Y
b�p

ı.�b;�
b/:
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The same formula holds for the second term in parenthesis (with b.q/ instead of b.p/)
so that performing the multiplication and using the fact that the tuples are admissible,
we get

X.g; t/ D jGjb.p/Cb.q/�.g/x�.t/:

Gathering everything then yields the result.

For the other category operations, the interplay with the maps Fp is the same as
for the maps Tp . More precisely, we have the following facts:

Lemma 4.7. Let us denote by ı the concatenation of tuples. Then,
� Fp.�;�/˝ Fq.�

0;�0/ D Fp˝q.� ı �
0;� ı �0/.

� Fp.�;�/
� D Fp�.�;�/.

Let us end this subsection with comments on the non-abelian case. The part
concerning the space Hom.V ;V/ is easily generalised to this setting. If � is an
irreducible representation of G and if 1 6 i 6 dim.�/, we can set

P�;i D
1

jGj

X
g2G

�.g/i iMjge :

Denoting by Irr.G/ a set of representatives of equivalence classes of irreducible
representations of G, and by " the trivial representation of G, we obtain a
generalisation of Lemma 4.1.

Lemma 4.8. The operators .P�;i /�2Irr.G/;16i6dim.�/ are pairwise orthogonal self-
adjoint projections summing to 1. Moreover, for every non-trivial � 2 IrrG the
projection P� is minimal in Hom.V ;V/ and P" is either minimal in Hom.V ;V/
(when C.1; 1/ does not contain the two-block partition) or decomposes into two
minimal projections (if C.1; 1/ contains the two-block partition).

Proof. The proof is the same as for Lemma 4.1 except that one uses the general Schur
orthogonality relations instead of the orthogonality of characters.

Note thatP�;i andP�;j are equivalent for any 1 6 i; j 6 dim.�/, so that for each
� 2 Irr.G/, we have a basic representation u� appearing with multiplicity dim.�/
in V . This result suggests to consider averaged morphisms where the characters are
replaced by (diagonal) coefficients of irreducible representations of G. However,
we were not able to prove a result similar to Proposition 4.6 for these more general
objects. The reason for that is that a product of characters is again a character, so
that in the proof of Proposition 4.6 we can always use the orthogonality relations.
In the non-abelian case, we have to compute scalar products between products of
coefficients, i.e. coefficients of tensor products of irreducible representations. Since
these are not irreducible, the strategy breaks down at this point.



Wreath products of finite groups by quantum groups 55

4.3. The partition quantum group picture. Thanks to the operators Fp , we can
now give a description of the morphism spaces between tensor products of basic
representations.
Proposition 4.9. Let� D .�1; : : : ; �k/ and � D .�1; : : : ; �l/ be tuples of characters
of G. Then,

Hom.u�1 ˝ � � � ˝ u�l ; u�1 ˝ � � � ˝ u�k / D SpanfFp.�;�/; p 2 Cg:

Proof. Recall that

Hom.u�1 ˝ � � � ˝ u�l ; u�1 ˝ � � � ˝ u�k /

D .P�1 ˝ � � � ˝ P�k /Hom.V
˝k;V˝l/.P�1 ˝ � � � ˝ P�l /:

The right-hand side is generated by all the elements of the form

Rp.�;�; s; t/ D
X
g;h

�.g/�.h/MI.e;g/Mp.s;t/MI.e;h/;

where I.e;g/ is the partition j˝k coloured with e on all lower points and g on the
upper row. Computing the product of the averaged operators yields

Rp.�;�; s; t/ D
X
g;h

�.g/�.h/M
p.sg;th�1/

D �.s�1/�.t/
X
g0;h0

�.g0/�..h0/�1/Mp.g0;h0/ 2 C:Fp.�;�/;

hence the result.

This description is useful because it enables us to relate our construction with
partition quantum groups as defined in [13]. Let us briefly recall what we mean by
this. A coloured partition is a partition with the additional data of a colour (i.e. an
element of a fixed set A called the colour set) attached to each point. The category
operations extend naturally to that setting with one extra rule: when a point is rotated
fromone row to the other, its colour is changed into the conjugate colour, where colour
conjugation is a fixed involution on A. A family of coloured partitions C which is
stable under the category operations is called a category of coloured partitions and
the set of partitions in C with upper colouring x1 : : : xk and lower colouring y1 : : : yl
is denoted by C.x1 : : : xk; y1 : : : yl/. To any coloured partition p we can associate
the linear map Tp as we did for partitions in CG . LetN > 1 be an integer, let A be a
colour set and let C be a category of partitions coloured by A. By [13, Thm. 3.2.7],
there exists a unique compact quantumgroupGN .C/ togetherwith representationsux
for all x 2 A such that for all x1; : : : ; xk; y1; : : : ; yl 2 A,

Hom.ux1 ˝ � � � ˝ uxk ; uy1 ˝ � � � ˝ uyl / D SpanfTp; p 2 C.x1 : : : xk; y1 : : : yl/g:
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The link between this construction and partition wreath products will be given by
the following examples of categories of partitions.

Definition 4.10. Let � be a discrete group and let C be a category of (uncoloured)
partitions. We defineC Œ�� to be the category of partitions coloured by � (with colour
conjugation given by the inverse) such that the underlying uncoloured partition is inC

and in each block the product of the colours of the upper row is equal to the product
of the colours of the lower row as elements of � .

We are now ready to give a partition quantum group picture for partition wreath
products.

Theorem 4.11. LetG be a finite abelian group and C a category of partitions. There
is an isomorphism of compact quantum groups G oGN .C/ ' GN .C Œ yG�/.

Proof. First note that setting, forp 2 P.k; l/, zFp.�;�/ D jGj.kCl/=2�b.p/Fp.�;�/,
we obtain the nicer formula

zFp.�;�/ zFq.�
0;�0/ D N rl.p;q/ı.�;�0/ zFpq.�;�

0/:

Consider now the functor from the category of representations of GN .C Œ yG�/ to the
category of representations of G o GN .C/ sending the object u�.1/ ˝ � � � ˝ u�.k/
to .id˝P�/V˝k.id˝P�/ and themorphismTp.�;�/ to zFp.�;�/. By Proposition 4.6
and Lemma 4.7, this is a tensor functor. Because the conditions defining C Œ yG�

precisely mean that we only consider partitions coloured with admissible pairs of
tuples of characters, this functor is faithful and by Proposition 4.9 it is surjective,
hence the result.

The interest of Theorem 4.11 is that the representation theory of partition quantum
groups can be studied using the general techniques of [14]. These techniques adapt
straightforwardly to the general setting of partition quantum groups as explained
in [13].

4.4. Examples. We will now describe explicitly some examples. A consequence
of Theorem 4.11 is that when C is a category of non-crossing partitions which is
block-stable in the sense of [12, Def. 4.7] (see also [5, Def. 3.4], where the name
“multiplicative” was used for the same concept), then G oGN .C/ is a free quantum
group by [12, Thm. 4.18]. We will not enter the details of the general theory here but
simply explain how one can compute the fusion rules of such a quantum group. Given
a compact quantum group G, we will be interested in the fusion semiring RC.G/
of G, which is the semiring generated by the equivalence classes of irreducible
representations, with addition and multiplication given by the direct sum and the
tensor product.
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4.4.1. Free partition quantum groups. The basic tool to describe the representa-
tion theory of free partition quantum groups is the notion of projective partition.

Definition 4.12. A coloured partitionp is said to be projective ifp2 D p D p�. Two
projective partitions p; q 2 C are said to be equivalent in C if there exists another
partition r 2 C such that r�r D p and rr� D q.

Let us denote byW.C/ the set of all projective partitions inC which have only one
block. This can be seen as a set of words w on the colour set A, precisely those for
which C.w;w/ (i.e. those coloured partitions for which both the top and bottom row
are coloured by the wordw) contains a one-block partition. The equivalence relation
for projective partitions induces an equivalence relation on W.C/: two words w
and w0 are equivalent if there is a one-block partition in C.w;w0/. We will denote
by S.C/ the quotient ofW.C/ by this equivalence relation. The set S.C/ is called the
fusion set of C and completely determines the representation theory of the associated
quantum group. To explain how, let us first introduce two operations on S.C/ (given
two words w; v on the set A, w:v denotes their concatenation).

Definition 4.13. Let p 2 C.w;w0/ and q 2 C.v; v0/ be one-block projective
partitions and let Œp� and Œq� be their images in S.C/.
� If there exists a one-block partition s 2 C.w:v; w0:v0/, then we set Œp� � Œq� D Œs�.
Otherwise, we set Œp� � Œq� D ;.

� Let xp be the partition obtained by rotating p upside down (note that all the colours
are conjugated in this process). We set Œp� D Œ xp�.

These operations are well-defined (i.e. do not depend on the choice of representatives)
by [12, Lem. 4.13 and Lem. 4.14].

Let F.C/ be the free monoid on S.C/, i.e. the set of all words on S.C/. The
previous operations extend to the abelian semigroup NŒF .C/� in the following way:
if w1 : : : wn; w01 : : : w0k 2 F.C/, then
� w1 : : : wn D wn : : : w1;

� .w1 : : : wn/ � .w
0
1 : : : w

0
k
/ D w1 : : : .wn � w

0
1/ : : : w

0
k
,

the latter being set equal to 0 whenever one of the two words is empty, or if
wn � w

0
1 D ;. We can now turn NŒF .C/� into a semiring .RC.C/;C;˝/ by setting

for any w;w0 2 F.C/
w ˝ w0 D

X
wDaz;
w0Dxzb

ab C a � b:

The link between RC.C/ and GN .C/ is given by [12, Thm. 4.18]. This requires
block-stability, an extra assumption on C mentioned above, meaning that if p 2 C

and if b is a block of p, then b 2 C .
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Theorem 4.14. Assume that C is a block-stable category of non-crossing coloured
partitions. Then, there is an isomorphismof fusion semiringsRC.GN .C// ' R

C.C/

sending the representation ux to the class of the partition j coloured with x on both
ends.

4.4.2. The permutation case. The case of partition wreath products by the quantum
permutation group was already treated in Theorem 3.23: G o SCN is isomorphic to
G o� S

C

N . This is true for any finite group G. If G is abelian, then we can write it
as y� , where � D yG is the dual group. Then, Theorem 4.11 tells us that y� o� SCN
is the partition quantum group associated to the category of partitions C Œ��. We
therefore recover a particular case of the results of F. Lemeux in [17]. Note that in
that case, S.C Œ��/ is naturally isomorphic to � , with the conjugation given by the
group inverse and the operation � being the group operation.

4.4.3. The orthogonal case. Using the partition quantum group picture, it is easy to
give an explicit description of partition wreath products by the quantum orthogonal
group. In what follows below, O� denotes the dual free product of compact quantum
groups introduced by Wang.

Proposition 4.15. Let G be a finite abelian group and let N 2 N. Let

k D jf� 2 yG W � D x�gj and l D .jGj � k/=2:

Then G oOCN ' .O
C

N /
O�k O� .UCN /

O�l .

Proof. We are considering the category of partitions C Œ yG� D NC2Œ yG� consisting of
coloured non-crossing pairs. Consequently, the only one-block projective partitions
are of the form j coloured with a character � on both ends. Let us denote by p.�/
this partition. Then, Œp.�/� D Œp.x�/� and Œp.�/� � Œp.�0/� D ;. Let us order
the self-conjugate characters of G as �1; : : : ; �k and the non-self-adjoint ones as
�1; �1 : : : ; �l ; �l . There is a surjective �-homomorphism

ˆWC
�
.OCN /

O�k
O�.UCN /

O�l
�
�! C.G oOCN /

sending the fundamental representation of the i th copy of OCN to u�i and the
fundamental representation of the j th copy of UCN to u�j . Moreover, ˆ induces
an isomorphism between the fusion semirings. Since this isomorphism preserves the
dimensions,ˆmust be an isomorphism of compact quantum groups by [1, Lem. 5.3],
hence the result.

Remark 4.16. One can also give a direct proof of this result using only the structure
of the .G;N /-sudoku matrix and elementary manipulations using the orthogonal
relations.
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Note that the partition wreath product G o OCN only depends on the number of
self-adjoint and non-self-adjoint characters of G. In particular, there is no canonical
way to recover C.G/ as a subalgebra of C.G oOCN /, in sharp contrast with the case
of partition wreath products with SCN . The case of the classical orthogonal group is
straightforward by abelianization.

Corollary 4.17. Let G be a finite abelian group and let N 2 N. Let

k D jf� 2 yG W � D x�gj and l D .jGj � k/=2:

Then, G oON ' .ON /�k � .UN /�l .

Proof. This follows from Proposition 4.15 and Proposition 3.15.

4.4.4. The hyperoctahedral case. We now turn to the hyperoctahedral case, which
means that we will consider the category of partitions Cev consisting of all partitions
with all blocks of even size. Thiswas already treated in full generality inTheorem3.20
but we will recover the result in the abelian case in a completely different way. To
describe the semiringRC.C Œ yG�/we use the following notation: ifw D w1 : : : wn is a
word on yG, then f .w/ 2 yG denotes the product of the letters in yG. With this, we can
classify one-block projective partitions up to equivalence. For two words w;w0 on a
colour set A, let us denote by �.w;w0/ the unique one-block partition in P.w;w0/.
Let us also denote by " 2 yG the trivial character of G.

Lemma 4.18. Let p 2 NCevŒ yG�.w;w/ be a one-block projective partition. If jwj
is even, then p is equivalent to �.f .w/"; f .w/"/. Otherwise, it is equivalent
to �.f .w/; f .w//. Moreover, �.f .w/"; f .w/"/ and �.f .w0/; f .w0// are never
equivalent for any words w and w0.

Proof. Assume first that jwj is even. Then, �.w; f .w/"/ is even and the product
of the upper colours is equal to the product of the lower colours, hence it belongs
to C Œ yG�, giving the equivalence. Assume now that jwj is odd. Then, �.w; f .w// is
in C Œ yG�, hence the equivalence. Eventually, �.f .w/"; f .w/"/ and �.f .w0/; f .w0//
are not equivalent because �.f .w/"; f .w//, being odd, is never in C Œ yG�.

Let us set, for � 2 yG, �� D Œ�.�; �/� and �C D Œ�.�"; �"/�. The previous
lemma implies that

S.C Œ yG�/ D f�� W � 2 yGg
a
f�C; W � 2 Gg:

Lemma 4.19. There is a group isomorphism‰W yG�Z2 ! S.C Œ yG�/ sending .�;�1/
to �� and .�; 1/ to �C.
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Proof. Themap‰ is clearly a bijection, so thatwe only need to check its compatibility
with the group structure. By definition, �� D x�� and �C D x�C so that inverses are
preserved. Moreover, we have the following rules coming from Lemma 4.18:

�� � �� D .��/C; �� � �C D .��/�; �C � �� D .��/�; �C � �C D .��/C:

These are the same as the group law on yG � Z2, hence the result.

We can now complete an alternative proof of Theorem 3.20 (for abelian G).
Proposition 4.20. Let G be a finite abelian group and let N 2 N. Then, G oHCN is
isomorphic to .G � Z2/ o� S

C

N .

Proof. Recall from Subsection 4.4.2 that . yG�Z2/o�S
C

N is the free partition quantum
group associated to NCŒ yG �Z2� and that the associated fusion set S is yG �Z2. Let
us consider the �-homomorphism

ˆWC
�
. yG � Z2/ o� S

C

N

�
�! C.G oHCN /

sending u.�;�1/ to u�. At the level of the associated fusion sets,ˆ induces the map‰
from Lemma 4.19. Thus, the induced map

z‰WRC
�
. yG � Z2/ o� S

C

N

�
! RC.G oHCN /

is an isomorphism. Since it is dimension preserving, we can once again conclude by
[1, Lem. 5.3] and by the observation that for finite abelian groupswe haveG � yG.

Again of course one can use abelianization to recover a particular case of
Corollary 3.22.

5. Generalisations

In this final section, we will generalise the partition wreath product construction in
two steps. The first step is quite natural and the results of Section 3 can be adapted
to some extent. The second step will only be sketched in the simplest case, which
already gives interesting new examples connected to quantum isometry groups.

5.1. Partition wreath product relative to an action. The idea of this first step is
to use an arbitrary action of the finite groupG on a finite space X in the definition of
the averaged operators, instead of the action of G on itself. So let ˛WG Õ X be an
action and let C be a category of uncoloured partitions. Colouring the points of the
partitions of C by elements of X and applying the same averaging procedure as in
Definition 3.2 using ˛ instead of the group multiplication yields operatorsM ˛

p . We
then set

HomGo˛ .k; l/ D SpanfM ˛
p ; p 2 CA.k; l/g:
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Proposition 5.1. Let N > 1 be an integer. Then, there is a concrete C*-tensor
category with duals C.C ; ˛;N / whose objects are the positive integers and whose
morphism sets are precisely HomGo˛ .k; l/. The associated compact quantum group
is called the partition wreath product of G by GN .C/ relative to ˛ and is denoted
by G o˛ GN .C/.

Proof. One first has to check that the sets of morphisms are stable under composition.
This is done exactly as in Lemma 3.3 except that the scalar factor appearing in the
product may not be the same. The stability under tensor products and rotations is
clear.

Remark 5.2. Note that we can always assume the action to be faithful. Indeed, letH
be its kernel. Then, we have an action z̨ of G=H on X and

G o˛ GN .C/ D .G=H/ oz̨ GN .C/:

Let also remark that for any subgroupH of G, there is a natural inclusion

H o˛jH GN .C/ � G o˛ GN .C/;

which comes from the reverse inclusion of the associated C*-tensor categories.
Some results of Section 3 carry on to this setting with suitable modifications. In

particular, the abelianization procedure works exactly as in Proposition 3.15. There is
also a “fundamental matrix” description ofG o˛GN .C

A/ but it is more complicated;
in particular we obtain a block-type splitting with respect to orbits of the action. This
is the content of the next proposition.
Proposition 5.3. Let BN .C ; ˛/ be the universal C*-algebra generated by a N jX j �
N jX j matrix V such that
� V

j;y
i;x D 0 for all i; j if x and y are not in the same orbit;

� the matrix .Vj;g2:x
i;g1:x

/16i;j6N;g1;g22G is unitary and satisfies the C -relations for
each x 2 X ;

�

X
h2Stab.y/

V
j;s:x

i;th:x
D

X
g2Stab.x/

V
j;sg:y
i;t:y for any s; t 2 G and x; y 2 X .

Then, BN .C ; ˛/ is isomorphic to C.G o˛ GN .C// and the pullback of the coproduct
is given by

�.V
j;y
i;x / D

NX
kD1

X
z2X

V
k;z
i;x ˝ V

j;y

k;z
:

Proof. The proof follows the same strategy as in Theorem 3.14. The relations
satisfied by V can all be obtained by using partitions p 2 C coloured with one
element x 2 X and partitions of the form jyx for x; y 2 X .
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Let us first consider the operator zMp;x obtained by colouring all the points
of p with x and then averaging. It acts on Spanfeg:xi ; g 2 Gg, hence the fact
that it is an intertwiner is equivalent to the C -relations for the entries of the matrix
.V

j;g2:x
i;g1:x

/g1;g22G (once we see it is unitary, which we observe below).
We now turn toMjyx and compute

V ı .Id˝Mjyx /.1˝ e
z
i / D V

� X
g:yDz

1˝ e
g:x
i

�
D

NX
iD1

X
v2X

X
g:yDz

V
j;v
i;g:x ˝ e

v
j

and

.Id˝Mjyx / ı V.1˝ ezi / D .Id˝Mjyx /
� NX
lD1

X
w2X

V
l;w
i;z ˝ e

w
l

�
D

NX
lD1

X
w2X

V
l;w
i;z

X
h:yDw

eh:xl :

Applying .1˝ ev0j0 / for some j0; v0 yieldsX
v2X

X
g:yDz

V
j0;v0
i;g:x ıv;v0 D

X
w2X

X
h:yDw

V
j0;w
i;z ıh:x;v0 : (5.1)

If v0 is not in the orbit of x, the right-hand side vanishes and we are left withX
g:yDz

V
j0;v0
i;g:x D 0:

Specializing to y D x eventually gives

jfg 2 G; g:x D zgjV
j0;v0
i;z D 0

and the first relation is proved (noticing that z can be any element in the orbit of x),
showing also that the matrices appearing in the second relation are unitary. Let us
now assume that v0 is in the orbit of x and that z is in the orbit of y (otherwise both
sides of (5.1) vanish). There exist t; s 2 G such that v0 D t:x and z D t:y so thatX

g2G
h:yDt:y

V
j0;s:y

i;h:x
D

X
w2X

X
g2G

g:yDw;g:xDs:x

V
j0;w
i;t:y

X
h02G
h0:yDy

V
j0;s:x

i;th0:x
D

X
w2X

X
g02G

g0:xDx;sg0:yDw

V
j0;w
i;t:y D

1

jStab.y/j
X
k2G

X
g02G

g0:xDx;sg0:yDk:y

V
j0;k:y
i;t:y ;
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using the changes of variables h0 D t�1h and g0 D s�1g together with the fact thatw
must be in the orbit of y, hence has the form k:y for some k 2 G. Renaming h0; g0; j0
as h; g; j yields X

h2Stab.y/

V
j;s:x

i;th:x
D

1

jStab.y/j
X

g2Stab.x/

X
k2G

k�1sg:yDy

V
j;k:y
i;t:y :

The condition on k is equivalent to k 2 sg:Stab.y/, i.e. k:y D sg:y and the sum
over k simplifies with the factor jStab.y/j�1 , giving the third relation.

Let us now give a few examples of this construction:
� If G acts on the set X trivially, then V

j;x
i;x D V

j;y
i;y for any x; y 2 X and all the

other coefficients are zero. Thus, we simply have G o˛ GN .C/ � GN .C/ with
fundamental representation V D U˚jX j.

� If the action ˛ is free then all the stabilizers reduce to the neutral element, hence
we get

V
j;s:x
i;t:x D V

j;s:y
i;t:y :

In other words, V
j;b
i;a only depends on the unique element of G sending a to b.

In particular, the matrices corresponding to different orbits are the same, thus the
resulting quantum group is the same as the one corresponding to the restriction
of the action to one orbit. This is equivalent to G acting on itself, hence we
get G oGN .C/.

� If the action ˛ is transitive, then we can assume that X D G=H (with ˛ being
the translation action) for some subgroup H of G. The kernel of this action
is the normal core Co.H/ of H in G (i.e. the largest normal subgroup of G
which is contained in H ) so that by Remark 5.2, the resulting quantum group
is .G=Co.H// oGN .C/.
Decomposing a general action ˛WG Õ X as a disjoint union of transitive actions

on the orbits and using the last point, it would be enough to understand the case of a
faithful action. However, the defining equations for V do not simplify in that case as
in the free case and we were not able to obtain a general structure theorem.

5.2. Coloured partition wreath products. The second way of generalising our
earlier considerations is based on putting the whole construction in the framework of
partition quantum groups by using coloured partitions from the very beginning. To
do this, we will assume that the set on whichG acts is also connected to the category
of partitions C , specifically being its colour set. So letG be a finite group, let A be a
colour set with a fixed involution, let CA be a category of A-coloured partitions and
consider an action ˛WG Õ A. In order to build a C*-tensor category, we need to put
a constraint on the action.
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Definition 5.4. An action ˛WG Õ A is said to be a coloured action if for any g 2 G
and any x 2 A,

g:x D g:x:

Given a coloured action, we can define operators M ˛
p exactly as before and use

them to construct a C*-tensor category C.C ; ˛;N / (the coloured action condition is
needed here for the stability under rotations) yielding the partition wreath product
of G by GN .C

A/ relative to ˛, denoted by G o˛ GN .C
A/. Contrary to the previous

subsection, it is not straightforward to extend the fundamental matrix picture to
this setting. This would require several matrices Vx indexed by elements of A in
order to be able to make sense of the “CA-relations”. Moreover, the G-invariance
condition is quite unclear. We will not develop the full theory here but simply give an
example illustrating what the general fundamental matrix picture may look like. This
example will be the simplest possible, i.e. the colour set is A D fı; �g with xı D �
and G D Z2 D f�1; 1g acts by �1:ı D �, which is a coloured action. Then,
the Cı;�-relations are simply relations between V and its adjoint. Here is how the
fundamental matrix should look like.
Definition 5.5. LetCı;� be a category of coloured partitions. We defineBN .Cı;�; ˛/
as the universal C*-algebra generated by a 2N � 2N matrix V satisfying the
Cı;�-relations and such that for any 1 6 i; j 6 N , any x; y 2 fı; �g,

.V
j;y
i;x /
�
D V

j;y
i;x :

Endowed with the coproduct defined by

�.V
j;y
i;x / D

NX
kD1

X
z2X

V
k;z
i;x ˝ V

j;y

k;z
;

it is a compact quantum group.
We will prove in a particular case that BN .Cı;�; ˛/ is indeed the partition wreath

product relative to ˛. Let NC ı;�s be the category of non-crossing coloured partitions
such that in each block the difference between the number of white and black points
on each row is equal modulo s. We define similarly the category of partitionsNC ı;�1
by the convention that equality module 1 is just equality. The partition quantum
group associated toNC ı;�s is denoted byH sC

N and called a quantum reflection group.
These were introduced by T. Banica and R.Vergnioux in [7].
Proposition 5.6. Let N and 1 > s > C1 be integers. Then, .BN .Cı;�s ; ˛/;�/ is
isomorphic to Z2 o˛ H

sC
N .

Proof. In fact, we will prove that .BN .Cı;�; ˛/;�/ is isomorphic to .yZs ÌZ2/ oS
C

N ,
where Z2 acts on yZs by inversion. By [3, Thm. 3.5] and [19, Rem. 4.1], this
implies the result. We identify the colour set A with Z2 via ı 7! 1 and � 7! �1.
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Let V be the 2N � 2N unitary matrix generating C.Z2 o˛ H sC
N / and recall that the

NC
ı;�
s -relations are those making V unitary and such that

.V
j;y
i;x /

s
D V

j;y
i;x .V

j;y
i;x /
�

is a projection for each i; j D 1; : : : ; N and x; y 2 Z2. For a character � on Zs we
set

Q
j;y
i;x .�/ D

s�1X
kD0

�.k/.V
j;y
i;x /

k;

where again i; j D 1; : : : ; N and x; y 2 Z2. The properties of the coefficients
of V (each of these satisfies the equalities .ak/� D as�k , k D 1; : : : ; s) imply
that each element Qj;y

i;x .�/ is a self-adjoint projection. This defines 2N � 2N
matrices Q.�/ which we can now use as blocks to build a 2sN � 2sN matrix
W D .Q.x;�/;.y;�//x;y2Z2;�;�2yZs

, where

.Q.x;�/;.y;�//i;j D Q
j;y
i;x .x��/:

ThematrixW is by construction amagic unitary and its blocks are indexed byA�yZs .
Let us denote by 'WZ2 ! Aut.yZs/ the homomorphism such that '�1.�/ D x�. In
the semi-direct product yZs Ì' Z2, we have

.x; �/�1.y; �/ D .x�1; 'x�1.x� //.y; �/ D .x
�1y; 'x�1.x��//:

If x D 1, then

.Q.x;�/;.y;�//i;j D Q
j;y
i;1 .x��/ D Q

j;1�1y
i;1 .'1�1.x��// D .Q.1;"/;.x;�/�1.y;�//i;j :

If x D �1, then

Q
j;y
i;x .x��/ D

s�1X
kD0

x�.k/�.k/.V
j;y
i;�1/

k
D

s�1X
kD0

x�.k/�.k/.V
j;�y
i;1 /k�

D

s�1X
kD0

x�.k/�.k/.V
j;�y
i;1 /s�k D

s�1X
kD0

�.k/�.k/.V
j;�y
i;1 /k

D Q
j;�y
i;1 .��/ D Q

j;x�1y
i;1 .'x�1.x��//:

In both cases, the yZs Ì' Z2-invariance condition is satisfied by W so that using
Proposition 3.14 we get the announced isomorphism.

Note that the above quantum groups appeared as quantum isometry groups of the
free products of finite cyclic groups in [4] and [15]. There is also a classical version
of this result.
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Corollary 5.7.LetN; s>1be integers. Then,Z2o˛H s
N is isomorphic to .yZ2ÌZ2/oSN ,

where Z2 acts on yZs by inversion.

Proof. This follows from Proposition 5.6 by the abelianization procedure.

These results recover the particular case s D 2 treated in Theorem 3.20 since the
action by inversion then becomes trivial. In view of Proposition 5.6, we can ask a
more general question. Let � be a discrete group and consider a finite groupG acting
on a symmetric generating setƒ of� . If we considerƒ as a colour set with involution
given by the inverse, then the action is coloured if and only if .˛g.//�1 D ˛g.�1/
for all g 2 G and  2 � .

Question 5.8. Is there an isomorphism G o˛ .b� o� SCN / ' .G Ë˛ b�/ o� SCN for a
coloured action as described above?

Let us conclude by mentioning a broader problem. We have mainly studied
partition wreath products for categories of partitions which are either noncrossing or
contain the simple crossing =n. We know from the classification of orthogonal easy
quantum groups [23] that there are many more examples. It would be interesting to
see what happens when they are used as the right-hand side of a partition wreath
product. In particular, the so-called half-liberated quantum groups may produce
interesting new phenomena.
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