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Simulation of multigrain thin film growth
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In [28], Russo and Smereka presented a level set method for the growth of fully faceted grains.
This method produced interesting results, but it is not applicable to typical grain growth where the
operating temperature is well below that which would produce fully faceted grains during deposition.
In this lower temperature regime, the deposition rate and the diffusion rate are in competition to
determine the ultimate texture of the film, and which grain orientation is preferred. In this paper,
we present a new technique coupling the level set method with the marker particle method to study
multigrain thin film growth. The resulting method is designed for more realistic temperature ranges
where grains are not typically fully faceted.

1. Introduction

Numerical simulations involving grain growth are extremely important yet very difficult to model
due to the numerous factors contributing to the growth process. Most of the previous work has
focused on simulations in unique temperature regimes. In fact, Russo and Smereka [28] developed
a level set formalism for the motion of faceted interfaces. Their main assumption was that grain
growth only depends on the orientation of the grain facet; this assumption implies that temperatures
are well above typical operating conditions. Bloomfield et al. [7] developed a three-dimensional
extension of the Russo–Smereka model [28]. However, both of these simulations neglect three very
important aspects of grain growth: spatially-dependent deposition, contact angle between grains,
and temperature.

This paper focuses on adding to the basic framework of evolution of grain growth using the
level set method while implementing more physically relevant parameters. We are able to capture
the very important feature of texture competition in multigrain thin film growth using the numerical
simulation designed in this paper. Furthermore, we have duplicated the experimentally observed
result that higher temperature deposition leads to dominance of〈100〉 grain orientation, while lower
temperatures lead to〈111〉 orientation dominance (see e.g. [19, 27]).

The tendency of grains to develop a preferred orientation is a significant aspect of thin film
growth. There is often a strong correlation between texture and performance. For instance,〈111〉 is

†
This work was supported in part by NSF-IGERT DGE-98-70659. E-mail: tongen@math.jmu.edu

‡
This work was supported in part by NSF DMS-96-15877. E-mail: chopp@northwestern.edu

c© European Mathematical Society 2006



2 A . TONGEN AND D. L . CHOPP

desirable in metallic interconnects of semiconductors and〈100〉 is preferred for diffusion barriers
and other mechanical applications [19]. Modern integrated circuits whose interconnects are made
of copper and aluminum thin films exemplify the importance of texture in film growth [41].
Experiments have shown that the durability of an interconnect is a function of its microstructure.
It has also been shown that the〈111〉 texture is most effective in suppressing electromigration. The
present work examines the behavior of thin film growth.

The level set method has frequently been used in materials modeling due to its applicability
in areas such as deposition and etching [1, 6, 20]. However, one reason the level set method is
popular in materials science computation is the fact that topological changes are handled naturally.
Therefore, the level set method is a logical choice for handling deposition of multiple grains. Other
methods must elaborately remesh in order to manage the joining of multiple grains, while the level
set method implementation is straightforward.

In addition, the level set method is utilized because we are able to overcome one of the
weaknesses of continuum modeling. As will be described later, each grain is represented by a
different level set function. Therefore, we observe not only the evolution of the entire interface,
but also the interface of each individual grain. Thus, we are better able to identify the evolution of
grain boundaries.

2. The physical problem

This study uses a continuum model to study the three major driving forces for the surface
morphology of thin film growth: surface diffusion, deposition and contact angle. Due to the
importance of preferred orientations during film growth, we will focus on the two major orientations
that dominate, namely〈111〉 and 〈100〉. Figure 1 displays the alignment of the〈111〉 and 〈100〉
orientations. To more easily differentiate the competition between the two orientations, we will
rotate the〈111〉 orientation 45◦ in two coordinate directions so that it is perpendicular to the〈100〉
orientation.

<100>

<111>

FIG. 1. Actual orientations of the〈111〉 and〈100〉 textures.

The setting for this model is a boxΩ ⊂ R2, in which two grains,Ω1(t) andΩ2(t), evolve. For
the present study, we will assume thatΩi(t) represent grains with different preferred orientations.
The boundary ofΩi(t) consists of two parts: one part which is in touch with the adjacent grain
whose normal velocity is zero and another part which evolves according to the aforementioned
primary driving forces.
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2.1 Deposition

This paper closely follows the work done in [1, 2, 3] to model deposition. As shown in Figure 2,
it is assumed that deposition is from a line source, which can represent both sputter deposition and
angle-based flux functions. Consequently, the general equation for deposition normal velocity is
given by

Fdeposition=

∫∫
visible region

f (θ) cos(ξ)

r2
dA, (1)

wherer is the distance between the discrete surface element and the discrete line source element,
θ is the angle between the normal to the discrete surface element and the line of lengthr, andξ
is the angle between the normal to the discrete line source element and the line of lengthr. The
term cos(ξ) implies that the substrate directly below the target receives the most deposition, but the
nearby substrate still receives material. Also, the substrate that is further from the target receives
approximately 1/r2 less material, which decreases rapidly asr increases. Line source deposition
can be generalized to model many types of deposition, such as molecular beam epitaxy, physical
vapor deposition, and other deposition techniques.

Target

n
∆A

ξ
rθ

Substrate

FIG. 2. Pictorial representation of the method of deposition.

The value off (θ) is determined by the deposition technique being modeled. For instance,
isotropic deposition is modeled withf (θ) = 1; this assumption emphasizes the importance of
normal deposition from the target. We will model deposition withf (θ) = cos(θ). This model has
a similar interpretation to the choice of cos(ξ), except that there is a balance between the normal
deposition of the target and normal reception of the substrate.

2.2 Surface diffusion

Surface diffusion is an important component in many mathematical models of materials, such as
metal reflow in semiconductor manufacturing [26], sintering [40], thin-film deposition [17], and
elastic membrane simulations [18]. While it may or may not be the primary driving force in a
numerical simulation of these processes, surface diffusion is very often the rate limiting step when
it is simulated with a numerical method. Isotropic surface diffusion is often modeled by the fourth-
order nonlinear differential operator

ẋ = −(∇s · (∇sκ))n(x), (2)

wherex is a point on the material surface,n(x) is the outward normal to the surface atx, κ is the
mean curvature of the surface, and∇s is the surface gradient [23].

There are two different types of diffusion that play critical roles in coverage and deposition
processes: bulk diffusion, which is related to the global motion of the material throughout the
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deposited layer; and surface diffusion, which is related to the motion of the surface boundary. It
is well known that surface diffusion effects are some of the most important features of ultra thin
film equilibrium shapes [42]. The influence of surface diffusion can be seen during both crystal
faceting and grain boundary grooving. For anisotropic crystals, the existence of growth competition
can be directly related to surface diffusion.

Cahn and Taylor [8] have generalized the earlier work of Mullins [23] by defining new laws
that constitute a class of dynamic problems where: volume is conserved; the only energy in the
system is surface energy; and the only driving force for surface motion is surface energy reduction.
Their model consists of a fourth order nonlinear partial differential equation involving the surface
Laplacian of the mean curvature. Numerical solutions are difficult to compute due to the fourth-
order derivatives in (2). Using an explicit method to solve Laplacian of curvature flow implies that
the time step scales with the space step to the fourth power, i.e.∆t ∼ ∆x4. Numerical stability
for such an equation requires very small time steps, making the simulation of the surface diffusion
process computationally expensive. The other option is to solve (2) using an implicit method, but
implementation is difficult due to the nonlinearity.

Consider a given material undergoing surface diffusion at temperatureT , with diffusivity
D(θ, T ) (a function of the angle of the surface normalθ and temperatureT ), surface energyγ (θ ),
and mean curvatureκ. The general surface diffusion normal velocity is given by

Fsd = −∇s · [D(θ, T )∇s((γ (θ)+ γ ′′(θ))κ)]. (3)

Isotropic surface diffusion, as given by (2), is a special case of (3), withD(θ, T ) = γ (θ) ≡ 1. If
D(θ, T ) or γ (θ) vary with respect toθ , the process is calledanisotropic.

Surface diffusion is related to the motion of the boundaries of a thin film. The diffusivity is
usually written in the form

D(θ, T ) = D0(θ)exp

(
−Em

kBT

)
whereD0 is the diffusion constant,Em is the activation energy,kB is Boltzmann’s constant, andT
is the temperature. BothD0 andEm are estimated with values that depend on the material being
deposited.

Previous work has been done using the level set method to model thin film growth. As previously
mentioned, Russo and Smereka [28] computed the motion of multiple grains for the limiting high-
temperature case where all grains remain fully faceted. Also, in [1, 2, 3] they present device scale
simulations in two and three dimensions that model both the etching and deposition processes. More
recently, the level set method was used to study physical vapor deposition and device processing.
The present study builds upon the aforementioned work to develop a model for grain growth and to
reproduce the texture competition that has been verified experimentally [19].

3. Numerical methods

In the present simulations we use a combination of the marker particle method and the level set
method. Here we present a description of both methods.

3.1 Marker particle method

The marker particle method is a straightforward method for the solution of interface propagation
problems. Equally spaced marker points are placed on the discretized interface. Then using the laws
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of motion, each marker point is evolved according to the prescribed speed function. Given a speed
functionF normal to the curve, we can write an evolution equation for any point on the curveΓ as

d

dt
r = F · n = F

(ys,−xs)

(x2
s + y2

s )
1/2
, (4)

wherer(s, t) = (x(s, t), y(s, t)). Converting this equation into its individual components, we arrive
at the representation for the motion of a point(x(s, t), y(s, t)) with normal velocityF given by

xt (s, t) =
Fys

(x2
s + y2

s )
1/2
, yt (s, t) =

−Fxs

(x2
s + y2

s )
1/2
. (5)

The equations of motion for the marker particle method are a coupled system of partial differential
equations. After the marker points have been moved using (5), the interface is reconstructed by re-
connecting the individual points with either straight lines or splines. A similar procedure could be
used in three dimensions except triangles would be used to reconstruct the surface.

The marker particle method has several advantages. First, it is straightforward to implement for
any given speed function. Second, it is fast, since (5) is only evolved at the discretized points on
the curve. Third, higher order accuracy is easily obtained through standard numerical methods for
ordinary differential equations.

On the other hand, stability can be difficult to maintain due to irregular spacing of the nodal
points. In order for interfaces to merge in the marker particle method, an elaborate method of
collision detection along with addition and subtraction of nodal points must take place. As a result,
complicated re-meshing strategies are needed near points where topological changes occur. This
problem becomes even more pronounced in three dimensions.

3.2 The level set method

One of the most versatile and effective ways of computing the motion of curves and surfaces is the
level set method developed by Osher and Sethian [25]. The calculations and numerical algorithms
introduced in [25, 11, 30, 31] have provided the basis for a large collection of calculations in such
areas as combustion and fluid mechanics [9, 37, 43], medical imaging [22], crack propagation [34,
36, 33], materials science [20, 12, 13], and etching and deposition in semi-conductor manufacturing
[1, 2, 3]. For a review and resources on level set methods, see [24, 29].

In the level set method, the interface of interest is embedded in a higher dimensional function.
The main advantages of the level set method are that topological changes are handled naturally, the
technique easily extends to three and higher dimensions, and finite difference schemes can be used
for approximation operators on a fixed Eulerian mesh.

3.2.1 The general level set formulation.Imagine a closed curveΓ (t) in the plane propagating
normal to itself with speedF . We can embed the initial position,Γ0, of Γ (t) in terms of a higher
dimensional functionφ, i.e.Γ0 = {x | φ0(x) = 0}. The evolution ofΓ and the evolution ofφ are
connected through the equation

φt + F |∇φ| = 0, φ(x,0) = φ0(x), (6)

as derived in [25]. At any time, the frontΓ is given by the zero level set of the time-dependent level
set functionφ.
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The initial conditions onφ are usually given by the signed distance function:

φ0(x) = ± min
y∈Γ0

|x − y|, (7)

where the sign ofφ depends on whetherx is inside (φ < 0) or outside (φ > 0) of Γ . Figure 3 is an
example of a signed distance function whenΓ is a circle. The solution of (6) is best accomplished
using schemes borrowed from methods for solving hyperbolic conservation laws.

graph of ϕ

level set ϕ = 0

FIG. 3. Level set representation of the signed distance function for a circle.

Formulae for geometric quantities such as the normal, curvature, and Laplacian of curvature
of the curveΓ can all be derived in terms of the level set functionφ, as shown below for a one-
dimensional curve in the plane:

n =
∇φ

|∇φ|
=

(φx, φy)√
φ2
x + φ2

y

, (8)

κ = ∇s · ∇sn =
φxxφ

2
y − 2φxyφxφy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

, (9)

κss = ∇s · ∇sκ =
κxxφ

2
y − 2κxyφxφy + κyyφ

2
x

φ2
x + φ2

y

−
(κxφx + κyφy)κ

(φ2
x + φ2

y)
1/2

, (10)

where∇s is the surface gradient [14]. All of these equations can be discretized using standard finite
difference schemes.

In equation (6),F is often given as a function of the normal velocity on the surfaceΓ (t).
However, (6) requires knowledge ofF in the entire domain ofφ. This problem will be handled by
using velocity extensions.

3.2.2 Velocity extensions and the fast marching method.Note that (1) only defines the speed
function F on the interface,φ−1(0), while (6) requiresF to be defined on the whole domain.
Consequently, we defineFext to be the speed function used in (6),

φt + Fext|∇φ| = 0, (11)

with the additional condition that
Fext|φ−1(0) = F. (12)

This new velocity fieldFext is known as theextension velocity.
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Of course, there are many choices forFext. However, for stability purposes, it is advantageous
to chooseFext in such a way thatφ is maintained as a signed distance function. It was shown in [4]
that this results in the additional condition

∇Fext · ∇φ = 0. (13)

A geometric interpretation of (13) is that the velocity field is constant along lines normal to the
interface,φ−1(0).

In [4], a technique was introduced for building this extension velocity field,Fext, which satisfies
the conditions (12), (13), from a velocity fieldF given on the frontφ = 0. This technique relied on
the fast marching method [32], which is an optimal technique for solving the eikonal equation.

Briefly, the fast marching method solves an equation of the form

G(x, y)|∇φ| = 1 (14)

by first replacing the gradient with suitable upwind operators, and then systematically advancing the
front by marching outwards from the boundary data in an upwind fashion. The key to the algorithm
lies in the observation that an upwind operator implies a causality; hence grid points with a given
value foru cannot be affected by grid points with a bigger value foru. Therefore, as the solution
is advanced, a heap sort is used to monitor the grid point with the smallestu value to be updated,
and thus always advances the solution “downwind” of that point. Through the use of this sorting
algorithm, each point in the domain is visitedonly once, rather than requiring more iterations. The
resulting technique has a total operation count ofO(N logN).

In our algorithm, the fast marching method is used to solve the equation for the signed distance,

|∇φ| = 1, (15)

by initializing grid points near the interface using direct computation of the signed distance to the
interface, then using the fast marching method to computeφ at the remaining grid points. At the
same time, the extension velocity,Fext, is initialized by tracing orthogonally from the grid points
near the interface back to the interfaceφ−1(0) where the original speed function,F , is determined.
The remainder of the values ofFext in the domain are computed in the same order as those for theφ,
by discretizing (13) in the same upwind directions determined by the fast marching method. Each
time the deposition velocity, (1), is computed this velocity extension technique is used to createFext
to advanceφ according to (11).

For a complete description of the level set method, the fast marching method, velocity
extensions, and some of their applications, see [24, 29].

3.3 Surface diffusion implementation

The annealing process in grain structure is very critical in micro-electronic devices. Most
valuable electrical properties of micro-electronic devices are related to the interface morphology
or roughness. It has been shown experimentally that the annealing process smooths material
surfaces. We will study the effect of annealing on the surface roughness of the grains. Atomic scale
simulations of annealing can be found in [38, 39].

For simulating two-dimensional surface diffusion, we will use the definition by Cahn–Taylor [8].
Consider a given material undergoing surface diffusion at temperatureT , with diffusivity D(θ, T ),
whereθ is the angle of the surface normal,γ (θ ) the surface energy, andκ the mean curvature. The
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surface diffusion normal velocity is given by

Fsd = −∇s · [D(θ, T )∇s((γ (θ)+ γ ′′(θ))κ)]. (16)

Although the model is material independent, we will use parameters measured for deposition of
aluminum on silicon. Using material parameters from [5, 15, 35] for aluminum, we approximate the
diffusivity as

D(θ, T ) = D0(θ)e
−

0.985−.035 cos(2θ)
kB ·T nm2/s, (17)

whereD0(θ) = (2.52+2.48 cos(2θ))·1012, kB is the Boltzmann constant, andT is the temperature.
We approximate the surface free energy as

γ (θ)〈100〉 = 0.075− 0.005 cos(4θ), (18)

γ (θ)〈111〉 = 0.075− 0.005 cos(4θ + π), (19)

where surface energy is defined for the two orientations under examination.
We will use a marker particle method to simulate surface diffusion for its computational speed

[14]. For comparison, if we compute surface diffusion using the level set method on a 100×100 grid,
(16) must be calculated at 10,000 grid points. However, a comparable marker particle representation
will have approximately 200–300 marker particle points where (16) must be calculated. The marker
particle method is used because the surface diffusion step is the biggest computational bottleneck in
the simulation.

The marker particle simulation of surface diffusion adequately accounts for the critical points
of the surface free energy in both (18) and (19). The critical points occur whenγ + γθθ = 0. In
order to obtain correct evolution of the surface, we placed marker points on the curve where the
critical angle passes across a facet. This adaptation, coupled with the fact that the interface does not
evolve long enough to become unstable, is sufficient to correctly compute surface diffusion even at
the critical points of the surface free energy.

3.4 Contact angle

It is well known that a contact angle exists in thin film deposition [21, 16]. Material deposits on the
substrate in such a way that a contact angle is present between the two grains. Physically, the contact
angle controls the separation between grains, thereby influencing the amount of deposition near the
point of intersection of the grains. For instance, a small contact angle results in a small separation
between grains, causing more shadowing near the point of intersection and less deposition.

For a well-posed model involving surface diffusion with boundary conditions, two boundary
conditions must be imposed at each end point. In the present situation, the end point is defined
as the location of the point of contact between the evolving surface and the underlying solid. The
boundary conditions are a no-flux condition and a prescribed contact angle between the surface and
the fixed solid. The no-flux condition is enforced by prescribing

∇[(γ + γθθ )κ] = 0 (20)

at the endpoints. Equation (20) is a Neumann type boundary condition which prevents flux due to
surface diffusion through the grain boundary (see (3)). The contact angle is enforced numerically by
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1. Finding the location of the points of contact.
2. Evolving all points on the interface, except the points of contact, by (16) with the no-flux

condition.
3. Moving the points of contact so that the prescribed contact angle is maintained.

This algorithm is enforced for each grain. Alternating between the grains ensures that the motion
between the grains is based on surface diffusion rather than a numerical bias.

Mass conservation is a concern during this aspect of the computation; however, mass
conservation is more accurate as the resolution increases. Also, experimental verification is the
driving force for the contact angle and any mass that we are gaining or losing is due to this
experimental reproduction. We consider any mass gain/loss at this step to be a part of the
model rather than an artifact of the computation. Overall, the contact angle mass preservation is
approximately first order, which agrees with the rest of the computational model.

3.5 Deposition implementation

We follow closely the work done in [1, 2, 3] to model the process of deposition. In our problem,
we assume deposition is from a line source. This model can be used for both sputter deposition and
angle-based flux functions. Recall that the equation for deposition normal to the interface is

Fdeposition=

∫∫
visible region

f (θ) cos(ξ)

r2
dA, (21)

where: r is the distance between the discrete surface element and the discrete line source element;θ

is the angle between the normal to the discrete surface element and the line of lengthr; andξ is the
angle between the normal to the discrete line source element and the line of lengthr. Figure 4 is a
pictorial representation of the model for deposition.

ξ

θ

r

n

Discretized line source

Discretized grains

FIG. 4. Representation for our complete
model.

φ < 0 ψ< 0

φ,ψ > 0

Discretized line source

Discretized grains

P

L

S S

g

k
h

ghL gk

FIG. 5. Depiction of visibility calculation.Sh is visible,
sinceφ,ψ > 0 for all of Lgh. Sk is not visible, since
φ < 0 whereLgk passes through the left grain.

We will be simulating deposition with the level set method. This implementation is advantageous
because the value of the level set function at each point in the domain determines whether a point is
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inside or outside of the grain. In Figure 5, we denoteφ,ψ < 0 as inside of the grains andφ,ψ > 0
as outside of the grains. The following is an algorithm for visibility in general and for the two cases
shown in Figure 5:

1. Discretize the line source intoi different point sources,Pi . Consider the point sourcePg.
2. Discretize both grains into points such that a point is found where the interface crosses the mesh.

Makej segments,Sj , such that a segment consists of neighboring points. Consider two segments
Sh andSk.

3. Make a line,Lij , fromPi to the midpoint ofSj . Consider the two linesLgh andLgk.
4. DiscretizeLij intoN points. At each discretized point, check the sign ofφ andψ .
5. If φ,ψ > 0 for all points on the discretized line, thenSj is visible fromPi . Notice that all points

onLgh haveφ,ψ > 0, soSh is visible fromPg.
If φ < 0 orψ < 0 at a single point on the discretized line, thenSj is not visible fromPi . Notice
thatLgk has a portion whereφ < 0, soSk is not visible fromPg.

6. Repeat steps 3–5 for all points onPi andSj .

This algorithm requiresNKL computations per deposition step, whereK is the number of
edge segments andL is the number of source segments. Therefore, the deposition process is also
computationally expensive. However, using the level set method increases computational efficiency.
Rather than discretizing the line and checking many unnecessary points, recall that the level set
function at a given point provides the distance to the interface. This feature of the level set method
allows much larger steps in the visibility calculation for deposition. In the following computations,
a combination of both methods will be implemented. We take one fairly large step based on the level
set value and then use the aforementioned algorithm as we approach the interface.

3.6 Algorithm

In this paper, we use the marker particle method to handle the surface diffusion process in which
little, if any, merging occurs. We use the level set method to handle the deposition process in which
merging and visibility calculations occur.

One concern of using two different representations of the interface is artificial diffusion, which
is caused by using the level set method to find the front. This concern is addressed by using a higher
order method for subgrid resolution of the level set function found in [10].

The marker particle time step restriction for surface diffusion isO(∆t/∆x4) because of the
fourth-order derivative, but the deposition time step can be much larger. Due to this difference
in time steps, we use a split step approach in which we evolve the grain in the marker particle
scheme for many steps between each deposition step, thus reducing the number of times that we
need to alternate between the two methods. Recall that the computational cost for visibility is quite
substantial. However, since the time step restriction for deposition can be much larger, there is an
opportunity to balance the computational cost with the size of the time step. This procedure helps
to minimize the artificial diffusion caused by using two different methods.

Our algorithm for the deposition and annealing problem is as follows:

1. Initialize the level set function for each grain,Ωi(t).
2. Advance by deposition (1) in the level set method with time step∆t , Ωi+1(t) = Ωi(t) +

∆tFdeposition.
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3. Create a marker particle representation of the zero contour of the level set function and advance
by anisotropic surface diffusion (3) usingN steps with the time step∆t/N ,Ωi+1(t) = Ωi(t)+

∆tFsd .
4. Convert the marker particle representation back into a level set function.
5. Go to step 2.

When solving the level set equation, we are using a first-order implementation. Likewise, we are
using a first-order method for the marker particle method. Overall, the numerical scheme, including
the computation of the contact angle, is first-order accurate.

While we are able to demonstrate first-order convergence, one potential issue regarding the
accuracy of this method concerns the relative accuracy of the bicubic interpolation compared to the
motion due to surface diffusion. To verify that the results we obtain are due to surface diffusion,
and not numerical diffusion from reinitialization, we performed a numerical experiment. Begin
with a circle and evolve the surface by straight surface diffusion and by surface diffusion with
periodic transfers to a level set mesh, and then back to the marker particle representation. The
number of transfers back and forth is chosen to be proportional to what is done in the full algorithm.
Figure 6 shows the results of this calculation and how the periodic use of reinitializations does
not significantly impact the motion. It is worth noting that these results can degrade some in the
case where orders of magnitude more reinitializations are used. In terms of our results, this would
correspond to very low temperature cases, where the diffusion rates are significantly smaller than
those that we explored.

We should also note that this algorithm is easily extended to fully three-dimensional
computations. The primary difficulties in extending this method to higher dimensions are possible
topology changes occurring in the marker particle framework, and the cost of the deposition
calculation. The first difficulty is not of concern because the topology changes are handled by the
level set method through the operator splitting. The second difficulty is strictly computational cost
and not an algorithmic challenge.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
surface diffusion only
surf. diff. with transfers

FIG. 6. Comparison between simple surface diffusion and surface diffusion with periodic reinitializations.
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4. Results

In the discussion that follows, we present some results about single and multiple grain growth under
the effects of surface diffusion, the deposition process, temperature and contact angle. For the rest
of this section we will refer to angles according to Figure 7. We denote byα〈111〉 andα〈100〉 the
angles at the top of the〈111〉 and〈100〉 grains, respectively, and byθc the contact angle.

θc α
<100>

α
<111>

FIG. 7. Depiction of angle terminology.

The case of contiguous grains with different anisotropy has a critical importance in grain growth
modeling. A realistic two-dimensional representation is a combination of contiguous grains with
different orientations. Considering two grains with different orientations, we can accurately check
the validity of our periodic boundary approach. We make the simulation periodic in the direction
parallel to the width of the grain. This periodicity allows the line source to deposit through the
boundary of the domain, producing an infinite line source with an infinite number of grains.

To be useful for grain and device simulations, our model must give valuable results consistent
with experimental data from the annealing and deposition processes. The crux of the modeling is
to look at the influence that temperature, contact angle, deposition and surface diffusion have on
grain growth. The two most important cases are high temperature, which occurs at approximately
T = 700 K, and low temperature, which occurs at approximately room temperature orT = 300 K.
All of the following simulations have a computational domain that is approximately 4 nm in width
and 3 nm in height.

Consider the effect that temperature has on diffusivity. Recall that we modeled diffusivity as

D(θ) = D0(θ)e
−

0.985−.035 cos(2θ)
kB ·T nm2/s (22)

whereD0 = (2.52+ 2.48 cos(2θ)) · 1012.
The curves for diffusivity as a function of the angleθ have the same shape, but an important

difference between the high temperature case and low temperature case is the value of the diffusivity.
WhenT = 700 K, diffusivity is on the order of 105 nm2/s whereas whenT = 300 K, diffusivity is
on the order of 10−4 nm2/s. Since the deposition rate is relatively similar in both situations, one can
clearly see that whenT = 700 K, diffusion dominates, while atT = 300 K deposition dominates.

Now that we have identified the key distinction between high and low temperature experiments,
we will examine the numerical simulations. We will also examine the viability of our model to
reproduce the desired texture competition.

We will consider two different initial conditions: the first will be equal initial conditions, i.e.
α〈111〉 = α〈100〉 = 135◦, and the second will represent the more physically relevant alignment by
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initializing the orientations to be small perturbations of their desired orientations. A series of results
representing the aforementioned cases can be seen in Figures 8 and 9, respectively. We will begin
our analysis by examining the extremal temperature cases while varying the contact angle.

(a)

〈 100 〉〈 111 〉 〈  111 〉

(b)

(c) (d)

(e) (f)

FIG. 8. Evolution of grain growth forθc = 2π/3 andT = 300 K with equal initial conditions for each grain.

(a)

〈 100 〉〈 111 〉 〈  111 〉

(b)

(c) (d)

(e) (f)

FIG. 9. Evolution of grain growth forθc = 2π/3 andT = 300 K with initial conditions that are small perturbations of the
desired orientations for each grain.
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We first examineT = 300 K where deposition dominates. Recall that at low temperatures, the
〈111〉 orientation should dominate, and the resulting growth should be columnar. Dominance of the
〈111〉 orientation is demonstrated by greater height and area than the〈100〉 orientation.

Examining the results from Figures 10 and 11, we see very similar behavior between the two
figures. Regardless of the initial configuration of the grains, the results withθc = 120◦ reproduce
the expected experimental results. The larger contact angle allows for more deposition at the grain
boundaries which produces〈111〉 dominance.
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(a) θc = π/3
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(b) θc = π/2
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(c) θc = 2π/3

FIG. 10. Dark grain represents〈111〉, light grain rep-
resents〈100〉, T = 300 K, α〈111〉 = α〈100〉 = 135◦,
varyingθc.
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(b) θc = π/2
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(c) θc = 2π/3

FIG. 11. Dark grain represents〈111〉, light grain repre-
sents〈100〉, T = 300 K,α〈111〉 = 100◦, α〈100〉 = 160◦,
varyingθc.
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(a) θc = π/3
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(b) θc = π/2
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(c) θc = 2π/3

FIG. 12. Dark grain represents〈111〉, light grain rep-
resents〈100〉, T = 700 K, α〈111〉 = α〈100〉 = 135◦,
varyingθc.
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(a) θc = π/3
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(b) θc = π/2
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(c) θc = 2π/3

FIG. 13. Dark grain represents〈111〉, light grain repre-
sents〈100〉, T = 700 K,α〈111〉 = 100◦, α〈100〉 = 160◦,
varyingθc.

Next, we examineT = 700 K, where diffusion dominates. We expect that the〈100〉 grain will
dominate. Recall that this dominance is signified by a greater height and mass of the evolving grain.

In Figures 12 and 13, we notice that the larger contact angles once again produce the most
experimentally agreeable results. Once again this result is due to the influence of material deposited
at the grain boundaries. In the high temperature case, the〈111〉 grain displays faceting. Since
anisotropic surface diffusion is the dominant component, material is pushed to the top of the grain
rather than allowing the〈111〉 grain to take over the〈100〉 grain. The aforementioned physical
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FIG. 14. Plot of ratio of areasA(〈100〉)/A(〈111〉) versus temperature.
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FIG. 15. Plot of ratio of areasA(〈100〉)/A(〈111〉) versus contact angle.

explanation for faceting is often seen in experiments, but is usually difficult to reproduce in
simulations.

The results for different contact angles and different temperatures are summarized in Figures
14 and 15 where the ratio of area for〈100〉 to 〈111〉, denoted asA(〈100〉)/A(〈111〉), is plotted
for different temperatures and contact angles. Recall that in order for an orientation to dominate it
must have greater mass and height than the other orientation. Figure 14 shows that onlyα = 2π/3
has a point withA(〈111〉) > A(〈100〉); note that we plot data from the temperaturesT = 300 K,
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T = 600 K, andT = 700 K. Recall that greater area is not the only factor that displays dominance;
for instance, from Figure 14 it appears that all contact angles are viable forT = 700 K. However,
examining Figure 12 shows that onlyα = 2π/3 has greater height along with greater area. Recall
that height is extremely important due to the influence of the 1/r2 term in the model for deposition.

Therefore, a related result is a more accurate understanding of the contact angle in grain growth.
In [21] a contact angle of approximately 125◦ is given for an iron-indium system, while a contact
angle of less than 90◦ is used for the indium particles embedded in an aluminum matrix. There
is quite a disparity between these two results, so we propose that our model provides information
about the impact of the contact angle on grain growth for aluminum deposited on silicon. A goal of
future research is to use the present model to determine the grain evolution for different materials
and numerous orientations.

Although we developed our model with surface diffusion and deposition as the two main driving
forces in thin film deposition, the contact angle may be added as a third important factor. The
contact angle has a large influence on the final shape of the grain and has the most influence in the
deposition step. As mentioned earlier, there will be less visibility at the intersection of the grains
with smaller contact angles, leading to less vertical growth. However, for larger contact angles there
is more visibility near the intersection of the grains, leading to more deposition. A project of further
research is to incorporate temperature into the model for the contact angle.

5. Conclusions

We have developed a model of multigrain thin film growth that incorporates the physically relevant
parameters of orientation, surface diffusion, deposition, contact angle and temperature. In so doing,
we were able to duplicate the texture competition found in experiments, while showing that the
aforementioned parameters are important components for thin film growth. Having developed a
robust numerical method, we are now able to extend this framework to encompass more orientations
and many more grains.

We used a marker particle method to simulate anisotropic surface diffusion and the level set
method to simulate deposition. Due to the nature of the experiment, in which the deposited material
wets the substrate, we also accounted for a contact angle between the grains. The contact angle is
critical to the behavior of the overall grain structure. In fact, for aluminum deposited on silicon,
higher contact angles were more consistent with experimental observations.

The present model confirms the proposed dependence of grain growth on temperature. In the
high temperature case withT = 700 K, the〈100〉 orientation dominates. In the low temperature
case withT = 300 K, the〈111〉 orientation dominates. Even though our two-dimensional model is
a simplification of a three-dimensional problem, the simulations are able to duplicate experimental
results.
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