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Global existence of solutions for a free boundary problem modeling the
growth of necrotic tumors
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In this paper we study a free boundary problem for a reaction-diffusion equation modeling the growth
of necrotic tumors. We first reduce this problem into an equivalent initial boundary value problem
for a nonlinear parabolic equation on a fixed domain. This parabolic equation is strongly singular in
the sense that not only it contains a discontinuous nonlinear function of the unknown function, but
also all its coefficients are discontinuous nonlinear functionals of the unknown function. We use the
approximation method and the Schauder fixed point theorem combined withLp estimates to prove
the existence of a global solution.
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1. Introduction

Recent development on mathematical modeling of tumor growth has introduced many new
interesting free boundary problems for partial differential equations [1, 4–6, 15–21]. These free
boundary problems are very diversified: Some of them involve only reaction-diffusion equations but
possibly with more than one free boundaries [1, 4–6, 15, 16, 19], others involve not only reaction-
diffusion equations but also first order hyperbolic equations [17, 18, 20, 21]. Rigorous mathematical
analysis of such free boundary problems has drawn great interest, and many interesting results have
been established [2, 3, 7–14].

In this paper we study the following free boundary problem modeling the growth of spherically
symmetric necrotic tumors:

σt (|x|, t) = D4σ(|x|, t) − λNLσ(|x|, t)H(σ(|x|, t) − σD), |x| < R(t), t > 0, (1.1)

σ(R(t), t) = σS, t > 0, (1.2)

d

dt

(
4

3
πR3(t)

)
= µNL

∫
σ(|x|,t)>σD

(σ (|x|, t) − σD) dx

− νND

∫
σ(|x|,t)>σD

dx − νN

∫
σ(|x|,t)6σD

dx, (1.3)

σ(|x|, 0) = σ0(|x|), |x| 6 R0, (1.4)

R(0) = R0. (1.5)
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Hereσ(|x|, t) is the concentration of nutrient which is regarded as a one-species chemical material,
R(t) is the radius of the tumor at timet , D is the diffusion coefficient,4 is the Laplacian,λ is the
consumption rate coefficient of nutrient for live tumor cells,NL is the density of live tumor cells,
H is the Heaviside function:H(s) = 1 for s > 0 andH(s) = 0 for s 6 0, σS is a positive constant
representing the constant supply of nutrient that the tumor receives from its surface,µ is the mitosis
rate coefficient of live tumor cells when the nutrient concentration is at the levelσ − σD, σD is a
positive constant representing the threshold value such that in the region whereσ 6 σD all tumor
cells are dead and only in the region whereσ > σD tumor cells can be alive,ND is the density
of dead cells,ν is the dissolution rate of dead cells,N is the density of all (live and dead) tumor
cells, andσ0(|x|) andR0 are the initial data ofσ andR, respectively. We assume that the tumor is
well-packed with cells such that the density of cells (regardless of whether they are alive or dead) is
everywhere equal, so that

ND + NL = N, (1.6)

and the chemicals dissolved from the dead cells diffuse into the solution in which the tumor is
cultivated. The constantND reflects the constant cell death rate due to apoptosis. It is natural to
assume that

0 6 σ0(|x|) 6 σS for |x| 6 R0, and σ0(R0) = σS . (1.7)

The above model is in essence a combination of the two tumor growth models proposed by
Byrne and Chaplain: in [4] for non-necrotic tumors and in [5] for necrotic tumors, but here the effects
of inhibitors and vascular networks have been neglected. Indeed, in the case thatσ(|x|, t) > σD for
all |x| 6 R(t) and allt > 0, we haveH(σD(|x|, t) − σD) ≡ 1, so that (1.1)–(1.5) reduces to the
model of Byrne and Chaplain [4] in the inhibitor-free and avascular situation, and in the opposite
case it is a reformulation of the model of Byrne and Chaplain [6], also in the inhibitor-free and
avascular situation.

In the general case the problem (1.1)–(1.5) containstwo free boundaries: the outer tumor surface
|x| = R(t) and the inner interface between the necrotic core{x : σ(|x|, t) 6 σD} and the live shell
{x : σ(|x|, t) > σD}, and the two free boundaries are oftwo different types: the tumor surface
|x| = R(t) is of Stefan (evolutionary) type while the inner interface is of obstacle (stationary or
non-evolutionary) type. It turns out that rigorous mathematical treatment of this problem is hard.

In [9] the author and A. Friedman made a partial analysis of the problem (1.1)–(1.5). It was
proved that under certain sufficient conditions this problem has a unique stationary solution and,
when the initial data belong to a small neighborhood of the stationary solution and satisfy some
other very rigid conditions, it has a unique global classical solution which tends to the stationary
solution ast → ∞.

In this work we shall prove that the problem (1.1)–(1.5) has a solution for allt > 0 under the
conditions (1.7) and

σ0 ∈ W2,∞(0, R0) and σ ′

0(0) = 0. (1.8)

HereW2,∞(0, R0) = {ϕ ∈ L∞(0, R0) : ϕ′, ϕ′′
∈ L∞(0, R0)}. Clearly, this result greatly improves

the existence result of [9]. The idea we use to obtain this result is different from that of [9]. Indeed,
the argument of [9] is as follows: For a givenT > 0, we first assumeR = R(t) (0 6 t 6 T ) to
be given, and solve the problem (1.1), (1.2) and (1.4) to findσ = σ(|x|, t). Then we substitute this
σ(|x|, t) into (1.3), and solve (1.3) and (1.5) to get a newR = R(t). By using the Banach fixed point
theorem we then get a solution(σ, R) for smallT . For that argument we need a delicate analysis of
regularity of the solution of the problem (1.1), (1.2) and (1.4) (for givenR = R(t)), which is hard
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and quite restricted (i.e., the initial data have to satisfy some very rigid conditions). The method we
use in the present work is much simpler, and can be explained as follows: Letr = |x| and introduce
a new variablez = r/R(t). Then the time-dependent unknown interval [0, R(t)] is transformed into
the fixed interval [0, 1], and the free boundary problem (1.1)–(1.5) is transformed into an initial
boundary value problem on the fixed domain [0, 1] for the new unknownsv(z, t) = σ(zR(t), t)

andR(t). In the transformed problemR(t) can be found in terms ofv (as one can observe from
the equation (1.3)), so that the equation forv(z, t) can be decoupled. The decoupled equation for
v(z, t) is a nonlinear parabolic equation which is strongly singular in the sense that, apart from
the discontinuous nonlinear termvH(v − σD) inherited from the equation (1.1), its coefficients
are discontinuous nonlinear functionals in(v, t). We shall use the approximation method and the
Schauder fixed point theorem combined withLp estimates to solve this equation.

As we pointed out earlier, the effect of inhibitors in the present model is neglected. This is
merely for the purpose of simplicity of the statement. The argument presented in this paper can
be easily modified to get similar results for tumor models with the effect of inhibitors taken into
account.

In the following section we shall show how to reduce the problem (1.1)–(1.5) to a scalar
parabolic equation involving discontinuous terms. In §3 we shall approximate this equation with
a smooth equation, and use the Schauder fixed point theorem andLp estimates to prove that
the approximation problem has a unique global solution. In §4 we useLp estimates and weak
convergence to prove that the problem (1.1)–(1.5) has a solution under conditions (1.7) and (1.8).

2. Reduction of the problem

For simplicity of notation, we rescale the space variable so that

λNL

D
= 1. (2.1)

Then the problem (1.1)–(1.5) can be reformulated as follows:

cσt = 4rσ(r, t) − σ(r, t)H(σ(r, t) − σD), 0 < r < R(t), t > 0, (2.2)

σr(0, t) = 0, σ (R(t), t) = σS, t > 0, (2.3)

Ṙ(t) =
µ̄

R2(t)

{ ∫
σ(r,t)>σD

(σ (r, t) − σ̃ )r2 dr − ν̄

∫
σ(r,t)6σD

r2 dr

}
, t > 0, (2.4)

σ(r, t) = σ0(r), 0 6 r 6 R0, (2.5)

R(0) = R0, (2.6)

where

4rσ =
1

r2

∂

∂r

(
r2∂σ

∂r

)
,

and

c =
1

D
, µ̄ = µNL, σ̃ = σD +

νND

µNL

, ν̄ =
νN

µNL

. (2.7)

We shall always assume that the conditions (1.7) and (1.8) are satisfied.
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It is clear that ifσS 6 σD thenσ(|x|, t) 6 σD for all 0 6 r 6 R(t) andt > 0, so thatR(t) =

R0e
−νNt/3, andσ(r, t) = σS . Biologically, this means that no place of the tumor has enough nutrient

to sustain cells alive, so that the tumor contains only dead cells which are decreasing in amount due
to dissolution, and finally the tumor will disappear. This trivial situation is not interesting. Later on
we always assume that

σS > σD, (2.8)

and will not repeat this assumption. Biologically, (2.8) implies that at least in the near-surface region
there is sufficient nutrient to sustain tumor cells alive. Thus we can expect that the tumor will always
exist.

We introduce a transformation of variables(r, t, σ, R) 7→ (z, t, v, R) as follows:

z =
r

R(t)
, t = t, v(z, t) = σ(zR(t), t), R(t) = R(t). (2.9)

One can easily verify that, under this transformation of variables, the problem (2.1)–(2.6) is
transformed into the following problem:

cvt =
1

R2(t)
4zv + c

Ṙ(t)

R(t)
· zvz − vH(v − σD), 0 < z < 1, t > 0, (2.10)

vz(0, t) = 0, v(1, t) = σS, t > 0, (2.11)

Ṙ(t) = µ̄R(t)

{ ∫
v(z,t)>σD

(v(z, t) − σ̃ )z2 dz − ν̄

∫
v(z,t)6σD

z2 dz

}
, t > 0, (2.12)

v(z, 0) = v0(z) ≡ σ0(zR0), 0 6 z 6 1, (2.13)

R(0) = R0. (2.14)

For a givenT > 0, we denote byXT the function spaceC([0, 1] × [0, T ]) endowed with the
maximum norm‖v‖ = max[0,1]×[0,T ] |v(z, t)|, and denote byF the functional onXT × [0, T ]
defined by

F(v, t) = µ̄

{ ∫
v(z,t)>σD

(v(z, t) − σ̃ )z2 dz − ν̄

∫
v(z,t)6σD

z2 dz

}
. (2.15)

Then the equation (2.12) can be rewritten as

Ṙ(t) = R(t)F (v, t), t > 0. (2.16)

It follows thatR(t) can be expressed in terms ofv by

R(t) = R0 exp

(∫ t

0
F(v, τ ) dτ

)
, t > 0. (2.17)

Substituting this expression and (2.16) into the equation (2.10), we get a scalar equation forv:

cvt = R−2
0 exp

(
−2

∫ t

0
F(v, τ ) dτ

)
4zv

+ cF (v, t)zvz − vH(v − σD), 0 < z < 1, t > 0. (2.18)

Hence, the problem (2.1)–(2.6) reduces to the problem (2.11), (2.13), (2.15) and (2.18).
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The functionalF(v, t) is not continuous inv. Indeed, if we denote byw the function inXT :

w(z, t) =

σD for 0 6 z 6 a, 0 6 t 6 T ,

σD +
z − a

1 − a
(σS − σD) for a < z 6 1, 0 6 t 6 T ,

where 0< a < 1, and setvε = w + ε(σs − w) (ε > 0), then clearly

lim
ε→0

vε = w, but lim
ε→0

F(vε, t) = F(w, t) +
1

3
µ̄a3(σD − σ̃ + ν̄) 6= F(w, t).

Recallingv0(z) = σ0(zR0) (see (2.13)), we see, by the conditions (1.7) and (1.8), that

v0 ∈ W2,∞(0, 1), 0 6 v0(z) 6 σS for 0 6 z 6 1, v′

0(0) = 0, v0(1) = σS . (2.19)

3. The approximation problem

Since the equation (2.18) contains discontinuous terms, it is singular. In this section we shall
approximate it with smooth equations.

First, we note that the functionalF can be rewritten as follows:

F(v, t) = µ̄

{ ∫ 1

0
(v(z, t) − σ̃ )H(v(z, t) − σD)z2 dz − ν̄

∫ 1

0
(1 − H(v(z, t) − σD))z2 dz

}
. (3.1)

For each sufficiently smallε > 0, we denote byHε the function onR defined by

Hε(s) =

1 for s > ε,

s/ε for 0 < s < ε,

0 for s 6 0.

Clearly,Hε is a Lipschitz continuous function:

|Hε(s) − Hε(t)| 6 ε−1
|s − t |, ∀s, t ∈ R.

We define

Fε(v, t) = µ̄

{ ∫ 1

0
(v(z, t) − σ̃ )Hε(v(z, t) − σD)z2 dz

− ν̄

∫ 1

0
(1 − Hε(v(z, t) − σD))z2 dz

}
, (3.2)

and consider the problem

cvt = R−2
0 exp

(
−2

∫ t

0
Fε(v, τ )dτ

)
4zv

+ cFε(v, t)zvz − vHε(v − σD) for 0 < z < 1, t > 0, (3.3)

vz(0, t) = 0, v(1, t) = σS for t > 0, (3.4)

v(z, 0) = v0(z) for 0 6 z 6 1. (3.5)
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In what follows we use the notation:

B1(0) = {y ∈ R3 : |y| < 1}, QT = B1(0) × (0, T ),

W2,1
p (QT ) = {v ∈ Lp(QT ) : ∇v, ∇2v, vt ∈ Lp(QT )} (1 6 p 6 ∞).

Here and hereafter∇v and∇
2v respectively represent the divergence vector and the Hessian matrix

of v in space variables.

LEMMA 3.1 Under the condition (2.19), for anyT > 0 the problem (3.3)–(3.5) has a unique
solutionv = vε on [0, 1] × [0, T ], with the following properties:

(i) The functionvε(|y|, t) belongs toW2,1
p (QT ) for any 1 < p < ∞, andvε(z, t) satisfies the

equation for a.e.(z, t) ∈ [0, 1] × [0, T ]. Moreover, for anyε > 0,

‖vε(|y|, t)‖
W

2,1
p (QT )

6 C(T , p, ‖v0‖W2,∞(0,1)), (3.6)

whereC(T , p, ‖v0‖W2,∞(0,1)) is a constant independent ofε.
(ii) For everyε > 0,

0 6 vε(z, t) 6 σS for 0 6 z 6 1, 0 6 t 6 T . (3.7)

If in additionv′

0(z) > 0 then alsovεz(z, t) > 0.

Proof. Let XT be as before, i.e.,XT = C([0, 1] × [0, T ]) endowed with the maximum norm
‖v‖ = max[0,1]×[0,T ] |v(z, t)|. We define a mappingS : XT → XT as follows: For anyv ∈ XT , let
ṽ = ṽ(y, t) ((y, t) ∈ Q̄T ) be the solution of the problem

cṽt = R−2
0 exp

(
−2

∫ t

0
Fε(v, τ ) dτ

)
4ṽ

+ cFε(v, t)(y · ∇ṽ) − Hε(v(|y|, t) − σD)ṽ on QT , (3.8)

ṽ(y, t) = σS for |y| = 1, t > 0, (3.9)

ṽ(y, 0) = v0(|y|) for |y| 6 1. (3.10)

ṽ is well defined. Indeed, it is clear that all coefficients in the equation (3.8) are bounded continuous
functions, and the coefficient of4ṽ has a positive lower bound. Hence, using theLp theory for
linear parabolic equations we see that the above problem has a unique solutionṽ defined onQT ,
such that for any 1< p < ∞, ṽ ∈ W

2,1
p (QT ), i.e.,

ṽ, ∇ṽ, ∇2ṽ, ṽt ∈ Lp(QT ).

We take in particularp > 5/2. Then by the embeddingW2,1
p (QT ) ↪→ C(Q̄T ) (p > 5/2), we

see that̃v ∈ C(Q̄T ). Moreover, since the boundary and initial data are spherically symmetric, by
uniqueness we infer that̃v(y, t) is also spherically symmetric iny, so thatṽ(y, t) = ṽ(|y|, t). In
this way we get a functioñv = ṽ(z, t) defined for(z, t) ∈ [0, 1] × [0, T ], belonging toXT . We
defineS(v) = ṽ.

Next we prove that for every bounded subsetE ⊂ XT , S(E) is precompact inXT . In fact, it is
clear that

|Fε(v, t)| 6 C(‖v‖) for all v ∈ XT , t ∈ [0, T ], (3.11)



GROWTH OF NECROTIC TUMORS 153

whereC(‖v‖) represents a constant depending only on‖v‖ = max[0,1]×[0,T ] |v(z, t)| (independent
of ε andT ). This further implies that

e−2T C(‖v‖) 6 exp

(
−2

∫ t

0
Fε(v, τ ) dτ

)
6 e2T C(‖v‖) for v ∈ XT , t ∈ [0, T ], (3.12)

and∣∣∣∣ exp

(
−2

∫ t

0
Fε(v, τ ) dτ

)
− exp

(
−2

∫ t ′

0
Fε(v, τ ) dτ

)∣∣∣∣
6 C(‖v‖, T )|t − t ′| for v ∈ XT , t ∈ [0, T ]. (3.13)

Since also
0 6 Hε(v(|y|, t) − σD) 6 1 for y ∈ B̄1(0), t ∈ [0, T ], (3.14)

by standardLp estimates for linear parabolic equations we conclude that for any 1< p < ∞ there
exists a constantC(‖v‖, T , p) such that

‖ṽ(|y|, t)‖
W

2,1
p (QT )

6 C(‖v‖, T , p)(σS + ‖v0‖W2,∞(0,1)). (3.15)

By this estimate and the compact embedding ofW
2,1
p (QT ) into C(Q̄T ) whenp > 5/2, we conclude

that if E ⊂ XT is bounded inXT then S(E) is precompact inXT . Further, by the maximum
principle it is clear that

0 6 ṽ(z, t) 6 σS for 0 6 z 6 1, 0 6 t 6 T . (3.16)

We now prove thatS is continuous. Letv1, v2 ∈ XT and defineṽ1 = S(v1), ṽ2 = S(v2),
w = ṽ1 − ṽ2. Thenw = w(|y|, t) satisfies

cwt = R−2
0 exp

(
−2

∫ t

0
Fε(v1, τ ) dτ

)
4w + cFε(v1, t)(y · ∇w)

− Hε(v1(|y|, t) − σD)w + f (y, t) for |y| < 1, 0 < t 6 T , (3.17)

w(y, t) = 0 for |y| = 1, 0 6 t 6 T , (3.18)

w(y, 0) = 0 for |y| 6 1, (3.19)

where

f (y, t) = R−2
0

{
exp

(
−2

∫ t

0
Fε(v1, τ ) dτ

)
− exp

(
−2

∫ t

0
Fε(v2, τ ) dτ

)}
4ṽ2

+ c(Fε(v1, t) − Fε(v2, t))(y · ∇ṽ2)

− (Hε(v1(|y|, t) − σD) − Hε(v2(|y|, t) − σD))ṽ2. (3.20)

By theLp estimate and (3.11)–(3.14) we have, for any 1< p < ∞,

‖w(y, t)‖
W

2,1
p (QT )

6 C(‖v1‖, T , p)‖f ‖Lp(QT ). (3.21)

Using Lipschitz continuity ofHε and (3.15) one can easily verify that

‖f ‖Lp(QT ) 6 C(ε, ‖v2‖, T , p)‖v1 − v2‖.
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Substituting this estimate into (3.21) and using the embedding inequality forW
2,1
p (QT ) ↪→ C(QT )

whenp > 5/2 we get

‖ṽ2 − ṽ1‖ 6 C(T , p)‖w‖
W

2,1
p (QT )

6 C(ε, ‖v1‖, ‖v2‖, T , p)‖v1 − v2‖.

Hence,S is continuous.
Now letE = {v ∈ XT : 0 6 v(z, t) 6 σS for 0 6 z 6 1, 0 6 t 6 T }. Then by (3.16),S maps

E into itself. It follows by the Schauder fixed point theorem thatS has a fixed point inE. Since it
is clear that a fixed point ofS is a solution of the problem (3.3)–(3.5), we have thus proved that this
problem has a solution. Moreover, since any solution of (3.3)–(3.5) is a fixed point ofS, by (3.15)
and (3.16), any solutionv = vε of (3.3)–(3.5) satisfies

‖vε(|y|, t)‖
W

2,1
p (QT )

6 C(T , p)(σS + ‖v0‖W2,∞(0,1)), (3.22)

for any 1< p < ∞. We note that the constantC(T , p) is independent ofε. Hence (3.6) holds.
Next we prove the uniqueness. Letv1 andv2 be two solutions of the problem (3.3)–(3.5) and

definew = v1 − v2. Thenw = w(|y|, t) satisfies

cwt = R−2
0 exp

(
−2

∫ t

0
Fε(v1, τ ) dτ

)
4w + cFε(v1, t)(y · ∇w)

− {Hε(v1(|y|, t) − σD)v1 − Hε(v2(|y|, t) − σD)v2} + g(y, t), |y| < 1, t > 0, (3.23)

w(y, t) = 0, |y| = 1, t > 0, (3.24)

w(y, 0) = 0, |y| 6 1, (3.25)

where

g(y, t) =

{
exp

(
−2

∫ t

0
Fε(v1, τ ) dτ

)
− exp

(
−2

∫ t

0
Fε(v2, τ ) dτ

)}
4v2(|y|, t)

+ c(Fε(v1, t) − Fε(v2, t))(y · ∇v2(|y|, t)). (3.26)

Multiplying (3.23) withw and integrating iny overB1(0) we get

c

2

d

dt

∫
B1(0)

|w(|y|, t)|2 dy 6 −R−2
0 exp

(
−2

∫ t

0
Fε(v1, τ ) dτ

) ∫
B1(0)

|∇w(|y|, t)|2 dy

+ cFε(v1, t)

∫
B1(0)

(y · ∇w(|y|, t))w(|y|, t) dy

+

∫
B1(0)

g(y, t)w(|y|, t) dy. (3.27)

Since ∫
B1(0)

(y · ∇w(|y|, t))w(|y|, t) dy = −
3

2

∫
B1(0)

|w(|y|, t)|2 dy,
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integrating (3.27) int over [0, t ] for any t ∈ (0, T ) and using (3.11) and (3.12) we get∫
B1(0)

|w(|y|, t)|2 dy 6 −C1(T )

∫ t

0

∫
B1(0)

|∇w(|y|, τ )|2 dy dτ

+ C2(T )

∫ t

0

∫
B1(0)

|w(|y|, τ )|2 dy dτ

+

∫ t

0

∫
B1(0)

g(y, τ )w(|y|, τ ) dy dτ. (3.28)

By Lipschitz continuity ofHε and boundedness ofv1 andv2, it is clear that

|Fε(v1, t) − Fε(v2, t)| 6 C(ε)

∫
B1(0)

|v1(|y|, t) − v2(|y|, t)| dy = C(ε)

∫
B1(0)

|w(|y|, t)| dy.

Hence∫ t

0

∫
B1(0)

g(y, τ )w(|y|, τ ) dy dτ

6 C(ε, T )

∫ t

0

{
|Fε(v1, τ ) − Fε(v2, τ )|

∫
B1(0)

|∇v2(|y|, τ ) · ∇w(|y|, τ )| dy

}
dτ

+ c

∫ t

0

{
|Fε(v1, τ ) − Fε(v2, τ )|

∫
B1(0)

|∇v2(|y|, τ )||w(|y|, τ )| dy

}
dτ

6 C(ε, T )

∫ t

0

{( ∫
B1(0)

|w(|y|, τ )| dy

)( ∫
B1(0)

|∇v2(|y|, τ )|(|∇w(|y|, τ )| + |w(|y|, τ )|) dy

)}
dτ

6 C(ε, T ) max
(y,t ′)∈QT

|∇v2(|y|, t ′)|

{
δ

∫ t

0

∫
B1(0)

|∇w(|y|, τ )|2 dy dτ

+ C(δ)

∫ t

0

∫
B1(0)

|w(|y|, τ )|2 dy dτ

}
, (3.29)

whereδ is a sufficiently small positive number andC(δ) is a constant depending onδ. Since for
p > 5 we have

max
QT

|∇v2(|y|, t)| 6 C(T , p)‖v2‖W
2,1
p (QT )

,

using (3.22) we get
max
QT

|∇v2(|y|, t)| 6 C(T ).

Hence, by takingδ sufficiently small we have∫ t

0

∫
B1(0)

g(y, τ )w(|y|, τ ) dy dτ 6
1

2
C1(T )

∫ t

0

∫
B1(0)

|∇w(|y|, τ )|2 dy dτ

+ C(ε, T )

∫ t

0

∫
B1(0)

|w(|y|, τ )|2 dy dτ.
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Substituting this estimate into (3.28) we obtain∫
B1(0)

|w(|y|, t)|2 dy 6 −
1

2
C1(T )

∫ t

0

∫
B1(0)

|∇w(|y|, τ )|2 dy dτ

+ C(ε, T )

∫ t

0

∫
B1(0)

|w(|y|, τ )|2 dy dτ.

By the Gronwall Lemma, this implies that∫
B1(0)

|w(|y|, t)|2 dy = 0 for all 0 6 t 6 T .

Hencew ≡ 0, orv1 ≡ v2. This proves the uniqueness.
Finally, the assertion thatv′

0(z) > 0 impliesvεz(z, t) > 0 follows from a similar argument to
that in [9]. 2

4. The main result and its proof

In this section we establish the main result. We first prove the following lemma:

LEMMA 4.1 Under the condition (2.19), for anyT > 0 the problem (2.11), (2.13), (2.15) and
(2.18) has a solutionv on [0, 1]× [0, T ], satisfying:v(|y|, t) ∈ W

2,1
p (QT ) for any 1< p < ∞, and

0 6 v(z, t) 6 σS for 0 6 z 6 1, 0 6 t 6 T . (4.1)

If in additionv′

0(z) > 0 then alsovz(z, t) > 0.

Proof. By Lemma 3.1, for everyε > 0 the problem (3.3)–(3.5) has a unique solutionvε = vε(z, t)

on [0, 1] × [0, T ], and it satisfies (3.6) and (3.7). Take a fixedp > 5. By (3.6) and the compact
embedding

W2,1
p (QT ) ↪→ Cα,α/2(Q̄T ) (0 < α < 2 − 5/p),

it follows that we can find a sequence of positive numbersεk → 0 (ask → ∞) and a function
v ∈ W

2,1
p (QT ) such that if we setvk = vεk

(k = 1, 2, . . . ) then

vk(|y|, t) → v(y, t), ∇vk(|y|, t) → ∇v(y, t) uniformly for (y, t) ∈ QT ,

∇
2vk(|y|, t) → ∇

2v(y, t), vkt (|y|, t) → vt (y, t) weakly inLp(QT ).
(4.2)

Since everyvk(|y|, t) is spherically symmetric iny, the limit v(y, t) is also spherically symmetric
in y, so thatv(y, t) = v(|y|, t). Furthermore, since for everyε > 0,

0 6 Hε(vε(|y|, t) − σD) 6 1 for (y, t) ∈ QT ,

by replacing{εk} with a suitable subsequence if necessary, we can further assume that

Hεk
(vk(|y|, t) − σD) → h(y, t) ∗-weakly inL∞(QT ), (4.3)

for someh ∈ L∞(QT ). Clearly,h(y, t) is also spherically symmetric iny, so that later on we write
h = h(|y|, t). We assert that

h(|y|, t) =

{
1 for a.e. (y, t) ∈ QT such thatv(|y|, t) > σD,

0 for a.e. (y, t) ∈ QT such thatv(|y|, t) < σD.
(4.4)
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Indeed, by (4.2) and (4.3) it is easy to verify that for anyδ > 0, h(|y|, t) = 1 for a.e.(y, t) in the
set{(y, t) ∈ QT : v(|y|, t) > σD + δ}. By the arbitrariness ofδ, we infer thath(|y|, t) = 1 for a.e.
(y, t) ∈ QT such thatv(|y|, t) > σD. Similarly we can prove thath(|y|, t) = 0 for a.e.(y, t) ∈ QT

such thatv(|y|, t) < σ . This proves the assertion. By (4.3) and (4.2) we also have

Fεk
(vk, t) → m(t) ∗-weakly inL∞[0, T ], (4.5)

where

m(t) = µ̄

{ ∫ 1

0
(v(z, t) − σ̃ )h(z, t)z2 dz − ν̄

∫ 1

0
(1 − h(z, t))z2 dz

}
. (4.6)

This further implies that

lim
k→∞

∫ t

0
Fεk

(vk, τ ) dτ =

∫ t

0
m(τ) dτ for anyt ∈ [0, T ]. (4.7)

Takingz = |y| andε = εk (correspondingly, replacingv with vk) in (3.3) and lettingk → ∞, we
see that

cvt = R−2
0 exp

(
−2

∫ t

0
m(τ) dτ

)
4v + cm(t)(y · ∇v) − vh onQT (4.8)

in distribution sense, hence also a.e. onQT , because all terms in this equation are locally integrable
functions. Since

vt = 0, ∇v = 0, 4v = 0 a.e. on the set{(y, t) ∈ QT : v(|y|, t) = σD},

by (4.8) it follows that

h = 0 a.e. on the set{(y, t) ∈ QT : v(|y|, t) = σD}.

Hence
h(|y|, t) = H(v(|y|, t) − σD) for a.e. (y, t) ∈ QT . (4.9)

By (4.6) we further infer that

m(t) = µ̄

{ ∫ 1

0
(v(z, t) − σ̃ )H(v(z, t) − σD)z2 dz − ν̄

∫ 1

0
(1 − H(v(z, t) − σD))z2 dz

}
(4.10)

for a.e.t ∈ [0, T ]. Substituting (4.10) into (4.8) we conclude thatv = v(z, t) is a solution of the
equation (2.18). Since by the uniform convergence ofvk and∇vk respectively tov and∇v it is clear
thatv satisfies (2.11) and (2.13), we see thatv solves the problem (2.18), (2.11) and (2.13). Finally,
by taking the weak limit in (3.6) and (3.7) we immediately get the other assertions of the lemma.2

By Lemma 4.1, we have the following main result of this paper:

THEOREM 4.2 Under the conditions (1.7) and (1.8), for anyT > 0 the problem (2.2)–(2.6) has a
solution(σ (r, t), R(t)) for all 0 6 t 6 T , satisfying: (i)R(t) ∈ C1−0[0, T ], andR(t) > 0 for all
t ∈ [0, T ]; (ii) σ(|x|, t) ∈ W

2,1
p (Q̃T ) for any 1< p < ∞, whereQ̃T = {(x, t) ∈ R3

× R : |x| <

R(t), 0 < t < T }, and

0 6 σ(r, t) 6 σS for 0 6 r 6 R(t), 0 6 t 6 T .

If in additionσ ′

0(r) > 0 then alsoσr(r, t) > 0.
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