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This paper concerns numerical approximations for the Cahn–Hilliard equationut + ∆(ε∆u −

ε−1f (u)) = 0 and its sharp interface limit asε ↘ 0, known as the Hele–Shaw problem. The
primary goal of this paper is to establish the convergence of the solution of the fully discrete
mixed finite element scheme proposed in [29] to the solution of the Hele–Shaw (Mullins–Sekerka)
problem, provided that the Hele–Shaw (Mullins–Sekerka) problem has a global (in time) classical
solution. This is accomplished by establishing some improved a priori solution and error estimates,
in particular, anL∞(L∞) error estimate, and making full use of the convergence result of [2]. The
cruxes of the analysis are to establish stability estimates for the discrete solutions, use a spectrum
estimate result of Alikakos and Fusco [3] and Chen [15], and establish a discrete counterpart of it for
a linearized Cahn–Hilliard operator to handle the nonlinear term.

Keywords: Cahn–Hilliard equation; Hele–Shaw (Mullins–Sekerka) problem; phase transition;
biharmonic problem; fully discrete mixed finite element method; Ciarlet–Raviart element.

1. Introduction

In [29] we proposed and analyzed a semi-discrete (in time) and a fully discrete mixed finite element
method for the Cahn–Hilliard equation:

ut +∆

(
ε∆u−

1

ε
f (u)

)
= 0 inΩT := Ω × J, J := (0, T ), (1.1)

∂u

∂n
=

∂

∂n

(
ε∆u−

1

ε
f (u)

)
= 0 in ∂ΩT := ∂Ω × J, (1.2)

u = uε0 in Ω × {0}, (1.3)

wheref (u) = F ′(u) andF is a double well potential. Note that the super-indexε on the solution
uε is suppressed for notational brevity. We established a priori solution estimates and optimal and
quasi-optimal error estimates underminimum regularity assumptionson the domainΩ ⊂ RN (N =

2,3) and the initial datum functionuε0. Special attention was given to the dependence of the error
bounds onε. It was shown that all the error bounds depend on 1/ε only in some low polynomial
order for smallε.
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In this paper, we are concerned with the second stage of the evolution of the concentration,
that is, the motion of the interface. We focus on approximating the Hele–Shaw (Mullins–Sekerka)
problem:

∆w = 0 inΩ \ Γt , t ∈ [0, T ], (1.4)

∂w

∂n
= 0 on∂Ω, t ∈ [0, T ], (1.5)

w = σκ onΓt , t ∈ [0, T ], (1.6)

V =
1

2

[
∂w

∂n

]
Γt

onΓt , t ∈ [0, T ], (1.7)

Γ0 = Γ00 whent = 0 (1.8)

via the Cahn–Hilliard equation asε ↘ 0. Here

σ =

∫ 1

−1

√
F(s)

2
ds,

andκ andV are, respectively, the mean curvature and the normal velocity of the interfaceΓt , n is
the unit outward normal to either∂Ω or Γt ,[

∂w

∂n

]
Γt

:=
∂w+

∂n
−
∂w−

∂n
,

andw+ andw− are respectively the restriction ofw toΩ+
t andΩ−

t , the exterior and interior ofΓt
in Ω (cf. [2, 29]). We remark that the orientation ofΓt is chosen such that the unit outward normal
n onΓt is pointing toΩ+

t .
Numerical approximations for the Cahn–Hilliard equation with afixedε have been studied by

several authors in the past fifteen years. Elliott and Zheng [24] analyzed a (continuous in time) semi-
discrete conforming finite element discretization in one space dimension. Numerical experiments
of the method in one space dimension were reported in [21]. Elliott and French [22] proposed
a (continuous in time) semi-discrete nonconforming finite element method based on the Morley
nonconforming finite element method [11, 17]. Optimal order error estimates were also established
for the nonconforming method under the assumption that the solution is smooth. Elliott, French
and Milner [23] proposed and analyzed a (continuous in time) semi-discrete splitting finite element
method (mixed finite element method) which approximates simultaneously the concentrationu and
the chemical potentialw. Optimal order error estimates were shown under the assumption that the
finite element approximationuh of the concentrationu is bounded inL∞. Later, Du and Nicolaides
[19] analyzed a fully discrete splitting finite element method in one space dimension under weaker
regularity assumptions on the solutionu of the Cahn–Hilliard equation, and established optimal
order error estimates by first proving the boundedness ofuh in L∞. Copetti and Elliott [18] consid-
ered the Cahn–Hilliard equation with a nonsmooth logarithmic potential function. A fully discrete
splitting finite element method was proposed and convergence of the method was also demonstrated.
In one space dimension, French and Jensen [30] analyzed the long time behavior of the (continuous
time) semi-discrete conforminghp-finite element approximations. Recently, extensive studies have
been carried out by Barrett and Blowey and others on the finite element approximations of the
Cahn–Hilliard system for multi-component alloys with constant or degenerate mobility; we refer
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to [5, 6, 7] and the references therein for detailed expositions. We like to emphasize that the results
cited above were established for the Cahn–Hilliard equation with afixed“interaction length”ε. No
special effort and attention were given to address issues such as how the mesh sizesh andk depend
on ε and how the error bounds depend onε. In fact, since all error estimates were derived using a
Gronwall inequality type argument at the end of the derivations, it is not hard to check that these
error bounds contain a factor exp(T /ε), which clearly is not very useful whenε → 0.

The main objective of this paper is to establish the convergence of the fully discrete mixed
finite element method proposed in [29] to the solution of the Hele–Shaw problem (1.4)–(1.8) as
h, k, ε → 0, provided that the Hele–Shaw problem has a global (in time) classical solution. To our
knowledge, such a numerical convergence result is not yet known in the literature for the Cahn–
Hilliard equation. We also note that the convergence of the Cahn–Hilliard equation to the Hele–
Shaw model was established in [2] under the same assumption.

To show convergence, we need to establish stronger error estimates, in particular, anL∞(J ;L∞)

estimate. We are able to obtain the desired error estimates by first proving some improved a priori
solution estimates, and then an improved discrete spectrum estimate under the assumption that the
Hele–Shaw problem admits a global (in time) classical solution. As in [29], the cruxes of the analysis
are to establish stability estimates for a discrete solution, use a spectrum estimate result of Alikakos
and Fusco [3] and Chen [15], and establish a discrete counterpart of it for a linearized Cahn–Hilliard
operator to handle the nonlinear term.

We also remark that parallel studies using a similar approach were also carried out by the authors
in [28, 27] for the Allen–Cahn equation and the related curvature driven flows, and for the classical
phase field model and the related Stefan problems, respectively. On the other hand, unlike the Allen–
Cahn equation which is anL2 gradient flow, the Cahn–Hilliard equation is anH−1 gradient flow;
this makes the analysis for the Cahn–Hilliard equation much more delicate and complicated than
that for the Allen–Cahn equation given in [28].

The paper is organized as follows: In Section 2, we shall derive some improved a priori estimates
for the solution of (1.1)–(1.3) under the condition that the Hele–Shaw problem has a global (in time)
classical solution. Special attention is given to dependence of the solution onε in various norms.
In Section 3, we analyze the fully discrete mixed finite element method proposed in [29] for the
Cahn–Hilliard equation, which consists of the backward Euler discretization in time and the lowest
order Ciarlet–Raviart mixed finite element (for the biharmonic operator) discretization in space.
Optimal and quasi-optimal error estimates in stronger norms, including theL∞(J ;L∞) norm, are
obtained for the fully discrete solution. It is shown that all the error bounds depend on 1/ε only
in low polynomial orders for smallε. Finally, Section 4 is devoted to establishing the convergence
of the fully discrete solution to the solution of the Hele–Shaw problem. Using theL∞(J ;L∞)

error estimate and the convergence result of [2], we show that the fully discrete numerical solution
converges to the solution (including the free boundary) of the Hele–Shaw problem, provided that
the latter admits a global (in time) classical solution.

This paper is a condensed and revised version of [26], where one can find more details, and
some additional results as well as helpful comments which could not be included here due to page
limitation.

2. Energy estimates for the differential problem

In this section, we derive some energy estimates in various function spaces up toL∞(J ;H 4(Ω))∩

H 1(J ;H 3(Ω)) in terms of negative powers ofε for the solutionu of the Cahn–Hilliard problem
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(1.1)–(1.3) for givenuε0 ∈ H 4(Ω). The basic estimates are derived under general (minimum)
regularities, while the improved estimates are established under the assumption that the Hele–
Shaw problem admits a global (in time) solution. Throughout this paper, we assume thatΩ ⊂ RN
(N = 2,3) is a bounded domain withsmoothboundary∂Ω. The standard notation is also adopted in
this paper (cf. [29]), in particular,∆−1 and∆−1/2 stand for the inverse Laplacian and its gradient.
For their detailed definitions, we refer to Section 2 of [29]. Again,C and C̃ are used to denote
generic positive constants which are independent ofε and the time and space mesh sizesk andh.

In this paper, we are mainly concerned with the second stage of the evolution of the
concentrationu, that is, the motion of the interface, and focus on approximating the Hele–Shaw
problem via the Cahn–Hilliard equation discretized by a fully discrete mixed finite element method.
For these purposes, we rewrite (1.1)–(1.3) as

ut = ∆w in ΩT , (2.1)

w =
1

ε
f (u)− ε∆u in ΩT , (2.2)

∂u

∂ν
=
∂w

∂ν
= 0 on∂Ω × (0, T ), (2.3)

u(x,0) = uε0(x) ∀x ∈ Ω, (2.4)

wherew physically represents the chemical potential. We refer to [24, 10] and references therein
for more discussions on well-posedness and regularities of the Cahn–Hilliard and the biharmonic
problems. Unless stated otherwise, we definewε0(x) := w(x,0) by settingt = 0 in (2.2).

As in [28, 29], we consider the following general double equal-well potential functionF :

GENERAL ASSUMPTION1 (GA1) 1) f = F ′ for F ∈ C3(R) such thatF(±1) = 0, andF > 0
elsewhere.

2) For some finitep > 2 and positive numbers̃ci > 0, i = 0, . . . ,3,

c̃1|a|
p−2

− c̃0 6 f ′(a) 6 c̃2|a|
p−2

+ c̃3 ∀a ∈ R.

3) There exist 0< γ1 6 1, γ2 > 0, δ > 0 andC > 0 such that

(i) (f (a)− f (b), a − b) > γ1(f
′(a)(a − b), a − b)− γ2|a − b|2+δ

∀|a| 6 2C,

(ii) af ′′(a) > 0 ∀|a| > C.

REMARK We note that the above (GA1) differs slightly from those of [29] in 2) and 3). It is trivial
to check that (GA1)2 implies

−(f ′(u)v, v) 6 c̃0‖v‖
2
L2 ∀v ∈ L2(Ω), (2.5)

which will be utilized several times in the paper.

EXAMPLE The potential functionF(u) =
1
4(u

2
− 1)2, and consequently,f (u) = u3

− u, is often
used in physical and geometrical applications [4, 12, 8, 2, 16]. For convenience, we verify (GA1)1–
(GA1)3. First, (GA1)1 holds trivially. Sincef ′(u) = 3u2

− 1, (GA1)2 holds with c̃1 = c̃2 = 3,
p = 4 andc̃0 = c̃3 = 1. A direct calculation gives

f (a)− f (b) = (a − b)[f ′(a)+ (a − b)2 − 3(a − b)a]. (2.6)

Hence, (GA1)3 holds withγ1 = 1, γ2 = 3, δ = 1 and any constantC0 > 0. Also, (2.5) holds with
c̃0 = 1.
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REMARK In this paper, we mainly consider the caseγ1 = 1; the analysis for this case is harder
than that for the case 0< γ1 < 1. We refer to [26] for the analysis of the latter case.

In the rest of this section, we shall establish some basic and improved a priori estimates for the
solution of the Cahn–Hilliard equation under the assumption that the Hele–Shaw problem (1.4)–
(1.8) has a global (in time) classical solution (cf. [29]). These improved a priori estimates are
necessary for us to obtain error estimates in stronger norms in the next section.

LEMMA 2.1 Suppose thatf satisfies (GA1). Then the solution of (2.1)–(2.4) satisfies the following
estimates:

(i) ess sup
[0,∞)

{
ε

2
‖∇u‖2

L2 +
1

ε
‖F(u)‖L1

}
+

{∫
∞

0 ‖ut‖
2
H−1 ds∫

∞

0 ‖∇w‖
2
L2 ds

}
= Jε(uε0),

(ii) ess sup
[0,∞)

‖u‖
p
Lp 6 C(1 + Jε(uε0)) (p as in (GA1)2),

(iii ) ess sup
[0,∞)

‖|u| − 1‖
2
L2 6 CεJε(uε0).

Proof. Assertion (i) follows from the basic energy law associated with the Cahn–Hilliard equation

d

dt
Jε(u(t)) =

{
−‖ut (t)‖

2
H−1,

−‖∇w(t)‖2
L2,

(2.7)

which is obtained from testing (1.1) with−∆−1ut , and integrating (2.7) int from 0 to∞. Here

Jε(u) :=
∫
Ω

[
ε

2
|∇u|2 +

1

ε
F (u)

]
dx ∀t > 0. (2.8)

The conclusions of (ii) and (iii) follow from (i), the Mean Value Theorem (F(u) − F(±1) =

(u± 1)F ′(ξ±)), (GA1)1 and (GA1)2. 2

The next lemma is a corollary of Theorems 2.1 and 2.3 of [2]. It shows the boundedness of the
solution of the Cahn–Hilliard equation, provided that the Hele–Shaw problem (1.4)–(1.8) has a
global (in time) classical solution. This boundedness result is the key for us to be able to establish
improved a priori estimates for the solution of the Cahn–Hilliard equation. We remark that the
estimates in [29] were obtained without assuming existence of a global (in time) classical solution
for the Hele–Shaw problem, and hence, we were not able to show the boundedness of the solution
of the Cahn–Hilliard equation there.

LEMMA 2.2 Suppose thatf satisfies (GA1), and the Hele–Shaw problem (1.4)–(1.8) has a global
(in time) classical solution. Then there exists a family of smooth initial datum functions{uε0}0<ε61
and constantsε0 ∈ (0,1] andC0 > 0 such that for allε ∈ (0, ε0) the solutionu of the Cahn–Hilliard
equation (1.1)–(1.3) with the above initial datauε0 satisfies

‖u‖L∞(ΩT ) 6 3
2C0. (2.9)

Proof. A proof of the assertion is buried in the middle of the proof of Theorem 2.3 of [2]. In fact,
the assertion of Theorem 2.3 of [2] was proved by establishing (2.9) first. Here we only sketch the
main idea of the proof.
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First, using a matched asymptotic expansion technique, a family of smooth approximate
solutions(uεA, w

ε
A) to the solution(u,w) of (2.1)–(2.4) satisfying the assumption of Theorem 2.1

of [2] was constructed in Section 4 of [2]. One condition is‖uεA‖L∞(ΩT ) 6 C0 for someC0 > 0.
Second, it was proved in Theorem 2.1 of [2] that(uεA, w

ε
A) is very “close” to(u,w) in Lp(ΩT )

for somep > 2 (see (2.7) on p. 169 of [2]). Finally, (2.9) was proved using a regularization
argument. The argument goes as follows in three steps: (i)f is modified intof̄ such thatf̄ = f

in (−3
2C0,

3
2C0) andf̄ is linear for|u| > 2C0; (ii) it was shown that the solutionu of the Cahn–

Hilliard equation with the new nonlinearitȳf satisfies the estimate (2.9) whenε ∈ (0, ε0) for some
smallε0 ∈ (0,1]; (iii) it follows from the uniqueness of the solution of the Cahn–Hilliard equation
thatu ≡ u. 2

REMARK As in [2], the result of Lemma 2.2 is proved for a special family of initial data
{uε0(x)}0<ε61. On the other hand, as explained in the introduction of [2], this is not a serious
restriction on approximating the Hele–Shaw problem since (i) at the end of the first stage of the
evolution of the concentrationu has the required profile, and (ii) the solution of the Hele–Shaw
problem (1.4)–(1.8) depends only onΓ00 andΩ.

The next lemma states a Poincaré–Friedrichs type inequality for any functionw which has the
form (2.2); it was proved in Lemma 3.4 of [16]. We note thatuε in the lemma does not have to be
the solution of the Cahn–Hilliard equation.

LEMMA 2.3 Suppose thatuε satisfies

1

|Ω|

∫
Ω

uε(t)dx = m0 ∈ (−1,1) ∀t > 0, (2.10)

wherem0 is independent ofε. LetJε(uε) be defined by (2.8) andwε be defined by (2.2). Then there
exist a (large) positive constantC and a (small) positive constantε0 such that for everyε ∈ (0, ε0],

‖wε(·, t)‖L2 6 C(Jε(uε(·, t))+ ‖∇wε(·, t)‖L2) ∀t > 0. (2.11)

To derive a priori estimates in high norms we need to require thatuε0 satisfies the following
conditions:

GENERAL ASSUMPTION 2 (GA2) There exist positiveε-independent constantsm0 andσj for
j = 1, . . . ,4 such that

1) m0 :=
1

|Ω|

∫
Ω

uε0(x)dx ∈ (−1,1),

2) Jε(uε0) =
ε

2
‖∇uε0‖

2
L2 +

1

ε
‖F(uε0)‖L1 6 Cε−2σ1,

3) ‖wε0‖H ` :=

∥∥∥∥ε∆uε0 −
1

ε
f (uε0)

∥∥∥∥
H `

6 Cε−σ2+` , ` = 0,1,2.

LEMMA 2.4 Supposef satisfies (GA1), uε0 satisfies (GA2), and∂Ω is of classC3,1. Assume the
solutionu of (2.1)–(2.4) satisfies (2.9). Then(u,w) satisfies the following estimates:

(i)
1

|Ω|

∫
Ω

u(t)dx = m0 ∈ (−1,1) ∀t > 0,
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(ii)
∫

∞

0
‖∆u‖2

L2 ds 6 Cε−(2σ1+3),

(iii )
∫

∞

0
‖∇∆u‖2

L2 ds 6 Cε−(2σ1+5),

(iv) ess sup
[0,∞)

{
‖ut‖

2
H−1

‖∇w‖
2
L2

}
+ ε

∫
∞

0
‖∇ut‖

2
L2 ds 6 Cε− max{2σ1+3.2σ3},

(v) ess sup
[0,∞)

‖∆u‖L2 6 Cε− max{σ1+5/2,σ3+1},

(vi) ess sup
[0,∞)

‖∇∆u‖L2 6 Cε− max{σ1+5/2,σ3+1},

(vii)

{∫
∞

0 ‖ut‖
2
L2 ds∫

∞

0 ‖∆w‖
2
L2 ds

}
+ ess sup

[0,∞)

ε‖∆u‖2
L2 6 Cε− max{2σ1+7/2,2σ3+1/2,2σ2+1},

(viii ) ess sup
[0,∞)

(‖ut‖
2
L2 + ‖∆w‖

2
L2)+ ε

∫
∞

0
‖∆ut‖

2
L2 ds 6 Cε− max{2σ1+13/2,2σ3+7/2,2σ2+4,2σ4}.

Moreover, in addition to (GA2) suppose that there existsσ5 > 0 such that

lim
s↘0

‖∇ut (s)‖L2 6 Cε−σ5. (2.12)

Then the solution of (1.1)–(1.3) also satisfies the following estimates: forN = 2,3,

(ix) ess sup
[0,∞)

‖∇ut‖
2
L2 + ε

∫
∞

0
‖∇∆ut‖

2
L2 ds 6 C(ε− max{2σ1+7,2σ3+4}

+ ε−
2

6−N
max{2σ1+5,2σ3+2}−max{2σ1+13/2,2σ3+7/2,2σ2+4}

+ ε−2σ5) ≡ Cρ0(ε,N),

(x)
∫

∞

0
‖ut t‖

2
H−1 ds 6 Cερ0(ε,N) ≡ Cρ1(ε,N),

(xi) ess sup
[0,∞)

‖∆2u‖L2 6 Cε− max{σ1+5,σ3+7/2,σ2+5/2,σ4+1}
≡ Cρ2(ε).

We refer the readers to [26] for the proof of the lemma.

REMARK From the construction of(uεA, w
ε
A) in Section 4 of [2] we know that{uε0}0<ε61

obtained in Lemma 2.2 satisfy (GA2). In addition, the corresponding solutionu satisfies (2.9)
(see Lemma 2.2), provided that the Hele–Shaw problem (1.4)–(1.8) has a global (in time) classical
solution.

We conclude this section by quoting the following result of [3, 15] on a lower bound estimate of
the spectrum of the linearized Cahn–Hilliard operator

LCH := ∆

(
ε∆−

1

ε
f ′(u)I

)
. (2.13)

The estimate plays an important role in our error analysis to be given in Section 3.
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LEMMA 2.5 Suppose the assumptions of Lemma 2.2 hold. Letγ1 = 1 in (GA1)3. Then there exist
0 < ε0 � 1 and another positive constantC0 such that the principal eigenvalue of the linearized
Cahn–Hilliard operatorLCH satisfies

λCH ≡ inf
06≡ψ∈H1(Ω)

ε‖∇ψ‖
2
L2 +

1
ε
(f ′(u)ψ,ψ)

‖∆−1/2ψ‖
2
L2

> −C0, (2.14)

or equivalently

λCH ≡ inf
06≡ψ∈H1(Ω)
∆w=ψ

ε‖∇ψ‖
2
L2 +

1
ε
(f ′(u)ψ,ψ)

‖∇w‖
2
L2

> −C0, (2.15)

for all ε ∈ (0, ε0). Hereu denotes the solution of the Cahn–Hilliard problem (1.1)–(1.3).

Proof. The estimate (2.14) was proved by Alikakos and Fusco [3] in the two-dimensional case and
by X. Chen [15] for all dimensions, provided that the functionu (which does not have to be the
solution to the Cahn–Hilliard equation) has some special profile (cf. p. 638 of [3] and p. 1374 of
[15]). It was shown in [2] that the solution to the Cahn–Hilliard problem (1.1)–(1.3) indeed has the
required profile (cf. Theorems 4.12 and 2.1 of [2]) for sufficiently smallε. The conclusion of the
lemma then follows from combining these two results. 2

3. Error analysis for a fully discrete mixed finite element approximation

In this section we analyze the fully discrete mixed finite element method proposed in [29] for (2.1)–
(2.4) under the condition that the Hele–Shaw problem has a global (in time) classical solution (cf.
[2]). Under this assumption, we establish stronger error bounds than those of [29], which were
shown under general (minimum) regularity assumptions, for the solution of the fully discrete mixed
finite element method. In particular, we obtain anL∞(J ;L∞) error estimate, which is necessary
for us to establish the convergence of the solution of the fully discrete mixed finite element scheme
to the solution of the Hele–Shaw problem in the next section.

We recall that the weak formulation of (2.1)–(2.4) is defined as: Find(u(t), w(t)) ∈ [H 1(Ω)]2

such that for almost everyt ∈ (0, T ),

(ut , η)+ (∇w,∇η) = 0 ∀η ∈ H 1(Ω), (3.1)

ε(∇u,∇v)+
1

ε
(f (u), v) = (w, v) ∀v ∈ H 1(Ω), (3.2)

u(x,0) = uε0(x) ∀x ∈ Ω. (3.3)

Note that(ut ,1) = 0, that is, the mass(u(t),1) = (uε0,1) is conserved for allt > 0.
We also recall that the fully discrete mixed finite element discretization of (3.1)–(3.3) is defined

as: Find{(Um,Wm)}Mm=1 ∈ [Sh]2 such that

(dtU
m+1, ηh)+ (∇Wm+1,∇ηh) = 0 ∀ηh ∈ Sh, (3.4)

ε(∇Um+1,∇vh)+
1

ε
(f (Um+1), vh) = (Wm+1, vh) ∀vh ∈ Sh, (3.5)

with some suitable starting valueU0. Unless stated otherwise, we defineW0 by settingm = −1
in (3.5). HereJk := {tm}

M
m=0 is a uniform partition of [0, T ] of mesh sizek := T/M andTh is
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a quasi-uniform “triangulation” ofΩ. Also, dtUm+1 := (Um+1
− Um)/k andSh denotes theP1

conforming finite element space defined by

Sh := {vh ∈ C(Ω); vh|K ∈ P1(K), ∀K ∈ Th}.

The mixed finite element spaceSh × Sh is the lowest order element among a family of stable
mixed finite spaces known as the Ciarlet–Raviart mixed finite elements for the biharmonic problem
(cf. [17, 33]), which means that the following inf-sup condition holds:

inf
06≡ηh∈Sh

sup
06≡ψh∈Sh

(∇ψh,∇ηh)

‖ψh‖H1‖ηh‖H1
> c0 (3.6)

for somec0 > 0.
Also, we note that(dtUm+1,1) = 0, which implies that(Um+1,1) = (U0,1) for m =

0,1, . . . ,M − 1. Hence, the mass is also conserved by the fully discrete solution at each time
step.

We define theL2(Ω) projectionQh : L2(Ω) → Sh by

(Qhv − v, ηh) = 0 ∀η ∈ Sh, (3.7)

and the elliptic projectionPh : H 1(Ω) → Sh by

(∇[Phv − v],∇ηh) = 0 ∀ηh ∈ Sh, (3.8)

(Phv − v,1) = 0. (3.9)

We refer to Section 4 of [28] for a list of approximation properties ofQh andPh. In what follows,
we confine ourselves to meshesTh that result inH 1 stability ofQh (see [13] and reference therein
for the details).

We also introduce the space notations

S̊h := {vh ∈ Sh; (vh,1) = 0}, L2
0(Ω) := {v ∈ L2(Ω); (v,1) = 0},

and define the discrete inverse Laplace operator−∆−1
h : L2

0(Ω) → S̊h such that

(∇(−∆−1
h v),∇ηh) = (v, ηh) ∀ηh ∈ Sh. (3.10)

To establish stability estimates for the solution of the fully discrete scheme (3.4)–(3.5) for
general potential functionsF(u), we make the last structural assumption onf (u).

GENERAL ASSUMPTION 3 (GA3) There existα0 > 0, 0 < γ3 < 1, andc̃4 > 0 such thatf
satisfies for any 0< k 6 εα0, any set of discrete (in time) functions{φm}

M
m=0 ∈ H 1(Ω), and all

` 6 M,

γ3k
∑̀
m=1

(‖dtφ
m
‖

2
H−1 + kε‖∇dtφ

m
‖

2
L2)+

k

ε

∑̀
m=1

(f (φm), dtφ
m)+ c̃4Jε(φ0) >

c̃4

ε
‖F(φ`)‖L1.

(3.11)
We remark that the validity of (GA3) was proved in [29, 28] for the case of the quartic potential

F(u) =
1
4(u

2
− 1)4 with α0 = 3, γ3 = 1/4 andc̃4 = 2. With the help of (GA3) we are able to show

that the solution of (3.4)–(3.5) satisfies the following stability estimates.
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LEMMA 3.1 The solution{(Um,Wm)}Mm=1 of (3.4)–(3.5) satisfies

(i)
1

|Ω|

∫
Ω

Um dx =
1

|Ω|

∫
Ω

U0 dx, m = 1, . . . ,M,

(ii) ‖dtU
m
‖H−1 6 C‖∇Wm

‖L2, m = 1, . . . ,M,

(iii ) max
06m6M

{
ε‖∇Um‖

2
L2+

1

ε
‖F(Um)‖L1

}
+k

M∑
m=1

(‖∇Wm
‖

2
L2 + εk‖∇dtU

m
‖

2
L2) 6 CJε(U0),

(iv) k

M∑
m=1

‖dtU
m
‖

2
H−1 6 CJε(U0),

(v) max
06m6M

‖Um‖
p
Lp 6 C(1 + Jε(U0)) (p as in (GA1)2),

(vi) max
16m6M

‖∇Wm
‖

2
L2 + k

M∑
m=1

(k‖dt∇W
m
‖

2
L2 + ε‖∇dtU

m
‖

2
L2) 6 Cε−3Jε(U0),

(vii) max
16m6M

‖dtU
m
‖

2
L2 + k

M∑
m=1

k‖d2
t U

m
‖

2
L2 6 C[(kε)−

1
2 + h−2]ε−3Jε(U0).

Proof. Assertion (i) is an immediate consequence of settingηh = 1 in (3.4).
For anyφ ∈ H 1(Ω), from (3.4), (3.7), and the stability ofQh inH 1(Ω) (cf. [13] and references

therein) we have

(dtU
m, φ) = (dtU

m,Qhφ)+ (dtU
m, φ −Qhφ)

= −(∇Wm,∇Qhφ) 6 C‖∇Wm
‖L2‖∇φ‖L2. (3.12)

Assertion (ii) then follows from

‖dtU
m
‖H−1 = sup

06≡φ∈H1

(dtU
m, φ)

‖φ‖H1
6 C‖∇Wm

‖L2.

To show assertion (iii), settingηh = Wm+1 in (3.4) andvh = dtU
m+1 in (3.5) and adding the

resulting equations gives

‖∇Wm+1
‖

2
L2 +

ε

2
dt‖∇U

m+1
‖

2
L2 +

εk

2
‖dt∇U

m+1
‖

2
L2 +

1

ε
(f (Um+1), dtU

m+1) = 0. (3.13)

The statement then follows from (GA3) and (ii) after multiplying (3.13) byk and summing overm
from 0 to` (6 M − 1).

Assertions (iv) and (v) follow immediately from (ii), (iii), and the general assumption (GA1) on
F andf . To show (vi), chooseηh = dtW

m+1 in (3.4) andvh = dtU
m+1 in (3.5) after applying the

difference operatordt to (3.5), and add the resulting equations to get

1

2
dt‖∇W

m+1
‖

2
L2 +

k

2
‖dt∇W

m+1
‖

2
L2 + ε‖∇dtU

m+1
‖

2
L2 +

1

ε
(dtf (U

m+1), dtU
m+1) = 0. (3.14)
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By the Mean Value Theorem and (2.5) we bound the last term on the left hand side of (3.14) as
follows:

1

ε
(dtf (U

m+1), dtU
m+1) =

1

ε
(f ′(ξ), |dtU

m+1
|
2) > −

c̃0

ε
‖dtU

m+1
‖

2
L2

> −
ε

2
‖∇dtU

m+1
‖

2
L2 −

C

ε3
‖dtU

m+1
‖

2
H−1. (3.15)

The assertion then follows from (3.14)–(3.15) and (iv) after multiplying (3.14) byk and summing
overm from 0 to` (6 M − 1).

Finally, to show (vii), we first apply the difference operatordt to both sides of (3.4), then take
ηh = dtU

m+1 in the resulting equation to have

1

2
dt‖dtU

m+1
‖

2
L2 +

k

2
‖d2
t U

m+1
‖

2
L2 = −(∇dtW

m+1,∇dtU
m+1)

6
1

√
kε
(k‖∇dtW

m+1
‖

2
L2 + ε‖∇dtU

m+1
‖

2
L2). (3.16)

Multiplying (3.16) byk and summing overm from 0 to` (6 M−1), the assertion then follows from
(ii), (vi), and the inverse inequality (bounding theL2 norm by theH−1 norm) to bound‖dtU1

‖
2
L2

on the right hand side. 2

REMARK In view of Lemmas 2.4(i) and 3.1(i), in order for the scheme (3.4)–(3.5) to conserve the
mass of the underlying physical problem, it is necessary to require(U0

−uε0,1) = 0 for the starting
valueU0. This condition will be assumed in the rest of this section.

As is shown in [29], in order to establish error bounds that depend on low order polynomials of
1/ε, the crucial idea is to utilize the spectrum estimate result of Lemma 2.5 for the linearized Cahn–
Hilliard operator. In the following we show that the spectrum estimate still holds if the functionu,
which is the solution of (1.1)–(1.3), is replaced by its elliptic projectionPhu and the nonlinear term
is scaled by a factor 1− ε, provided that the mesh sizeh is small enough. As expected, this result
plays a critical role in our error analysis for the fully discrete finite element discretization.

Foru the solution of (1.1)–(1.3), letC0 be as in (2.9), define

C1 = max
|v|62C0

|f ′′(v)|, (3.17)

and letC2 be the smallest positiveε-independent constant such that (cf. Chapter 7 of [11])

‖u− Phu‖L∞(J ;L∞) 6 C2h
2
|lnh|‖u‖L∞(J ;W2,∞) 6 C2h

2
|lnh|ρ3(ε,N) (3.18)

for some (low order) polynomial functionρ3(ε,N) in 1/ε. We remark that the existence ofC2 and
ρ3(ε,N) follows easily from Lemma 2.4(xi) and the following Gagliardo–Nirenberg inequality [1]:

‖u‖W2,∞ 6 C(‖D4u‖
4/(8−N)

L2 ‖u‖
(4−N)/(8−N)
L∞ + ‖u‖L∞), N = 2,3.

In fact, the above inequality, (2.9) and Lemma 2.4(xi) imply

ρ3(ε,N) 6 ρ2(ε)
4/(8−N), (3.19)

whereρ2(ε) is defined in Lemma 2.4(xi).
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LEMMA 3.2 Let the assumptions of Lemma 2.5 hold, andε0 andC0 be as there. Then forε ∈

(0, ε0),

λhCH ≡ inf
06≡ψ∈L2

0(Ω)

∆w=ψ, ∂w/∂n=0

ε‖∇ψ‖
2
L2 +

1−ε3

ε
(f ′(Phu)ψ,ψ)

‖∇w‖
2
L2

> −(1 − ε3)(C0 + 1), (3.20)

provided thath satisfies the constraint

h2
|lnh| 6 (C1C2ρ3(ε,N))

−1ε3. (3.21)

Proof. From the definitions ofC1 andC2, we immediately have

‖Phu‖L∞(J ;L∞) 6 ‖u‖L∞(J ;L∞) + ‖Phu− u‖L∞(J ;L∞) 6 4
3‖u‖L∞(J ;L∞) 6 2C0

if h satisfies (3.21). It then follows from the Mean Value Theorem that

‖f ′(Phu)− f ′(u)‖L∞(J ;L∞) 6 max
|ξ |62C0

|f ′′(ξ)|‖Phu− u‖L∞(J ;L∞)

6 C1C2h
2
|lnh|ρ3(ε,N) 6 ε3. (3.22)

Using the inequalitya > b − |a − b| and (3.22) we get

f ′(Phu) > f ′(u)− ‖f ′(Phu)− f ′(u)‖L∞(J ;L∞) > f ′(u)− ε3. (3.23)

In addition, for anyψ as in (3.20) we have

‖ψ‖
2
L2 = (∇ψ,∇w) 6

ε2

1 − ε3
‖∇ψ‖

2
L2 +

1 − ε3

ε2
‖∇w‖

2
L2. (3.24)

Substituting (3.23)–(3.24) into the definition ofλhCH we get

λhCH > inf
06≡ψ∈L2

0(Ω)

∆w=ψ, ∂w/∂n=0

(1 − ε3)[ε‖∇ψ‖
2
L2 +

1
ε
(f ′(u)ψ,ψ)]

‖∇w‖
2
L2

− (1 − ε3)2.

The proof is completed by applying Lemma 2.5. 2

REMARK Under a slightly weaker mesh constraint than (3.21), a slightly weaker version of (3.20)
was shown in Proposition 3.2 of [26].

The first main result of this section is stated in the following theorem.

THEOREM 3.1 Let {(Um,Wm)}Mm=1 solve (3.4)–(3.5) on a quasi-uniform space meshTh of size
O(h) and a quasi-uniform time meshJk of sizeO(k). Suppose the assumptions of Lemma 2.4
and 3.1, Lemma 2.5 and 3.2 hold, in particular,α0, σi , ρi(ε,N) are as there. Let 0< δ <

16/(8 −N) for N = 2,3, and define, for anyν > 0,

µ := µ(N, δ, ν) = min{δ, ν,8 −N/8}, ρ4(ε) := εmin{2σ1+21/2,2σ3+15/2,2σ2+8,2σ4+4}, (3.25)

ρ5(ε) := ε− max{2σ1+9,2σ3+6,2σ2+4,2σ4+1},

π1(k; ε,N, δ, σi) := ρ1(ε,N)+ k
16+(8−N)δ
16−(8−N)δ ε

−
32(σ1+3)+2δ(8−N)(2σ1−1)

16−(8−N)δ ρ2(ε)
4Nδ

16−(8−N)δ , (3.26)

π2(k, h; ε,N, δ, σi, ν) := [h
(8−N)δ

4 −2µε−
(2σ1+1)[16+(8−N)δ]

16 + h−2µk2ρ5(ε)]ρ2(ε)
δN
8

+ [h2(δ−µ)(ρ2(ε)
4(2+δ)−2N

8−N + ρ4(ε))+ h2(ν−µ)ε−2(σ2+1)], (3.27)

r(h, k; ε,N, δ, σi, ν) := k2π1(k; ε,N, δ, σi)+ h2(2+µ)π2(k, h; ε,N, δ, σi, ν). (3.28)
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Then, under the following mesh and starting value constraints:

1) k 6 εα0,

2) h2
|lnh| 6 ε3ρ2(ε)

−
4

8−N ,

3) r(h, k; ε,N, δ, σi, ν) 6 ε
[2+

48
(8−N)δ

]
ρ2(ε)

−
2N

8−N ,

4) (U0,1) = (uε0,1),

5) ‖uε0 − U0
‖H−1 6 Ch2+ν

‖uε0‖H2,

the solution of (3.4)–(3.5) converges to the solution of (2.1)–(2.4) and satisfies

(i) max
06m6M

‖u(tm)− Um‖H−1 +

(
k

M∑
m=1

k‖dt (u(tm)− Um)‖2
H−1

)1/2

6 C̃[r(h, k; ε,N, δ, σi, ν)]
1/2,

(ii)
(
k

M∑
m=0

‖u(tm)− Um‖
2
L2

)1/2
6 C̃{h2ε−(σ1+1/2)

+ ε−2[r(h, k; ε,N, δ, σi, ν)]
1/2

},

(iii )
(
k

M∑
m=0

‖∇(u(tm)− Um)‖2
L2

)1/2
6 C̃{hε−(σ1+1/2)

+ ε−2[r(h, k; ε,N, δ, σi, ν)]
1/2

}

for some positive constant̃C = C̃(uε0; γ2, C0, T ;Ω). Hereγ2 andδ are defined in (GA1)3.

Proof. The proof is divided into four steps. Step one deals with the consistency error due to the
time discretization. Steps two and three use Lemma 3.2 and the stability estimates of Lemmas 2.4
and 3.1 to avoid an exponential blow-up in 1/ε of the error constants. In the final step, an inductive
argument is used to handle the difficulty caused by the super-quadratic term in (GA1)3.

STEP 1 LetEm := u(tm)−U
m andGm := w(tm)−W

m. Subtracting (3.4)–(3.5) (after replacing
m+1 bym) from (3.1)–(3.2) (after settingt = tm), respectively, we get the following error equations
at tm:

(dtE
m, ηh)+ (∇Gm,∇ηh) = (R(ut t ;m), ηh), (3.29)

ε(∇Em,∇vh)+
1

ε
(f (u(tm))− f (Um), vh) = (Gm, vh), (3.30)

where

R(ut t ;m) = −
1

k

∫ tm

tm−1

(s − tm−1)ut t (s)ds. (3.31)

It is easy to check that

k

M∑
m=1

‖R(ut t ;m)‖2
H−1 6

1

k

M∑
m=1

[∫ tm

tm−1

(s − tm−1)
2 ds

][∫ tm

tm−1

‖ut t‖
2
H−1 ds

]
6 Ck2ρ1(ε,N),

(3.32)
whereρ1(ε,N) is defined in Lemma 2.4(x).
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STEP 2 Introduce the decompositionsEm := Θm
+Φm andGm := Λm + Ψm, where

Θm := u(tm)− Phu(tm), Φm := Phu(tm)− Um,

Λm := w(tm)− Phw(tm), Ψm := Phw(tm)−Wm.

Then from the definition ofPh in (3.8)–(3.9) we can rewrite (3.29)–(3.30) as follows:

(dtΦ
m, ηh)+ (∇Ψm,∇ηh) = (R(ut t ;m), ηh)− (dtΘ

m, ηh), (3.33)

ε(∇Φm,∇vh)+
1

ε
(f (Phu(tm))− f (Um), vh)

= (Ψm, vh)+ (Λm, vh)−
1

ε
(f (u(tm))− f (Phu(tm)), vh). (3.34)

SinceEm, Φm ∈ L2
0(Ω) for 0 6 m 6 M, settingηh = −∆−1

h Φm in (3.33) andvh = Φm in (3.34)
and summing overm from 1 to` (6 M), after adding the equations we conclude

1

2
‖∇∆−1

h Φ`‖2
L2 + k

∑̀
m=1

k

2
‖∇∆−1

h dtΦ
m
‖

2
L2

+ k
∑̀
m=1

[ε‖∇Φm‖
2
L2 +

1

ε
(f (Phu(tm))− f (Um),Φm)]

= k
∑̀
m=1

[(R(ut t ;m),−∆−1
h Φm)− (dtΘ

m,−∆−1
h Φm)+ (Λm, Φm)]

+
k

ε

∑̀
m=1

(f (u(tm))− f (Phu(tm)),Φ
m)+

1

2
‖∇∆−1

h Φ0
‖

2
L2. (3.35)

The first sum on the right hand side can be bounded as follows:

k
∑̀
m=1

[(R(ut t ;m),−∆−1
h Φm)− (dtΘ

m,−∆−1
h Φm)+ (Λm, Φm)]

6 Ck
∑̀
m=1

[‖R(ut t ;m)‖2
H−1 + ‖dtΘ

m
‖

2
H−1 + ε−4

‖Λm‖
2
H−1]

+ k
∑̀
m=1

{‖∇∆−1
h Φm‖

2
L2 +

ε4

2(1 − ε3)
‖∇Φm‖

2
L2}

6 k
∑̀
m=1

{‖∇∆−1
h Φm‖

2
L2 +

ε4

2(1 − ε3)
‖∇Φm‖

2
L2} + C[k2ρ1(ε,N)+ h6ρ4(ε)], (3.36)

whereρ1(ε,N) is defined in Lemma 2.4(x), andρ4(ε,N), which is defined in (3.25), comes from
Lemma 2.4(viii). Here we have used the following approximation properties inH−1 of the elliptic
projectionPh (cf. [20]):

‖u− Phu‖H−1 6 Ch3
‖u‖H2,

‖(u− Phu)t‖H−1 6 Ch3
‖ut‖H2,

‖w − Phw‖H−1 6 Ch3
‖w‖H2,

andk
∑`
m=1 ‖dtu(tm)‖

2
H2 6

∫ t`
0 ‖ut (s)‖

2
H2 ds, which follows fromkdtu(tm) =

∫ tm
tm−1

ut (s)ds.
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In view of (2.9) and the inequality at the beginning of the proof of Lemma 3.2, the second sum
on the right hand side of (3.35) can be bounded by

k

ε

∑̀
m=1

(f (u(tm))− f (Phu(tm)),Φ
m) =

k

ε

∑̀
m=1

(f ′(ξ)Θm, Φm)

6 k
∑̀
m=1

[
ε4

2(1 − ε3)
‖∇Φm‖

2
L2 + Cε−6

‖Θm
‖

2
H−1

]

6 k
∑̀
m=1

ε4

2(1 − ε3)
‖∇Φm‖

2
L2

+ Ch6ε− max{2σ1+11,2σ3+8}. (3.37)

By (GA1)3 with γ1 = 1, the last term on the left hand side of (3.35) is bounded from below by

k
∑̀
m=1

1

ε
(f (Phu(tm))− f (Um),Φm) >

k

ε

∑̀
m=1

[(f ′(Phu(tm))Φ
m, Φm)− γ2‖Φ

m
‖

2+δ

L2+δ ]. (3.38)

Substituting (3.36)–(3.38) into (3.35) we arrive at

1

2
‖∇∆−1

h Φ`‖2
L2 + k

∑̀
m=1

k

2
‖∇∆−1

h dtΦ
m
‖

2
L2 + k

∑̀
m=1

2ε2(f ′(Phu(tm))Φ
m, Φm)

+
1 − 2ε3

1 − ε3
k

∑̀
m=1

[
ε‖∇Φm‖

2
L2 +

1 − ε3

ε
(f ′(Phu(tm))Φ

m, Φm)

]
6 C[k2ρ1(ε,N)+ h6ρ4(ε)] +

1

2
‖∇∆−1

h Φ0
‖

2
L2

+ k
∑̀
m=1

‖∇∆−1
h Φm‖

2
L2 +

γ2k

ε

∑̀
m=1

‖Φm‖
2+δ

L2+δ . (3.39)

We could bound the last term on the left hand side from below using Lemma 3.2, however, this will
consume all the contribution ofε‖∇Φm‖

2
L2 on the left hand side. On the other hand, in order to

bound the super-quadratic term on the right hand side in Step 3 below, we do need a small help from
thisε‖∇Φm‖

2
L2. For that reason, we are going to apply Lemma 3.2 with a scaling factor 1− ε3, that

is, we first write

ε‖∇Φm‖
2
L2 +

1 − ε3

ε
(f ′(Phu(tm))Φ

m, Φm)

= (1 − ε3)

[
ε‖∇Φm‖

2
L2 +

1 − ε3

ε
(f ′(Phu(tm))Φ

m, Φm)

]
+ ε3

[
ε‖∇Φm‖

2
L2 +

1 − ε3

ε
(f ′(Phu(tm))Φ

m, Φm)

]
.

From Lemma 3.2 we then bound the first term on the right hand side of the above equation as
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(1 − ε3)

[
ε‖∇Φm‖

2
L2 +

1 − ε3

ε
(f ′(Phu(tm))Φ

m, Φm)

]
> −(1 − ε3)2(C0 + 1)‖∇∆−1Φm‖

2
L2 > −(C0 + 1)‖∇∆−1Φm‖

2
L2. (3.40)

We then keepε4
‖∇Φm‖

2
L2 on the left hand side, and move the leftover termε2(1 − ε3) ×

(f ′(Phu(tm))Φ
m, Φm) to the right side to bound it from above by

ε2(1 − ε3)(f ′(Phu(tm))Φ
m, Φm) 6 ε2

|(f ′(Phu(tm))Φ
m, Φm)|

6

[
ε4

4
‖∇Φm‖

2
L2 + c̃0‖∇∆

−1
h Φm‖

2
L2

]
. (3.41)

Combining (3.39)–(3.41) we finally get, for sufficiently smallε > 0,

1

2
‖∇∆−1

h Φ`‖2
L2 + k

∑̀
m=1

[
k

2
‖∇∆−1

h dtΦ
m
‖

2
L2 +

ε4

4
‖∇Φm‖

2
L2

]
6 C[k2ρ1(ε,N)+ h6ρ4(ε)] +

1

2
‖∇∆−1

h Φ0
‖

2
L2

+ (C0 + 3c̃0 + 3)k
∑̀
m=1

‖∇∆−1
h Φm‖

2
L2 +

γ2k

ε

∑̀
m=1

‖Φm‖
2+δ

L2+δ , (3.42)

where we have used the fact that 0< ε < 1 and‖∇∆−1vh‖L2 = ‖∇∆−1
h vh‖L2 for anyvh ∈ S̊h.

STEP 3 It remains to bound the super-quadratic term at the end of (3.42). SinceΦm = Em −Θm,
the triangle inequality implies

‖Φm‖
2+δ

L2+δ 6 C(‖Em‖
2+δ

L2+δ + ‖Θm
‖

2+δ

L2+δ ). (3.43)

To bound‖Em‖
2+δ

L2+δ in (3.43), we first make a shift in the super-index to get

‖Em‖
2+δ

L2+δ 6
∑
K∈Th

[‖Em−1
‖

2+δ

L2+δ(K)
+ k2+δ

‖dtE
m
‖

2+δ

L2+δ(K)
]. (3.44)

For each term in the first sum on the right hand side of (3.44), we use the Gagliardo–Nirenberg
inequality [1] which interpolatesL2+δ(K) betweenL2(K) andH 4(K),

‖Em−1
‖

2+δ

L2+δ(K)
6 C[‖D4Em−1

‖
δN/8
L2(K)

‖Em−1
‖
(16+(8−N)δ)/8
L2(K)

+ ‖Em−1
‖

2+δ

L2(K)
]

6 C‖Em−1
‖

2+(8−N)δ/8
L2(K)

[‖D4u(tm−1)‖
δN/8
L2(K)

+ ‖Em−1
‖
δN/8
L2(K)

]

6 C‖Em−1
‖

2+(8−N)δ/8
L2(K)

ρ2(ε)
δN/8. (3.45)

Here we have used the estimates of Lemmas 2.4(xi), 2.1(ii) and 3.1(v) to obtain the last inequality.
Summing (3.45) over allK ∈ Th and using the convexity of the functiong(s) = sr for r > 1

ands > 0 we have
‖Em−1

‖
2+δ

L2+δ 6 Cρ2(ε)
δN/8

‖Em−1
‖

2+(8−N)δ/8
L2 . (3.46)
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Similarly, we can bound the second sum on the right hand side of (3.44):

k2+δ
‖dtE

m
‖

2+δ

L2+δ(K)
6 k2+δ[‖D4dtE

m
‖
δN/8
L2(K)

‖dtE
m
‖
(16+(8−N)δ)/8
L2(K)

+ ‖dtE
m
‖

2+δ

L2(K)
]

6 k2+δ
‖dtE

m
‖

2+(8−N)δ/8
L2(K)

[‖D4dtu(tm)‖
δN/8
L2(K)

+ ‖dtE
m
‖
δN/8
L2(K)

]

6 Ck2+δ
‖dtE

m
‖

2+(8−N)δ/8
L2(K)

[k−Nδ/8
‖D4u(tm)‖

δN/8
L2(K)

+ ‖dtE
m
‖
δN/8
L2(K)

]

6 Ck2+(8−N)δ/8
‖dtE

m
‖

2+(8−N)δ/8
L2(K)

ρ2(ε)
δN/8. (3.47)

Here we have used the estimates of Lemmas 2.4(viii),(xi) and 3.1(v) to control‖dtE
m
‖L2(K) 6

2k−1 max{‖Em‖L2(K), ‖E
m−1

‖L2(K)} in the last inequality.
Summing both sides of (3.47) over allK ∈ Th we get

k2+δ
‖dtE

m
‖

2+δ

L2+δ 6 Ck2+(8−N)δ/8ρ2(ε)
δN/8

‖dtE
m
‖

2+(8−N)δ/8
L2 . (3.48)

It now follows from the triangle inequality‖Em‖L2 6 ‖Θm
‖L2 + ‖Φm‖L2, the inequalities (3.43),

(3.44), (3.46) and (3.48) that

‖Φm‖
2+δ

L2+δ 6 Cρ2(ε)
δN/8(‖Φm−1

‖
2+(8−N)δ/8
L2 + k2+(8−N)δ/8

‖dtΦ
m
‖

2+(8−N)δ/8
L2

+ ‖Θm−1
‖

2+(8−N)δ/8
L2 + k2+(8−N)δ/8

‖dtΘ
m
‖

2+(8−N)δ/8
L2 )+ C‖Θm

‖
2+δ

L2+δ . (3.49)

From [11, 17, 34] we know that

‖u− Phu‖L2 6 Ch2
‖u‖H2, (3.50)

‖(u− Phu)t‖L2 6 Ch2
‖ut‖H2, (3.51)

‖u− Phu‖L2+δ 6 Ch2
‖u‖W2,2+δ 6 Ch2

‖∆2u‖
4(2+δ)−2N
(8−N)(2+δ)

L2 . (3.52)

To control the two terms which involveΦm−1 on the right hand side of (3.49), we only consider the
caseδ < 16/(8 −N) because (i) it covers most useful ranges ofδ, and (ii) the analysis for the case
δ > 16/(8 −N) is easier to carry out since(16+ (8 −N)δ)/8> 4 in this case.

From the definition of−∆−1
h in (3.10) and Young’s inequality we have

‖Φm−1
‖
(16+(8−N)δ)/8
L2 6 ‖∇Φm−1

‖
(16+(8−N)δ)/16
L2 ‖∇∆−1

h Φm−1
‖
(16+(8−N)δ)/16
L2

6 C[ε5ρ2(ε)
−δN/8]−

16+(8−N)δ
16−(8−N)δ ‖∇∆−1

h Φm−1
‖

2[16+(8−N)δ]
16−(8−N)δ

L2 +
ε5ρ2(ε)

−δN/8

4γ2
‖∇Φm−1

‖
2
L2. (3.53)

Similarly,

‖dtΦ
m
‖
(16+(8−N)δ)/8
L2 6 ‖∇dtΦ

m
‖
(16+(8−N)δ)/16
L2 ‖∇∆−1

h dtΦ
m
‖
(16+(8−N)δ)/16
L2

6 C[εk−(8+(8−N)δ)/8ρ2(ε)
−δN/8]−

16+(8−N)δ
16−(8−N)δ ‖∇dtΦ

m
‖

2[16+(8−N)δ]
16−(8−N)δ

L2

+
εk−(8+(8−N)δ)/8ρ2(ε)

−δN/8

4γ2
‖∇dt∆

−1
h Φm‖

2
L2.
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Using

‖∇dtΦ
m
‖

2[16+(8−N)δ]
16−(8−N)δ

L2 = ‖∇dtΦ
m
‖

2
L2‖∇dtΦ

m
‖

4(8−N)δ
16−(8−N)δ

L2

6 k
−

4(8−N)δ
16−(8−N)δ ε

−(σ1+1/2) 4(8−N)δ
16−(8−N)δ ‖∇dtΦ

m
‖

2
L2,

we get

‖dtΦ
m
‖
(16+(8−N)δ)/8
L2 6 (εk−8+(8−N)δ/8ρ2(ε)

−δN/8)/4γ2‖∇dt∆
−1
h Φm‖

2
L2

+ Cε
−[1+

4δ(8−N)(σ1+1)
16−(8−N)δ

]
ρ2(ε)

−
δN [16+(8−N)δ]
8[16−(8−N)δ] k

1+
(8−N)2δ2

8[16−(8−N)δ] ‖∇dtΦ
m
‖

2
L2. (3.54)

Now, substituting (3.50)–(3.54) into (3.49), summing overm from 1 to` (6 M) after multiplying
(3.49) byγ2k/ε and using Lemmas 2.4(iv) and 3.1(vi) leads to the following estimate:

γ2k

ε

∑̀
m=1

‖Φm‖
2+δ

L2+δ 6 k
∑̀
m=1

[
ε4

8
‖∇Φm‖

2
L2 +

k

8
‖∇∆−1

h dtΦ
m
‖

2
L2

]

+ Cε
−

4[24+(8−N)δ]
16−(8−N)δ ρ2(ε)

4Nδ
16−(8−N)δ k

∑̀
m=1

‖∇∆−1
h Φm−1

‖
2+

4(8−N)δ
16−(8−N)δ

L2

+ Ck
3+

2(8−N)δ
16−(8−N)δ ε

−[2+
4δ(8−N)(σ1+1)

16−(8−N)δ
]
ρ2(ε)

4Nδ
16−(8−N)δ ε−2(σ1+2)

+ Cρ2(ε)
δN/8[ε−

(2σ1+1)[16+(8−N)δ]
16 h4+(8−N)δ/4

+ k2h4ε− max{2σ1+9,2σ3+6,2σ2+4,2σ2+1}] + Ch2(2+δ)ρ2(ε)
4(2+δ)−2N

8−N . (3.55)

Finally, substituting (3.55) into (3.42) we get

1

2
‖∇∆−1

h Φ`‖2
L2 + k

∑̀
m=1

[
k

8
‖∇∆−1

h dtΦ
m
‖

2
L2 +

ε4

8
‖∇Φm‖

2
L2

]

6 Cr(h, k; ε,N, δ, σi, ν)+ (C0 + 3c̃0 + 3)k
∑̀
m=1

‖∇∆−1
h Φm‖

2
L2

+
1

2
‖∇∆−1

h Φ0
‖

2
L2 + Cs(ε,N, δ)k

`−1∑
m=1

‖∇∆−1
h Φm‖

2+
4(8−N)δ

16−(8−N)δ

L2 , (3.56)

wherer(h, k; ε,N, δ, σi, ν) is defined in (3.28) and

s(ε,N, δ) = ε
−

4[24+(8−N)δ]
16−(8−N)δ ρ2(ε)

4Nδ
16−(8−N)δ . (3.57)

STEP 4 We now conclude the proof by the following induction argument. Suppose there exist two
positive constants

c1 = c1(t`,Ω, u
ε
0, σi), c2 = c2(t`,Ω, u

ε
0, σi;C0),

independent ofk andε, such that

max
06m6`

‖∇∆−1
h Φm‖

2
L2 + k

∑̀
m=1

[
k

8
‖∇∆−1

h dtΦ
m
‖

2
L2 +

ε4

8
‖∇Φm‖

2
L2

]
6 c1r(h, k; ε,N, δ, σi, ν)exp(c2t`). (3.58)
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In view of Lemma 2.4(xi) and (3.56), we can choose

c1 = 2, c2 = 2(C0 + 3c̃0 + 3).

Since the exponent in the last term of (3.56) is greater than 2, we can recover (3.58) at the(`+ 1)th
time step by using the discrete Gronwall inequality, provided thath, k satisfy

s(ε,N, δ) · r(h, k; ε,N, δ, σi, ν)
1+

2(8−N)δ
16−(8−N)δ 6

c1

2
r(h, k; ε,N, δ, σi, ν)exp(c2t`+1).

That is,

s(ε,N, δ) · r(h, k; ε,N, δ, σi, ν)
2(8−N)δ

16−(8−N)δ 6 C,

which gives the mesh condition 3) in the theorem. Hence, we have shown that

max
06m6M

‖∇∆−1
h Φm‖

2
L2 + k

∑̀
m=1

[k‖∇∆−1
h dtΦ

m
‖

2
L2 + ε4

‖∇Φm‖
2
L2]

6 Cr(h, k; ε,N, δ, σi, ν). (3.59)

Finally, assertion (i) follows from (3.59) by applying the triangle inequality toEm = Θm
+ Φm.

Assertions (ii) and (iii) follow in the same way. Note that we need to apply the Poincaré inequality
to Φm to show (ii), and sinceΦm ∈ S̊h, we can bound‖Φm‖L2 by ‖∇Φm‖L2. The proof is
complete. 2

REMARK (a) TheL2(J ;H 1) estimate is optimal with respect toh andk, and theL∞(J ;H−1)

estimate is quasi-optimal.
(b) The proof clearly shows how the three mesh conditions arise. Condition 1) is for the stability

of the time discretization (see (GA3)), condition 2) is to ensure the discrete spectrum estimate (see
Lemma 3.2), finally, condition 3) is caused by the super-quadratic nonlinearity off (see (GA1)3).
Also notice that only “smallness” ofk andh with respect toε is required but no restriction is
imposed on the ratio betweenk andh in theL∞(J ;H−1) andL2(J ;H 1) norm estimates.

(c) It is well known [34] that the finite element solutions of all linear and some nonlinear
parabolic problems exhibit a superconvergence property (inh) when compared with the
elliptic projections of the solutions of underlying problems. It is worth pointing out that this
superconvergence also holds for the Cahn–Hilliard equation as shown by the inequality (3.59).

(d) Regarding the choices of the starting valueU0, clearly, bothU0
= Qhu

ε
0 andU0

= Phu
ε
0

satisfy conditions 4) and 5) withν = 1 in view of (3.7) and (3.9). In fact, they also satisfy a stronger
inequality (see (3.61) below). On the other hand, theL2 projectionQhu

ε
0 is cheaper to compute

compared to the elliptic projectionPhuε0. Note that condition 4) is necessary in order for the scheme
(3.4)–(3.5) to conserve the mass.

(e) We remark that it is easy to check that for each fixedε > 0, if k 6 h then

r(h, k; ε,N, δ, σi, ν) 6 C(k2
+ h2(2+µ)). (3.60)

In the next theorem we derive error estimates in stronger norms under a slightly stronger
requirement on the starting valueU0, which nevertheless is satisfied by both theL2 projection
U0

= Qhu
ε
0 and the elliptic projectionU0

= Phu
ε
0. In addition, a mild constraint on admissible

choices of(k, h) is required to assure their validity.
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THEOREM 3.2 In addition to the assumptions of Theorem 3.1, if

‖uε0 − U0
‖L2 6 Ch2

‖uε0‖H2, (3.61)

then the solution of (3.4)–(3.5) also satisfies the following error estimates:

(i) max
06m6M

‖u(tm)− Um‖L2 +

(
k

M∑
m=1

k‖dt (u(tm)− Um)‖2
L2

)1/2

6 C̃{h2ε− max{σ1+5/2,σ3+1/2}
+ k−1/4ε−1[r(h, k; ε,N, δ, σi, ν)]

1/2
},

(ii) max
06m6M

‖u(tm)− Um‖L∞

6 C̃{h2
|lnh|ρ2(ε)

4/8−N
+ h−N/2k−1/4ε−1[r(h, k; ε,N, δ, σi, ν)]

1/2
}.

Moreover, ifk = O(hq) for some 2N/3< q < (8 − 2N)+ 4µ, then also

(iii) max
06m6M

‖Um‖L∞ 6 3C0,

(iv) max
06m6M

‖u(tm)−U
m
‖L2 +

(
k

M∑
m=1

k‖dt (u(tm)−U
m)‖2

L2

)1/2
+

(
k

ε

M∑
m=1

‖w(tm)−W
m
‖

2
L2

)1/2

6 C̃{h2ε− max{σ1+7/2,σ3+1/2}
+ ε−7/2[r(h, k; ε,N, δ, σi, ν)]

1/2
},

(v) max
06m6M

‖u(tm)− Um‖L∞ 6 C̃{h2
|lnh|ρ2(ε)

4/(8−N)
+ h(4−N)/2ε− max{σ1+7/2,σ3+1/2}

+ h−N/2ε−7/2[r(h, k; ε,N, δ, σi, ν)]
1/2

}

for some positive constant̃C = C̃(uε0; γ2, C0, T ;Ω).

Proof. Since
Em = Θm

+Φm, Gm = Λm + Ψm,

it suffices to show that assertions (i), (ii), (iv), (v) hold forΦm andΨm without the first term on the
right hand side of each inequality. Notice thatΦm andΨm satisfy (3.33)–(3.34).

Using the identity

(dtΦ
m, Φm) =

1

2
dt‖Φ

m
‖

2
L2 +

k

2
‖dtΦ

m
‖

2
L2,

the definition of−∆−1
h in (3.10) and the estimate (3.59) we have

1

2
‖Φ`‖2

L2 + k
∑̀
m=1

k

2
‖dtΦ

m
‖

2
L2 = k

∑̀
m=1

(∇(−∆−1
h dtΦ

m),∇Φm)+
1

2
‖Φ0

‖
2
L2

6 k−1/2ε−2
∑̀
m=1

[k2
‖∇∆−1

h dtΦ
m
‖

2
L2 + kε4

‖∇Φm‖
2
L2] +

1

2
‖Φ0

‖
2
L2

6 k−1/2ε−2r(h, k; ε,N, δ, σ, ν)+
1

2
‖Φ0

‖
2
L2. (3.62)

Assertion (i) then follows from (3.62) and (3.61).
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Assertion (ii) is an immediate consequence of (i), the inverse inequality bounding theL∞ by
theL2-norm, and theL∞ estimate ofΘm (see Chapter 7 of [11]).

To show (iii), notice that under the mesh conditions of Theorem 3.1 and the assumption that
k = O(hq) for some 2N/3< q < (8 − 2N)+ 4µ, we have, for sufficiently smallε,

max
06m6M

‖u(tm)− Um‖L∞ 6 3
2C0, (3.63)

which together with (2.9) then implies

max
06m6M

‖Um‖L∞ 6 max
06m6M

[‖u(tm)‖L∞ + ‖u(tm)− Um‖L∞ ] 6 3C0. (3.64)

Hence (iii) holds.
Now, takingηh = Φm in (3.33) andvh = −

1
ε
Ψm in (3.34) and adding the resulting equations

we get

1

2
dt‖Φ

m
‖

2
L2 +

k

2
‖dtΦ

m
‖

2
L2 +

1

ε
‖Ψm

‖
2
L2 = (R(ut t ;m),Φm)− (dtΘ

m, Φm)−
1

ε
(Λm, Ψm)

+
1

ε2
(f (u(tm))− f (Um), Ψm). (3.65)

The first three terms on the right hand side can be bounded as in (3.36), and the last term can be
bounded as follows. By the Mean Value Theorem and Schwarz inequality we obtain

1

ε2
(f (u(tm))− f (Um), Ψm) =

1

ε2
(f ′(ξ)Em, Ψm) 6

1

2ε
‖Ψm

‖
2
L2 +

C

ε3
‖Em‖

2
L2. (3.66)

Assertion (iv) follows from multiplying (3.65) byk, summing it overm from 1 to ` (6 M) and
using (3.66) and Theorem 3.1(ii).

Finally, (v) is a refinement of (ii), based on (iv) instead of (i). The proof is complete. 2

REMARK (a) The estimate in (i) is optimal inh and suboptimal ink due to the factork−1/4 in
the second term on the right hand side of the inequality. However, this estimate is important for
establishing theL∞(J ;L∞) estimate in (ii), which then leads to the proof of the boundedness of
Um in (3.64), and the improved estimates (iv) and (v).

(b) Optimal estimates in stronger norms can also be obtained for bothEm andGm under stronger
regularity assumptions on the solutionu (e.g.ut t ∈ L2(J ;L2)) of the Cahn–Hilliard equation and
on the starting valueU0. These estimates include statements forEm in L∞(J ;H 1) andH 1(J ;L2),
and inL∞(J ;L2) andL2(J ;H 1) for Gm. For more details in this direction, we refer to [23] (also
see [19]), where a (continuous in time) semi-discrete splitting finite element method was analyzed
for afixedε > 0 under the assumption that the semi-discrete finite element approximate solution for
u is bounded inL∞. Note that here we have indeed showed in (iii) that our fully discrete solution
Um is bounded inL∞.

COROLLARY 3.1 Let the assumptions of Theorem 3.2 be valid, andW0 be a value satisfying, for
anyβ > 1,

‖Phw(0)−W0
‖L2 6 Chβ . (3.67)
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Then

(i) max
06m6M

‖w(tm)−Wm
‖L2 +

(
k

M∑
m=1

k‖dt (w(tm)−Wm)‖2
L2

)1/2

6 C̃{h2ρ2(ε)+ k−1/2
{h2ε− max{σ1+3,σ3} + ε−3[r(h, k; ε,N, δ, σi, ν)]

1/2
} + hβ},

(ii) max
06m6M

‖w(tm)−W
m
‖L∞ 6 C̃{h(4−N)/2

|lnh|(3−N)/2ρ2(ε)+h
−N/2[k−1/2

{h2ε− max{σ1+3,σ3}

+ ε−3[r(h, k; ε,N, δ, σi, ν)]
1/2

} + hβ ]}.

Proof. First, from [11, 34] we know that

max
06m6M

‖Λm‖L2 +

(
k

M∑
m=1

k‖dtΛ
m
‖

2
L2

)1/2
6 C̃h2ρ2(ε). (3.68)

Next, using the identity which immediately precedes (3.62) we get

1

2
‖Ψ `

‖
2
L2 + k

∑̀
m=1

k

2
‖dtΨ

m
‖

2
L2 = k

∑̀
m=1

(dtΨ
m, Ψm)+

1

2
‖Ψ 0

‖
2
L2

6 k
∑̀
m=1

[
k

4
‖dtΨ

m
‖

2
L2 + 4k−1

‖Ψm
‖

2
L2

]
+

1

2
‖Ψ 0

‖
2
L2. (3.69)

The first term on the right hand side can be absorbed by the second term on the left, and a desired
bound for the second term on the right has been obtained in the proof of Theorem 3.2(iv). Hence,
(i) follows by combining (3.68) and (3.69).

Assertion (ii) comes from applying the triangle inequality toGm = Λm +Ψm, the estimate (cf.
Section 4 of [28])

‖Λm‖L∞ 6 Ch(4−N)/2
|lnh|(3−N)/2

‖w‖H2 6 Ch(4−N)/2
|lnh|(3−N)/2ρ2(ε),

and the inverse inequality bounding‖Ψm
‖L∞ by ‖Ψm

‖L2. The proof is complete. 2

REMARK (a) Clearly, the solution{(Um,Wm)}Mm=1 to (3.4)–(3.5) does not depend onW0.
However, estimates (i) and (ii), which will be needed for the convergence analysis in Section 4,
do depend on the choice ofW0. Recall thatWm approximatesw = −ε∆u + (1/ε)f (u), hence,
estimates (i) and (ii) bound the erroru(tm) − Um in higher norms, which in turn puts a constraint
like (3.67) on the choice ofW0.

(b) wε0 is defined by settingt = 0 in (2.2). Clearly, bothQhw
ε
0 andPhwε0 are valid candidates

for W0.
(c) Both estimates are not optimal due to the factork−1/2 in the second term on the right hand

side of each inequality. It can be shown that the estimates will be improved to optimal order (first
order ink and second order inh) under some stronger regularity assumptions and starting value
constraint. See (b) of the remark after the proof of Theorem 3.2.
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4. Approximation for the Hele–Shaw problem

The goal of this section is to establish the convergence of the solution{(Um,Wm)}Mm=0 of the fully
discrete mixed finite element scheme (3.4)–(3.5) to the solution of the Hele–Shaw problem (1.4)–
(1.8), provided that the Hele–Shaw problem has a global (in time) classical solution. It is shown
that the fully discrete solutionWm, ash, k ↘ 0, converges to the solutionw of the Hele–Shaw
problem uniformly inΩT . In addition, the fully discrete solutionUm converges to±1 uniformly
on every compact subset of the “outside” and “inside” of the free boundaryΓ of the Hele–Shaw
problem, respectively. Hence, the zero level set ofUm converges to the free boundaryΓ . Our main
ideas are to make full use of the convergence result that the Hele–Shaw problem is the distinguished
limit, as ε ↘ 0, of the Cahn–Hilliard equation proved by Alikakos, Bates and Chen in [2], and to
exploit the “closeness” between the solutionu of the Cahn–Hilliard equation and its fully discrete
approximationUm, which is demonstrated by the error estimates in the previous section. We remark
that as in [2], our numerical convergence result is also established under the assumption that the
Hele–Shaw problem has a global (in time) classical solution. We refer to [2, 16] and references
therein for further details on this assumption and related theoretical works on the Hele–Shaw
problem.

Although it can be shown that the results of this section hold for a general potentialF(u)

satisfying (GA1), for the sake of clarity of the presentation, we only consider the quartic
potentialF(u) =

1
4(u

2
− 1)2 in this section. Letuε denote the solution of the Cahn–Hilliard

problem (1.1)–(1.3). Note that we put back the super-indexε on the solution in this section. Let
(Uε,h,k(x, t),Wε,h,k(x, t)) denote the piecewise linear interpolation (in time) of the fully discrete
solution(Um,Wm), that is,

Uε,h,k(·, t) :=
t − tm

k
Um+1(·)+

tm+1 − t

k
Um(·), (4.1)

Wε,h,k(·, t) :=
t − tm

k
Wm+1(·)+

tm+1 − t

k
Wm(·), (4.2)

for tm 6 t 6 tm+1 and 06 m 6 M − 1. Note thatW0 is defined in Corollary 3.1, andUε,h,k(x, t)
andWε,h,k(x, t) are continuous piecewise linear functions in space and time.

LetΓ00 ⊂ Ω be a smooth closed hypersurface and let(w, Γ :=
⋃

06t6T (Γt×{t})) be a smooth
solution of the Hele–Shaw problem (1.4)–(1.8) starting fromΓ00 such thatΓ ⊂ Ω × [0, T ]. Let
d(x, t) denote thesigned distance functionto Γt such thatd(x, t) < 0 in It , the insideof Γt , and
d(x, t) > 0 inOt := Ω \ (Γt ∪ It ), theoutsideof Γt . We also define theinsideI and theoutsideO
of Γ as follows:

I := {(x, t) ∈ Ω × [0, T ]; d(x, t) < 0}, O := {(x, t) ∈ Ω × [0, T ]; d(x, t) > 0}.

For the numerical solutionUε,h,k(x, t), we denote its zero level set at timet by Γ ε,h,kt , that is,

Γ
ε,h,k
t := {x ∈ Ω;Uε,h,k(x, t) = 0}. (4.3)

Before we state our convergence theorem, Theorem 4.2, we need to recall the following convergence
result (see Theorem 5.1 of [2]), which proved that the Hele–Shaw problem is the distinguished limit,
asε ↘ 0, of the Cahn–Hilliard equation.

THEOREM 4.1 LetΩ be a given smooth domain andΓ00 be a smooth closed hypersurface inΩ.
Suppose that the Hele–Shaw problem (1.4)–(1.8) starting fromΓ00 has a smooth solution(w, Γ :=



24 X . FENG & A. PROHL⋃
06t6T (Γt × {t})) in the time interval [0, T ] such thatΓt ⊂ Ω for all t ∈ [0, T ]. Then there

exists a family of smooth functions{uε0(x)}0<ε61 which are uniformly bounded inε ∈ (0,1] and
(x, t) ∈ ΩT , such that ifuε solves the Cahn–Hilliard equation (1.1)–(1.3), then

(i) lim
ε→0

uε(x, t) =

{
1 if (x, t) ∈ O
−1 if (x, t) ∈ I uniformly on compact subsets,

(ii) lim
ε→0

(
1

ε
f (uε)− ε∆uε

)
(x, t) = w(x, t) uniformly onΩT .

We are now ready to state the following main theorem of this section.

THEOREM 4.2 Let Ω be a given smooth domain andΓ00 be a smooth closed hypersurface
in Ω. Suppose that the Hele–Shaw problem (1.4)–(1.8) starting fromΓ00 has a classical solution
(w, Γ :=

⋃
06t6T (Γt × {t})) in the time interval [0, T ] such thatΓt ⊂ Ω for all t ∈ [0, T ]. Let

{uε0(x)}0<ε61 be the family of smooth uniformly bounded functions as in Theorem 5.1 of [2]. Let
(Uε,h,k(x, t),Wε,h,k(x, t)) denote the piecewise linear interpolation (in time) of the fully discrete
solution {(Um,Wm)}Mm=0. Also, let I andO stand for the “inside” and “outside” (inΩT ) of Γ .
Then, under the mesh and starting value constraints of Theorem 3.1, withν = 1 andk = O(hq) for
some 2N/3< q < (8 − 2N)+ 4µ we have

(i) Uε,h,k(x, t)
ε↘0
−→ 1 uniformly on compact subsets ofO,

(ii) Uε,h,k(x, t)
ε↘0
−→ −1 uniformly on compact subsets ofI.

Moreover, whenN = 2, letk = O(hq) for someN < q < (4−N)+ 2µ and chooseW0 such that
‖wε0 −W0

‖L2 6 Chβ for someβ > q/2; then we also have

(iii ) Wε,h,k(x, t)
ε↘0
−→ w(x, t) uniformly on ΩT .

Proof. LetA be any compact subset ofO. For any(x, t) ∈ A, using the triangle inequality we have

|Uε,h,k(x, t)− 1| 6 |Uε,h,k(x, t)− uε(x, t)| + |uε(x, t)− 1|

6 ‖Uε,h,k − uε‖L∞(ΩT ) + |uε(x, t)− 1|. (4.4)

Under the assumptions of Theorem 4.2, from Theorem 3.2(v) we know that there exists a constant
0< α < (4 −N)/2 such that

‖Uε,h,k − uε‖L∞(ΩT ) 6 Chα. (4.5)

Here we have used the assumptionk = O(hq) for some 2N/3< q < (24− 5N)/2.
Clearly, the first term on the right hand side of (4.4) converges to zero uniformly onA (and

onΩ) ash ↘ 0. From Theorem 4.1(i) we know that the second term on the right hand side of (4.4)
also converges to zero uniformly onA. Note thath ↘ 0 asε ↘ 0. Therefore,

Uε,h,k
ε↘0
−→ 1 uniformly onA.

This then completes the proof of (i).
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The proof of (ii) is almost the same. The only change is to replaceO by I and 1 by−1 in the
above proof. So we omit it.

To show (iii), first we notice that

wε =
1

ε
f (uε)− ε∆uε

if the solutionuε of the Cahn–Hilliard equation (1.1)–(1.3) belongs toW1,∞(J ;L2)∩L∞(J ;H 4).
Next, from Corollary 3.1(ii) we know that under the additional assumptions of Theorem 4.2 there
exists a positive constant 0< ζ < (q − 2)/2 such that

‖Wε,h,k − wε‖L∞(ΩT ) 6 Chζ . (4.6)

Here we have used the assumptionk = O(hq) for some 2< q < 7/2.
By the triangle inequality for any(x, t) ∈ ΩT we have

|Wε,h,k(x, t)− w| 6 |Wε,h,k(x, t)− wε(x, t)| + |wε(x, t)− w|

6 ‖Wε,h,k − wε‖L∞(ΩT ) + |wε(x, t)− w|. (4.7)

The first term on the right hand side of (4.7) clearly converges to zero uniformly ash ↘ 0, and so
does the second term due to Theorem 4.1(ii). Hence,

Wε,h,k(x, t)
ε↘0
−→ w(x, t) uniformly onΩT .

The proof is complete. 2

REMARK (a) The reason for us to only show assertion (iii) forN = 2 is that the current
L∞(J ;L∞) estimate forwε − Wε,h,k in Corollary 3.1(ii) is not strong enough to give a positive
power ofh (notek = O(hq)) in the error bound whenN = 3. To circumvent the difficulty, we
need a betterL∞(J ;L∞) estimate forwε − Wε,h,k which is similar to the one foruε − Uε,h,k in
Theorem 3.2(v). This can be done under the assumption thatut t ∈ L2(J ;L2) (needed to derive a
priori estimate in 1/ε) and that the starting valueU0 satisfies the following stronger constraint:

‖∇(Phu
ε
0 − U0)‖L2 6 Ch2. (4.8)

See (b) of the remark after Theorem 3.2.
A corollary of Theorem 4.2 is the following convergence result of the zero level setΓ

ε,h,k
t of

Uε,h,k to the free boundaryΓt .

THEOREM 4.3 LetΓ ε,h,kt := {x ∈ Ω;Uε,h,k(x, t) = 0} denote the zero level set ofUε,h,k. Then
under the assumptions for Theorem 4.2(i),(ii), we have

sup
x∈Γ

ε,h,k
t

dist(x, Γt )
ε↘0
−→ 0 uniformly on [0, T ].

Proof. For anyη ∈ (0,1), define the (open) tubular neighborhoodNη of width 2η of Γ as

Nη := {(x, t) ∈ ΩT ; d(x, t) < η}. (4.9)
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LetA andB denote the complements ofNη in O andI, respectively, that is,

A = O \Nη, B = I \Nη.

Note thatA is a compact subset ofO andB is a compact subset ofI. Hence, from Theorem 4.2(i),(ii)
we know that there existŝε0 > 0, which only depends onη, such that for allε ∈ (0, ε̂0),

|Uε,h,k(x, t)− 1| 6 η ∀(x, t) ∈ A, (4.10)

|Uε,h,k(x, t)+ 1| 6 η ∀(x, t) ∈ B. (4.11)

Now for anyt ∈ [0, T ] andx ∈ Γ
ε,h,k
t , sinceUε,h,k(x, t) = 0, we have

|Uε,h,k(x, t)− 1| = 1, (4.12)

|Uε,h,k(x, t)+ 1| = 1. (4.13)

Evidently, (4.10) and (4.12) imply that(x, t) 6∈ A, and (4.11) and (4.13) say that(x, t) 6∈ B. Hence
(x, t) must reside in the tubular neighborhoodNη. Sincet is an arbitrary number in [0, T ] andx is
an arbitrary point onΓ ε,h,kt , therefore, for allε ∈ (0, ε̂0),

sup
x∈Γ

ε,h,k
t

dist(x, Γt ) 6 η uniformly on [0, T ]. (4.14)

The proof is complete. 2

We conclude this section and the paper with some discussions about the rate of convergence of
Γ
ε,h,k
t to Γt .

It is well known (see [4, 14, 25]) that the solution for the Allen–Cahn equationuεt =

∆uε−(1/ε2)f (uε) approaches±1 away from the interface exponentially fast. This property allows
estimating the rate of convergence for the zero level set of the solution of the Allen–Cahn equation
and its numerical approximations to the true interface (see [9, 28, 31, 32] and references therein).

Unlike the situation for the Allen–Cahn equation, the solutionuε of the Cahn–Hilliard equation
(1.1)–(1.3)does notapproach±1 away from the interface exponentially fast, and the transition
region from 1 to−1 could be “large” (see [2]). In fact, it was shown in Theorem 4.12 of [2] that this
transition region is contained in a tubular neighborhood of widthδ∗ of Γ , whereδ∗ is a constant
such that dist(Γt , ∂Ω) > 2δ∗ for all t ∈ [0, T ]. The combination of this result with theL∞(J ;L∞)

estimate foruε − Uε,h,k immediately leads to the following theorem.

THEOREM 4.4 Letδ∗ be a positive constant such that dist(Γt , ∂Ω) > 2δ∗ for all t ∈ [0, T ]. Then,
under the assumptions for Theorem 4.2(i),(ii), there exists a (small) positive numberε̂ > 0 such that

sup
x∈Γ

ε,h,k
t

dist(x, Γt ) 6 δ∗/2 uniformly on [0, T ], ∀ε ∈ (0, ε̂ ].

Proof. From Theorems 4.12 and 5.1 of [2] we know that there exists anε̂1 > 0 and a constant
C∗ > 0 such that for allε ∈ (0, ε̂1),

‖uε − 1‖C0(O\Nδ∗/2)
6 C∗ε, (4.15)

‖uε + 1‖C0(I\Nδ∗/2)
6 C∗ε. (4.16)
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Now for anyx ∈ Γ
ε,h,k
t , sinceUε,h,k(x, t) = 0, from Theorem 3.2(v) we know that there exists an

ε̂2 > 0, independent of(x, t), such that

|uε ± 1| > 1 − |uε − Uε,h,k| > 2C∗ε (4.17)

for all ε ∈ (0, ε̂2). Then (4.15)–(4.17) implies that(x, t)must be in the tubular neighborhoodNδ∗/2
of Γ for all ε ∈ (0, ε̂) with ε̂ = min{̂ε1, ε̂2}. The proof is complete. 2
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