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On the variational theory of cell-membrane equilibria
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The equivalence of two approaches to the variational theory of cell-membrane equilibria which have
been proposed in the literature is demonstrated. Both assume a constraint on surface area, global
in one formulation and local in the alternative, in accordance with measurements which reveal
negligible surface dilation in the presence of membrane deformation. We thus address a potential
controversy in the mathematical modeling of an important problem in biophysics.
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1. Introduction

Mathematical models of the mechanics of phospholipid cell membranes have been shown to be
predictive with respect to the observed shapes of red blood cells. Typically, the equations describing
equilibrium configurations are obtained from an energy functional which accounts for the bending
elasticity of the membrane enclosing the cell. The differential equation to be solved for the shape
of the membrane, which we refer to as theshape equation, is then obtained by applying standard
variational procedures in the presence ofglobal constraints on the enclosed volume and the total
surface area. The first constraint is intended to account for the incompressibility of the fluid medium
enclosed by the membrane together with the impermeability of the membrane itself; the second
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for the significant energetic penalty attending surface dilation. These constraints are appropriate
idealizations of the observed phenomenology over time scales associated with typical experiments
[5]. The approach described here has been advanced in [12] for general equilibrium membrane
shapes, and in [4] for a class of axisymmetric shapes. In the latter setting, the model has been shown
to generate remarkable agreement with observations on cell-membrane equilibria. An extension of
the axisymmetric problem to dynamic, acceleration-free motions has been analyzed in [13], where
a thorough discussion of phenomenology and a comprehensive bibliography may also be found.

In another approach to this subject, the equilibrium equations are recovered from those for
a general elastic surface with bending and stretching resistance by incorporating a local energy
density which reflects the two-dimensional fluidity of the phospholipid membrane [1, 8, 14]. In this
approach the final equation for the shape is recovered by making use of the tangential component of
the equilibrium operator but with the global area constraint replaced by alocal constraint, whereas
the tangential equation does not arise in the first approach. Remarkably, the two approaches yield
precisely the same shape equation. Mathematically, the difference between them is due to the fact
that the relevant Lagrange multiplier is uniform in the first approach and a function of surface
coordinates in the second. Their equivalence would thus appear to be unexpected at the outset. Our
purpose in this note is to demonstrate this equivalence and to thereby resolve a potential controversy
in the theory of cell-membrane mechanics. In so doing we derive variational formulae that are at
once more concise and more general than those given elsewhere (e.g. [12]). We also recover some
important formulae which were given without derivation in [10].

Notation and terminology used here are standard in the differential geometry of surfaces (see
[17]). Thus, Greek indices take values in{1, 2} and are always summed if repeated. Subscripts
preceded by commas refer to partial derivatives with respect to surface coordinatesθα and
subscripted semi-colons are used to denote covariant derivatives.

2. Energy functional

The model of the mechanical response of the membrane is embodied in a strain-energy per unit area
of the membrane surfaceω given by the functionW(H, K), whereH is the mean curvature of the
surface andK is the Gaussian curvature. These are defined by

H =
1
2aαβbαβ and K =

1
2εαβελµbαλbβµ, (1)

whereaαβ
= a−1

αβ is the dual metric, the inverse of the matrixaαβ of metric components,εαβ
=

a−1/2eαβ is the permutation tensor density witha = det(aαβ), e12
= −e21

= 1, e11
= e22

= 0, and
bαβ are the coefficients of the second fundamental form. The latter are the covariant components of
the surface curvature. The contravariantadjugateof bαβ is given by

b̃αβ
= εαλεβγ bλγ , (2)

and satisfies
bβ
µb̃µα

= Kaβα, (3)

wherebα
β are the mixed components of the curvature. The latter figures in the Gauss and Weingarten

equations
aα;β = bαβn and n,α = −bβ

αaβ , (4)
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respectively. Here,aα = r ,α are the tangent vectors induced by the parametrizationr(θα), the
position in 3-space of a point onω with coordinatesθα, andn(θα) is the local surface orientation
(= 1

2εαβaα × aβ). The aα are related to the metric byaαβ = aα · aβ , where the dot refers to
the Euclidean inner product on the translation space of the enveloping three-dimensional Euclidean
point space.

Equilibrium configurations are by definition those which render stationary the potential energy
functional [1, 14]

E =

∫
ω

[W(H, K) − γ ] da − pV (ω), (5)

whereV (ω) is the volume enclosed byω andγ (θα) andp are Lagrange multipliers associated
with area and volume, respectively. The first multiplier is afunctiondefined onω in accordance
with the prescription of a constraint onlocal area (equivalently, local mass density); the second
is a constant associated with the assignment of aglobal constraint on enclosed volume. The local
area constraint is an idealization of the empirical observation that cell membranes are very stiff
against local areal dilation. Deformations which entail dilation are thus energetically disfavored
unless required by subsidiary conditions or boundary data [5]. However, in this work the surfaces
considered are closed and such conditions are not relevant. The constraint on volume is global rather
than local because the domain of the problem is the surfaceω; that is, the volumeV is expressible
as an integral with domainω and we do not account explicitly for the local properties of the fluid
medium contained inV .

Several observations regarding (5) may be made before proceeding. First, Lagrange multipliers
associated with local constraints are in general functions of the surface coordinates [7]. In principle,
the Euler equations yield differential equations which specify the manner in which the multiplier
may vary with coordinates in equilibrium states. This is similar to the problem of generating the
constraint pressure in a three-dimensional elastic solid subject to a local constraint on volume [6].
A local constraint effectively adds a differential equation to the system. In the general context,
the augmented system would be overdetermined unless the associated Lagrange multiplier were
permitted to be a function of coordinates. One of our objectives here is to show that, these
observations notwithstanding, the multiplier associated with the local area constraint is in fact
constant in equilibrium. The result is readily understood via an analogy discussed in Section 4.

Second, the energyW is seen to be an isotropic function of the curvature tensor onω. This
form emerges as the canonical representation for the energy of an elastic surface which is distorted
relative to some fixed reference surface, in accordance with the nonlinear theory of elastic shells,
provided that the symmetry group of the shell is taken to be the unimodular group of local area-
preserving transformations [14]. This concept is the natural extension to two dimensions of the
definition of fluidity introduced by Noll [11] in the three-dimensional context. It isnot equivalent
to the notion of isotropic symmetry relative to the reference surface; the latter is associated with the
mechanical response of certain solids. In the present setting, the completeness of the canonical form
W(H, K) for fluid films is proved in [15].

Lastly, the local energy is evidently insensitive to area-preserving flows of the fluid on the
surfaceω. These are associated with acceleration-free swirling patterns observed on macroscopic
soap bubbles which leave the surface shape invariant [16].
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3. Local variational derivatives

To compute the variational derivative (or Gateaux differential) of the energy functional it is
necessary to have explicit formulas for the variational derivatives ofH andK. We denote variational
differentiation by a superposed dot. This is simply the derivative of the considered quantity with
respect to a parameter which identifies configurations of the surface. The dot notation refers to the
value of the derivative at a fixed value of the parameter, zero say, which we use to identify quantities
associated with the particular equilibrium state considered.

The derivativesḢ andK̇ are induced by thevirtual displacementu(θα) = ṙ . The usual product
rule and equations (1) yield

2Ḣ = ȧαβbαβ + aαβ ḃαβ and 2K̇ = eαβeλµ

[
1

a
(ḃαλbβµ + bαλḃβµ) −

ȧ

a2
bαλbβµ

]
. (6)

In [14] it is shown that

ȧαβ = aα · u,β + aβ · u,α and ḃαβ = n · u;αβ , (7)

whereu;αβ is the second covariant derivative ofu. We therefore seek to represent (6) in terms of
(7). To this end we evaluate the variational derivative of the identityaαλaλβ = δα

β , whereδα
β is the

Kronecker delta (equal to unity ifα = β and to zero otherwise), to obtain

ȧαβ
= −aαγ aβλȧγ λ. (8)

The definition of the scalar densitya further implies that

ȧ/a = aαβ ȧαβ . (9)

We will also make use of the scalar
J =

√
a/A, (10)

whereA is the value ofa on a fixedreferencesurfaceΩ. The variational derivative ofA vanishes,
yielding

J̇ /J =
1
2aαβ ȧαβ . (11)

Combining these results with (8), substituting into (6), and using the dual metric to raise indices,
we derive

2Ḣ = aαβ ḃαβ − bαβ ȧαβ and K̇ = −Kaαβ ȧαβ + b̃αβ ḃαβ . (12)

These in turn may be combined with (7) to obtain expressions involving the virtual displacementu.
The latter consists of components parallel and perpendicular to the tangent planes of the equilibrium
surfaceω which are associated withtangentialandnormalvariations, respectively.

(a) Tangential variations

For tangential variations the virtual displacementu takes the form

u = uλaλ. (13)

Then
u,α = u

β

;α
aβ + uλbλαn, (14)
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where
u

β

;α
= uβ

,α + uλΓ
β
λα, (15)

andΓ α
βλ are the Riemannian connection coefficients induced by the coordinates onω. This yields

ȧαβ = uα;β + uβ;α. (16)

Further,
ḃαβ = (n · u,α);β − n,β · u,α = (uλbλα);β + bλ

βaλ · u,α. (17)

We thus derive
ḃαβ = uλ

;αbλβ + uλ
;βbλα + uλbλα;β . (18)

Using the fact that the metric is covariant-constant we obtain

aαβ ḃαβ = 2bα
βu

β

;α
+ uαb

β

α;β
, (19)

which we combine with
bαβ ȧαβ = 2bαβuα;β = 2bα

βu
β

;α
(20)

to find
2Ḣ = uαb

β

α;β
. (21)

Expanding and using the Mainardi–Codazzi equations

bλ
α;β = bλ

β;α (22)

finally yields
Ḣ = uαH,α. (23)

This is the directional derivative of the equilibriumH -field alongu.
To obtain an expression foṙK we use (7) and (16) to derive

aαβ ȧαβ = 2uα
;α (24)

and
b̃αβ ḃαβ = (uλ

;αbλβ + uλ
;βbλα)b̃αβ

+ uλ(bλα b̃αβ);β , (25)

where, in the last term, we have used the fact that the adjugate of the surface curvature is divergence-
free [14]:

b̃
αβ

;β
= 0. (26)

To reduce (25) to a manageable form we use (3) to obtainbλα b̃αβ
= δ

β
λ K and(bλα b̃αβ);β = K,λ.

Substitution of (24) and (25) into (12) then furnishes the counterpart of (23):

K̇ = uαK,α. (27)

Finally, (11) and (16) combine to yield

J̇ /J = uα
;α, (28)

the surface divergence ofu.



362 D. STEIGMANN ET AL.

(b) Normal variations

Normal variations are associated with virtual displacements of the form

u = u(θα)n. (29)

Then
u,α = u,αn − ubβ

αaβ . (30)

This gives
ȧαβ = −2ubαβ and ḃαβ = u;αβ − ubαλb

λ
β . (31)

In particular,
bαβ ȧαβ = −2ubαβbαβ . (32)

We use the Cayley–Hamilton theorem in the form

bαβ
= 2Haαβ

− b̃αβ , (33)

together with (3) and (32), to derive

bαβ ȧαβ = −2u(4H 2
− 2K). (34)

Further, (1), (3) and (31) may be used to show that

aαβ ḃαβ = aαβu;αβ − u(4H 2
− 2K), aαβ ȧαβ = −4uH, (35)

and
b̃αβ ḃαβ = b̃αβu;αβ − 2KHu. (36)

These finally yield

2Ḣ = ∆u + u(4H 2
− 2K), K̇ = 2KHu + (b̃αβu,α);β (37)

and
J̇ /J = −2Hu, (38)

where∆(·) = (·);αβaαβ is the surface Laplacian.

4. Stationarity and the shape equation

Equilibrium states render the total energy (5) stationary against geometric variations. To evaluate
the variational derivative ofE we must account for the fact that the surfaceω is not fixed. To this
end we use the fact that the area measure onω is da =

√
a dθ1 dθ2

= J dA, whereJ is defined in
(10) and dA =

√
A dθ1 dθ2 is the area measure on the fixed surfaceΩ. We evaluate the derivative

and then transform back to the domainω. Thus,

Ė =

∫
ω

Ẇ da +

∫
ω

(W − γ )J̇ /J da − pV̇ . (39)

Here we have conformed to the convention that the variational derivatives of the Lagrange
multipliers vanish. Alternatively, the requirement thatĖ vanish for arbitrary variations of the
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multipliers simply returns the constraints and so the variational derivatives of the multipliers need
not be made explicit.

To expressV̇ in terms ofu we extend the latter smoothly as a function inV ∪ ω and write

V̇ =

∫
V

div u dx =

∫
ω

u · n da =

∫
ω

u da. (40)

This vanishes for purelytangentialvariations, for which we use

Ẇ = WH Ḣ + WKK̇ (41)

with (23) and (27) to derive

Ė =

∫
ω

uαW,α da +

∫
ω

(W − γ )uα
;α da =

∫
ω

[(W − γ )uα];α da +

∫
ω

uαγ,α da, (42)

whereW, regarded as a function of theθα, is theequilibriumdistribution of strain energy.
For a closed surface on which the scalar densitya(θα) = det(aαβ) is continuous, the surface

integral of the divergence of any smooth function vanishes by virtue of Stokes’ theorem. Then, the
first integral after the right-most equality in (42) vanishes, so thatE is stationary under tangential
variations if and only if ∫

ω

uαγ,α da = 0 (43)

for all choices of theuα. Choosinguα
= aαβγ,β and invoking the positive-definiteness of the metric

yieldsγ,α = 0, or
γ (θβ) = −λ, (44)

a constant function of surface coordinates. The sign is inserted to conform to the notation of [12].
This is the surface analogue of the well-known result that the pressure distribution in a three-
dimensional fluid, in equilibrium without body forces, is uniform. The latter result would have
emerged in the present context also, had alocal volume constraint on the enclosed fluid been
imposed.

Conversely, sinceγ is independent of theuα the result is necessary and sufficient forE

to be stationary underall tangential variations. In fact, sinceγ may be assumed to have zero
variational derivative for all virtual displacements, it is equal to its equilibrium value as given by
(44). Substituting into (5), we obtain the functional

E′
=

∫
ω

W(H, K) da + λS(ω) − pV (ω), (45)

whereS(ω) is the total surface area ofω andW is no longer restricted to be the equilibrium strain
energy. This coincides with the total energy as defined in [10, 12]. The constantλ is formally
identical to a Lagrange multiplier associated a constraint ontotal surface area. Following our
previous development, it is then clear thatE′ is nontrivial only for purelynormalvariations.

For normal variations (37) leads to

2WH Ḣ = uWH (4H 2
− 2K) + (WH aαβu,α);β − (WH ),βaαβu,α

= u[(WH );βαaβα
+ WH (4H 2

− 2K)] + (WH aαβu,α);β − [(WH ),βaαβu];α (46)
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and

WKK̇ = (2KHWK)u + (WK b̃αβu,α);β − (WK),β b̃αβu,α

= u[(WK);βα b̃βα
+ 2KHWK ] + (WK b̃αβu,α);β − [(WK),β b̃αβu];α. (47)

Modulo divergences which do not contribute to the variational derivative of the energy of a closed
surface, we then have

Ẇ = u
[
∆

(1
2WH

)
+ (WK);αβ b̃αβ

+ WH (2H 2
− K) + 2KHWK

]
. (48)

Further, in place of the second integrand in (39) we substitute

(W + λ)J̇ /J = −u[2H(W + λ)]. (49)

Then with (45) we find that the energyE′ (or E) is stationary against normal variations if and only
if the equilibriumshape equation

∆
(1

2WH

)
+ (WK);αβ b̃αβ

+ WH (2H 2
− K) + 2H(KWK − W) − 2Hλ = p (50)

is satisfied. This result may also be obtained by combining equations (6.19) and (6.21) of [14]. In
the absence of local bending resistance it reduces to the classical Laplace equation of capillarity
which requires that the mean curvature be uniform onω.

The best known example of (50) is [10, 12]

k[∆H + 2H(H 2
− K)] − 2λH = p, (51)

and corresponds to the strain-energy function

W = kH 2
+ k̄K (52)

whereink andk̄ are empirical constants. This special energy may be regarded as an approximation
to W obtained by retaining terms quadratic in a small parameter representing the ratio of film
thickness—typically on the order of the length of one or two polar molecules—to the infimum over
ω of the minimum principal radius of curvature [1].

Equation (51) was derived in [10] and [12] by subjectingE′ to normalvariation. In these works
the part of the energy involving the constantk̄ is suppressed because, according to the applicable
version of the Gauss–Bonnet theorem, it contributes a term proportional to the Euler characteristic
of the surface. This has vanishing variational derivative if the topology of the surface is fixed.
In the general case without topological constraints, equations (52) and (50) yield (51) because
the covariant derivatives ofWK (= k̄) vanish. Of course, (51) remains valid if the surface has
boundaries, although the argument used in [10, 12] to justify the suppression of thek̄-term is not
then applicable.

The formulation described in [10, 12], based on an energy functional subject to purelynormal
variations under a global area constraint, is thus seen to be equivalent to the present formulation
which admits arbitrary variations under a local constraint. Indeed, the restriction to normal variations
alone is not natural in mechanics, and, to our knowledge, is not motivated in the literature.
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5. Remarks

Solution of the shape equation is complicated by the fact that the values of the parametersλ andp

are not known at the outset. In practice, when attempting to solve the differential equations directly
(e.g. [1, 4]), these values are initialized and then the solution to (50) computed. The solution thus
obtained is used to evaluate the functionsS(ω) andV (ω), which may be compared to the values
required by the constraints. The constantsλ andp are then adjusted until the constraints are satisfied.

A numerical scheme for solving the problem of axisymmetric Willmore flow has been presented
in [9]. This is essentially a dynamical counterpart of (51) in whichλ, p and the acceleration of the
film are suppressed.

Alternatively, direct minimization techniques for equilibria such as the conjugate gradient
method may be used, and have proved to be a popular and effective means of solving problems
involving capillary surfaces [3]. Applications of such methods to the energy functional (45)
for general nonaxisymmetric surfaces are described in [12]. Since we have shown that (5) and
(45) coincide only for equilibrium values of the Lagrange multiplierγ, a question naturally
arises regarding the limits of distinct minimizing sequences of configurations associated with the
functionalsE and E′ separately. Since these two energies coincide in equilibrium states, it is
clearly desirable that the common equilibrium value,E0 say, should emerge as the (weak) limit of
independent minimizing sequences forE andE′. This is the case if the energy functionals possess
the property of lower semicontinuity with respect to an appropriate definition of convergence [2].
Thus, if{ωn} and{ω′

n} are sequences of surfaces, then we require that

E0 6 lim inf
n→∞

E(ωn) asn → ∞ and E0 6 lim inf
n→∞

E′(ω′
n) asn → ∞ (53)

whenever
ωn ⇀ ω0 and ω′

n ⇀ ω0, (54)

whereω0 is an equilibrium surface andE0 = E(ω0) = E′(ω0). The notation⇀ connotes weak or
weak-* convergence.

It is known that lower semicontinuity is guaranteed by the condition ofquasiconvexity[2], which
is an integral inequality involving the strain-energy functionW. A pointwise necessary condition
has been derived in [14]. This is given by the local constitutive inequality

F(x) > 0, (55)

where
F(x) =

1
4WHH + 2xWHK + x2WKK with x = b̃αβςαςβ ∈ R (56)

and arbitraryςα ∈ R2. The inequality is also necessary for the existence of energy-minimizing
equilibria and may thus be regarded as a necessary condition for Lyapunov stability. IfWKK = 0,

as in the case of (52), then, if the coefficient ofx in (56) is non-zero,F(x) may assume negative—
hence inadmissible—values on a half-interval of thex-axis. The inequality can then be satisfied
only if WHK = 0 andWHH > 0, e.g. only ifk > 0 in (52). If WKK 6= 0, thenF(x) > 0 if and
only if WKK > 0 and the discriminant in (56) is nonpositive: 4W2

KH − WKKWHH 6 0.

In general lower semicontinuity alone is insufficient to secure the existence of energy-
minimizing surfaces [2]. Existence theory for problems of the kind considered here remains
incomplete, even for surfaces with prescribed Euler characteristic (equivalently, prescribed genus).
Partial results are available, however, and are summarized in [10].
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