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The 3D flow of a liquid through a porous medium with absorbing
and swelling granules
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We study the flow of an incompressible fluid through a porous medium with hydrophile granules.
The system is schematized as a periodic array of cubic cells, each containing one spherical swelling
granule. The physical situation is such that the size of the granules is of the same order of the size
of the cells and much larger than the microscopic constituents of the porous matrix. The porosity at
each point of a cell is defined according to the size of the granules located at the cell vertices. The
swelling of each granule is governed by a kinetic law involving the average moisture content of the
medium over the granule surface.

The notion of weak solution is introduced and we prove the existence of such solution using
backward time differences. The discretized problem is studied in detail and appropriate a priori
estimates are obtained. Passing to the limit requires a precise analysis of the convergence in the
geometry evolving with the solution.

Keywords: porous media with swelling granules; diapers; absorption; degenerate parabolic equation
in a moving geometry.

1. Introduction

The flow of a liquid through a diaper is a complex phenomenon because the hydrophile swelling
granules distributed within the medium have several important effects on the system:

(i) they capture and immobilize part of the liquid,
(ii) by increasing their volume (up to 60 times the initial value) they modify the porosity of the

medium,
(iii) they become active as soon as they are reached by the wetting front (thus keeping memory

of such event) and through their swelling kinetics they bring the history of the flow into the
main rheological coefficients of the system.

A large discussion about modelling the various physical situations possibly occurring during
this process can be found in [7]. A partial solution to the one-dimensional problem, referring to
unsaturated flow, has been given in [8]. Substantial generalizations are [6, 10, 11], all dealing with
the one-dimensional flow.
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The present paper deals with a 3D flow through a porous material in which the hydrophile
granules are represented by balls with fixed centre and time-dependent radius, whose size is not
neglected on the scale of the flow.

The system is schematized as a cube of side L (the porous material) with a regular array of
hydrophile balls. In the Cartesian coordinates x1, x2, x3 the sides x1 = 0, x1 = L represent the
inflow and outflow boundaries, respectively. No flow takes places through the lateral boundaries.
Pressure is prescribed at x1 = 0. We assume that the surface x1 = L is impervious (this is the real
condition for diapers).

The balls centers occupy the positions of coordinates ( ε
2 , ε

2 , ε
2 ) + (iε, jε, kε) with ε =

L
N , i, j, k ∈ Z, chosen so that all centers are inner points. We denote by Bi jk(t) the generic ball
and by Ri jk(t) its radius, ranging from the initial value Rmin and the maximum admissible value
Rmax < ε/2, so that the spheres will always be separated by a positive distance. We also require
that Rmax is such that the medium with completely swollen spheres has a positive porosity.

The radii vary according to a kinetics driven by the surrounding values of the moisture content,
that will be described in the next section. The most delicate question in the model, i.e. the definition
of porosity as a function of time and space during the swelling of the spheres, will be analysed in
the next section, where the mathematical problem will be formulated in its differential form.

The mathematical model is a degenerate non-linear parabolic equation in a geometry evolving
with the solution. Degenerate parabolic equations, in dimensions larger than 1, are usually studied
using two different approaches: (i) L1-contractions and (ii) compactness methods based on the
topology induced by the energy integral together with estimates on the time differences. The first
approach is followed in classical works by Benilan, Crandall et al.. It allows precise results for
scalar problems and there was a recent breakthrough concerning uniqueness. For more details the
reader should consult [15] and [4] and references therein.

The second approach was introduced by H. W. Alt and S. Luckhaus in [2]. It was used with
success not only for scalar degenerate parabolics but also for degenerate coupled systems arising
in important applications (see e.g. [1, 9, 14] and references therein). In the problem which will be
formulated in the next section, the geometry changes in time and it is not evident how to apply the
non-linear semi-groups technique. At the same time one should take care of the equation describing
evolution of the geometry. Hence it is natural to choose the tools introduced in [2].

The differential formulation is discretized using backward time differences in Section 3. Then
in Section 4 we prove the existence of a solution for the discretized problem. In Sections 5 and 6
we obtain the a priori estimates. Finally, Section 7 contains passing to the limit as the time step h
tends to zero. To our knowledge it is the first time that a degenerate parabolic equation in a geometry
evolving with the solution is considered.

2. Evolution of the swelling spheres and of the porosity; differential formulation of the flow
problem

We denote by p the pressure and by S(p) the saturation in the flow region. The function S belongs
to C0,χ (R) for some χ ∈ (0, 1], it is monotone and moreover

S(p) = 0 for p < 0,

S(p) = 1 for p > pS > 0,

S(pc) = So ∈ (0, 1) for some pc ∈ (0, pS),
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where S0 is supposed to be a threshold for absorption by the granules. We remark that taking
S(p) = 0 for p < 0 is not crucial. Our analysis holds true also if S(p) is positive everywhere.
The rate of volume increase of the sphere Bi jk(t) due to absorption is proportional to the difference
(S − S0)+ multiplied by the porosity n(x, t) and integrated over its boundary.

• Absorption kinetics

4π R2
i jk(t)

dRi jk

dt
= f (Rmax − Ri jk(t))

∫
∂ Bi jk (t)

n(x, t)(S − S0)+ dσ, (2.1)

where f is a non-negative continuously differentiable function in [0, Rmax−Rmin], such that f (0) =
0, f ′(z) � 0 (and f ′ > 0 in z = Rmax − Rmin). The condition f (0) = 0 implies that absorption
stops when balls reach the maximum size.

Differently from previous models, we are keeping here the actual size of the spheres, not
averaging their influence on the flow (the alternative approach would be to define S everywhere on
the large scale, to introduce a density of the spheres and consider their average size at a macroscopic
point, i.e. on a representative volume element).

The cost of not missing information at the scale of the granules is of course that kinetics (2.1)
involves the saturation in a non-local way.

The physical situation for which this approach is meaningful is the one in which the balls are
much larger than the microscopic elements assembled in the skeleton of the hosting porous medium
(e.g. the cellulose fibres in a diaper). In this case the medium can be considered a continuum not
only at the macroscopic scale, but also in the scale of Rmax.

Let us define the porosity of our evolving porous medium. We define it for each point (x1, x2, x3)

that at instant t does not belong to any of the spheres Bi jk(t), i.e. in the flow domain Ω(t) =
Ω \ ∪i, j,k Bi jk(t), having set Ω = (0, L)3.

Let n0 be the porosity of the medium in the absence of granules. The condition that for Ri jk =
Rmax there must be some residual porosity is expressed by 4

3π R3
max < n0ε

3. The corresponding
minimum porosity is

nmin = n0

[
1 − 4

3
π

(
Rmax

ε

)3]
> 0. (2.2)

In order to define the porosity for general values of the radii Ri jk(t), let us consider the cube of
side ε with vertices at the points ( ε

2 , ε
2 , ε

2 ) + ε(i + s1, j + s2, k + s3), with i, j, k fixed and s1, s2, s3
taking values 0 and 1. The cube center has coordinates ε(i +1, j +1, k +1). The vertices are centers
of swelling balls, each having 1

8 of their volume intersecting the cube under examination. Thus a

natural way of defining the porosity at the center Po
i jk is

†

n(Po
i jk) = n0

{
1 − 1

8

1∑
s1=0

1∑
s2=0

1∑
s3=0

4

3
π

[
Ri+s1, j+s2,k+s3

ε

]3
}

(2.3)

†
For points close to the boundaries x = 0, x = L there may be vertices of the surrounding cube not lying in Ω . In that

case just give them a weight zero. Extension beyond the lateral sides can be done by periodicity.



242 A. FASANO AND A. MIKELIĆ

An obvious requirement for extension of the function n is that it is continuous across the boundary
of the cube. This implies that the size of a ball at a vertex must not influence n at the points of
those faces not containing that vertex. Thus we are led to introduce weights ws1s2s3 for each vertex
depending on a suitably defined distance from that vertex of the point in which we want to define n.

In order to create the corresponding formula we introduce normalized Cartesian coordinates
within the cube, ξ, η, ζ , varying in (− 1

2 , 1
2 ), such that the center has zero coordinates and the vertices

are the points (− 1
2 + s1, − 1

2 + s2, − 1
2 + s3) = (ξs1 , ηs2 , ζs3). For two points P = (ξ, η, ζ ), P ′ =

(ξ ′, η′, ζ ′) in the cube, the natural normalized distance in the system geometry is

dist (P, P ′) = max(|ξ − ξ ′|, |η − η′|, |ζ − ζ ′|). (2.4)

Denoting by ds1s2s3(ξ, η, ζ ) the distance of P from the vertex labelled by (s1, s2, s3), we choose the
weights

ws1s2s3(ξ, η, ζ ) = [1 − ds1s2s3(ξ, η, ζ )] (2.5)

and we define the following.

• Interpolated porosity

ni jk(ξ, η, ζ )=
{

1− 1

Z

1∑
s1=0

1∑
s2=0

1∑
s3=0

4

3
πws1s2s3(ξ, η, ζ )

[
Ri+s1, j+s2,k+s3

ε

]3}
n0. (2.6)

with Z = ∑1
s1=0

∑1
s2=0

∑1
s3=0 ws1s2s3(ξ, η, ζ ).

This formula satisfies all the desired requirements. For instance at the center of the cube all
weights are 1

2 and Z = 4, so that 1/Zws1s2s3 = 1
8 for all vertices. At the centers of a face four

weights are 1
2 and four other are zero, so that Z = 2 and the vertices of the face enter the average

(2.6) with a coefficient 1
4 . At the center of a wedge two weights are 1

2 and all the others are zero,
hence Z = 1 and the vertices on the wedge have a coefficient 1

2 . Therefore (2.6) is certainly a
geometrically consistent definition.

By construction the function n(x1, x2, x3, t) is Lipschitz continuous in the space variables and
has the same regularity as ∂Ω(t) with respect to time.

We are now ready to state the flow problem in differential form.

• Flow equation

Assuming Darcy’s law for moisture displacement and neglecting gravity, the mass balance equation
is

∂

∂t
{nS(p)} − div {k∇ p} = 0 in

⋃
t∈(0,T )

Ω(t) = QT . (2.7)

Here k is the hydraulic permeability which is assumed to depend in a continuous fashion on the
porosity n and on the saturation S

k = k(n,S). (2.8)
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More precisely, we take∣∣∣∣ ∂k

∂n

∣∣∣∣ � c1 , k = k̃(S)Sβ with k̃ � c0 > 0 and β � 0, (2.9)

k̃ being a smooth function and c0 a given constant.

• Flow condition at the spheres boundary

At ∂ Bi jk(t) the Darcian flux −k∇ p · �ν (�ν unit normal vector pointing out of Ω(t)) equals the

mass transport rate due to the motion of the surface, i.e. −ni jkS(p)
dRi jk

dt , plus the absorption rate
f (Rmax − Ri jk)n(S − S0)+. Hence(

−k∇ p · �ν + nS dRi jk

dt

)∣∣∣∣
∂ Bi jk (t)

= f (Rmax−Ri jk)n(S−S0)+
∣∣∣∣
∂ Bi jk (t)

, (2.10)

∀ i, j, k.
Note that (2.10) is basically a non-local condition, in view of (2.1).

• Flow conditions on the external boundaries

As we have already said, we take

p = P(x2, x3, t) � 0 on x1 = 0 (2.11)

k∇ p · �ν = 0 on x1 = L , t > 0, (2.12)

k∇ p · �ν = 0 on the lateral sides of the cube. (2.13)

• Initial conditions

For t = 0 we suppose that all the granules have the minimum size

Ri jk(0) = Rmin (2.14)

and that

S
∣∣
t=0 = So(x) � 0 on Ω(0). (2.15)

Of course (2.14) could be easily generalized. The initial porosity is

n(x, 0) = nmax = n0

[
1 − 4

3
π

(
Rmin

ε

)3]
(2.16)

Thus the differential formulation of the problem consists of the (degenerate) parabolic equation
(2.7) with the coefficients n, k defined by (2.6), (2.8), of the (non-local) kinetic equation (2.1), and
of the initial and boundary conditions (2.10)–(2.15). The unknowns are the pressure p(x, t) and the
radii Ri jk .
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3. Weak formulation

In order to homogenize the boundary conditions for the pressure we introduce the auxiliary function

π̃ =
(

1 − x1

L

)
P(x2, x3, t). (3.1)

We define

u(p) =
∫ p

0
(S(ξ))β dξ, p � 0 (3.2)

and p(u) as the inverse function of u(p) for u > 0 and p(u) = 0 for u � 0.
So we can also define

S(u) = S(p(u)). (3.3)

We remark that ∇u = (S(u))β∇ p and we also note that from the initial condition (2.15) we are
able to deduce the corresponding function u0(x) in the set {So > 0} ⊂ Ω(0) and we complete its
definition putting uo = 0 in the complementary subset of Ω(0).

In the sequel we shall require that

(H1) uo ∈ Lq(Ω(0)), for some q > 1
(H2) P ∈ H1({x1 = 0} × (0, T )), P � 0 a.e.

Now we state the weak formulation of the problem for u.

Problem (P) Find u ∈ L2(0, T ; H1(Ω)), u � 0 a.e. on Ω(t) × (0, T ) and Ri jk ∈ C0,1([0, T ])
satisfying ∫ T

0

∫
Ω(t)

(
k̃∇u∇ϕ − nS(u)

∂ϕ

∂t

)
dx dt

+
∑
i jk

∫ T

0
f (Rmax − Ri jk)(t))

∫
∂ Bi jk (t)

ϕn(S(u) − S0)+ dσ dt

−
∫
Ω(0)

nmaxSoϕ(x, 0) dx = 0 (3.4)

for all test functions ϕ in the class

ϕ ∈ H1(Ω × (0, T )), ϕ(x, T ) = 0 and ϕ
∣∣
x1=0 = 0. (3.5)

Moreover, the equations (2.1), (2.14) hold true for Ri jk , n is given by (2.6) and∫ T

0

〈
∂

∂t
(nS), ϕ

〉
dt = −

∫ T

0

∫
Ω(t)

nS
∂ϕ

∂t
dx dt

−
∫
Ω(0)

nmaxSoϕ(x, 0) dx +
∫ T

0

∑
i, j,k

dRi jk

dt

∫
∂ Bi jk (t)

ϕnS(u) dσ dt (3.6)

for all ϕ in the class (3.5).
For a given classical solution it is easy to derive (3.4), multiplying by ϕ the flow equation,

integrating and using (2.1) and the initial and boundary conditions.
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REMARK 1 Due to particular way of the evolution of the balls all functions are considered to be
defined on Ω . More precisely, since the radii of the balls grow between Rmin and Rmax and they
never touch each other, it is possible to use the Extension lemma (see e.g. [13], page 88) and extend
a function g ∈ H1(Ω(t)) to a function g̃ ∈ H1(Ω), coinciding with g in Ω(t) a.e. and such that∫

Ω
|∇ g̃|2 dx � c0

∫
Ω(t)

|∇g|2 dx

and ∫
Ω

|g̃|2 dx � c0

∫
Ω(t)

|g|2 dx,

where c0 doesn’t depend on t . We note that the Extension lemma is frequently used in
homogenization problems. To the author’s knowledge, it was first proved in [5] using an idea of
L. Tartar.

4. The discretized problem

We discretize in time with a sufficiently small time step h > 0 and the backward difference quotient
is denoted ∂−h

t .
Let V = {z ∈ H1(Ω) | z = 0 for x1 = 0}. We define Ω l = Ω(lh) and choose a C1(Ω)-basis

{ϕm} for V . We note that l labels the time step.
We are looking for a finite-dimensional approximate solution for the problem (P) in the form

uhN (x, t) =
N∑

m=1

αhNm(t)ϕn(x) + u(π̃), (4.1)

i.e. for αhNm piece wise constant in t , solving∫
Ω j

[n j∂−h
t S(u j ) + ∂−h

t n j S(u j−1)]ζ dx

+
∫
Ω j−1

k̃ j∇u j∇ζ dx +
∑
imk

∫
∂ B j

imk

ζn j f (Rmax − R j
imk) ·

×
{
(S(u j ) − S0)+ − S(u j ) �

∫
∂ B j

imk

n j (S(u j ) − S0)+
}

dσ = 0 (4.2)

∀ ζ ∈ VN , where �
∫

denotes the average, VN = span {ϕ1, . . . , ϕN } and B j
imk is the ball Bimk( jh).

By definition

Ω j = Ω j−1 \
⋃
imk

B j
imk, j = 1, . . . , k (4.3)

u j = uhN (x, jh), j = 1, . . . , T/h, (4.4)

k̃ j = k̃(S(u j )) and n j is given by (2.6), with R j replacing R.
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The discretized evolution law for R j
imk = Rimk(τ ) on (( j − 1)h, jh] is

4π(R j
imk)

2 R j
imk = 4π(R j−1

imk )3 (4.5)

+h f (Rmax − R j−1
imk )

∫
∂ B j

imk

n j (S(u j ) − S0)+ dσ,

where we have dropped the index N to simplify notation.
The initial conditions specifying So and Ro

imk are the same as for the original variables, i.e.
(2.14), (2.15).

Our first step is to show existence for the discretized problem. We will make use of the following
auxiliary result.

LEMMA 1 Let {Ci } be a periodic array of balls, which do not touch each other, over a cubic lattice.
Let B̃i be the union of the cells containing Ci and its neighbours. Then for all ϕ ∈ BV (B̃i )∫

∂Ci

|ϕ| dσ � C

{ ∫
B̃i \Ci

|∇ϕ| dy +
∫

B̃i \Ci

|ϕ| dy

}
. (4.6)

For a proof see [12].

Now we prove the following result

THEOREM 1 Suppose u j is known for all j < k. Then the system (4.1)–(4.5), together with the
initial condition, has at least one solution uk .

REMARK 2 As usual we are going to use a variant of Brouwer’s fixed-point theorem for proving
Theorem 1. The energy has a correct growth and at first glance everything looks easy. Nevertheless,
any change in the solution implies a change of the geometry and the main difficulty is to prove that
it doesn’t alter the coerciveness of the energy. Therefore we discuss the whole procedure at some
length.

Proof. For all µ ∈ RN we define

vµ(x) =
N∑

m=1

µmϕm(x) + u(π̃), meas (supp ϕm ∩ Ω k) > 0 (4.7)

where π̃ is given by (3.1). Then we study the following system of non-linear algebraic equations for
µ:

Φm(µ) =
∫
Ωµ

nµ{S(vµ) − S(uk−1)}ϕm dx

+ h
∫
Ω k−1

k̃µ∇vµ∇ϕm dx + h
∫
Ωµ

∂−h
t nµS(uk−1)ϕm dx

+ h
∑
i, j,l

∫
∂ Bµ

i, j,l

ϕmnµ f (Rmax − Rµ
i jl)

{
(S(vµ) − S0)+

−S(vµ) �
∫

∂ Bµ
i jl

nµ(S(vµ) − S0)+
}

dσ = 0. (4.8)
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It should be noted that Ωµ is the flow region corresponding to the balls with radii Rµ
imk , given by

(4.5) with u j = vµ and R j−1
imk = Rk−1

imk . Now we compute Φ(µ) · µ:

Φ(µ) · µ =
∫
Ω k

nµ{S(vµ) − S(uk−1)}(vµ − u(π̃)) dx

+ h
∫
Ω k−1

k̃µ∇vµ∇(vµ − u(π̃)) dx + h
∫
Ωµ

∂−h
t nµS(uk−1)(vµ − u(π̃)) dx

+ h
∑
i jl

∫
∂ Bµ

i jl

nµ(vµ − u(π̃)) f (Rmax − Rµ
i jl)

{
(S(vµ − S0)+

−S(vµ) �
∫

∂ Bµ
i jl

nµ(S(vµ) − S0)+
}

dσ. (4.9)

We note that showing the existence of uk is equivalent to proving that Φ(µ) has at least one zero.
This is guaranteed if Φ(µ) · µ grows quadratically as |µ| → +∞.

With this aim in mind we first note that 0 � f (Rmax − Rµ
i jl) � εC implies

I1 = h

∣∣∣∣ ∑
i jl

∫
∂ Bµ

i jl

vµnµ f (Rmax − Rµ
i jl){(S(vµ) − S0)+

−S(vµ) �
∫

∂ Bµ
i jl

nµ(S(vµ) − S0)+} dσ

∣∣∣∣ � C1εh
∑
i jl

∫
∂ Bµ

i jl

|vµ| dσ (4.10)

and we use Lemma 1 to obtain

I1 � C2h
∫
Ωµ

(ε|∇vµ| + |vµ|) dx . (4.11)

Having estimated the surface integral in (4.9), we turn our attention to the term

h
∫
Ωµ

∂−h
t nµS(uk−1)(vµ − u(π̃)) dx

and we observe that, owing to (2.6), ∂−h
t nµ is a weighted average of ∂−h

t (
Rµ

i jl
ε

)3 at the corners of a

cell. In view of (4.5) we have |∂−h
t nµ| � C3 and, consequently,

I2 =
∣∣∣∣h ∫

Ωµ

∂−h
t nµS(uk−1)(vµ − u(π̃)) dx

∣∣∣∣
� hC4

∫
Ωµ

|vµ| dx + hC5. (4.12)

Since
∫
Ωµ nµ{S(vµ) − S(uk−1)}(vµ − u(π̃)) dx is bounded from below by a constant −C6, we set

Φ(µ) · µ � h
∫
Ω k−1

k̃µ|∇vµ|2 dx − C2h
∫
Ωµ

(ε|∇vµ| + |vµ|) dx

−hC4

∫
Ωµ

|vµ| dx − C7. (4.13)

Now Poincaré’s inequality implies that Φ(µ) · µ behaves as C0|µ|2, for large |µ| and the theorem
is proved. �
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5. A priori estimate in the space variable

Following [2] we define

B(z) = zS(z) −
∫ z

0
S(ξ) dξ � 0, (5.1)

and we prove the following estimate.

LEMMA 2 For all N we have

sup
0�t�T

∫
Ω N (t)

nB(uhN ) dx +
∫ T

0

∫
Ω N (t)

k̃|∇uhN |2 dx dt � C (5.2)

for some constant C > 0, independent of N .

REMARK 3 The estimate (5.2) corresponds to the energy estimate from [2]. Nevertheless, for an
evolving structure, the discretized integral of the function nB is more complicated and composed of
the integrals over Ω j \ Ω j+1. In contrast with [2] , we have to control the changing geometry and
the monotone growth of the balls is used in an essential way.

Proof. Take ζ = u j − u(π̃) in (4.2) and sum from 1 to j :

k∑
j=1

∫
Ω j

1

h
{n j [S(u j )−S(u j−1)] + (n j −n j−1)S(u j−1)}(u j −u(π̃)) dx

+
k∑

j=1

∫
Ω j−1

k̃ j∇u j · ∇(u j −u(π̃)) dx

+
k∑

j=1

∑
iml

∫
∂ B j

iml

n j (u j −u(π̃)) f (Rmax−R j
iml) ·

×
{
[S(u j )−S0]+−S(u j )�

∫
∂ B j

iml

n j [S(u j )−S0]+
}

dσ =0 (5.3)

where S(u0) = S0 from (2.15).
We put the terms involving u(π̃) on the right-hand side and start estimating the left-hand side.

We denote the right-hand side by J .
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The first term can be rewritten as

1

h

k−1∑
j=1

{ ∫
Ω j

n j S(u j )u j dx −
∫
Ω j+1

n j+1S(u j )u j+1 dx

}
+ 1

h

∫
Ω k

nk S(uk)uk dx − 1

h

∫
Ω(h)

n1S(u0)u1 dx

=
k∑

j=1

∫
Ω j+1

n j S(u j )
1

h
(u j − u j+1) dx + 1

h

∫
Ω k

nk S(uk)uk dx

− 1

h

∫
Ω1

n1S(u0)u1 dx + 1

h

k−1∑
j=1

∫
Ω j \Ω j+1

n j S(u j )u j dx

−
k−1∑
j=1

∫
Ω j+1

∂−h
t n j+1S(u j )u j+1 dx . (5.4)

We note that

S(u j )(u j − u j+1) � −
∫ u j+1

u j
S(ξ) dξ (5.5)

because S is increasing. Therefore from (5.3)–(5.5) we obtain the inequality

h J � −
k−1∑
j=1

∫
Ω j+1

n j
∫ u j+1

u j
S(ξ) dξ dx +

∫
Ω k

nk S(uk)uk dx

−
∫
Ω1

n1S(u0)u1 dx +
k−1∑
j=1

∫
Ω j \Ω j+1

n j S(u j )u j dx

+ h
k∑

j=1

∫
Ω j−1

k̃ j |∇u j |2 dx + h
∫
Ω1

∂−h
t n1S(u0)u1 dx

+ h
k∑

j=1

∑
iml

∫
∂ B j

iml

n j u j f (Rmax − R j
iml)

{
(S(u j ) − S0)+

− S(u j ) �
∫

∂ B j
iml

n j (S(u j ) − S0)+
}

dσ. (5.6)

Observing that ∫
Ω j \Ω j+1

=
∫
Ω j

−
∫
Ω j+1
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by re-labeling the first terms we obtain

k−1∑
j=1

∫
Ω j \Ω j+1

n j S(u j )u j dx

=
k−2∑
j=2

∫
Ω j+1

[n j+1S(u j+1)u j+1 − n j S(u j )u j ] dx

−
∫
Ω k

nk−1S(uk−1)uk−1 dx +
∫
Ω1

n1S(u1)u1 dx

=
k−1∑
j=1

∫
Ω j+1

(n j+1 − n j )S(u j+1)u j+1 dx

+
k−1∑
j=1

∫
Ω j+1

n j [S(u j+1)u j+1 − S(u j )u j ] dx

+
∫
Ω1

[n1S(u1) − n0S(u0)]u1 dx −
∫
Ω k

nk S(uk)uk dx +
∫
Ω1

n0S(u0)u1 dx . (5.7)

Substituting (5.7) in (5.6) gives

h J �
k∑

j=1

∫
Ω j+1

n j
{

S(u j+1)u j+1−S(u j )u j −
∫ u j+1

u j
S(ξ) dξ

}
dx

+
k−1∑
j=1

∫
Ω j+1

(n j+1−n j )S(u j+1)u j+1 dx+
∫
Ω1

[n1S(u1)−n0S(u0)u1] dx

+
∫
Ω1

(n1−n0)S(u0)u1 dx+h
k∑

j=1

∫
Ω j−1

k̃ j |∇u j |2 dx

+ h
k∑

j=1

∑
iml

∫
∂ B j

iml

n j u j f (Rmax−R j
iml)

{
(S(u j )−S0)+

− S(u j )�
∫

∂ B j
iml

n j [S(u j )−S0]+
}

dσ. (5.8)

We note that the first term in (5.8) is

k−1∑
j=1

∫
Ω j+1

n j {B(u j+1) − B(u j )} dx

(remember (5.1)), which by means of the usual re-labeling technique can be given the form

k−1∑
j=2

∫
Ω j \Ω j+1

n j B(u j ) dx +
∫
Ω k

nk−1 B(uk) dx −
∫
Ω2

n1 B(u1) dx

+
k−1∑
j=2

∫
Ω j

(n j−1 − n j )B(u j ) dx,
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where the first and the last terms are positive.
It remains to estimate the last term in (5.8). The absolute value of each of the integrals is less

than Cε
∫
∂ B j

iml
|u j | dσ , to which we may apply Lemma 1, so that

h
k∑

j=1

∑
iml

∣∣∣∣ ∫
∂ B j

iml

n j u j f (Rmax − R j
iml)

{
(S(u j ) − S0)+

− S(u j ) �
∫

∂ B j
iml

n j (S(u j ) − S0)+
}

dσ

∣∣∣∣ �

� Ch
k∑

j=1

∫
Ω j

(ε|∇u j | + |u j |) dx .

Concerning the terms involving u(π̃) in (5.3), we note that∣∣∣∣h k∑
j=1

∑
iml

∫
∂ B j

iml

n j u(π̃) f (Rmax − R j
iml)

{
(S(u j ) − S0)+

− S(u j ) �
∫

∂ B j
iml

(S(u j ) − S0)+
}

dσ

∣∣∣∣ � C

and

h
k∑

j=1

∣∣∣∣ ∫
Ω j−1

k̃ j∇u j · ∇u(π̃) dx

∣∣∣∣ � δ

∫ T

0

∫
Ω j−1

k̃ j |∇u j |2 dx + C

δ

for some δ > 0 sufficiently small. Furthermore,

h

∣∣∣∣ k∑
j=1

∫
Ω j

∂−h
t n j S(u j−1)u(π̃) dx

∣∣∣∣ � C,

∣∣∣∣ k∑
j=1

∣∣∣∣ ∫
Ω j

n j (S(u j ) − S(u j−1))u(π̃) dx

∣∣∣∣
=

∣∣∣∣ k−1∑
j=1

h
∫
Ω j+1

n j − n j+1

h
S(u j )u(π̃) dx +

∫
Ω k

nk S(uk)u(π̃) dx

−
∫
Ω1

n1S0u(π̃) dx +
k−1∑
j=0

∫
Ω j \Ω j+1

n j+1S(u j )u(π̃) dx

∣∣∣∣ � C.

At this point it is not difficult to derive the desired estimate (5.2) from (5.8). �
Problem (4.1)–(4.5) could be viewed as the discretized weak form of an elliptic system. It has a

solution {u j
N }T/h

j=1, where, according to (4.4), u j
N (x) = uhN (x, jh), satisfying the a priori estimate

(5.2). Elementary compactness implies the existence of a subsequence, denoted again {u j
N }T/h

j=1 and

the limit {u j }T/h
j=1 such that

u j
N → u j weakly in H1(Ω), strongly in L2(Ω), a.e. on Ω and ∂ B j

iml .
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It is obvious that {u j }T/h
j=1 satisfies the variational equation∫

Ω j
[n j∂−h

t S(u j ) + ∂−h
t n j S(u j−1)]ζ dx

+
∫
Ω j−1

k̃ j∇u j∇ζ +
∑
imk

∫
∂ B j

imk

ζn j f (Rmax − R j
imk){

(S(u j ) − S0)+ − S(u j ) �
∫

∂ B j
imk

n j (S(u j ) − S0)+
}

dσ = 0 (5.9)

∀ ζ ∈ V and

4π(R j
imk)

3 =4π(R j−1
imk )3+h f (Rmax−R j−1

imk )

∫
∂ B j

imk

n j [S(u j )−S0]+ dσ (5.10)

and the same initial conditions.
Then we have the following result about the sign of u.

LEMMA 3 u j � 0 a.e. on Ω and on ∂ B j
iml for every j ∈ {1, . . . , T/h}.

Proof. We take ζ = inf{u j , 0} ∈ V as a test function in (5.9). Since

inf{u j , 0} · S(u j ) = 0 a.e. in Ω and on ∂ B j
iml ,

∂−h
t n j � 0 and −S(u j−1) inf{u j , 0} � 0, the equation (5.9) transforms into∫

Ω j−1
k̃ j |∇ inf{u j , 0}|2 dx � 0.

Consequently, u j � 0 a.e. �

6. A priori estimate in time

In this section we obtain an estimate for the time differences. It is essential for getting the
compactness. We follow the approach from [2], but presence of an evolving geometry forces us
to work out a number of additional estimates.

Let k ∈ N, τ ∈ (0, T ), τ + kh � T , and τ j = τ + jh, j = 1, . . . , k. For simplicity we denote
S(u j ) as S j . Then the following estimate holds.

PROPOSITION 1 For every η0 � η > 0 we have∫ T −η

0

∫
Ω(τ+η)

|S(uh(τ + η)) − S(uh(τ ))| dx dτ � Cη
5χ

6(1+χ(1+β)) (6.1)

where uh(τ ) = u j (x) for ( j − 1)h < τ � jh.
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Proof. Let ζ be independent of j . Then we have

0 =
k∑

j=1

∫
Ω j

n j (S j − S j+1)ζ dx + h
k∑

j=1

∫
Ω j−1

k̃ j∇u j∇ζ dx

+
k∑

j=1

∫
Ω j

(n j − n j−1)S j−1ζ dx

+h
k∑

j=1

∑
iml

∫
∂ B j

iml

ζn j f (Rmax − R j
iml)

×
{
(S(u j ) − S0)+ − S(u j ) �

∫
∂ B j

iml

n j (S(u j ) − S0)+
}

dσ

leading to

0 = h
k∑

j=1

∫
Ω j−1

k̃ j∇u j∇ζ dx +
∫
Ω k

nk Skζ dx

+
k∑

j=2

∫
Ω j−1\Ω j

S j−1ζn j−1 dx

−
∫
Ω k

n(τ )S0ζ dx +
k∑

j=1

∑
iml

∫
∂ B j

iml

ζn j f (Rmax − R j
iml)

×
{
(S(u j ) − S0)+ − S(u j ) �

∫
∂ B j

iml

n j (S(u j ) − S0)+
}

dσ. (6.2)

Now we take ζ = uk − u0 + Π k − Π 0, where Π k = u(π̃(τ + kh)) and Π 0 = u(π̃(τ )) and get

IΠ = −
∫
Ω k

nk(Sk − S0)(uk − u0) dx −
∫
Ω k

nk S0(uk − u0) dx

− h
k∑

j=1

∫
Ω j−1

k̃ j∇u j∇(uk − u0) dx +
∫
Ω1

n(τ )S0(uk − u0) dx

−
k∑

j=2

∫
Ω j−1\Ω j

S j−1n j−1(uk − u0) dx

− h
k∑

j=1

∑
iml

∫
∂ B j

iml

(uk − u0)n j f (Rmax − R j
iml)

×
{
(S(u j ) − S0)+ − S(u j ) �

∫
∂ B j

iml

n j (S(u j ) − S0)+
}

dσ,

where IΠ is the term analogous to the right-hand side but with uk − u0 replaced by Π k − Π 0.



254 A. FASANO AND A. MIKELIĆ

After integration between 0 and T − kh, with respect to τ , we obtain∫ T −kh

0
IΠ dτ +

∫ T −kh

0

∫
Ω k

nk(S(τ + kh) − S(τ ))(u(τ + kh) − u(τ )) dx dτ

� C

{ ∫ T −kh

0

∫
Ω k

|n(τ + kh) − n(τ )| |uk − u0| dx dτ

+ h
k∑

j=1

∫ T −kh

0

∫
Ω j

|̃k j∇u j∇(uk − u0)| dx dτ +
k∑

j=2

∫ T −kh

0

∫
Ω j−1\Ω j

|uk − u0| dx dτ

+ Ch
k∑

j=1

∫ T −kh

0

∫
Ω j

(ε|∇(uk − u0)| + |uk − u0|) dx dτ

}

� C

( ∫ T −kh

0

∫
Ω k

|n(τ + kh) − n(τ )|2 dx dτ

)1/2

+ Ckh + C

( ∫ T −kh

0

∫
Ω1\Ω k

dx dτ

)5/6

, (6.3)

where we have used the embedding of H1 in L6. Let us now estimate the integrals at the right-hand
side of (6.3).

First, by using the equation for R j
iml we get∫ T −kh

0

∫
Ω1\Ω k

dx dt = 4πh
∫ T −kh

0

k∑
j=2

∑
iml

f (Rmax − R j
iml)

× (R j
iml)

2 �
∫

∂ B j
imk

n j (S(u j ) − S0)+ dσ dτ � Ckh. (6.4)

Since the porosity n is a Lipschitzian function satisfying an ODE, we have

|n(τ + kh) − n(τ )| � Ckh (6.5)

with a constant C independent of ε.
Completely analogous considerations lead to∣∣∣∣ ∫ T −kh

0
IΠ dτ

∣∣∣∣ � Ckh. (6.6)

Consequently, (6.3) reduces to∫ T −kh

0

∫
Ω k

nk(S(τ + kh) − S(τ ))(u(τ + kh) − u(τ )) dx dτ � C(kh)5/6.

Since uh is a step function in time, we see that this estimate is also satisfied if we replace kh by any
positive number η, i.e. we have∫ T −η

0

∫
Ω(τ+η)

n(τ + η)(S(uhN (τ + η)) − S(uhN (τ )))

× (u(τ + η) − u(τ )) dx dτ � Cη5/6, η > 0. (6.7)
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We note that S ∈ C0,χ/(1+βχ) and following [9] from (6.7) we obtain

∫ T −η

0

∫
Ω(τ+η)

|S(uh(τ + η)) − S(uh(τ ))| dx dτ � Cη
5χ

6(1+χ(1+β)) (6.8)

and the proposition is proved. �

On the basis of the previous estimate we can draw the following conclusion.

THEOREM 2 There is a subsequence of {uh}, denoted by the same symbol, and a non-negative
function u ∈ L2(0, T ; H1(Ω)) such that

uh ⇀ u weakly in L2(0, T ; H1(Ω)) (6.9)

and

S(uh) → S(u) strongly in L1(Ω × (0, T )), as h → 0. (6.10)

Proof. (6.9) follows immediately. (6.10) comes from monotonicity and the estimate (6.8). For more
details we refer to [2] or [9]. �

7. Existence of a weak solution

In this section we are revisiting the passing to the limit for the time discretized problem. Classically,
the a priori estimates obtained in the preceding sections imply the strong convergences and passing
to the limit is an exercise. Nevertheless, we have to limit integrals over a domain which changes in
time as a function of the solution. Then passing to the limit is not clear at all and we are obliged to
give a proof which present a novelty in the theory of the degenerate non-linear parabolic equations.

Let λ = χ
1+βχ

. Then S ∈ C0,λ as a function of u. We note that W s,q(Ω(t)), 0 < s < 1 and
1 < q < +∞, is a Sobolev space of a fractional order. For its definition we refer to the book [16].
Then if ϕ ∈ H1(Ω(t)), S(ϕ) ∈ W λ,2/λ(Ω(t)). A simple interpolation argument and Theorem 2
imply

S(uh) → S(u) in L2(0, T ; W s,q(Ω(t)), 0 < s < λ, 1 < q < 2/λ. (7.1)

Next we make use of a trace theorem from the book [3]. Since it is always possible to choose
s ∈ (λ/2, λ) and q ∈ (1, 2/λ) such that s − 1/q > 0, we use the fact that the zero-order trace of a
function from W s,q(Ω(t)) is in W s−1/q,q(∂ B(t)), where B(t) is an arbitrary growing ball, and get

S(uh) → S(u) in L2(0, T ; Hb(∂ B(t))), b <
λ

2
. (7.2)

Now we write the discretized problem in the form which corresponds to the weak form of the
continuous problem.
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First, we observe that

k∑
j=1

∫
Ω j

n j∂−h
t S(u j )ϕ j dx = −

k∑
j=1

∫
Ω j

n j−1S(u j−1)∂−h
t ϕ j dx

+
k−1∑
j=0

∫
Ω j+1

n j − n j+1

h
S(u j )ϕ j+1 dx

+
∫
Ω k

nk

h
S(uk)ϕk dx −

∫
Ω1

n0S(u0)ϕ0

h
dx

+
k−1∑
j=1

∫
Ω j \Ω j+1

n j

h
S(u j )ϕ j dx

where ϕ j is a linear combination of products of ϕm(x) and ψl(t), ϕm ∈ V and ψl ∈ C∞([0, T ]).
The index j labels the interval (( j − 1)h, jh].

Now the discretized weak formulation is

−
k∑

j=1

h
∫
Ω j

n j−1S(u j−1)∂−h
t ϕ j dx +

∫
Ω k

nk S(uk)ϕk dx

−
∫
Ω(0)

n0S(u0) +
∑
j=1

∫
Ω j \Ω j+1

n j S(u j )ϕ j dx

+
k∑

j=1

h
∫
Ω j−1

k̃ j∇u j∇ϕ j dx

+ h
k∑

j=1

∑
iml

∫
∂ B j

iml

ϕ j n j f (Rmax − R j
iml){(S(u j ) − S0)+

− S(u j ) �
∫

∂ B j
iml

n j (S(u j ) − S0)+ dσ } = 0. (7.3)

In order to study convergence of the various terms we start with establishing convergence for the
radii R(h)

iml(t) = R j
imk for t ∈ (( j − 1)h, jh]. Using (4.5) we get the following lemma.

LEMMA 4 There exists Riml ∈ C0,1([0, T ]) and a subsequence of {R(h)
iml} denoted by the same

symbol, such that

R(h)
iml → Riml in L∞(0, T ) (7.4)

∂−h
t R(h)

iml ⇀ ∂t Riml � 0 weak-* in L∞(0, T ) (7.5)

‖ R(h)
iml − Riml ‖L∞(0,T ) � Ch. (7.6)

We note that n(h)(x, t) = n j (x) for t ∈ (( j − 1)h, jh]. Then n(h) is bounded from below by a
positive constant independent of h and we have the following corollary.
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COROLLARY 1 There is a subsequence of {n(h)}, denoted by the same symbol, and n ∈
C0,1(Ω(0) × [0, T ]) such that

n(h) → n in L∞(0, T ; C(Ω(0))) (7.7)

∂h
t n(h) ∗

⇀ ∂t n weak-* in L∞(C(Ω(0) × (0, T )) (7.8)

and n is linked with Riml by (2.6).

Now we are ready to limit the absorption terms.

PROPOSITION 2 Let ∂ Bh
iml(t) = ∂ B j

iml for t ∈ (( j − 1)h, jh]. Then we have∫
∂ Bh

iml (t)
nh(S(uh) − S0)+ dσ → ∫

∂ Biml (t)
n(S(u) − S0)+ dσ (7.9)

in L2(0, T )

when h → 0, where ∂ Biml(t) = {y | |y − riml | = Riml(t)}.
In order to prove Proposition 2 we prove the following auxiliary result

LEMMA 5 Let Biml be a ball with center at riml and let us fix a local spherical coordinate system
with 0 at riml . Let 0 < a < b, b − a = h and let z ∈ H1(Ω). Then for arbitrary η ∈ [a, b] we have∫

{angles}

∣∣∣∣ 1

h

∫ b

a
ξ2S(z(ξ, α)) dξ − b3 − a3

3h
S(z(η, α))

∣∣∣∣ dA

� Chλ/2‖ z ‖H1(]a,b[×{r=1}) (7.10)

where λ = χ/(1 + βχ), S ∈ C0,λ and {r = 1} denotes the surface of the unit ball. Finally,
C = C(b, a) and dA = sin ϑ dϑdϕ is the surface measure of the unit sphere .

Proof. Since S ∈ C0,λ we have

I =
∫

{angles}

∣∣∣∣ 1

h

∫ b

a
ξ2S(z(ξ, α)) dξ − b3 − a3

3h
S(z(η, α))

∣∣∣∣ dA

� C

h

∫
{angles}

∫ b

a
ξ2|z(ξ, α) − z(η, α)|λ dξ dA

� C

h

∫
{angles}

∫ b

a
ξ2

∣∣∣∣ ∫ ξ

η

∂z

∂r
(r, α)

dr

|ξ − η|1/2

∣∣∣∣λ|ξ − η|λ/2 dξ dA. (7.11)

By simple application of Hölder’s inequality and using that( ∫
{angles}

∫ b

a

ξ2

h
|ξ − η|λ/(2−λ) dξ dA

)1−λ/2

� C

(
b

a

)
a2−λhλ/2

we obtain

I � C

(
b

a

)
a2−λhλ/2

( ∫
{angles}

∫ b

a

( ∫ ξ

η

∂z

∂r
(r, α) dr

)2
ξ2

h|ξ − η| dξ dA
)λ/2

� C

(
b

a

)
a2−λhλ/2

( ∫
{angles}

∫ b

a

sup{b−η, η−α}
h

∣∣∣∣∂z

∂r
(r, α)

∣∣∣∣2

r2 dr dA
)λ/2

� C

(
b

a

)
a2−λ‖ z ‖H1(]a,b[×{r=1})hλ/2 (7.12)
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and the lemma is proved. �

Proof of Proposition 2. We write the boundary integral as∫
∂ Bh

iml (t)
nh(S(uh)−S0)+ dσ =

∫
{angles}

(R(h)
iml(t))

2nh(S(uh(R(h)
iml(t), α))−S0)+ dA (7.13)

where we use the local spherical coordinates with center at riml .
Since ∣∣∣∣ ∫{angles}

nh((R(h)
iml(t))

2 − R2
iml(t))(S(uh(R(h)

iml(t), α)) − S0)+ dA
∣∣∣∣

� C |R(h)
iml(t) − Riml(t)|

and, by Lemma 5 with η = R(h)
iml and Riml respectively,∣∣∣∣ ∫{angles}

R2
iml(t)((S(uh(R(h)

iml(t), α)) − S0)+ − (S(uh(Riml(t), α)) − S0)+)

∣∣∣∣ � Chλ/2.

Then the limit of the expression in (7.13) is equal to the limit of∫
{angles}

R2
iml(t)(S(uh(Riml(t), α))−S0)+ dA=

∫
∂ Biml (t)

nh(S(uh)−S0)+) dσ (7.14)

Now the convergence (7.2) implies (7.9). �

COROLLARY 2 We have

∂−h
t Rh

iml(t) → ∂t Riml in Lq(0, T ), ∀ q < +∞, (7.15)

and

4π R2
iml(t)

d

dt
Riml(t)= f (Rmax−Riml(t))

∫
∂ Biml (t)

n(S(u) − S0)+ dσ (7.16)

where Biml(t) = {x | |x − riml | < Riml(t)} and u is defined by (6.9)–(6.10).

Limiting the terms in the discretized weak formulation (7.3) is now straightforward.

COROLLARY 3

lim
h→0

h
k∑

j=1

∑
iml

∫
∂ B j

iml

n jϕ j f (Rmax − R j
iml)

×
{
(S(u j ) − S0)+ − S(u j ) �

∫
∂ B j

iml

n j (S(u j ) − S0)+ dσ

}
dσ

=
∫ T

0

∑
iml

n j f (Rmax − Riml(t))
∫

∂ Biml (t)
ϕ

{
(S(u) − S0)+

− S(u) �
∫

∂ Biml (t)
n j (S(u) − S0)+ dσ

}
dσ. (7.17)
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LEMMA 6

lim
h→0

h
k−1∑
j=0

∫
Ω j \Ω j+1

1

h
n j S(u j )ϕ j dx

=
∫ T

0

∫
∂Ω(t)\∂Ω

nS(u)ϕR2(t)
dR

dt
dσ dt, ∀ ϕ ∈ C∞(Ω × [0, T ]) (7.18)

where R(t) = Riml(t) for the ball Biml(t).

Proof. We have

Ih =
k−1∑
j=0

∫
Ω j \Ω j+1

1

h
n j S(uh)ϕ j dx

=
∑
mnl

k−1∑
j=0

∫ ( j+1)h

jh

∫
{angles}

1

h

∫ R j+1
mnl

R j
mnl

n j S(uh)ϕr2 dA dt.

Then by Lemma 5∣∣∣∣Ih −
∑
mnl

k−1∑
j=0

∫ ( j+1)h

jh

∫
{angles}

(R j+1
mnl )3 − (R j

mnl)
3

3h
n j S(uh(Rmnl(t), α))ϕ dA dt

∣∣∣∣
� Chλ/2‖ uh ‖L2(0,T ;H1(Ω)) · ‖ ϕ ‖L∞(QT ).

Therefore

lim
h→0

Ih=lim
h→0

∑
mnl

h
k−1∑
j=0

1

h

∫ ( j+1)h

jh

∫
{angles}

(R j+1
mnl )3−(R j

mnl)
3

3h
n j S(uh(Rmnl(t), α))ϕ dA dt

=
∑
mnl

∫ T

0

∫
∂ Bmnl (t)

nS(u)ϕR2(t)
dR

dt
dσ dt,

and the lemma is proved. �
LEMMA 7

lim
h→0

k∑
j=1

h
∫
Ω j−1

k̃ j∇u j∇ϕ j dx

=
∫ T

0

∫
∂Ω(t)

k̃∇u∇ϕ dx dt, ∀ ϕ ∈ C∞(Ω × [0, T ]). (7.19)

Proof. We have

h
k∑

j=1

∫
Ω j−1

k̃ j∇u j∇ϕ j dx

=
∫ T

0

∫
Ω(t)

k̃h∇uh∇ϕ dx dt +
k∑

j=1

∫ ( j+1)h

jh

∫
Ω j−1\Ω(t)

k̃ j∇u j∇ϕ j dx dt.
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Then

lim
h→0

∫ T

0

∫
Ω(t)

k̃h∇uh∇ϕ dx dt =
∫ T

0

∫
Ω(t)

k̃∇u∇ϕ dx dt, (7.20)

and ∣∣∣∣ k∑
j=1

∫ ( j+1)h

jh

∫
Ω j \Ω(t)

k̃ j∇u j∇ϕ j dx

∣∣∣∣
� C‖ uh ‖L2(0,T ;H1(Ω)) ·

( ∫ T

0
|Ωh(t) \ Ω(t)| dt

)1/2

‖ ϕ ‖C0,1(QT ). (7.21)

As
|Ωh(t) \ Ω(t)| � C

∑
mnl

|R(h)
mnl(t) − Rmnl(t)| → 0,

(7.20) and (7.21) imply (7.19). �

Now we are able to state our result.

THEOREM 3 There is a function u ∈ L2(0, T ; H1(Ω)), u � 0 a.e. on QT ,∫ r−η

0

∫
Ω(τ+η)

|S(u(τ + η)) − S(u(τ ))| dx dt � Cηβ,

for some β > 0, and Rimk ∈ C0,1([0, T ]) such that (3.4) and (3.6) hold true, for every ϕ ∈
H1(Ω × (0, T )), ϕ(x, T ) = 0 and ϕ

∣∣
x1=0 = 0, i.e. there is a weak solution for the problem (P).

Proof. It is a simple consequence of the preceding results. �

REMARK 4 Since u � 0 a.e. it is possible to reconstruct the pressure field p. On the sets {u(x, t) �
c > 0} we use (3.2) to calculate p(x, t). On the set {u(x, t) = 0} we know only that p � 0 but we
don’t have more information.
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