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We study a 2d -variational problem, in which the cost functional is an integral depending on the

gradient through a convex but not strictly convex integrand, and the admissible functions have zero

gradient on the complement of a given domainD. We are interested in establishing whether solutions

exist whose gradient “avoids” the region of non-strict convexity. Actually, the answer to this question

is related to establishing whether homogenization phenomena occur in optimal thin torsion rods. We

provide some existence results for different geometries of D, and we study the nonstandard free

boundary problem with a gradient obstacle, which is obtained through the optimality conditions.
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1. Introduction

Let ' W R2 ! R be the following convex but non-strictly convex integrand:

'.y/ WD
(

jyj2
2

C 1
2

if jyj > 1;

jyj if jyj < 1 :
(1.1)

Let D be a bounded and connected domain in R
2, let s be a real parameter, and consider the

variational problem

m.s/ WD inf

�Z

R
2

'.ru/ W u 2 H 1
c .D/ ;

Z

R
2

u D s

�
; (1.2)

where

H 1
c .D/ WD

˚
u 2 H 1.R2/ W ru D 0 on R

2 nD
	
:
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Notice that functions in H 1
c .D/ must vanish identically on the unique unbounded connected

component of R2 nD; in particular, if D is simply connected, functions in H 1
c .D/ are elements of

the usual Sobolev space H 1
0 .D/, extended to zero out ofD. More generally, if D D D0 n [k

iD1Di ,

where Di (i D 0; 1; : : : ; k) are Jordan domains with mutually disjoint boundaries, functions

in H 1
c .D/ are extensions to zero of elements of H 1

0 .D0/ which are constant on each Di for

i D 1; : : : ; k.

We say that u is a special solution to m.s/ if it minimizes (1.2) and satisfies

jruj 2 f0g [ .1;C1 / a.e. in D :

This paper is focused on the following question:

Does problem m.s/ admit a special solution? (1.3)

This question, which was raised in [9], appears as an important issue in the context of shape

optimization of thin torsion rods. We postpone to Section 2 a brief description of the mechanical

motivation and of the precise meaning of problem (1.2). In this framework, question (1.3)

corresponds to ask whether an optimal design contains some homogenization region made by a

composite material.

Below and throughout the paper, we adopt the following notation: if u is a special solution to

problem m.s/, we call the plateau of u, and we denote it by ˝.u/, the set fru D 0g minus the

unbounded connected component of R2 nD (where u � 0). The set � .u/ WD @˝.u/ \D will be

called the free boundary of u (see Figure 1).

Our main results concern the study of question (1.3) in relation with the geometry of the domain

D and also with the value of the parameter s. They are listed below.

� When D is a ball or a ring, through explicit computations and exploiting the optimality

conditions, we show that m.s/ admits a special solution, and there is no other solution, see

Proposition 5.1 and Proposition 5.3.

� Balls and rings are not the unique domains for which m.s/ admits a special solution. In this

respect, it is worth to compare our results with those obtained by Murat and Tartar in [27], about

the problem of maximizing the torsional rigidity of a bar with a given cross-section made by

D \ Ω(u)

u = 0

∇u = 0

∇u = 0

∇u = 0

|∇u| > 1

FIG. 1. Behavior of special solutions
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two linearly elastic materials in fixed proportions. The corresponding variational problem is quite

similar to ours, except that it involves a differentiable integrand, and classical solutions (i.e.,

optimal designs with no homogenization regions) cannot exist unless the cross-section D is a

disk. In our case the integrand ' is non-differentiable at zero and the conclusion goes in a quite

opposite direction: we prove that there exists a non circular domain D with analytic boundary

such that, for some s, problemm.s/ admits a special solution. Moreover this solution has a convex

plateau with analytic boundary, see Theorem 6.1. To achieve this result, we use as a key tool the

relationship between m.s/ and the Cheeger problem (whose definition is recalled in Section 4).

Let us remark that the crucial role played by the Cheeger set of D in the study of the asymptotic

behavior of m.s/ as s ! 0C already emerged in [9, 10].

� After providing some elementary properties on the sign and the support of generic solutions

(see Propositions 7.1 and 7.2), we derive some information on qualitative properties of special

solutions, when the latter exist. This amounts to study a nonstandard free boundary problem with

an obstacle on the gradient, see (7.4) below. Assuming thatD is simply connected, and that there

exists a special solution u with a smooth free boundary,

– we prove that each connected component of D n˝.u/ must touch @D (see Proposition 7.3);

– we provide some sufficient conditions for the convexity of the plateau ˝.u/ (see Proposition

7.4);

– we show that, when D is not Cheeger set of itself, the plateau ˝.u/ cannot be compactly

contained into D for arbitrarily small filling ratios (see Proposition 7.5).

We point out that characterizing domainsD where a special solution tom.s/ exists seems to be a

very challenging problem, which remains by now open: in this respect we believe that, at least when

D is convex, the existence of special solutions is likely related to the regularity of @D, and also to

whether or notD coincides with its Cheeger set. Let us notice that the latter criterium would exclude

the existence of a special solution in the case whenD is a square. This guess seems to be confirmed

by the numerical results performed in [25] for a very similar problem, in which homogenization

regions are observed.

Outline of the paper. In Section 2 we provide a physical motivation for the study of problemm.s/,

namely we describe its relationship with the optimal design of thin rods in torsion regime.

In Section 3 we find necessary and sufficient optimality conditions, we deduce some

consequences on the behavior of solutions to m.s/ (including a uniqueness criterion), and we study

m.s/ as a function of s.

In Section 4 we give some preliminary results about Cheeger sets.

In Section 5 we prove the existence and uniqueness of special solutions to m.s/ when D is a

ball or a ring.

In Section 6 we prove the existence of special solutions to m.s/ for some domain D, different

from those considered in Section 5.

In Section 7 we obtain qualitative properties of solutions and of special solutions.

Notation. Throughout the paper, unless otherwise stated, D is assumed to be open, bounded, and

connected; when further assumptions are needed, we specify them in each statement. We denote by

jxj the Euclidean modulus of a vector x 2 R
2, and also by jAj the Lebesgue measure of a Borel set

A � R
2. We simply write

R
A f to denote the integral of the function f with respect to the Lebesgue

measure on A.
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2. An application in shape optimization

Question (1.3) draws its origin from an optimal design problem for thin elastic torsion rods, studied

in [9, 10]. Below we briefly describe such problem and we sketch how it leads to (1.2), referring to

the above quoted papers for more details.

LetQı be a cylinder with infinitesimal cross section, of the formQı WD ıD� I , whereD is an

open, bounded and connected domain in R
2, I D Œ�1=2; 1=2�, and ı > 0 is a small parameter.

Assume that a given amount of elastic material has to be distributed into the design region Qı ,

in such a way to maximize the resistance to a horizontal twisting load G 2 H�1.QIR3/. Then one

has to find the domain ˝ , of prescribed volume, which minimizes the following shape functional,

usually called elastic compliance:

C
ı.˝/ WD sup

�
hGı ; ui

R
3 �

Z

˝

j
�
e.u/

�
W u 2 H 1.Qı IR3/

�
:

Here Gı is a suitable scaling of G, e.u/ denotes the symmetric part of ru, and j is the strain

potential, that for simplicity we take as j.z/ D jzj2=4.

After including the volume constraint into the cost functional through a Lagrange multiplier

k 2 R, the shape optimization problem reads

�ı.k/ WD inf
n
C

ı.˝/C k

ı2
j˝j W ˝ � Qı

o
:

It is well known that such problem is in general ill-posed: homogenization phenomena prevent the

existence of an optimal domain (see [1]), so that relaxed solutions must be searched under the form

of densities with values in Œ0; 1�.

Now, keeping k fixed, one can consider the variational problem �.k/ obtained from �ı.k/ in the

small cross section limit ı ! 0C. In [9, Theorem 3.2] it is proved that, under suitable assumptions

on the load G, �.k/ is the following variational problem for varying densities in L1.QI Œ0; 1�/:

�.k/ WD inf

�
C

lim.�/C k

Z

Q

� W � 2 L1.QI Œ0; 1�/
�
: (2.1)

The limit compliance C
lim.�/ appearing in the r.h.s. of (2.1) is defined by

C
lim.�/ WD sup

n
hG; vi

R
3 � 1

2

Z

Q

ˇ̌�
e13.v/; e23.v/

�ˇ̌2
� W .v1; v2/

D c.x3/.�x2; x1/ ; c.x3/ 2 H 1
m.I /;

v3 2 L2.I IH 1
m.D//

o
;

being H 1
m.D/ (resp. H1.I /) the subspace of H 1.D/ (resp. H 1.I /) of functions with zero integral

mean.

Clearly, as a variational problem onL1.QI Œ0; 1�/, �.k/ is well-posed (in contrast with problem

�ı.k/ which in general, as mentioned above, has no solution). Then the following question arises

in a natural way (cf. [9, Remark 4.6]):

Does problem �.k/ admit a solution � taking values into f0; 1g? (2.2)
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An affirmative answer would mean that the optimal design problem �.k/ admits a classical solution,

which may be identified with a set rather than a composite.

We claim that question (2.2) is equivalent to our initial question (1.3). In fact, let us explain the

relationship between problems �.k/ andm.s/.

Decomposing the spatial variable x 2 R
3 as x D .x0; x3/ 2 D � I and writing �.k/ in dual

form, one gets (see [9, Theorem 4.2])

�.k/

2k
D inf

q2L2.R3IR2/

�Z

R
3

'.q/ W spt.q/ � Q ; divx0 q D 0 ;

Z

R
3

.x1q2 � x2q1/ D �2MG.x3/p
2k

�
;

(2.3)

where MG.x3/ can be written explicitly in terms of G. Here the divergence free constraint is due

to the vanishing of the vertical component of G. It holds in the distributional sense on all R3, being

implicitly assumed that q is zero on R
3 nQ.

Now we observe that the constraints imposed on the admissible fields in (2.3) involve only the

horizontal variable x0. Therefore, q solves (2.3) if and only if, for a.e. x3 2 I , q.�; x3/ solves the

following section problem, for s D MGp
2k

:

˛.s/ WD inf
q2L2.R2IR2/

�Z

R
2

'.q/ W spt.q/ � D ; div q D 0 ;

Z

R
2

.x1q2 � x2q1/ D �2s
�
: (2.4)

Now we observe that any divergence free field q 2 L2.R2IR2/ compactly supported in D can be

written in a unique way as the rotated gradient .�@2u; @1u/ of a suitable function u 2 H 1.R2/. As

q vanishes a.e in R
2 nD, we have that u 2 H 1

c .D/, as u is constant on each connected component

of R2 nD. It follows that

˛.s/ D m.s/ : (2.5)

The equalities (2.3), (2.4) and (2.5) show the link between the optimal design problem �.k/ and our

initial problemm.s/.

To go farther, one can see that questions (1.3) and (2.2) are equivalent to each other, by exploiting

the optimality conditions for problem �.k/ derived in [9, Theorem 4.5]. Actually their analysis

reveals that, if problem m.s/ admits a special solution u, then a solution � to problem �.k/ takes

only the values 0 and 1, which means that no homogenization phenomenon occurs.

In the light of the above discussion, the results presented in the next sections can be applied to

study the influence of the section’s shape and of the filling ratio on the presence of homogenization

regions in optimal thin torsion rods.

Let us emphasize that no precedent exists in this direction within the study of optimal thin plates.

Indeed in that case the limit model obtained starting from three-dimensional elasticity through

a 3d -2d dimension reduction process always admits classical “set” solutions, under the form of

sandwich-like structures ( [11], see also [8]).

3. Existence, uniqueness, optimality conditions, and dependence on s

The contents of this section are organized as follows: in Section 3.1 we study the minimization

problem m.s/ in its primal formulation (1.2): we prove the existence of solutions, and a necessary

and sufficient condition for optimality; in Section 3.2 we give the dual form of problem m.s/, we

derive the corresponding optimality conditions and some of their consequences; in Section 3.3 we

show some properties of m.s/ seen as a function of the parameter s.
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3.1 Primal problem

We begin by establishing the existence of minimizers for m.s/, and their characterization as

solutions to a variational inequality.

PROPOSITION 3.1 For every s 2 R, the infimum m.s/ is achieved in H 1
c .D/. A function u 2

H 1
c .D/ is optimal if and only if

Z

fruD0g
jrvj C

Z

fru¤0g
hr'.ru/;rvi > 0; 8v 2 H 1

c .D/ W
Z

R
2

v D 0 :

Proof. We observe that, since functions in H 1
c .D/ vanish in the unbounded connected component

of R2 nD, by Poincaré inequality there exists a positive constant C such that

kukH 1.R2/ 6 C krukL2.R2/; 8u 2 H 1
c .D/ :

Combined with the coercivity of ' (in fact '.y/ >
jyj2

2
), this ensures that every minimizing

sequence for problem m.s/ is weakly relatively compact in H 1.R2/. Clearly any cluster point

belongs to H 1
c .D/. On the other hand, by the convexity of ', the integral functional J'.u/ WDR

R
2 '.ru/ is weakly lower semicontinuous on H 1.R2/. Therefore the existence of at least one

solution follows from the direct method of Calculus of Variations. Considering all the variations

compatible with the integral constraint, it is straightforward to check that a minimizer u is

characterized by the variational inequality ıJ'.u; v/ > 0 for all v 2 H 1
c .D/ such that

R
R

2 v D 0.

Here the directional derivative ıJ'.u; v/ is given by

ıJ'.u; v/ D lim
"!0C

1

"

�
J'.uC "v/ � J'.u/

�
D

Z

fruD0g
jrvj C

Z

fru¤0g
hr'.ru/;rvi :

�

3.2 Dual problem

We are going to explicit the dual formulation of problem m.s/. Let us remark that the Fenchel

conjugate of ' is given by

'�.�/ D
(

1
2
j�j2 � 1

2
if j�j > 1;

0 if j�j 6 1 :
(3.1)

Moreover let us introduce, for every � 2 R, the class of vector fields

S�.D/ WD
n
� 2 L2.R2IR2/ W spt.�/ � D ;

Z

R
2

� � ru D �

Z

R
2

u 8u 2 H 1
c .D/

o
: (3.2)

By taking as test functions u in (3.2) elements ofH 1
0 .D/ extended to zero out ofD, one can see that

every � 2 S�.D/ satisfies the condition � div � D � in D. In the special case when D is simply

connected, all functions u 2 H 1
c .D/ are of this type, so that S�.D/ can be characterized as

S�.D/ D
n
� 2 L2.R2IR2/ W spt.�/ � D ; � div� D � in D

o
: (3.3)
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More in general, if D D D0 n [k
iD1Di , where Di (i D 0; 1; : : : ; k) are Jordan domains with

mutually disjoint boundaries, one has

S�.D/

D
n
� 2 L2.R2IR2/ W spt.�/ � D ; � div � D � in D ;

Z

@Di

� ��i D ��jDi j 8i D 1; : : : ; k
o
;

being �i the unit outer normal to @Di .

LEMMA 3.2 The map s 7! m.s/ is a convex even function on R, whose Fenchel conjugate is given

by

m�.�/ D min
n Z

R
2

'�.�/ W � 2 S�.D/
o
: (3.4)

Proof. Recalling definition (1.2), since the integrand ' is convex and even, we obtain immediately

that the map s 7! m.s/ is a convex even function on R. Its Fenchel conjugate is given by

m�.�/ D sup
s2R

n
�s �m.s/

o
D sup

u2H 1
c .D/

n
�

Z

R
2

u �
Z

R
2

'.ru/
o
; 8� 2 R : (3.5)

By seeing the constant � as an element of the dual space of H 1
c .D/, we may rewrite (3.5) as the

Fenchel conjugate of a composition:

m�.�/ D
�
I' ı A

��
.�/ ;

where I' W L2.R2IR2/ ! R is the integral functional I'.y/ D
R
R

2 '.y/, and A W H 1
c .D/ !

L2.R2IR2/ is the gradient mappingAu D ru. Then, since I' is convex continuous whereasA is a

bounded linear operator, we have (see, e.g., [7, Proposition 13])

m�.�/ D min
n
.I'/

�.�/ W � 2 L2.R2IR2/ ; spt.�/ � D ; A�� D �
o
:

The above equality entails (3.4), by taking into account that .I'/
� D I'� (see [7, Example 4]), and

by observing that A�� D � holds if and only if � belongs to the subset S�.D/ given in (3.2). �

We can now give the optimality conditions which characterize solutions to problems m.s/ and

m�.�/.

PROPOSITION 3.3 Let s; � 2 R, u 2 H 1
c .D/, and � 2 L2.R2IR2/. There holds the following

equivalence

.i/

8
<
:
u solution to m.s/

� solution to m�.�/
� 2 @m.s/ :

” .i i/

8
<̂

:̂

Z

R
2

u D s

� 2 S�.D/

� 2 @'.ru/ a.e.

(i) ) (ii). Let s; �; u; � satisfy (i). In particular, since by definition u and � are admissible in

problems (1.2) and (3.4) respectively, they satisfy
R
R

2 u D s and � 2 S�.D/. Thus we only have to

show that � 2 @'.ru/ a.e. Since � 2 @m.s/, the Fenchel equality is satisfied

m.s/Cm�.�/ D s� ;
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that is, thanks to the optimality of u and � in (1.2) and (3.4),

Z

R
2

'.ru/C
Z

R
2

'�.�/ D s� D �

Z

R
2

u D
Z

R
2

ru � � ; (3.6)

which implies � 2 @'.ru/ a.e.

(ii) ) (i) Let s; �; u; � satisfy (ii). By the first two conditions in (ii), u and � are admissible in

problems (1.2) and (3.4) respectively. Moreover, the third condition � 2 @'.ru/ a.e. implies that

(3.6) holds. Hence

Z

R
2

'�.�/ D �s �
Z

R
2

'.ru/ 6 �s �m.s/ 6 m�.�/ : (3.7)

Therefore, � is a solution to m�.�/, and all the inequalities in (3.7) hold with equality sign. This

implies that u is a solution to m.s/ and that � 2 @m.s/. �

Let us examine more in detail the condition � 2 @'.ru/ a.e., appearing in Proposition 3.3.

The convex integrand ' is differentiable at every y 6D 0, whereas its subdifferential at 0 is given

by @'.0/ D fjyj 6 1g. Therefore, the inclusion � 2 @'.ru/ always holds true on R
2 n D, where

� D 0 and ru D 0. On the other hand, the same inclusion can be rewritten more explicitly on the

different regions of D as

8
ˆ̂<
ˆ̂:

� D ru on
˚
x 2 D W jru.x/j > 1

	
;

� D ru
jruj on

˚
x 2 D W 0 < jru.x/j 6 1

	
;

j� j 6 1 on
˚
x 2 D W jru.x/j D 0

	
:

(3.8)

These equalities have several implications, which are listed in the next corollaries. First of all, the

region where solutions u to problem m.s/ satisfy the condition jruj > 1 turns out to be uniquely

determined by s, together with the value of ru on it. More precisely we have:

COROLLARY 3.4 There exist a measurable subset Qs of D and a function  s 2 L2.QsIR2/ such

that, for any solution u to problem m.s/ and any solution � to problem m�.�/, with � 2 @m.s/, it

holds

fjruj > 1g D fj� j > 1g D Qs and ru D � D  s a.e. on Qs ; (3.9)

where the first equality is intended up to Lebesgue negligible sets.

Moreover,Qs D Qt and  s D  t whenever @m.s/ \ @m.t/ ¤ ;.

Proof. It is enough to observe that the equalities in (3.8) hold true, choosing � 2 @m.s/, an arbitrary

solution u to problem m.s/, and an arbitrary solution � to problem m�.�/: it follows that the sets

where fjruj > 1g and fj� j > 1g, and the values of ru and � on them, only depend on s. Moreover,

such sets and values agree as soon as there exists some � 2 @m.s/ \ @m.t/. �

From Corollary 3.4 we derive the following uniqueness criterion:

COROLLARY 3.5 If there exists a special solution to problemm.s/, then there is no other solution.
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Proof. Let u be a special solution to m.s/, and let Qu be another solution. From (3.9) we infer

m.s/ D
Z

f0<jr Quj61g
jr Quj C

Z

fjr Quj>1g
'.r Qu/ D

Z

f0<jr Quj61g
jr Quj C

Z

Qs

'. s/

D
Z

f0<jr Quj61g
jr Quj C

Z

R
2

'.ru/ D
Z

f0<jr Quj61g
jr Quj Cm.s/ ;

hence the set f0 < jr Quj 6 1g is Lebesgue negligible. Then r Qu D ru a.e., i.e., the two solutions

u and Qu coincide a.e. up to an additive constant. As elements of H 1
c .D/, they are both compactly

supported, hence the additive constant is zero. �

As a further consequence of the equalities in (3.8), we get some information on the gradient of

special solutions on their free boundary:

COROLLARY 3.6 If u is a special solution form.s/ with a smooth free boundary � .u/, it holds

jruj D 1 on � .u/ : (3.10)

Proof. If � is a solution to problem m�.�/, with � 2 @m.s/, by Proposition 3.3 we know that

� 2 S�.D/ and � 2 @'.ru/ a.e. The former condition implies � div � D � in D, the latter implies

that j� j > 1 or j� j 6 1 according to whether jruj > 1 or ru D 0 (see (3.8) above). We deduce

that ˇ̌
� � �� .u/

ˇ̌
D 1 on � .u/ ;

where �� .u/ denotes the unit normal to � .u/, pointing outside ˝.u/. This implies (3.10) since

j� � �� .u/j D jru � �� .u/j D jruj on � .u/ :

�

3.3 Properties of the map s 7! m.s/

Below we derive several properties of m.s/, seen as a function of the real parameter s. Firstly we

give some bounds on it, and we determine its asymptotic behavior as s ! 0C and s ! C1. To

that aim we introduce two constants, �
D

and k
D

, through the following variational problems set on

the space H 1
c .D/:

�
D

WD inf
n Z

R
2

jruj2 W u 2 H 1
c .D/ ;

Z

R
2

u D 1
o

(3.11)

k
D

WD inf
n Z

R
2

jruj W u 2 H 1
c .D/ ;

Z

R
2

u D 1
o

(3.12)

WhenD is simply connected, the constants �
D

and k
D

are related to classical variational problems.

More precisely, solving problem (3.11) allows to determine the torsional rigidity of a cylinder

with cross section D; indeed the Saint-Venant torsional stiffness of D, namely the Dirichlet energy

of the unique solution u 2 H 1
0 .D/ to the equation ��u D 2, is given precisely by 4

�
D

.

On the other hand, the relaxation of problem (3.12) in the space of BV functions, leads to the

theory of Cheeger sets; the relationship between the constant k
D

and the Cheeger constant of D

will be discussed more in detail in Section 4.
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PROPOSITION 3.7 The functionm.s/ satisfies the following bounds:

max

�
k

D
jsj; �

D

s2

2

�
6 m.s/ 6

1

2

�
�

D
s2 C jDj

�
:

Furthermore, it holds

lim
s!0C

m.s/

s
D k

D
; lim

s!C1
m.s/

s2
D �

D

2
: (3.13)

Proof. The function ' defined by (1.1) satisfies the inequalities 1
2
jyj2 6 '.y/ 6

1
2
.jyj2 C 1/.

Therefore, by homogeneity, we are led to

1

2
�

D
s2

6 m.s/ 6
1

2

�
�

D
s2 C jDj

�
;

which implies the second equality in (3.13).

On the other hand, since '.y/ > jyj, it holdsm.s/ > k
D

jsj, thus lim infs!0C
m.s/

s
> k

D
:

Let u 2 H 1
c .D/ such that

R
R

2 u D 1 and s > 0. Since su is admissible for m.s/ and '.sru/ 6

s2 jruj2 on the set fjruj > 1
s
g, we have

m.s/

s
6
1

s

Z

R
2

'.sru/ 6

Z

fjruj6 1
s

g
jruj C s

Z

fjruj> 1
s

g
jruj2:

Thus lim sups!0C
m.s/

s
6

R
R

2 jruj and the first equality in (3.13) follows by taking the infimum

with respect to u overH 1
c .D/. �

We now turn attention to the differentiability properties of m.s/. Proposition 3.8 below shows

in particular that, for any s > 0, the condition � 2 @m.s/ appearing in Proposition 3.3 turns out to

determine � uniquely, whereas this is not the case when s D 0.

PROPOSITION 3.8 (i) At every s > 0, m.s/ is differentiable, and

m0.s/ D 1

s

h
m.s/C

Z

Qs

�1
2

j s j2 � 1

2

�i
; (3.14)

where Qs and  s are defined according to Corollary 3.4.

(ii) The subdifferential of m at the origin is given by

@m.0/ D Œ�k
D
; k

D
� ;

where k
D

is the constant defined in .3:12/.

REMARK 3.9 As a consequence of statement (ii) and of the convexity of m, we have that m0.s/ >

k
D

for all positive s and the map s 7! m.s/ is strictly increasing on .0;C1/.

Proof. (i) Let s > 0 be fixed, and let � 2 @m.s/. If � is a solution tom�.�/, by using the expressions

of m�.�/ and '� given respectively by Lemma 3.2 and by (3.1), the Fenchel equality reads

�s D m.s/Cm�.�/ D m.s/C
Z

R
2

'�.�/ D m.s/C
Z

fj� j>1g

�1
2

j� j2 � 1

2

�
:
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In view of Corollary 3.4, we conclude that � is uniquely determined by the equality

�s D m.s/C
Z

Qs

�1
2

j s j2 � 1

2

�
:

Then @m.s/ D f�g, that is m0.s/ D �.

(ii) Since m is a convex even function, @m.0/ is a bounded closed interval of the form Œ�c; c�,
for some positive constant c. Moreover, c agrees with the right derivative

m0
C.0/ WD lim

s!0C

m.s/ �m.0/

s
:

Since m.0/ D 0, by using the first equality in (3.13), we conclude that

m0
C.0/ D lim

s!0C

m.s/

s
D k

D
:

�

Thanks to Proposition 3.8, we deduce that no special solutions can exist for s ranging in some open

interval unless the map s 7! m.s/ is strictly convex on it.

PROPOSITION 3.10 Assume that the map s 7! m.s/ is affine on some interval Œa; b� � fs > 0g.

Then, for any s 2 .a; b�, problem m.s/ does not admit a special solution. Moreover, if a D 0, for

any s 2 Œ0; b� any solution u to m.s/ satisfies jruj 6 1 a.e., and it holdsm.s/ D k
D
s.

Proof. We recall that the sets Qs and  s are defined as in Corollary 3.4.

Let us assume that for some s 2 Œa; b� problem m.s/ admits a special solution, so that m.s/ DR
Qs
'. s/, and let us show that necessarily s D a. By the assumption that m is affine on Œa; b�,

it follows that m0.s/ D m0.t/ for any other t 2 Œa; b�. Therefore, in view of the last assertion of

Corollary 3.4, for any t 2 Œa; b� it holdsQt D Qs and  t D  s . Thus, denoting by ut a solution to

m.t/, we have

m.t/ D
Z

fjrut j61g
jrut j C

Z

Qt

'. t / D
Z

fjrut j61g
jrut j C

Z

Qs

'. s/

D
Z

fjrut j61g
jrut j Cm.s/ :

In particular this implies m.t/ > m.s/ and in turn, since m is strictly increasing, that t > s. By the

arbitrariness of t 2 Œa; b�, we conclude that s D a.

In the special case when a D 0, we get Qs D Q0 , for any s 2 Œ0; b�. Clearly the equality

m.0/ D 0 implies jQ0j D 0. Therefore it holds jQsj D 0 for any s 2 Œ0; b�, which means that any

solution u to problemm.s/ satisfies jruj 6 1 and '.ru/ D jruj a.e., hence the conclusion. �

4. Link with the Cheeger problem

Recall that the Cheeger constant of a bounded and connected domainD is defined by

h
D

WD inf
A�D

j@Aj
jAj ; (4.1)
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where the infimum is taken over all the subsets A of D with finite perimeter.

In the last years, such minimization problem has captured the attention of many authors (see for

instance [2, 3, 12, 16–20]). In this section we present some related properties which shed some light

on the link between the Cheeger constant h
D

and the minimization problemm.s/.

The first result in this direction is the relationship between h
D

and the constant k
D

defined in

(3.12):

PROPOSITION 4.1 The constants h
D

and k
D

defined respectively in .4:1/ and .3:12/ satisfy the

inequality h
D

> k
D

, with equality in case D is simply connected.

Proof. The Cheeger constant introduced in (4.1) can also be recast as

h
D

D inf

�Z

D

jrvj W v 2 H 1
0 .D/ ;

Z

R
2

v D 1

�
: (4.2)

Then the statement follows by comparing (3.12) and (4.2). Indeed the space of extensions to zero of

functions in H 1
0 .D/ is included into H 1

c .D/, and coincides with it if D is simply connected. �

REMARK 4.2 The above statement can be generalized to the case when D D D0 n [k
iD1Di ,

being Di (i D 0; 1; : : : ; k) Jordan domains with mutually disjoint boundaries. Indeed, thanks to

the inclusionsH 1
0 .D/ � H 1

c .D/ � H 1
0 .D0/, there holds h

D
> k

D
> h

D0
. Moreover, the equality

k
D

D h
D0

holds as soon as there exists a Cheeger set C forD0 such that

@C \
� k[

iD1

Di

�
D ; ; (4.3)

and also the equality h
D

D k
D

holds if in addition

� k[

iD1

Di

�
� .D0 n C/ : (4.4)

Indeed, conditions (4.3) and (4.4) ensure respectively that the function 11C=jC j belongs not only to

H 1
0 .D0/ but also toH 1

c .D/ and toH 1
0 .D/. For instance, in Figure 2 below, the set D0 is taken as a

square, the grey region represents its Cheeger set, and conditions (4.3) and (4.4) are satisfied if the

holesDi are chosen respectively as in the left and in the right pictures.

By combining Proposition 4.1 with Proposition 3.8 (ii) we obtain that, when D is simply

connected, there holds

@m.0/ D Œ�h
D
; h

D
� : (4.5)

This identity allows to obtain Proposition 4.3 below, that will be exploited in Section 6. Though it

is already known in the literature (see in particular [6, 21, 24]), we prefer to be self-contained and

give a new proof of it, based on (4.5).

We need to introduce some definitions. Let ˝ � R
2 be a bounded and connected set with finite

perimeter. We say that ˝ is a Cheeger set of itself if

h
˝

D j@˝j
j˝j :
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D0

Dj

Dk

Di D0Di

FIG. 2. About conditions .4:3/ and .4:4/

Some examples of Cheeger sets of themselves are the ball, the ellipse with sufficiently small

eccentricity and the annulus.

We say that ˝ is calibrable if there exists a calibration, namely a field � 2 L2.˝IR2/ such

that

� div� D h
˝

in ˝ ; k�kL1.˝/ 6 1 ; Œ� � �˝ � D �1 H 1-a.e. on @˝ :

Here Œ� � �˝� is meant as the weak notion of the trace of the normal component of � on @˝ , defined

according to [5, Theorem 3.5] (see also [4, Theorem 1.2] for the same definition in case @˝ is

Lipschitz).

PROPOSITION 4.3 Let ˝ be a bounded and simply connected set with finite perimeter. Then

˝ is Cheeger set of itself ” ˝ is calibrable : (4.6)

REMARK 4.4 Under the additional assumption that ˝ is convex, it is known that each of the two

equivalent conditions in (4.6) holds true if and only if the mean curvature of @˝ satisfies the uniform

estimate kH@˝kL1.@˝/ 6
j@˝j
j˝j , see [24].

Proof. Assume that ˝ is calibrable, and let � be a calibration. Integrating over ˝ the equality

� div � D h
˝

, by the generalized divergence theorem proved in [5, Theorem 3.5], since Œ� � �˝ � D
�1 H 1-a.e. on @˝ , we get h

˝
D j@˝j=j˝j.

Conversely, assume that h
˝

D j@˝j=j˝j. For every s 2 R, let m.s/ be the variational problem

defined as in .1:2/, settled on the domain D D ˝ . Using the equality m.0/ D 0 and Lemma 3.2,

we obtain

@m.0/ D
n
� W m�.�/ D 0

o
D

n
� W 9� 2 S�.˝/ ;

Z

R
2

'�.�/ D 0
o
:

By recalling the expression of Fenchel conjugate of ' in (3.1), and the characterization of S�.˝/

holding when˝ simply connected (cf. (3.3)), it follows

@m.0/ D
˚
� W 9� 2 L2.R2IR2/ ; spt.�/ � ˝ ; � div � D � in ˝ ; k�kL1.˝/ 6 1

	
: (4.7)

On the other hand, by (4.5), we know that @m.0/ D Œ�h
˝
; h

˝
�, that is

h
˝

D max
˚
� 2 R W � 2 @m.0/

	
: (4.8)
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By combining (4.7) and (4.8), we infer that there exists � 2 L2.R2IR2/ such that

spt.�/ � ˝ ; � div� D h
˝

in ˝ ; k�kL1.˝/ 6 1 :

We claim that the restriction of such a field � to ˝ is a calibration for ˝ (so that ˝ is calibrable).

We only have to show that Œ� � �˝ � D �1 H 1-a.e. on @˝ . By integrating again over˝ the equality

� div � D h
˝

, we obtain

Z

@˝

Œ� � �˝ � dH
1 D

Z

˝

div � D �h˝ j˝j D �j@˝j:

Since k�kL1.˝/ 6 1, the above equality implies Œ� � �˝ � D �1 H 1-a.e. on @˝ as required. �

5. Existence and uniqueness of special solutions on a ball or a ring

In this section we show that, whenD is a ball or a ring, problemm.s/ has a unique solution, which

is a special one and has a circular plateau.

PROPOSITION 5.1 Let R > 0 and let D D BR.0/ be the ball of radius R centered at the origin.

Then, for every s 2 R, problemm.s/ admits a unique solution u, which is a special solution. More

precisely: if s D 0 then u � 0; if s > 0, there exists r 2 .0;R/, uniquely determined by the values

of s and R, such that

u.x/ D

8
<
:

R2 �
�
jxj2 _ r2

�

2r
if jxj < R ;

0 otherwise :

(5.1)

Proof. If s D 0 the function u � 0 is clearly the unique solution to m.0/, and it is a special

one. Assume s > 0. We begin by defining r as the unique number in the interval .0;R/ such that

f .r/ D s, where f is the map

f .t/ WD �

4

�
R4

t
� t3

�

C
; 8t 2 .0;R/ :

Notice that r is well-defined because f is strictly decreasing from .0;R/ onto .0;C1/. Using (5.1),

the relation f .r/ D s and an integration by parts, it is straightforward to check that
R
R

2 u D s.

|x|

u(|x|)

r R0

FIG. 3. The special solution u given by Proposition 5.1
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Moreover, u belongs to H 1
c .D/ since its gradient over R2 is given by

ru.x/ D

8
<
:

�x
r

if jxj 2 Œ r; R �;

0 otherwise :

Hence u is admissible for problemm.s/. For every v 2 H 1
c .D/ with

R
R

2 v D 0, it holds

Z

fruD0g
jrvjC

Z

fru6D0g
hr'.ru/;rvi >

Z

fjxj<rg
jrvj �

Z

fr<jxj<Rg
hx
r
;rvi

D
Z

fjxj<rg

�
jrvj C hx

r
;rvi

�
> 0 :

Hence Proposition 3.1 implies that u is a solution to problemm.s/. It is a special solution as jruj D
j x

r
j > 1 on the subset fr < jxj < Rg. Finally, uniqueness follows from Corollary 3.5. �

REMARK 5.2 With the same proof technique of Proposition 5.1, one can show that a similar result

is valid also when D D
S

i Bi is the countable union of a family of pairwise disjoint balls Bi of

radii Ri . Again, for every s 2 R problem m.s/ admits a unique solution, which is a special one.

More precisely: if s D 0 the solution is identically zero; if s > 0 there exists r 2 .0; supi Ri /,

uniquely determined by the values of s and the radii Ri , such that on balls whose radius is smaller

than r , the solution is identically zero, while on balls with a larger radius, it is of the form (5.1),

with R D Ri . The critical radius r is the unique number in .0; supi Ri / such that f .r/ D s, where

f .t/ D �

4

X

i

�
R4

i

t
� t3

�

C
; 8t 2 .0; sup

i

Ri / :

PROPOSITION 5.3 Let R2 > R1 > 0, and let D WD fx 2 R
2 W R1 < jxj < R2g. Then, for every

s 2 R, problem m.s/ admits a unique solution u, which is a special solution. More precisely: if

s D 0 then u � 0; if s > 0, there exists a unique r 2 .0;R2/, uniquely determined by the values of

s and the radii R1; R2, such that

u.x/ D

8
<
:

R2
2 �

�
jxj2 _ .R1 _ r/2

�

2r
if jxj < R2;

0 otherwise :

(5.2)

Proof. If s D 0 the function u � 0 is clearly the unique solution to m.0/, and it is a special one.

For s > 0, we define r as the unique number in the interval .0;R/ such that f .r/ D s, where f is

the map

f .t/ WD

8
ˆ̂̂
<
ˆ̂̂
:

�

4

�
R4

2 � R4
1

t

�
if t 2 .0;R1/;

�

4

�
R4

2 � t4

t

�
if t 2 ŒR1; R2/ :
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|x|

u(|x|)

R1r R20 |x|

u(|x|)

R1r R20

FIG. 4. The special solution u given by Proposition 5.3, respectively when R1 < r < R2 on the left, and when 0 < r < R1

on the right

Notice that r is well-defined since the map f is strictly decreasing from .0;R2/ onto .0;C1/.

Using the definition of r and an integration by parts, it is straightforward to obtain that
R
R

2 u D s.

Moreover, u belongs to H 1
c .D/ since it is constant on each connected component of R2 nD:

u � R2
2 � .R1 _ r/2

2r
if jxj 6 R1 and u � 0 if jxj > R2 :

Hence u is admissible for problemm.s/. Let us show that it is optimal. We distinguish the two cases

when s < f .R1/ or s > f .R1/, which correspond respectively to r 2 .R1; R2/ or r 2 .0;R1�.

If r 2 .R1; R2/, u coincides with the function defined in (5.1), with R D R2. The optimality of

u for problem m.s/ set on the ball BR2
.0/ implies the optimality also for problem m.s/ set on D,

because of the inclusionH 1
c .D/ � H 1

c .BR2
.0//.

If r 2 .0;R1�, we apply Proposition 3.1: for every v 2 H 1
c .D/ with

R
R

2 v D 0 it holds

Z

fruD0g
jrvj C

Z

fru6D0g
hr'.ru/;rvi D

Z

R
2

h�x
r
;rvi D 2

r

Z

R
2

v D 0 ;

where we have used the fact that the gradient of u is given by

ru.x/ D

8
<
:

�x
r

if jxj 2 .R1; R2/;

0 otherwise :

Thus u is a special solution, and uniqueness follows again from Corollary 3.5. �

REMARK 5.4 If in Proposition 5.3 we consider the case s > f .R1/, when the solution Nu is given

by (5.2) for a suitable r 2 .0;R1/ (see the above proof and Figure 4 at right), then the inequality

jru.x/j > 1 turns out to be strict up to jxj D R1. This shows that, for a special solution, the equality

(3.10) satisfied on the free boundary (lying in open set D) is in general false on @˝.u/ \ @D.
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6. Existence of special solutions for some other domain D

By exploiting the results of Sections 3 and 4, we are going to prove that there exists some domain

D, different from a ball, where problemm.s/ admits a special solution, see Theorem 6.1 below for

a precise statement. Let us remark that the proof of Theorem 6.1, and in particular the construction

of the vector field � therein, has some similarity with results contained in [26, Sections 4–5].

THEOREM 6.1 There exists an open bounded simply connected set D, different from a ball, such

that problem m.s/ admits a special solution u for some s 2 R n f0g. Moreover, both D and the

plateau of u have analytic boundary, and the latter is convex.

Proof. Let us construct an open bounded simply connected set D with analytic boundary, and

– a function u 2 H 1
0 .D/ with

8
ˆ̂̂
<̂
ˆ̂̂
:̂

Z

D

u D s ; for some s 2 R n f0g;

ru D 0 in a convex set ˝ � D;

jruj > 1 in D n˝ ;

(6.1)

– a field � 2 L2.DIR2/ with
8
<̂

:̂

� div � D � in D ; for some � 2 R;

j� j 6 1 in ˝;

� D ru in D n˝ :

(6.2)

We recall that, since D is simply connected, functions inH 1
c .D/ are extensions to zero of elements

inH 1
0 .D/, and S�.D/ is given by (3.3). Then u and � (extended to zero out ofD), satisfy conditions

(ii) in Proposition 3.3. Since jruj 2 f0g [ .1;C1/, we conclude that u is a special solution to

problemm.s/ (settled on D).

The construction is divided into three steps.

Step 1. We choose a bounded convex set ˝ , with analytic boundary, whose curvature satisfies

the strict inequality kHkL1.@˝/ <
j@˝j
j˝j : In view of Remark 4.4, there exists a calibration for ˝ ,

namely a vector field �1 2 L2.˝IR2/ such that

� div�1 D h
˝

in ˝ ; k�1kL1.˝/ 6 1 in ˝ ; Œ�1 � �˝ � D �1 H 1-a.e. on @˝ :

Ω

σ1

FIG. 5. Construction of the convex set ˝ and the vector field �1 in Step 1
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Step 2. Since @˝ is analytic, Cauchy–Kowalevskaya Theorem ensures the existence of an

analytic solution v in a neighborhood V of @˝ to the initial value problem

�
��v D h

˝
in V ;

v D 1 ; �v� D 1 on @˝ ;

being � the unit outer normal to @˝ . We claim that, up to choosing a smaller neighborhood V, if

we set U WD V n˝ , it holds

v 6 1 in U (6.3)

and

jrvj > 1 in U : (6.4)

Indeed, (6.3) follows straightforward from the condition v� < 0 on @˝ . In order to prove (6.4), we

exploit the equation ��v D h
˝

, which may be rewritten pointwise on @˝ as

� .H@˝ v� C v��/ D h
˝

on @˝ ;

beingH@˝ the (signed) curvature of @˝: By construction, we have

jrvj D 1 ; v� D �1; jH@˝ j < h˝ on @˝ :

Then (6.4) follows from the inequality

@�.jrvj2/ D 2v�v�� D �2v�� D �2.H@˝ � h˝/ > 0 on @˝ :

Next we choose t0 > 0, independent of y 2 @˝ , such that the map

t 7! �y.t/ WD v
�
y C t�.y/

�

is well-defined and satisfies the inequality �0
y.t/ < 0 on Œ0; t0�. Then, for some "0 > 0,

max
y2@˝

�y.t0/ D 1 � "0 < 1 :

Therefore, if we fix " 2 .0; "0/, it holds:

8y 2 @˝ ; 9ty 2 Œ0; t0� W �y.ty/ D 1 � " :

We set  WD fy C ty�.y/ W y 2 @˝g, so that  D @D, with

D WD ˝ [
˚
1 � " 6 v 6 1

	
:

Finally we define

v WD v � .1 � �/ and �2 D rv onD n˝ :

Notice in particular that �2 satisfies

� div �2 D ��v D h
˝

in D n˝ ; Œ�2 � �˝ � D �1 H
1 � a:e: on @˝ :
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∂D

∂Ω

V

FIG. 6. Construction of the set D in Step 2

Step 3. We set

u WD
�
" in ˝

v in D n˝ ; � WD
�
�1 in ˝

�2 in D n˝ ;

where ˝ and �1 have been defined in Step 1, while D, v and �2 have been defined in Step 2.

It is easy to check that, by construction, u and � verify respectively (6.1) and (6.2).

So, as claimed at the beginning of the proof, u is a special solution to m.s/. Moreover, the

plateau ˝ was chosen to be convex with analytic boundary. And also @D is analytic by the implicit

function Theorem for analytic functions (see, e.g., [30]): indeed,  is a level set of an analytic

function whose gradient is nonzero along  (because of (6.4) and since  � U). �

7. Some qualitative properties of solutions and special solutions

We first state two results which concern arbitrary solutions to problem m.s/, and more precisely

their sign (Proposition 7.1) and their support (Proposition 7.2).

PROPOSITION 7.1 For every s 2 R
C, any solution u to m.s/ satisfies the inequality u > 0 a.e.

Proof. The unique solution to m.0/ is identically zero. Let s > 0 and let u be a solution to m.s/.

We set uC WD maxfu; 0g and Qs WD
R
R

2 uC. Then

m.s/ D
Z

R
2

'.ru/ >

Z

R
2

'.ruC/ > m.Qs/ :

Since Qs > s and m is strictly increasing (recall Remark 3.9), we infer that s D Qs, and hence that the

set fu < 0g is Lebesgue negligible. �

PROPOSITION 7.2 Let s be positive and sufficiently small. Then any solution u to problem m.s/

satisfies

spt.u/ \ @D 6D ; : (7.1)
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Proof. Assume that (7.1) is false for some s > 0. Then spt.u/ �� D and, letting

u�.x/ WD �u
�x
�

�
; 8x 2 R

2 ; 8� > 0 ;

by continuity we have also spt.u�/ �� D for � close to 1. Accordingly, the function u� is

admissible for problemm.�3 s/, whence we deduce

m.�3 s/ 6

Z

R
2

'.ru�/ D �2

Z

R
2

'.ru/ D �2m.s/ : (7.2)

Therefore the function g.�/ D m.�3 s/��2m.s/ achieves a local maximum at � D 1, and g0.1/ D
0. It follows that 3m0.s/ D 2m.s/. Thus, by applying Remark 3.9, we find m.s/ >

3
2
k

D
, which is

not possible for s small. �

We now turn our attention to investigate qualitative properties of special solutions, under the

assumption that D is simply connected. The corresponding simplified formulation of m.s/, that we

consider from now on, reads

m.s/ D inf

�Z

D

'.ru/ W u 2 H 1
0 .D/ ;

Z

D

u D s

�
: (7.3)

The search for special solutions to problem (7.3) leads to study a nonstandard free boundary value

problem. Indeed, by Proposition 3.3, (3.8), and Corollary 3.6, if u is a special solution tom.s/ with

plateau ˝.u/ and free boundary � .u/, there exist constants �.D m0.s// and ci 2 R such that

8
<
:

��u D � ; jruj > 1 in D n˝.u/;
jruj D 1 on � .u/;

u D ci on i ;

(7.4)

where i denote the different connected components of � .u/ (see Figure 7).

A full understanding of problem (7.4) seems to be a quite challenging task. To the best of

our knowledge, it is not directly covered by the extensive literature on free boundary problems

(see [13–15, 28]). In particular, the available regularity results for free boundaries do not allow to

obtain a priori the smoothness of � .u/. This is the reason why the results hereafter are stated under

such smoothness assumption.

PROPOSITION 7.3 Assume that problemm.s/ admits a special solution u, with � .u/ smooth. Then

each connected component of D n˝.u/ meets the boundary @D.

Proof. Assume by contradiction that there exists a connected component A of D n˝.u/ such that

A �� D. Then @A D [i , where i are some of the connected components of � .u/. Then (cf.

(7.4)), there exist constants �.D m0.s// and ci 2 R such that

�
��u D � ; jruj > 1 in A;

u D ci ; jruj D 1 on i :

By standard regularity theory, u is smooth enough in order to apply [29, Lemma 5.1] (by taking

therein f .u/ D �, g.u/ D 1, and h.u/ D 0). We deduce that the P -function

P.x/ WD jruj2 ; x 2 A ;
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|∇u| = 1

|∇u| = 1

u ≡ cj

u ≡ ck

D \ Ω(u)

D

u = 0

u ≡ ci

|∇u| > 1

−△u = λ

FIG. 7. The free boundary value problem .7:4/

is either constant in A or it attains its maximum on @A. In both cases, since we know that jruj > 1

in A, we infer that

jruj � 1 in A : (7.5)

We now consider another P -function,

eP .x/ WD jruj2 C �u ; x 2 A :

From (7.5) we obtain

�eP D ��2 D �
�
m0.s/

�2
< 0

(for the last inequality recall (3.14)). On the other hand, equality (5.17) in [29] (applied now with

f .u/ D �, g.u/ D 1, and h.u/ D �u) shows that �eP > 0, a contradiction. �

PROPOSITION 7.4 Let D be a convex set with a smooth boundary, and assume that problem m.s/

admits a special solution u, with ˝.u/ connected, ˝.u/ �� D, and � .u/ smooth. Then ˝ is

convex.

Proof. By applying Proposition 7.3, we obtain that � .u/ is connected (otherwise, some connected

component ofDn˝.u/would be compactly contained intoD). Then (cf. (7.4)), there exist constants

�.D m0.s// and c 2 R such that

�
��u D � ; jruj > 1 in D n˝.u/;
u D c ; jruj D 1 on � .u/ :

In order to prove that ˝.u/ is convex, we follow the approach adopted in [23] (see also [22]): we

consider the P -function

P.x/ WD jruj2 C 2�u; 8x 2 D n˝.u/ :

By standard regularity theory, u is smooth enough in order to apply [29, Lemma 5.1]. Since by

assumption u has no critical points in D n˝.u/, we infer that one of the following facts occurs:



116 J. J. ALIBERT, G. BOUCHITTÉ, I. FRAGALÀ AND I. LUCARDESI

(a) P is constant;

(b) P attains its maximum on @D;

(c) P attains its maximum on � .u/.

Let us exclude the first two possibilities.

If P is constant, it holds

0 D P� D 2.u�u�� C �u�/ D �2.u�� C �/ on � .u/ : (7.6)

On the other hand, since by assumption � .u/ is smooth, the equation�uC � D 0 can be rewritten

pointwise on � .u/ as

H� u� C u�� C � D �H� C u�� C � D 0 on � .u/ ; (7.7)

where we have denoted by H� the mean curvature of � .u/. Combining (7.6) and (7.7), we deduce

that H� � 0 on � .u/, a contradiction.

If P attains its maximum at some point x0 2 @D, since @D is smooth we may apply Hopf’s

boundary point lemma to infer that either P is constant or P�.x0/ > 0 (here � stands for the unit

outer normal to @D). Since we have already excluded the first possibility, let us show that also the

second one leads to a contradiction. We have

0 < P�.x0/ D 2u�.x0/u��.x0/C 2�u�.x0/ D �2
�
u�.x0/

�2
H@D.x0/ ; (7.8)

where the last equality follows by exploiting the PDE�uC� D 0 on @D. In particular, (7.8) implies

H@D.x0/ < 0, against the convexity of D.

We conclude that (c) holds true, namely P assumes its maximum on � .u/. Since P is constant

on � .u/, every point of the free boundary is a maximum point. Then, thanks to the smoothness of

� .u/, Hopf’s lemma applies and yields

0 > P� D 2u�u�� C 2�u� D �2H� on � .u/ :

Hence ˝.u/ is convex. �

PROPOSITION 7.5 Assume thatD is not Cheeger set of itself, and let s" be an infinitesimal sequence

of positive numbers. Then problem m.s"/ cannot admit for every " a special solution u" with

˝.u"/ �� D and � .u"/ smooth.

Proof. Set for brevity ˝" WD ˝.u"/ and �" WD � .u"/. Assume by contradiction ˝" �� D and

�" smooth. We set �" D m0.s"/, and we take an optimal field �" 2 S�"
.D/ for the dual problem

m�.�"/. By Proposition 3.3 and (3.8), �" satisfies

8
<
:

� div �" D �" in D;

j�"j 6 1 in ˝";

�" D ru" in D n˝" :

By Corollary 3.6 and the regularity assumed on �", we infer that j�" � ��"
j equals 1 and has constant

sign on �". Integrating on ˝" the equation � div �" D �", we obtain �" � ��"
D �sgn.�"/ D �1

and

�" D j�"j
j˝"j

: (7.9)
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FIG. 8. Impossible plateaus for a special solution on the square

Since �" D m0.s"/, by using (7.9), the continuity from the right of the right derivative s 7! m0
C.s/

as s ! 0C, Proposition 3.8 and Proposition 4.1, we get

lim
"!0

�" D h
D
: (7.10)

Moreover, we have

jD n˝"j 6

Z

Dn˝"

jru"j2 D
Z

Dn˝"

ru" � �" D
Z

D

ru" � �" D s" � �" :

In view of (7.10), we infer that lim"!0 jD n ˝"j D 0, which is equivalent to lim"!0 11˝"
D 11D

in L1.D/. By using the lower semicontinuity of the perimeter with respect to the L1-convergence,

and (7.9), we obtain

j@Dj 6 lim inf
"!0

j�"j D lim
"!0

�"j˝"j D h
D

jDj ;

hence D is Cheeger set of itself, against the assumption. �

Concluding comments

It is a quite challenging problem to identify the geometrical conditions on the design domain D

under which a special solution with a smooth free boundary should exist or not. We point out that

proving or disproving the existence of a special solution remain open even for simple geometries

of D. For instance, when D is a square, in view of Propositions 7.3 and 7.4, it cannot happen that

a special solution has the grey regions in Figure 8 as plateau. Actually, having in mind Proposition

7.5, at least for small s the set where a solution u is constant may be expected to be shaped as the

grey region in Figure 9; but on its complement it is difficult to guess whether jruj > 1, or some

homogenization phenomenon occurs.
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FIG. 9. A possible plateau for a special solution on the square
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11. BOUCHITTÉ, G., FRAGALÀ, I. AND SEPPECHER, P., Structural optimization of thin plates: the three

dimensional approach, Arch. Rat. Mech. Anal. 202 (3) (2011), 829–874. Zblpre06101968 MR2854671

12. BUTTAZZO, G., CARLIER, G. AND COMTE, M., On the selection of maximal Cheeger sets, Differential

Integral Equations 20 (2007), 991–1004. Zbl1212.49019 MR2349376

13. CAFFARELLI, L. AND SALAZAR, J., Solutions of fully nonlinear elliptic equations with patches of zero

gradient: existence, regularity and convexity of level curves, Trans. Amer. Math. Soc. 354 (2002), 3095–

3115. Zbl0992.35101 MR1897393

14. CAFFARELLI, L., SALAZAR, J. AND SHAHGHOLIAN, H., Free-boundary regularity for a problem arising

in superconductivity, Arch. Ration. Mech. Anal. 17 (2004), 115–128. Zbl1072.35203 MR2029533

15. CAFFARELLI, L. AND SALSA, S., A geometric approach to free boundary problems, Graduate Studies in

Zbl 0990.35001
http://www.emis.de/MATH-item?0990.35001
MR 1859696
http://www.ams.org/mathscinet-getitem?mr=1859696
Zbl 1167.52005
http://www.emis.de/MATH-item?1167.52005
MR 2468216
http://www.ams.org/mathscinet-getitem?mr=2468216
Zbl 1108.35073
http://www.emis.de/MATH-item?1108.35073
MR 2178065
http://www.ams.org/mathscinet-getitem?mr=2178065
Zbl 0572.46023
http://www.emis.de/MATH-item?0572.46023
MR 0750538
http://www.ams.org/mathscinet-getitem?mr=0750538
Zbl 1036.35099
http://www.emis.de/MATH-item?1036.35099
MR 1929886
http://www.ams.org/mathscinet-getitem?mr=1929886
Zbl 1109.74041
http://www.emis.de/MATH-item?1109.74041
MR 2299763
http://www.ams.org/mathscinet-getitem?mr=2299763
Zbl pre06030198
http://www.emis.de/MATH-item?pre06030198
MR 2888297
http://www.ams.org/mathscinet-getitem?mr=2888297
Zbl 1258.74170
http://www.emis.de/MATH-item?1258.74170
MR 2607041
http://www.ams.org/mathscinet-getitem?mr=2607041
Zbl pre06101968
http://www.emis.de/MATH-item?pre06101968
MR 2854671
http://www.ams.org/mathscinet-getitem?mr=2854671
Zbl 1212.49019
http://www.emis.de/MATH-item?1212.49019
MR 2349376
http://www.ams.org/mathscinet-getitem?mr=2349376
Zbl 0992.35101
http://www.emis.de/MATH-item?0992.35101
MR 1897393
http://www.ams.org/mathscinet-getitem?mr=1897393
Zbl 1072.35203
http://www.emis.de/MATH-item?1072.35203
MR 2029533
http://www.ams.org/mathscinet-getitem?mr=2029533


A NONSTANDARD FREE BOUNDARY PROBLEM 119

Mathematics 68, American Mathematical Society (2005). Zbl1083.35001 MR2145284

16. CARLIER, G. AND COMPTE, M., On a weighted total variation minimization problem. J. Funct. Anal.

250 (2007), 214–226. Zbl1120.49011 MR2345913

17. CASELLES, V., CHAMBOLLE, A. AND NOVAGA, M., Uniqueness of the Cheeger set of a convex body.

Pacific J. Math. 232 (2007), 77–90. Zbl1221.35171 MR2358032

18. FIGALLI, A., MAGGI, F. AND PRATELLI, A., A note on Cheeger sets. Proc. Amer. Math. Soc. 137 (2009),

2057–2062. Zbl1168.39008 MR2480287

19. FRIDMAN, V. AND KAWOHL, B., Isoperimetric estimates for the first eigenvalue of the p-Laplace

operator and the Cheeger constant. Comment. Math. Univ. Carolinae 44 (2003), 659–667. Zbl1105.

35029 MR2062882

20. FUSCO, N., MAGGI, F. AND PRATELLI, A., Stability estimates for certain Faber–Krahn, isocapacitary

and Cheeger inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 8 (2009), 51–71. Zbl1176.49047

MR2512200

21. GRIESER, D., The first eigenvalue of the Laplacian, isoperimetric constants, and the Max Flow Min Cut

Theorem. Arch. Math. 87 (2006), 75–85. Zbl1105.35062 MR2246409

22. HENROT, A. AND SHAHGHOLIAN, H., Convexity of free boundaries with Bernoulli type condition.

Nonlinear Analysis TMA 28 (1997), 815–823. Zbl0863.35117 MR1422187

23. KAWOHL, B., On the convexity of level sets for elliptic and parabolic exterior boundary value problems.

Potential theory (Prague, 1987), 153–159. Zbl0685.35023 MR0986290

24. KAWOHL, B. AND LACHAND ROBERT, T., Characterization of Cheeger sets for convex subsets of the

plane. Pacific Journal of Math. 225 (2006), 103–118. Zbl1133.52002 MR2233727

25. KAWOHL, B., STARA, J. AND WITTUM, G., Analysis and numerical studies of a problem of shape design,

Arch. Rational Mech. Anal. 114 (1991), 349–363. Zbl0726.65071 MR1100800

26. MILBERS, Z. AND SCHURICHT, F., Some special aspects related to the 1-Laplace operator. Adv. Calc.

Var. 4 (2011) 101–126. Zbl1211.35214 MR2770426

27. MURAT, F. AND TARTAR, L., Calcul des variations et homogénéisation. Homogenization methods: theory
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