
Interfaces and Free Boundaries 11 (2009), 317–330

On the shape derivative for problems of Bernoulli type
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Sokolovská 83, 186 75 Praha 8, Czech Republic

E-mail: hasling@karlin.mff.cuni.cz

K. ITO

Department of Mathematics, North Carolina State University,
Raleigh, NC 27695, USA

E-mail: kito@unity.ncsu.edu

T. KOZUBEK

Department of Applied Mathematics, VSB-Technical University Ostrava,
17. listopadu 15, 708 33 Ostrava 8, Czech Republic

E-mail: tomas.kozubek@vsb.cz

K. KUNISCH AND G. PEICHL

Department for Mathematics and Scientific Computing, University of Graz,
Heinrichstrasse 36, A-8010 Graz, Austria

E-mail: karl.kunisch@uni-graz.at, gunther.peichl@uni-graz.at

[Received 20 February 2008 and in revised form 27 November 2008]

The shape derivative of the cost functional in a Bernoulli-type problem is characterized. The
calculation of the derivative of the cost does not use the shape derivative of the state variable and
is achieved under mild regularity conditions on the boundary of the domain.

1. Introduction

In this note we carry out a sensitivity analysis with respect to the boundary Γ in the following shape
optimization problem:

min
Γ
J (Γ ) ≡

1
2

∫
Γ

(
∂u

∂n
−Q

)2

dσ, (1.1)

where u is the solution of the Dirichlet problem

−∆u = 0 on Ω,
u = g on Γd , (1.2)
u = 0 on Γ.

Above, Ω ⊂ R2 denotes a doubly connected, bounded domain of class C1,1 the boundary of which
consists of a fixed component Γd and another component Γ such that dist(Γd , Γ ) > 0, Q ∈ R and
g ∈ H 3/2(Γd).
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Problems of this type arise for example in the numerical realization of Bernoulli free boundary
value problems (FBVP) based on a shape optimization approach. Indeed, consider the following
exterior FBVP: given a domain ω ⊂ R2 andQ < 0 find a domainΣ with ω̄ ⊂ Σ and u : Σ\ω̄→ R
such that

−∆u = 0 on Σ \ ω̄,
u = 1 on ∂ω, (1.3)

u = 0,
∂u

∂n
= Q on Γ = ∂Σ.

One of the possibilities to solve (1.3) numerically is based on the following idea: since the system
(1.3) is ill-posed due to the set of overdetermined boundary conditions on Γ , one of these conditions
is realized in an optimization formulation. This results in an optimal shape design problem with an
equality constraint involving a well posed state equation. Prescribing the Neumann data on Γ one
is led to the following problem:

min
Γ
J (Γ ) ≡

1
2

∫
Γ

u2 dσ, (1.4)

where u satisfies the mixed Dirichlet–Neumann problem

−∆u = 0 on Σ \ ω̄,
u = 1 on ∂ω, (1.5)
∂u

∂n
= Q on Γ.

On the other hand, if the Dirichlet condition is imposed on Γ we arrive at problem (1.1) and (1.2)
with Ω = Σ \ ω̄, g = 1 and Γd = ∂ω. The formulation (1.4) and (1.5) was used in [IKP] for the
numerical realization of (1.3). The second order sensitivity analysis in [EH, EHS] reveals that the
shape Hessian of J defined by (1.1) (unlike the one of (1.4)) is coercive in the corresponding energy
norm, which implies the stability of the global minimizer. Another reason to prefer the formulation
(1.1) and (1.2) arises from numerical considerations: since the state problem (1.2) involves only
Dirichlet data on ∂ω ∪ Γ it can be efficiently solved by an embedding domain technique based on
boundary Lagrange multipliers. It can be implemented in such a way that the Lagrange multiplier
represents the normal derivative ∂u/∂n on ∂ω∪Γ . Thus it can be used for the evaluation of (1.2) (see
[HM, HKKP1]). The shape optimization approach can be used for the numerical realization of other
free boundary problems of Bernoulli type. For example in [BG] the authors solved a dam problem
using the cost functional (1.4). The same problem but tracking the Neumann data was considered
in [HHM] using an algebraic sensitivity analysis and in [HKKP2] employing global optimization
techniques for (1.1).

A formal derivation of the shape derivative of J can be found in the literature (see for example
[Z]). In this paper we present a rigorous justification of the shape derivative of J with respect
to Γ under what we consider minimal regularity assumptions. The technique that we employ was
first suggested in [IKP] and allows one to characterize the shape derivative of the mapping Γ 7→
J (u(Γ )) without recourse to the chain-rule approach. In particular, it does not involve the shape
derivative of u with respect to Γ . It will be convenient to recall the main result of [IKP] without
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entering the technical details. Consider a shape optimization problem of the form

min J (u,Ω, Γ ) =
∫
Ω

j1(u) dx +
∫
Γ

j2(u) ds

subject to E(u,Ω) = 0,
(1.6)

where E denotes a partial differential equation depending on a state variable u and on a reference
domain Ω , and Γ stands for a codimension one manifold, which may constitute a part of the
boundary of Ω or lie inside of Ω . Then the Eulerian derivative of J at Ω in the direction h is
given by

dJ (u,Ω, Γ )h = −
d
dt
〈Ẽ(u, t), p〉

∣∣∣∣
t=0
+

∫
Ω

j1(u) divh dx +
∫
Γ

j2(u) divΓ h ds. (1.7)

Here

dJ (u,Ω, Γ )h = lim
t→0

1
t
(J (ut ,Ωt , Γt )− J (u,Ω, Γ )),

and Ẽ(·, t) is posed on the same reference domain Ω as E, and is related to E by means of

E(ut ,Ωt ) = 0 if and only if Ẽ(ut , t) = 0,

where
Ωt = Ft (Ω), ut = ut ◦ Ft and Ft = id+ th.

As already announced, the Eulerian derivative of J given in (1.7) does not depend on the shape
derivative of the state. Rather it depends on the adjoint state p which is the solution of the adjoint
equation

E∗u(u,Ω)p = j
′

1(u)+ τ
∗
Γ j
′

2(u),

with τ ∗Γ standing for the adjoint of the trace operator onto Γ .
The regularity assumptions in [IKP] require ji to be C1,1 on the state space of the partial

differential equation. This is not the case for the cost functional (1.1). In the present paper, however,
we show that the Eulerian shape derivative of J can nevertheless be obtained using the technique
developed in [IKP]. Moreover, the characterization will be accomplished under the very mild C1,1

regularity assumption on the boundary of Ω .
Throughout the paper (·, ·) denotes the L2-inner product with respect to a domain which is

consistent with the context. The Euclidean product in R2 of two vectors x and y will be denoted by
x · y.

2. Continuous dependence

We embed problem (1.2) into a family of perturbed problems defined on perturbations of the
reference domain Ω which are constructed by perturbing the identity. Let U be a convex bounded
domain of class C1,1 such that Ω̄ ⊂ U and let

D = {V ∈ C1,1(Ū ,R2) : V = 0 on ∂U ∪ Γd} (2.1)
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be the space of feasible deformation fields endowed with the natural norm in C1,1(Ū ,R2). Choose
a fixed field V ∈ D and define for each t ∈ R the mapping Tt : Ū → R2 by

Tt = id+ tV . (2.2)

Then Tt (U) = U and {Tt } is a family of C1,1-diffeomorphisms for |t | sufficiently small. For each
t ∈ R with |t | < τ we set

Ωt = Tt (Ω), Γt = Tt (Γ ).

Thus Ω0 = Ω , Γ0 = Γ , Ω̄t ⊂ U and Γd = Tt (Γd).
The Eulerian derivative of J at Γ in the direction of the deformation field V is defined as

dJ (Γ )V = lim
t→0

1
t
(J (Γt )− J (Γ )),

where

J (Γt ) =
1
2

∫
Γt

(
∂ut

∂nt
−Q

)2

dσt .

Above nt stands for the outer normal unit vector to Γt and ut is the solution of the perturbed Dirichlet
problem

−∆ut = 0 on Ωt ,
ut = g on Γd , (2.3)
ut = 0 on Γt .

The functional J is called shape differentiable at Γ if dJ (Γ )V exists for all V ∈ D and defines
a continuous linear functional on D. For an in-depth discussion of these concepts we refer to [DZ,
SZ].

The variational form of (2.3) is given by:

Find ut ∈ H 1(Ωt ) such that ut = g on Γd , ut = 0 on Γt and

(∇ut ,∇vt ) = 0 for all vt ∈ H 1
0 (Ωt ). (2.4)

It is known that (2.4) has a unique solution ut which in addition satisfies ut ∈ H 2(Ωt ). For t = 0
equation (2.4) represents the weak form of the reference problem (1.2). Any function ϕt : Ωt → R
can be referred to the reference domain by

ϕt = ϕt ◦ Tt : Ω → R.

From the chain rule it follows that the gradients of ϕt and ϕt are related by

∇ϕt ◦ Tt = (DTt )
−T
∇ϕt , (2.5)

where Df stands for the derivative of the mapping f . Let ut denote the solution of (2.4). Then
ut = ut ◦ Tt satisfies the transformed equation in Ω:

(A(t)∇ut ,∇ψ) = 0 (2.6)
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for all ψ ∈ H 1
0 (Ω), u

t
= 0 on Γ and ut = g on Γd . Here and in the following we use the notation

It = detDTt , A(t) = (DTt )
−1(DTt )

−T It , wt = It |(DTt )
−T n|,

where n denotes the outer normal unit vector to ∂Ω and | · | is the Euclidean norm of a vector in R2

or the spectral norm of a matrix in R2×2. By an induction argument one can prove the expansion

It (x) = 1+ t divV (x)+ t2
n−2∑
i=0

t ifi(DV (x)), x ∈ Ū , (2.7)

with suitable polynomials fi . This implies that for any 0 < α < 1, the inequality

It (x) > α > 0, x ∈ Ū , (2.8)

holds for |t | < τ , with τ > 0 sufficiently small. If, in addition, τ |DV |∞ ≡ τ max{|∂xjVi | : 1 6
i, j 6 2, x ∈ Ū} < 1 then the inverse of the Jacobian DTt can be represented by the Neumann
series

(DTt )
−1
=

∞∑
i=0

(−t)i(DV )i, |t | < τ,

which converges uniformly for (t, x) ∈ [−τ, τ ]× Ū . For further reference we note the bound

|(DTt )
−1
|∞ 6

1
1− τ |DV |∞

. (2.9)

Let I denote the interval [−τ, τ ]. Then the following regularity properties of the transformation
Tt can be shown ([DZ, IKP]):

T0 = id, t 7→ Tt ∈ C
1(I, C1,1(Ū ,R2)),

t 7→ T −1
t ∈ C(I, C

1(Ū ,R2)), t 7→ It ∈ C
1(I, C(Ū)),

t 7→ D(Tt )
−T
∈ C(I, C(Ū ,R2×2)), t 7→ wt ∈ C(I, C(Γ )),

d
dt
Tt

∣∣∣∣
t=0
= V,

d
dt
T −1
t

∣∣∣∣
t=0
= −V,

d
dt
DTt

∣∣∣∣
t=0
= DV,

d
dt
DT −1

t

∣∣∣∣
t=0
= −DV,

d
dt
It

∣∣∣∣
t=0
= divV,

d
dt
wt

∣∣∣∣
t=0
= divΓ V.

(2.10)

The limits defining the derivatives at t = 0 exist uniformly in x ∈ Ū . The surface divergence divΓ
is defined for ϕ ∈ C1(Ū ,R2) by

divΓ ϕ := divϕ|Γ − (Dϕ n) · n.

Furthermore, using (2.8) the estimate

(A(t)ξ, ξ) = (D(Tt )
−T ξ, ItD(Tt )

−T ξ) > α|D(Tt )
−T ξ |2 >

α

|D(Tt )T |2
|ξ |2 >

α

2
|ξ |2

follows for (ξ, x) ∈ R2
×Ω and τ sufficiently small, which ensures that the bilinear form in (2.6)

is elliptic uniformly in t ∈ I.
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THEOREM 2.1 The solution ut of equation (2.6) satisfies ut ∈ H 2(Ω) for t sufficiently small.
Moreover,

lim
t→0

1
√
|t |
|ut − u|H 2(Ω) = 0,

where u is the weak solution of (1.2).

Proof. It suffices to show the second statement. Subtracting (2.4) with t = 0 from (2.6) one finds
that 1

t
(ut − u) satisfies(
A(t)∇

(
1
t
(ut − u)

)
,∇ψ

)
= −

(
1
t
(A(t)− I )∇u,∇ψ

)
=

(
div
(

1
t
(A(t)− I )∇u

)
, ψ

)
for every ψ inH 1

0 (Ω). Since 1
t
(ut−u) belongs toH 1

0 (Ω) standard elliptic regularity theory implies
ut − u ∈ H 2(Ω) ∩H 1

0 (Ω) and∣∣∣∣1t (ut − u)
∣∣∣∣
H 2(Ω)

6 c

∣∣∣∣div
(

1
t
(A(t)− I )∇u

)∣∣∣∣
L2(Ω)

with a constant c > 0 which depends only on |A(t)|∞ and the Lipschitz constant forDV . This may
be chosen independently of t (see Theorem IV-2.1 in [Ne] and the proof of Theorem 6.3.4 in [E]
which is applicable to an equation on a C1,1-domain with C0,1-coefficients). The result then follows
if we bound | 1

t
D(A(t) − I )|∞ uniformly in t . For this purpose consider any partial derivative ∂k ,

k = 1, 2:

∂k
1
t
(A(t)− I ) =

1
t
∂k(DT

−1
t − I )DT

−T
t It +

1
t
∂k(DT

−T
t − I )It +

1
t
∂k(It − 1)I

and observe that

1
t
∂k(DT

−1
t − I ) =

1
t
∂k(DT

−1
t (I −DTt )) = −∂k(DT

−1
t DV )

= t (DTt )
−1(∂kDV )(DTt )

−1DV −DT −1
t ∂kDV.

By Rademacher’s theorem ∂kDV exists almost everywhere in U and is bounded by the Lipschitz
constant for DV . A bound uniform in t follows from (2.9). The estimate for ∂k 1

t
(It − 1) is similar

and uses (2.7). 2

The above proof actually shows that the difference quotient 1
t
|ut − u|H 2(Ω) is bounded as t → 0.

COROLLARY 2.1 Let ut and u stand for the weak solution of (2.4), respectively (1.2). Then

lim
t→0

1
√
|t |

∣∣∣∣∂ut∂nt
◦ Tt −

∂u

∂n

∣∣∣∣
L2(Γ )

= 0.

Proof. Define nt = nt ◦ Tt . Then

nt =
DT −Tt n

|DT −Tt n|
=
It

wt
DT −Tt n

([DZ, Theorem 4.4]), which is meaningful because wt → 1 uniformly on Γ . As a consequence we
obtain
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∂ut

∂nt
◦ Tt −

∂u

∂n
= ∇ut ◦ Tt · nt ◦ Tt −∇u · n = DT

−T
t ∇u

t
· nt −∇u · n

=
1
wt
DT −Tt ∇u

t
· ItDT

−T
t n−∇u · n =

1
wt
(A(t)∇ut − wt∇u) · n

=
1
wt

(
(A(t)− I )∇ut · n+

∂

∂n
(ut − u)− (wt − 1)

∂u

∂n

)
.

Now the result follows by using the differentiability of t 7→ A(t) and t 7→ wt at t = 0, the trace
theorem and Theorem 2.1. 2

3. Sensitivity analysis

In order to make the paper self-contained we state the main theoretical tools which will be used in
the analysis below.

LEMMA 3.1 ([MS]) If ϕt ∈ L1(Γt ) then ϕt ◦ Tt ∈ L1(Γ ) and∫
Γt

ϕt dσt =
∫
Γ

ϕt ◦ Tt wt dσ.

LEMMA 3.2 ([MS, DZ]) Let f ∈ C((−τ, τ ),W 1,1(U)) and assume that ∂f
∂t
(0, ·) exists in L1(U).

Then
d
dt

∫
Ωt

f (t, x) dxt

∣∣∣∣
t=0
=

∫
Ω

∂f

∂t
(0, x) dx +

∫
Γ

f (0, x) V · n dσ.

LEMMA 3.3 (Tangential Green’s formula) If f ∈ W 2,1(U), then∫
Γ

(f divΓ V +∇Γ f · V ) dσ =
∫
Γ

κf V · n dσ,

where κ denotes the curvature of Γ and the tangential gradient ∇Γ is given by

∇Γ f = ∇f |Γ −
∂f

∂n
n.

A proof of the tangential Green’s formula can be found in [MS] (referred to as surface integration
by parts formula) where it is also shown that the curvature of a C1,1-domain makes sense in L∞(Γ ).

Since Ω ∈ C1,1 and g ∈ H 3/2(Γd), the solution u of the reference problem (1.2) belongs to
H 2(Ω). Define the adjoint equation

−∆p = 0 in Ω,
p = 0 on Γd , (3.1)

p =
∂u

∂n
−Q on Γ,

or equivalently
(∇p,∇ψ) = 0 for all ψ ∈ H 1

0 (Ω), (3.2)

p = 0 on Γd and p = ∂u/∂n−Q on Γ . Since ∂u/∂n−Q ∈ H 1/2(Γ ) equation (3.2) has a unique
solution p ∈ H 1(Ω).

Now we turn to the shape differentiability of the cost functional (1.1).
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THEOREM 3.1 Let Ω ∈ C1,1, g ∈ H 3/2(Γd) and D ⊂ C1,1(Ū ,R2) be defined by (2.1). Then the
cost functional

J (Γ ) =
1
2

∫
Γ

(
∂u

∂n
−Q

)2

dσ

is shape differentiable. For every V ∈ D its derivative in the direction V is given by

dJ (Γ )V = −
∫
Γ

(
1
2
p2
+Qp

)
κ V · n dσ −

〈
∂p

∂n
,
∂u

∂n
V · n

〉
Γ

, (3.3)

where u and p stand for the solution of (1.2), respectively (3.2), and 〈·, ·〉Γ denotes the duality
pairing between H−1/2(Γ ) and H 1/2(Γ ).

Proof. It suffices to show that the Eulerian derivative of J at Γ in the direction V can be represented
in the form (3.3). Transforming the boundary integral according to Lemma 3.1 we obtain

J (Γt ) =
1
2

∫
Γt

(
∂ut

∂nt
−Q

)2

dσt =
1
2

∫
Γ

((∇ut · nt ) ◦ Tt −Q)
2wt dσ.

In order to calculate the Eulerian derivative of J we exploit the structure of J using the identity
a2
− b2

= 2(a − b)b + (a − b)2:

J (Γt )− J (Γ ) =
1
2

∫
Γ

(wt − 1)
[(
∂ut

∂nt
◦ Tt −Q

)2

−

(
∂u

∂n
−Q

)2]
dσ

+
1
2

∫
Γ

(wt − 1)
(
∂u

∂n
−Q

)2

dσ +
1
2

∫
Γ

[(
∂ut

∂nt
◦ Tt −Q

)2

−

(
∂u

∂n
−Q

)2]
dσ

=
1
2

∫
Γ

(wt − 1)
(
∂ut

∂nt
◦ Tt −

∂u

∂n

)(
∂ut

∂nt
◦ Tt +

∂u

∂n
− 2Q

)
dσ

+
1
2

∫
Γ

(wt − 1)
(
∂u

∂n
−Q

)2

dσ

+

∫
Γ

(
(∇ut · nt ) ◦ Tt −

∂u

∂n

)(
∂u

∂n
−Q

)
dσ +

1
2

∫
Γ

(
∂ut

∂nt
◦ Tt −

∂u

∂n

)2

dσ

≡ J1(t)+ J2(t)+ J3(t)+ J4(t).

By the last equality in (2.10) and Corollary 2.1 we deduce

J̇1(0) = J̇4(0) = 0, (3.4)

J̇2(0) =
1
2

lim
t→0

∫
Γ

1
t
(wt − 1)

(
∂u

∂n
−Q

)2

dσ =
1
2

∫
Γ

(
∂u

∂n
−Q

)2

divΓ V dσ. (3.5)

The treatment of J3(t) is more delicate. Reasoning as in the proof of Corollary 2.1 one obtains∫
Γ

(∇ut · nt ) ◦ Tt

(
∂u

∂n
−Q

)
dσ =

∫
Γ

A(t)∇ut · n
1
wt

(
∂u

∂n
−Q

)
dσ,

which suggests writing J3 in the following form:
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J3(t) =

(∫
Γ

(A(t)∇ut · n)

(
∂u

∂n
−Q

)
dσ −

∫
Γ

∂u

∂n

(
∂u

∂n
−Q

)
dσ
)

+

∫
Γ

(A(t)∇ut · n)

(
∂u

∂n
−Q

)
(w−1

t − 1) dσ =: J31(t)+ J32(t).

Using Theorem 2.1 together with limt→0A(t) = I and limt→0wt = 1 uniformly on Γ and
J32(0) = 0 we obtain

J̇32(0) = lim
t→0

∫
Γ

(A(t)− I )∇ut · n

(
∂u

∂n
−Q

)
1−wt
twt

dσ + lim
t→0

∫
Γ

∂ut

∂n

(
∂u

∂n
−Q

)
1−wt
twt

dσ

= −

∫
Γ

∂u

∂n

(
∂u

∂n
−Q

)
divΓ V dσ. (3.6)

Using the adjoint state p one can write J31(t) as

J31(t) =

∫
Γ

A(t)∇ut · np dσ −
∫
Γ

∂u

∂n
p dσ.

Then Green’s formula and the strong form of (2.6) imply∫
Γ

A(t)∇ut · np dσ = (div(A(t)∇ut ), p)+ (A(t)∇ut ,∇p) = (A(t)∇ut ,∇p)

and analogously ∫
Γ

∂u

∂n
p dσ = (∇u,∇p).

From this we derive

J31(t) = (A(t)∇u
t ,∇p)− (∇u,∇p)

= (A(t)∇(ut − u),∇p)+ (A(t)∇u,∇p)− (∇u,∇p)

= ((A(t)− I )∇(ut − u),∇p)+ (∇(ut − u),∇p)+ (A(t)∇u,∇p)− (∇u,∇p)

= ((A(t)− I )∇(ut − u),∇p)+ (A(t)∇u,∇p)− (∇u,∇p),

where we have used the fact that ut − u ∈ H 1
0 (Ω) and the adjoint equation (3.2). Taking the

derivative of J31 is complicated by the fact that p belongs toH 1(Ω) only. To overcome this difficulty
we choose a sequence (uk)∞k=1 ⊂ C

∞(Ω̄) which approximates u in H 2(Ω) and denote by pk the
solution of the adjoint equation (3.1) with ∂u/∂n−Q replaced by ∂uk/∂n−Q. Then pk ∈ H 2(Ω)

and limk→∞ pk = p in H 1(Ω). By differentiability of t 7→ A(t) and t 7→ ut at t = 0 we find

lim
t→0

(
1
t
(A(t)− I )∇(ut − u),∇p

)
= 0.

This leads to

J̇31(0) = lim
t→0

1
t

[(A(t)∇u,∇p)− (∇u,∇p)] = lim
t→0

lim
k→∞

1
t

[(A(t)∇uk,∇pk)− (∇uk,∇pk)]

= lim
k→∞

lim
t→0

1
t

[(A(t)∇uk,∇pk)− (∇uk,∇pk)]

= lim
k→∞

d
dt

∫
Ωt

∇(uk ◦ T
−1
t ) · ∇(pk ◦ T

−1
t ) dx

∣∣∣∣
t=0
.
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The interchange of the two limits above is justified because limt→0
1
t
(A(t)− I ) exists uniformly in

x ∈ Ū . If we extend uk and pk to elements in H 2(U), the last derivative can be calculated using
Lemma 3.2 and d

dt T
−1
t |t=0 = −V :

J̇31(0) = lim
k→∞

[∫
Γ

∇uk · ∇pk V · n dσ + (∇(−∇uk · V ),∇pk)+ (∇uk,∇(−∇pk · V ))
]
.

Further Green’s formula combined with ∆pk = 0 in Ω and V = 0 on Γd leads to

J̇31(0) = lim
k→∞

[∫
Γ

∇uk · ∇pk V · n dσ + (∇uk · V,∆pk)−
∫
Γ

∂pk

∂n
∇uk · V dσ

+ (∆uk,∇pk · V )−

∫
Γ

∂uk

∂n
∇pk · V dσ

]
= lim

k→∞

[∫
Γ

∇uk · ∇pk V · n dσ −
∫
Γ

∂pk

∂n
∇uk · V dσ

−

∫
Γ

∂uk

∂n
∇pk · V dσ + (∆uk,∇pk · V )

]
. (3.7)

Collecting (3.4)–(3.7) leads to

dJ (Γ )V = J̇1(0)+ J̇2(0)+ J̇3(0)+ J̇4(0)

=
1
2

∫
Γ

(
∂u

∂n
−Q

)2

divΓ V dσ −
∫
Γ

∂u

∂n

(
∂u

∂n
−Q

)
divΓ V dσ

+ lim
k→∞

[∫
Γ

∇uk · ∇pk V · n dσ −
∫
Γ

∂pk

∂n
∇uk · V dσ

−

∫
Γ

∂uk

∂n
∇pk · V dσ + (∆uk,∇pk · V )

]
= lim

k→∞

[
1
2

∫
Γ

(
∂uk

∂n
−Q

)2

divΓ V dσ −
∫
Γ

∂uk

∂n

(
∂uk

∂n
−Q

)
divΓ V dσ

+

∫
Γ

∇uk · ∇pk V · n dσ −
∫
Γ

∂pk

∂n
∇uk · V dσ

−

∫
Γ

∂uk

∂n
∇pk · V dσ + (∆uk,∇pk · V )

]
= lim

k→∞

[
−

∫
Γ

(
1
2
p2
k +Qpk

)
divΓ V dσ +

∫
Γ

∇uk · ∇pkV · n dσ

−

∫
Γ

∂pk

∂n
∇uk · V dσ −

∫
Γ

∂uk

∂n
∇pk · V dσ

]

where we have used the equalities pk = ∂uk
∂n
−Q on Γ and limk→∞∆uk = 0 in L2(Ω) in the

last step. Next we rewrite the first term using the tangential Green’s formula (Lemma 3.3) and the
definition of the tangential gradient ∇Γ pk . This results in
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−

∫
Γ

(
1
2
p2
k +Qpk

)
divΓ V dσ =

∫
Γ

∇Γ

(
1
2
p2
k +Qpk

)
· V dσ −

∫
Γ

(
1
2
p2
k +Qpk

)
κV · n dσ

=

∫
Γ

(pk +Q)∇Γ pk · V dσ −
∫
Γ

(
1
2
p2
k +Qpk

)
κV · n dσ

=

∫
Γ

∂uk

∂n
∇pk · V dσ −

∫
Γ

∂uk

∂n

∂pk

∂n
V · n dσ −

∫
Γ

(
1
2
p2
k +Qpk

)
κV · n dσ.

This entails

dJ (Γ )V = lim
k→∞

[∫
Γ

∂uk

∂n
∇pk · V dσ −

∫
Γ

∂uk

∂n

∂pk

∂n
V · n dσ −

∫
Γ

(
1
2
p2
k +Qpk

)
κV · n dσ

+

∫
Γ

∇uk · ∇pk V · n dσ −
∫
Γ

∂pk

∂n
∇uk · V dσ −

∫
Γ

∂uk

∂n
∇pk · V dσ

]
= lim

k→∞

[
−

∫
Γ

(
1
2
p2
k +Qpk

)
κV · n dσ −

∫
Γ

∂uk

∂n

∂pk

∂n
V · n dσ

+

∫
Γ

∇uk · ∇pk V · n dσ −
∫
Γ

∂pk

∂n
∇uk · V dσ

]
= −

∫
Γ

(
1
2
p2
+Qp

)
κV · n dσ − lim

k→∞

∫
Γ

∂pk

∂n

∂uk

∂n
V · n dσ

+ lim
k→∞

[∫
Γ

∂uk

∂n

∂pk

∂n
V · n dσ +

∫
Γ

∇uk · τ ∇pk · τ V · n dσ

−

∫
Γ

∂uk

∂n

∂pk

∂n
V · n dσ −

∫
Γ

∂pk

∂n
∇uk · τ V · τ dσ

]
= −

∫
Γ

(
1
2
p2
+Qp

)
κV · n dσ − lim

k→∞

∫
Γ

∂pk

∂n

∂uk

∂n
V · n dσ

+ lim
k→∞

[∫
Γ

(∇pk · τ)(∇uk · τ) V · n dσ −
∫
Γ

∂pk

∂n
(∇uk · τ)V · τ dσ

]
, (3.8)

where τ denotes the properly oriented tangential unit vector. Since ∂uk/∂n, ∂u/∂n ∈ H 1/2(Γ )

there exist their respective extensions wk, w ∈ H 1(Ω) such that wk → w in H 1(Ω) and the
normal field n ∈ C0,1(Γ ) can be extended to a vector field N ∈ C0,1(Ω̄) [GR]. Then it is readily
seen that wkV ·N , wV ·N ∈ H 1(Ω) and wkV ·N converges to wV ·N in H 1(Ω) and hence
(∂uk/∂n) V · n converges to (∂u/∂n) V · n in H 1/2(Γ ). Since div(∇pk) = div(∇p) = 0 in Ω , we
see that ∇pk converges to ∇p not only in L2(Ω)2 but also in H(div,Ω). Therefore the normal
derivative can be extended to a bounded linear operator in L(H(div,Ω),H−1/2(Γ )) [GR, Theorem
2.5], enabling us to pass to the limit

lim
k→∞

∫
Γ

∂pk

∂n

∂uk

∂n
V · n dσ =

〈
∂p

∂n
,
∂u

∂n
V · n

〉
Γ

.

Concerning the third term in (3.8) we argue similarly replacing the normal derivative by the
tangential derivative in the definition of wk . Since ∇pk converges to ∇p also in H(curl,Ω), the
tangential derivative (in R2) extends to a continuous linear operator in L(H(curl,Ω),H−1/2(Γ ))
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[GR, Theorem 2.11]. Thus

lim
k→∞

∫
Γ

(∇pk · τ)(∇uk · τ)V · n dσ =
〈
∇p · τ,

∂u

∂τ
V · n

〉
Γ

= 0,

upon making use of the boundary condition u = 0 in the last equality. Similarly one finds

lim
k→∞

∫
Γ

∂pk

∂n
(∇uk · τ)V · n dσ = 0.

Summarizing we have shown the desired representation for the shape gradient of J :

dJ (Γ )V = −
〈
∂p

∂n
,
∂u

∂n
V · n

〉
Γ

−

∫
Γ

(
1
2
p2
+Qp

)
κV · n dσ.

In the last step of the proof, the 2-dimensionality of Ω is used. In higher dimensions the
representation (3.3) remains true provided that the boundary of Ω is sufficiently regular so that
u ∈ H 3(Ω) and hence p ∈ H 2(Ω), in which case it is not necessary to approximate p by smoother
functions pk . 2

REMARK 3.1 The proof of Theorem 3.1 can be easily adapted to cover the inhomogeneous state
equation

−∆u = f on Ω,
u = g on Γd ,
u = 0 on Γ.

Then ut satisfies

(A(t)∇ut ,∇ψ) = (It ft ◦ Tt , ψ) for all ψ ∈ H 1
0 (Ω),

ut = 0 on Γ and ut = g on Γd instead of (2.6). Assuming that f ∈ H 1(U), the shape gradient of
J is then given by

dJ (Γ )V = −

∫
Γ

(
1
2
p2
+Qp

)
κ V · n dσ −

〈
∂p

∂n
,
∂u

∂n
V · n

〉
Γ

−

∫
Γ

fp V · n dσ.

The only changes in the proof arise in the discussion of J31 which has to be augmented by the term
−(It ft ◦ Tt − f, p), and in the last but one step where one has to replace limk→∞∆uk = 0 by
limk→∞∆uk = −f .

4. Example

In [HKKP2] we used the analytic gradient (3.3) to solve the exterior Bernoulli problem based on
the optimal shape design problem (1.1)–(1.2). The free boundary component was represented by
a piecewise quadratic Bezier curve with a fixed number of Bezier arcs. For more details on the
implementation and results we refer to [HKKP2]. Here we report an interesting numerical finding
which is based on the observation that the shape derivative (3.3) can equivalently be written as

dJ (Γ )V = −
〈
∂p

∂n
,
∂u

∂n
V · n

〉
Γ

−
1
2

∫
Γ

((
∂u

∂n

)2

−Q2
)
κ V · n dσ.
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FIG. 1. Convergence history of J .
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FIG. 2. Computed free boundary.

It should be noted that the second term does not depend on the adjoint variable p. This motivated
us to test the “partial” gradients

S1V = −

〈
∂p

∂n
,
∂u

∂n
V · n

〉
Γ

, S2V = −
1
2

∫
Γ

((
∂u

∂n

)2

−Q2
)
κ V · n dσ

in the numerical realization of (1.1)–(1.2). Figure 1 compares the convergence history of J utilizing
the full and partial gradients on a semilogarithmic scale. Figure 2 shows the computed free boundary
together with the initial guess in the case of a circular fixed inner boundary with center M(5, 5)
and radius 1. Although it is known that for this configuration the free boundary is given by a
concentric circle with radius 3, the optimization algorithm was initialized for the sake of testing
by an exocentric circle. The stars indicate the position of the control nodes for the initial and final
design. In Table 1 we show the average distance r̄ of points on the computed free boundary toM , the
final value of J and the number of iterations until termination of the algorithm (in all three cases the
variance for the mean radius was of the order 10−4). It is noted that either gradient information—
full or partial—results in a very satisfactory approximation of the free boundary. The convergence
histories of J indicate that the partial gradient S2 and the full gradient are comparable in efficiency.
This behavior was not only observed in the circular case for a wide variety of initial guesses, but
also in the case of an L-shaped fixed inner boundary component.

TABLE 1

r̄ J ] iter

full 3.04 0.0018 15
S1 3.05 0.004 27
S2 3.04 0.00075 16
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d’un problème de domaine optimal. Appl. Math. Optim. 2 (1975), 130–169. Zbl 0323.90063
MR 0443372
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