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Abstract. Let us consider two closed surfacesM,N of classC1 and two functionsϕ : M→ R,
ψ : N → R of classC1, called measuring functions. The natural pseudodistanced between the
pairs(M, ϕ), (N , ψ) is defined as the infimum of2(f ) := maxP∈M |ϕ(P ) − ψ(f (P ))| asf
varies in the set of all homeomorphisms fromM ontoN . In this paper we prove that the natural
pseudodistance equals either|c1 − c2|, 1

2 |c1 − c2|, or 1
3 |c1 − c2|, wherec1 andc2 are two suitable

critical values of the measuring functions. This shows that a previous relation between the natural
pseudodistance and critical values obtained in general dimension can be improved in the case of
closed surfaces. Our result is based on a theorem by Jost and Schoen concerning harmonic maps
between surfaces.
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Introduction

Thenatural pseudodistanceis a new variational approach to the comparison of manifolds
endowed with real-valued functions defined on them. In [2] we proved a result about the
values that such a pseudodistanceδ can take in general dimension. In this work we focus
on the 2-dimensional case, showing that the previous result can be improved in the case
of closed surfaces. Assuming that two homeomorphic closed manifoldsM andN of
classC1 are given together with two functionsϕ : M → R, ψ : N → R of classC1

(calledmeasuring functions), we consider the value

δ((M, ϕ), (N , ψ)) := inf
f∈H(M,N )

max
P∈M

|ϕ(P )− ψ(f (P ))|,

whereH(M,N ) denotes the set of all homeomorphisms fromM ontoN . The number
d = δ((M, ϕ), (N , ψ)) is called thenatural pseudodistancebetween the pairs(M, ϕ)

and(N , ψ) (calledsize pairs).
The closeness ofd to zero means that there are homeomorphisms for which the dif-

ference between the values taken by the measuring functions at corresponding points is
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Bologna, via Toffano, 2/2, I-40135 Bologna, Italy; e-mail: frosini@dm.unibo.it

Mathematics Subject Classification (2000):Primary 58E20, 53A05; Secondary 58C05, 49Q10



332 Pietro Donatini, Patrizio Frosini

arbitrarily small. On the other hand, if the infimum is large, we find that every homeo-
morphism between the manifolds considered must change the values taken by our mea-
suring function considerably.

In [2] we proved (Theorem 6.2) that a suitable multiple ofd by a positive integer
k coincides with the distance between two critical values of the functionsϕ,ψ . It is
interesting to observe that in every known example, the minimum possible value fork

is 1 or 2. In this paper we shall show that, in the 2-dimensional case, the minimum value
for the integerk is either 1, 2, or 3. We remark that an analogous statement has also been
proved in [4] for curves, using different techniques, but in that case we are able to prove
that only the values 1 and 2 are possible.

Besides its intrinsic interest from a purely mathematical point of view, the natural
pseudodistance between closed surfaces associated with measuring functions can also be
used for shape comparison purposes, together with the “twin” and strictly related concept
of size function. For more theoretical details and examples of practical applications we
refer to [1, 13, 17–20].

In Section 1 we sketch the main ideas of this paper. In Section 2 we give the main
definitions and some examples, while in Section 3 further examples are presented, high-
lighting some characteristic phenomena. In Section 4 the concepts of train and minimal
d-approximating sequence are illustrated, together with some related results. In Section 5
we prove our main result (Theorem 5.7) about the natural pseudodistance between closed
surfaces endowed with measuring functions. In Section 6 open problems and further re-
search are briefly described.

1. The point of this paper

As reported in the previous section, it was proved in [2] that the natural pseudodistance
between size pairs always equals|c1 − c2|/k, wherec1, c2 are two suitable critical values
of the measuring functions andk is an appropriate integer number. The minimum possible
value fork is called theanalytic folding number.

It is interesting to observe that in every known example, the analytic folding number
is 1 or 2.

Two questions naturally arise: Are there examples with an analytic folding number
strictly greater than 2? Is this question related to the dimension of our manifolds?

In this paper we take a first step towards answering these questions.
It is important to observe right now that the attempt to minimize the change2(f ) :=

maxP∈M |ϕ(P ) − ψ(f (P ))| in the measuring functions under the action off does not,
in general, lead to a homeomorphism, as we are going to show in the next section. De-
generacies can arise, and hence we cannot confine ourselves to studying a single optimal
homeomorphism. Instead of a single homeomorphism, approximating sequences of hom-
eomorphisms must be considered. In some sense, “optimal” approximating sequences
(fi) of homeomorphisms exist, converging to relations that represent the best way to map
one manifold to another with respect to the change in the measuring functions. The study
of these relations leads us to the concept of a “train of limitd-jumps”, describing some
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degeneracies corresponding to the sequence(fi). As we are going to see in the following
sections, the properties of these structures imply the properties of the analytic folding
number.

How can we study these properties?
In [2] local deformations were used, based on the flow diffeomorphism of the gradient

of the measuring functions but, unfortunately, this approach does not seem to be sufficient
to answer the questions we posed. The main idea of this paper is to use the theory of
harmonic maps to confront the bidimensional case. A result by Jost and Schoen allows us
to study the case of surfaces.

We shall proceed this way. We shall consider each “optimal” sequence(fi) of hom-
eomorphisms between the manifoldsM andN we are examining, where optimal means
that infi maxP∈M |ϕ(P )−ψ(fi(P ))| equalsδ((M, ϕ), (N , ψ)). Then we shall describe
the degeneracies related to(fi) using a train of limitd-jumps, and assume that the degen-
eracies of(fi) are minimal with respect to a suitable order� we are going to define.

Finally, we shall apply a local harmonization procedure to eachfi far away from the
critical points, using Jost and Schoen’s theorem. The key remark will be that the change
we are going to apply produces a new sequence that is “smaller” than(fi) with respect
to �. Since(fi) will already be minimal, some further information about the length of the
trains ofd-jumps for(fi) will be derived, implying our main result.

Some technicalities will be necessary in order to use our ideas in practice, but the
key point is simply the possibility (in some sense unexpected) of reducing the change
of the measuring functions by locally decreasing the energy of the transformations we
use between our manifolds. The following sections will formalize the ideas we have just
described.

2. The natural pseudodistance

2.1. The main definition

The definition of natural pseudodistance can be introduced forn-dimensional manifolds.
Let us consider the set Sizen of all pairs(M, ϕ), whereM is a closedn-manifold of class
Ck andϕ : M → R is a function of classCk. We shall call(M, ϕ) an (n-dimensional)
size pairof classCk andϕ ameasuring function.

Assume(M, ϕ), (N , ψ) are two size pairs.H(M,N ) will denote the set of all hom-
eomorphisms fromM toN .

Definition 2.1. If H(M,N ) 6= ∅, the function2 : H(M,N ) → R given by

2(f ) = max
P∈M

|ϕ(P )− ψ(f (P ))|

is called thenatural size measurewith respect to the measuring functionsϕ andψ .

In other words,2 measures how muchf changes the values taken by the measuring
functions, at corresponding points.
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Definition 2.2. Thenatural size pseudodistanceis the pseudodistanceδ : Sizen× Sizen
→ R ∪ {+∞} defined by

δ((M, ϕ), (N , ψ)) =

{
inff∈H(M,N )2(f ) if H(M,N ) 6= ∅,

+∞ otherwise.

In the following, the symbold will denote the value of the natural pseudodistanceδ

computed between the pairs(M, ϕ) and(N , ψ) that we are considering. As previously
explained, this pseudodistance gives a method for comparing two manifolds with respect
to the measuring functions chosen.

We point out thatδ is not a distance, since two size pairs can have a vanishing pseu-
dodistance without being equal. On the other hand, the symmetry property and the triangle
inequality can be trivially proved.

Remark 2.3. The word “size” in our definitions is due to the link between the pseudodis-
tanceδ, size functions and size homotopy groups (cf. [7, 15]). However, for the sake of
simplicity, we shall often drop the word “size” in the expressions “natural size measure”
and “natural size pseudodistance”. The term “natural” is used in order to distinguish the
pseudodistance studied here from some pseudodistances we can define between submani-
folds of the Euclidean space (cf. [6]) and from other pseudodistances between manifolds
paired with measuring functions.

In spite of the considerable difficulty in computing natural size pseudodistances, the
following result holds for the general dimensionn (cf. [2]):

Theorem 2.4. Assume thatM andN are two homeomorphic closed manifolds of class
C1 and thatϕ : M → R andψ : N → R are two functions of classC1. Then, if
d denotes the natural pseudodistance between the size pairs(M, ϕ) and (N , ψ), there
exists a positive integerk for which one of the following properties holds:

(i) k is odd andkd equals the distance between a critical value ofϕ and a critical value
ofψ ;

(ii) k is even andkd equals either the distance between two critical values ofϕ or the
distance between two critical values ofψ .

The smallest positive integerk for which either (i) or (ii) of Theorem 2.4 holds is called
theanalytic folding numberfor the pairs(M, ϕ) and(N , ψ). It is interesting to observe
that in every known example, the analytic folding number is 1 or 2.

In this paper we shall prove that in the case of two homeomorphic closed surfaces
of classC1, endowed withC1 measuring functions, the analytic folding number al-
ways equals either 1, 2 or 3. This fact, besides showing a particular property of the 2-
dimensional case, simplifies a direct computation of natural pseudodistances for closed
surfaces.

However, the hypothesisn = 2 will not be used until Section 5.
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In Section 3, we shall show that the infimum of2(f ) for f varying inH(M,N ) is
not always attained. When it is, we shall say that each homeomorphismf ∈ H(M,N )
with d = 2(f ) is anoptimal homeomorphism.

In the case where an optimal homeomorphism exists, the following result holds (The-
orem 6.3 in [2]).

Theorem 2.5. Assume thatM andN are twoC1 closed homeomorphic manifolds and
that ϕ : M → R andψ : N → R are of classC1. If there exists an optimal homeo-
morphismf ∈ H(M,N ) between the size pairs(M, ϕ) and (N , ψ), then the natural
pseudodistanced = δ((M, ϕ), (N , ψ)) equals the distance between a critical value of
ϕ and a critical value ofψ .

N.B.: For simplicity, throughout this paper we shall use the expression “closed surface”
to mean a closed 2-manifold (we shallnot require this manifold to be connected).

In order to simplify our notations, we shall assume that the manifoldsM andN
are disjoint, and that the corresponding measuring functions are obtained by restricting a
functionω : M ∪ N → R, so thatϕ = ω|M andψ = ω|N . In this way we can use
just one symbol to denote both measuring functions. These hypotheses are not restrictive,
since we can always replace the size pair(N , ψ) with a new size pair(N̂ , ψ̂), having
vanishing pseudodistance from the previous one and such thatM ∩ N̂ = ∅. Sometimes,
when no confusion can arise, we shall use the symbolω to denote bothω|M andω|N .

Moreover, it is easy to prove that, for every 2-dimensional size pair(M, ω) of class
Ck, there exists an integerm and an embeddingg : M → Rm of classCk such that
xm(P ) = ω(g−1(P )) for each pointP ∈ g(M). If ω is Morse (i.e., smooth and having
invertible Hessian at each critical point), we can assume thatxm is also Morse ong(M).
In other words, there is no loss of generality in assuming that the measuring functions
associated with the closed surfacesM,N in question are obtained by restricting thexm-
coordinate inRm. Sometimes, when no confusion can arise, we shall use the symbolxm
to denote bothxm|M andxm|N and use the expression “height of a point”. For the sake
of clarity, in our examples and figures we shall often assume that our measuring function
is thez-coordinate inR3.

Example 2.6. In R3 consider the unit sphereS of equationx2
+ y2

+ z2
= 1 and the

ellipsoid E of equationx2
+ 4y2

+ 9z2
= 1. On S and E consider respectively the

measuring functionsϕ andψ that assign to every point ofS andE the Gaussian curvature
of the relevant manifold at that point. We haveδ ((S, ϕ), (E, ψ)) = 35. In factϕ(S) =

{1}, whileψ(E) = [4/9,36], and therefore2(f ) = 35 for everyf ∈ H(S, E).

Example 2.7. Consider the two toriT , T ′
⊂ R3 generated by the rotation around the

y-axis of the circles lying in theyz-plane, with centresA = (0,0,3) andB = (0,0,4),
and radii 2 and 1, respectively (see Figure 1). As a measuring functionϕ (resp.ϕ′) on
T (resp. onT ′) we take the restriction toT (resp. toT ′) of the functionζ : R3

→ R,
ζ(x, y, z) = z. We point out that, for bothT andT ′, the image of the measuring function
is the closed interval [−5,5]. We can easily prove that the natural size pseudodistance
between(T , ϕ) and(T ′, ϕ′) is 2 (for the proof involving size homotopy groups see [15]).
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Fig. 1. In this case an optimal homeomorphism (i.e. one minimizing2) exists andd = 2; d equals
the distance between a critical value ofϕ and a critical value ofϕ′.

Moreover, the homeomorphismf , taking each point ofT to the point having the same
toroidal coordinates inT ′, has natural size measure2(f ) = 2.

In general,d is far from being easily computable as in the previous Examples 2.6
and 2.7. In Example 2.6, for every homeomorphismf ∈ H(S, E), 2(f ) equals the
Hausdorff distanceδH (ϕ(S), ψ(E)) between the setsϕ(S) andψ(E) in R. Now it is
clear that the natural size pseudodistanceδ((M, ϕ), (N , ψ)) is always greater than or
equal toδH (ϕ(M), ψ(N )) and therefore2(f ) must be the natural size pseudodistance
we want to compute. We also point out that, in Example 2.6, the images ofϕ andψ are
different sets and so the natural size pseudodistance is trivially positive.

In Example 2.7 the natural size pseudodistance is strictly greater than the (vanishing)
Hausdorff distance between the images of the two measuring functions.

Computing natural size pseudodistances is usually difficult. For this reason the con-
cepts ofsize functionandsize homotopy grouphave been developed, making it easier to
compute the valued, using some lower-bound theorems. Anyway, here we cannot illus-
trate these closely related concepts, and we refer to [6, 7, 13, 15] for more details.

3. Some interesting examples about curves and surfaces

For the sake of clarity, even if this paper focuses on the bidimensional case, we shall begin
our formal treatment from 1-dimensional examples.

Example 3.1. The first example we give is shown in Figure 2. HereM andN are smooth
closed curves inR3, embedded in thexz-plane. It is clear that the natural pseudodistance
d between the size pairs(M, z) and (N , z) equalsz(B) − z(A), that is, the distance
between a critical value ofz|M and a critical value ofz|N .

In this example no optimal homeomorphism exists, since it would have to map both
the maximum points forz|M toA, contrary to injectivity.
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Fig. 2. The natural pseudodistance between the size pairs(M, z) and(N , z) is z(B)− z(A).

Fig. 3. Construction of the homeomorphismgε for which2(gε) ≤ d + ε.

Example 3.2. Let us consider the smooth closed curvesM andN in Figure 3. The points
A andB are critical points of the functionz andz(C) =

1
2(z(A) + z(B)) = z(G). We

want to prove that the natural pseudodistance between the size pairs(M, z) and(N , z)
takes the value

d =
1

2
(z(A)− z(B))

and that no optimal homeomorphism exists. In order to do that we shall construct a se-
quence(fi) of homeomorphisms for which limi 2(fi) =

1
2(z(A)− z(B)), and show that

2(f ) > 1
2(z(A)− z(B)) for every homeomorphismf ∈ H(M,N ).

Let us start by proving that, for everyε > 0, there exists a homeomorphismgε :
M → N such that2(gε) ≤

1
2(z(A)− z(B))+ 2ε. Consider the pointsDε, Eε, Hε and

Fε in Figure 3, satisfyingz(Dε) = z(Hε) = z(C)+ε andz(Eε) = z(Fε) = z(C)−ε. We
choose a homeomorphismgε, taking the arcDεCEε to the arcHεGFε in such a way that
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gε(Dε) = Hε andgε(Eε) = Fε. Outside the arcDεCEε in M we definegε by mapping
every pointP to a pointgε(P ) satisfyingz(P ) = z(gε(P )).

For everyi ∈ N − {0} we setfi = g1/i . It is easy to prove that

lim
i
2(fi) =

1

2
(z(A)− z(B)).

Now we only have to verify that2(f ) ≤
1
2(z(A)−z(B)) for no homeomorphism between

M andN . If such a homeomorphism existed, for everyP ∈ M we would have

|z(P )− z(f (P ))| ≤
z(A)− z(B)

2

and hencez(f (A)) ≥ z(G) ≥ z(f (B)). Therefore we could easily find pointsP ∈ M
for which |z(P )− z(f (P ))| > 1

2(z(A)− z(B)), contradicting our assumption.

Example 3.3. Consider the size pairs(M, ω) and(N , ω) in Figure 4, whereM andN
are smooth surfaces embedded intoR3. We want to prove that the natural pseudodistance
between these size pairs is 1/2.

Fig. 4. The natural pseudodistance between these size pairs isd = 1/2.

The critical pointsP,Q ∈ M for which ω(P ) = 1 andω(Q) = 0 belong to the
displayed closed setK ⊂ ω−1([0,1]). First of all, we shall prove thatd ≥ 1/2, by
showing that

2(f ) >
1

2
(ω(P )− ω(Q)) =

1

2
for every homeomorphismf : M → N . Supposef (K) contains no point ofN that is
critical for ω (otherwise2(f ) would be at least 1 and our inequality would be satisfied).
LetA be the point off (K) at which the measuring functionω|f (K) attains its maximum.
SinceA belongs to the boundary off (K), we must haveω(f−1(A)) = 0, and asP is
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internal toK, ω(f (P )) < ω(A). Consequently,2(f ) ≥ ω(A) > ω(f (P )) and hence
2(f ) ≥ ω(P )− ω(f (P )) > ω(P )−2(f ). It follows that2(f ) > ω(P )/2 = 1/2.

In order to complete our proof that the natural pseudodistance is really 1/2, we still
have to give a suitable sequence(fi) of homeomorphisms such that

lim
i
2(fi) = 1/2.

Since the construction of such a sequence is conceptually similar to the one we gave for
the previous example about curves, we skip its analytic expression.

Example 3.4. Consider the smooth surfacesM andN displayed in Figure 5 and the
corresponding measuring functionω. The dotted lines are level curves for the measuring
functionω.

Fig. 5. An example of vanishing natural pseudodistance.

Property 1. The natural pseudodistance between the two size pairs is zero.

It is easy to see that we can isotopically deform the left surface to the right one by “tor-
sion”, exchanging the positions of the two smallest humps. This deformation can be per-
formed by an arbitrarily small change in the values of the heightω. Therefore, we can
construct a sequence of homeomorphisms(fi) fromM toN such that2(fi) → 0.

Property 2. No optimal homeomorphism exists between the two size pairs.

Suppose there exists a homeomorphismf such that2(f ) = 0. Consider a pathγ as in
Figure 5, chosen in such a way that, in the image of the path,ω(P ) = ω(A) for no point
P different fromA. We can easily verify that the image of the pathf ◦ γ must contain
more than one point at whichω takes the valueω(A). This contradicts our assumptions,
since2(f ) = 0 impliesω(f (P )) = ω(P ) for everyP in the image ofγ .
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4. Some technical tools and definitions

4.1. The concept of “train of limitd-jumps”

In order to prove our main theorem, we need some new definitions and technical results.
Assume two size pairs(M, ω), (N , ω) are given.

The symbolSH (M,N ) will denote the set of all sequences(fi) of homeomorphisms
in H(M,N ) such that2(fi) → d. Every sequence inSH (M,N ) will be called ad-
approximating sequencefrom (M, ω) to (N , ω).

Let (fi) ∈ SH (M,N ). We shall say that a pair of points(P,Q) ∈ M × N is in
relation with respect to(fi) if there exists a sequence(Pr) inM and a strictly increasing
sequence(ir) in N such that

(P,Q) = lim
r
(Pr , fir (Pr)).

In this case we shall write eitherP ρ Q orQρ P .
In the remaining part of this section we assume that 0< d < +∞. The following

compact sets are defined for eachd-approximating sequence(fi):

N+

M = N+

M((fi)) = {P ∈ M | ∃Q ∈ N : P ρ Q, ω(Q)− ω(P ) = d} ,

N−

M = N−

M((fi)) = {P ∈ M | ∃Q ∈ N : P ρ Q, ω(P )− ω(Q) = d} ,

N+

N = N+

N ((fi)) = {Q ∈ N | ∃P ∈ M : P ρ Q, ω(P )− ω(Q) = d} ,

N−

N = N−

N ((fi)) = {Q ∈ N | ∃P ∈ M : P ρ Q, ω(Q)− ω(P ) = d} .

In other words, the pointsP in N+

M are those for which there exists a pointQ ∈ N
such that the pair(P,Q) can be approximated arbitrarily well by a pair(Pr , fir (Pr))
whose “jump”ω(fir (Pr)) − ω(Pr) is arbitrarily close tod. Hence, if we think ofω as
a “height” function (cf. the examples in the previous section), the pointsPr have images
with height approximated byω(Pr) + d. In N+

M, the symbolM recalls the manifold to
whichP belongs, while the+ indicates that, by mappingP toQ, we increase the value
of the measuring function, i.e. the “jump” starting from the node inM is “upwards”. The
notations for the other three sets are quite analogous. The symbol− indicates nodes from
which “downward jumps” start (the starting node belonging to the manifold shown as
subscript).

It is clear that, for everyP ∈ N+

M, there existsQ ∈ N−

N such thatP ρ Q (and vice
versa), and that an analogous relation holds for the setsN−

M andN+

N . For every sequence
of homeomorphisms inSH (M,N ) the setsNM = N+

M ∪ N−

M andNN = N+

N ∪ N−

N
are non-empty because of the compactness of the manifolds.

Now we define the concept of “train” for ad-approximating sequence:

Definition 4.1. Let (N0, N1, . . . , Nk) be an ordered(k + 1)-tuple of points inM ∪ N
with k ≥ 1 such that, forj = 0, . . . , k − 1 the following properties hold:

(a) ω(Nj+1) = ω(Nj )+ d;
(b) Nj ρ Nj+1.
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In this case the ordered set(N0, N1, . . . , Nk) will be called atrain of limit d-jumpsfor
the sequence(fi) (or, for short, atrain) and its points will be callednodes. The pairs
(Nj , Nj+1) will be known as thewagonsof the train. The numberk will be called the
length of the trainand each train that is not included (in the obvious sense) in any other
train will be said to bemaximal. If (N0, . . . , Nk) is a maximal train, its wagons(N0, N1)

and(Nk−1, Nk) will be calledinitial andfinal train wagons(respectively), whileN0 and
Nk will be the initial and final train nodes. The remaining nodes will be calledinternal
nodes. The symbolW((fi)) will denote the set of all the train wagons (for all the existing
trains).

Since each point belonging either toNM or to NN is a node for at least one train,
the set of all trains is not empty. Notice that the pointP is an initial node for at least one
maximal train if and only if eitherP ∈ N+

M − N−

M or P ∈ N+

N − N−

N , whereas it is a
final node if and only if eitherP ∈ N−

M − N+

M or P ∈ N−

N − N+

N .
In Figure 6 we provide a graphic representation of a maximal train(A,B,C,D). In

this particular case, we haveA ∈ N+

N , B ∈ N+

M ∩ N−

M, C ∈ N+

N ∩ N−

N andD ∈ N−

M.
Hence,A is the initial node andD is the final train node, whileB andC are internal
nodes. The three ordered pairs(A,B), (B,C), (C,D) are the three wagons in the train;
(A,B) and(C,D) are its initial and final wagons, respectively.

Fig. 6. A train of limit d-jumps given by the quadruple(A,B,C,D).

In Figure 7 we can find the maximal train(B,G,A) associated with thed-approxim-
ating sequence we described in Example 3.2. In fact, we can easily prove thatBρG,GρA,
z(G)− z(B) = d andz(A)− z(G) = d. HenceB ∈ N+

M,G ∈ N+

N ∩ N−

N andA ∈ N−

M.

Remark 4.2. The example described in Figure 7 shows that the existence of a train of
length 2 such that its initial node (in this caseB) and its final node (in this caseA) are
critical points of the measuring functionz guarantees that the natural pseudodistanced

equals half the distance between two critical values of the measuring function.
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Fig. 7. An example of a train of limitd-jumps given by the triple(B,G,A).

Our main goal will be to show that in the case of closed surfaces it is always possible to
construct a sequence ofd-approximating homeomorphisms for which we can demonstrate
the existence of a train of length 1, 2 or 3, beginning and ending at critical heights for the
measuring functions. We shall do that in the next subsection, 4.2, and in Section 5. The
example we have just seen justifies our task, since it points out a simple relation between
d and the critical values ofz.

Now, in order to attain our goal, we need to introduce the concept ofminimal d-
approximating sequence.

4.2. Minimald-approximating sequences

The concept of train that we have just introduced allows us to prove Theorem 2.4 cited in
Section 2, and will be central in the following sections, devoted to the proof of the main
result in this paper (Theorem 5.7). In this subsection we shall assume thatM andN are
smooth homeomorphic closed manifolds andϕ andψ are Morse measuring functions on
M andN , respectively. We shall weaken these hypotheses at the end of this paper.

As explained in the introduction, the main goal of this paper is to show that the ana-
lytic folding number is either 1, 2 or 3 in the case of closed surfaces.

The idea is to extend the reasoning applied in Remark 4.2, about the example de-
scribed in Figure 7. In order to do that, from a constructive point of view we need to take
a d-approximating sequence and improve it by shortening its trains as much as possible,
until we get a train of length 1, 2 or 3, beginning and ending at critical heights for the
measuring functions.

This procedure will be carried out in two steps. The first will consist in a reduc-
tion of trains applicable in any dimension, which has been developed and applied in [2]
(Lemma 4.6 in this paper) in order that only trains beginning and ending at critical points
for the measuring functions remain.

The second step will be a reduction process, specifically developed for the case of
surfaces, allowing us to get a further shortening of trains.
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Our goal requires a formal definition of “improving” ad-approximating sequence.
Hence we need to define the following preordering� on the setSH (M,N ) of d-

approximating sequences.

Definition 4.3. If (fi) and(gi) are twod-approximating sequences, we write

(gi) � (fi) (or,equivalently, (fi) � (gi))

if ϕ(N+

M((gi))) ⊆ ϕ(N+

M((fi))) andϕ(N−

M((gi))) ⊆ ϕ(N−

M((fi))).

Definition 4.4. Let (fi) and (gi) be twod-approximating sequences. We write(gi) ≺

(fi) (or, equivalently,(fi)� (gi)) if (gi)� (fi) and eitherϕ(N+

M((gi))) 6=ϕ(N
+

M((fi)))
or ϕ(N−

M((gi))) 6= ϕ(N−

M((fi))) (i.e., at least one of the two inclusions in Definition 4.3
is proper).

We shall say that(fi) ∈ SH (M,N ) is aminimal sequenceif there exists no sequence
(gi) ∈ SH (M,N ) such that(gi) ≺ (fi).

Remark 4.5. The relations� and≺ could be defined by referring to the nodes inN in
place of the nodes inM. In fact, our definitions immediately imply that the inclusion
ϕ(N+

M((gi))) ⊆ ϕ(N+

M((fi))) is equivalent toψ(N−

N ((gi))) ⊆ ψ(N−

N ((fi))) and the
inclusionϕ(N−

M((gi))) ⊆ ϕ(N−

M((fi))) is equivalent toψ(N+

N ((gi))) ⊆ ψ(N+

N ((fi))).
An analogous statement holds for proper inclusions.

We observe that, in our definition,(gi) � (fi) does notmean that either(gi) ≺ (fi)

or (gi) = (fi).
The minimal sequences for≺ are, in some way, the best sequences of homeomor-

phisms whose measure approximates the natural size pseudodistance, since they minimize
the setsϕ(N+

M) andϕ(N−

M) (and hence alsoψ(N+

N ) andψ(N−

N ), i.e. the sets of node
heights for the four types of nodes we have considered). We shall see that it is always
possible to construct ad-approximating sequence of homeomorphisms such that the sets
ϕ(NM) andψ(NN ) are finite, and that this can also be done by using minimal sequences.

The existence of minimal sequences with respect to the preordering≺ will be impor-
tant in Section 5.

The following lemma is the main tool used in [2] to prove Theorem 2.4 cited in this
paper (for a proof of this lemma see [2, p. 710]).

Lemma 4.6. Assume that0 < d < +∞ and the measuring functionsϕ, ψ are Morse.
For every(fi) ∈ SH (M,N ) there exists(gi) ∈ SH (M,N ) such that all maximal trains
begin and end at critical points of the measuring functions andW((gi)) ⊆ W((fi)).

Remark 4.7. We observe that in Lemma 4.6 the relation(gi) � (fi) follows easily from
the inclusionW((gi)) ⊆ W((fi)).

The following proposition shows some properties of the minimal sequences we are
going to use, under the hypotheses that our measuring functions are Morse. In the next
pages the symbolsKϕ andKψ will represent the sets of critical points of the measuring
functionsϕ andψ , respectively. The sets of critical values ofϕ andψ will be denoted by
ϕ(Kϕ) andψ(Kψ ).
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Proposition 4.8. Assume that0 < d < +∞ and the measuring functionsϕ, ψ are
Morse, and setA = {z ∈ R | ∃c1, c2 ∈ ϕ(Kϕ)∪ψ(Kψ ), r, s ∈ N : z−c1 = rd, c2−z =

sd}. Then the following statements hold:

(a) If a train for a d-approximating sequence begins and ends at critical points of the
measuring functions, the heights of its nodes belong to the finite setA.

(b) For everyd-approximating sequence(fi), there exists a minimal sequence(hi) �

(fi)whose maximal trains begin and end at critical points of the measuring functions.
(c) If a d-approximating sequence(gi) is minimal, the height of every node of its trains

belongs toA.

Proof. (a) follows trivially from the definition of train. The finiteness ofA follows from
the finiteness ofKϕ andKψ , and hence ofϕ(Kϕ) andψ(Kψ ) (here we are using the
hypothesis that the measuring functions are Morse).

(b) Lemma 4.6 ensures that we can take a sequence(gi) � (fi) whose maximal
trains begin and end at critical points of the measuring functions. The previous state-
ment (a) and the definition of the relation≺ imply that no infinite descending chain
(gi) � (g1

i ) � (g2
i ) � · · · beginning at(gi) can exist. Let us consider the last term

(g′

i) in a maximal descending chain beginning at(gi). Obviously,(g′

i) is a minimald-
approximating sequence. Unfortunately, statement (b) is still not proved, since some max-
imal train of (g′

i) could either begin or end at regular points of the measuring functions,
as opposed to what happens for(gi). However, by applying Lemma 4.6 to(g′

i) we get
a newd-approximating sequence(hi) that is still minimal and has the required property
regarding maximal trains.

(c) By (b), there exists a minimal sequence(hi) � (gi) whose maximal trains be-
gin and end at critical points of the measuring functions. Since(gi) is already minimal,
it follows thatϕ(N+

M((hi))) = ϕ(N+

M((gi))) andϕ(N−

M((hi))) = ϕ(N−

M((gi))) (and
henceψ(N−

N ((hi))) = ψ(N−

N ((gi))) andψ(N+

N ((hi))) = ψ(N+

N ((gi)))). Statement (a)
ensures thatϕ(NM(hi)) ∪ ψ(NN (hi)) is included in the finite setA, and therefore so is
ϕ(NM((gi))) ∪ ψ(NN ((gi))). ut

5. Our main result

In Section 2 we have recalled (Theorem 2.4) that the natural pseudodistance between two
size pairs is related to the critical values of their measuring functions.

However, the examples we have displayed suggest that our results can be improved.
In fact, in our examples the analytic folding numberk is never greater than 2. In the
first part of this section we shall prove (Theorem 5.4) that the analytic folding number is
never greater than 3, under the assumption thatM andN are two homeomorphic smooth
closed surfaces and the measuring functionsϕ,ψ are Morse. These hypotheses will make
our proofs easier from the technical point of view. In Subsection 5.1 we shall weaken our
assumptions and return to the case of classC1 (Theorem 5.7).

Now we introduce two lemmas. The first one is trivial and clarifies the local nature of
the concept of node.
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Lemma 5.1. Assume0 < d < +∞. LetU be an open subset ofM and (fi) and (gi)
be twod-approximating sequences such that, for everyi ∈ N, fi coincides withgi in U .
ThenN+

M((fi)) ∩ U = N+

M((gi)) ∩ U andN−

M((fi)) ∩ U = N−

M((gi)) ∩ U .

Proof. This follows immediately from the definitions of the setsN+

M andN−

M. ut

A similar result obviously holds for an open subsetV of N , and can easily be obtained
by interchanging the roles of the sequences(fi), (gi) and(f−1

i ), (g−1
i ) in Lemma 5.1.

The useful property described by the following key lemma justifies the introduction
of the concept of minimal sequence in the case of closed surfaces.

Lemma 5.2. Assume thatM,N are smooth homeomorphic closed surfaces andϕ,ψ are
Morse measuring functions onM andN , respectively. Suppose that0 < d < +∞, and
(fi) is a minimald-approximating sequence from(M, ϕ) to (N , ψ). If N ∈ NM((fi))
andϕ(N) is not a critical value forϕ, then at least one ofϕ(N)−d, ϕ(N)+d is a critical
value forψ .

In other words, under the hypotheses of the lemma (possibly by exchanging the roles
of the two surfaces), if we consider the heights of three consecutive nodes in a train of
a minimal sequence, at least one of them is a critical value. The proof of this property
involves Jost and Schoen’s theorem about harmonic maps between surfaces and is the
key to proving the main result of this paper (Theorem 5.7).

Proof. We shall prove that ifϕ(N) is a regular value forϕ and bothϕ(N)−d andϕ(N)+d
are regular values forψ then we can get a newd-approximating sequence(f̃i) such that
(f̃i) ≺ (fi), contradicting the assumption that(fi) is minimal. So, in the following we
assume thatϕ(N) 6∈ ϕ(Kϕ) andϕ(N)+ d, ϕ(N)− d 6∈ ψ(Kψ ).

Let us define the open setsDε = {P ∈ M : |ϕ(P ) − ϕ(N)| < ε} andVε = {Q ∈

N : minQ̄∈Kψ
|ψ(Q) − ψ(Q̄)| < ε} (in other wordsDε is the set of all points ofM

whose height differs less thanε from the height ofN , while Vε is the set of all points of
N whose height differs less thanε from the height of a critical point ofψ). Moreover, let
us chooseε > 0 so small that

(1) Dε does not contain critical points forϕ;
(2) ∂Dε does not contain nodes belonging toNM((fi));
(3) for i large enough, ifQ ∈ fi(Dε) and|ϕ(N)− ψ(Q)| ≥ d − 2ε thenQ 6∈ V ε.

The existence of anε > 0 satisfying(1) and(2) is ensured by the assumption thatϕ(N) 6∈

ϕ(Kϕ) and the fact that the set of heights of the nodes is finite (see Proposition 4.8(c));
recall that the measuring functions are Morse. As regards(3), if for every positiveε we
could find an arbitrarily largei and aQ̄ ∈ V ε∩fi(Dε) satisfying|ϕ(N)−ψ(Q̄)| ≥ d−2ε,
then there would exist a wagon(N̂, Q̂) for (fi), withψ(Q̂) equal to a critical value ofψ ,
ϕ(N̂) = ϕ(N) and|ϕ(N̂)−ψ(Q̂)| = d, since limi 2(fi) = d. Therefore eitherϕ(N)+d
or ϕ(N)− d would be a critical value forψ , contrary to our hypothesis.

Note. As a matter of fact, the expression “fori large enough” in(3) can be replaced with
“for i ≥ ī”, where ī is a natural numberindependentof ε. We just requireε to be strictly
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less thanη/3, with η being the minimum distance between the finite set of all critical
values of the (Morse) functionψ and the set{ϕ(N)+ d, ϕ(N)− d}. In order to proceed
this way we only have to takēi so large that for everyi ≥ ī the inequality2(fi) ≤ d+η/3
holds, implying|ϕ(N)−ψ(Q)| ≤ d + η/3+ ε < d + 2η/3 for everyQ ∈ fi(Dε). If we
also assume that|ϕ(N)−ψ(Q)| ≥ d−2ε, thend−2η/3< |ϕ(N)−ψ(Q)| < d+2η/3
and hence the distance betweenψ(Q) and the set{ϕ(N)+ d, ϕ(N)− d} must be strictly
less than 2η/3. Thereforeψ(Q) is at a distance more thanη/3 > ε from the set of all
critical values ofψ and henceQ 6∈ V ε. Anyway, this change of statement is not necessary
for our proof, and we maintain the simpler version of(3).

Now, we are going to prove that there exists a sequence(f̃i) ∈ SH (M,N ) such that
f̃i = fi in the closed setM − Dε andNM((f̃i)) ∩ Dε = ∅ (in other words, we can
eliminate all wagons fromM toN , beginning inDε).

So, we start by setting̃fi(P ) = fi(P ) for P ∈ M−Dε.
In order to definef̃i in Dε we have to consider each connected componentC of Dε.

Because of hypothesis(1), C is (homeomorphic to) a cylinder. OnC ∼= S1
× (ϕ(N)− ε,

ϕ(N)+ ε) let us define the product metricdθ2
+ dϕ2, so that the functionϕ is linear inC

(i.e.∇2ϕ ≡ 0). Here,dθ2 anddϕ2 are an arbitrarily chosen Riemannian metric onS1 and
the Riemannian metric on the interval(ϕ(N) − ε, ϕ(N) + ε) induced by the Euclidean
distance, respectively (cf. [8]).

Then consider a Riemannian metricµN onN such that the measuring functionψ
is harmonic at each point ofN − V ε. In other words, we require thatψ is harmonic
in N , with the possible exception of the closure of the set of those points whose height
has a distance smaller thanε from some critical height ofψ . We can get this by using
the construction in the previous paragraph. The setN − V ε is a union of cylinders, and
the level sets ofψ slice each cylinder into circles. The construction in the last paragraph
yields a metric so thatψ is harmonic onN − V ε. We refer to [8] and [9] for alternative
proofs of the existence of such a Riemannian metric.

In order to apply Jost and Schoen’s theorem we need to work with diffeomorphisms.
This implies that we have to approximate our homeomorphismsfi by diffeomorphisms,
without changing the trains of ourd-approximating sequence.

Claim A. There exists a sequence(gi) of diffeomorphisms such thatW((gi)) = W((fi)).

Proof of Claim A. SinceM andN are smooth surfaces, for each indexi we can find a
diffeomorphismgi : M → N such thatdN (fi(P ), gi(P )) ≤ 1/i for everyP ∈ M,
wheredN is the distance onN induced by the Riemannian metricµN (cf., e.g., Corollary
1.18 in [21], and [16]). HencePρQ with respect to(fi) if and only if PρQ with respect
to (gi) (recall Subsection 4.1). This implies thatW((gi)) = W((fi)).

Because of Claim A, we can assume without loss of generality that eachfi is a dif-
feomorphism.

The following theorem holds (cf. [12]):

Theorem 5.3 (Jost and Schoen).Let� ⊂ M1 be a domain with non-empty boundary
∂� consisting ofC1 Jordan curves. Leth : � → M2 extend to a diffeomorphism of�
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ontoh(�). Suppose the curvesh(∂�) are of classC2+α and are locally convex with re-
spect toh(�), i.e.h(∂�) has non-negative geodesic curvature with respect to the normal
pointing intoh(�). There exists a harmonic diffeomorphismh̄ : � → h(�) which is
homotopic toh and satisfies̄h = h on ∂�. Moreover,h̄ is of least energy among all
diffeomorphisms homotopic toh and assuming the same boundary values.

Jost and Schoen’s theorem guarantees the existence of a diffeomorphismh̄ : fi(C) → C
that is harmonic infi(C) and coincides withf−1

i at the boundary offi(C).
Now, we are ready to definẽfi(P ) in the caseP ∈ Dε, by settingf̃i(P ) = h̄−1(P ) for

everyP ∈ C andC varying in the set of all the connected components ofDε. Practically,
we are going to changefi into h̄−1 inside each cylinderC. Notice that everyf̃i is a hom-
eomorphism fromM to N satisfying the equalities̃fi(Dε) = fi(Dε) and f̃i(∂Dε) =

fi(∂Dε).

Fig. 8. The cylinderC inside the setDε and its imagefi(C). The subsetVε ∩ fi(C) is highlighted
(in grey).

The key property of the new sequence(f̃i) is that its “jumps” starting fromDε are
controlled because of our hypotheses and the use of harmonic maps, and the “largest”
jumps of(f̃i) are not larger than the corresponding jumps of(fi). Formally, the following
Claims B and C hold.

Claim B. max
fi (Dε) |ϕ ◦ f̃−1

i − ψ | = maxfi (∂Dε)∪(V ε∩fi (Dε)) |ϕ ◦ f̃−1
i − ψ |.

Proof of Claim B. The key remark is that the (continuous) functionϕ◦f̃−1
i −ψ : N → R

is harmonic onfi(Dε) − V ε. In fact, on the one hand, sinceϕ is linear onDε andf̃−1
i

is harmonic onfi(Dε) it follows immediately thatϕ ◦ f̃−1
i is harmonic onfi(Dε) (cf.,

e.g., Corollary 8.7.4 in [11]). On the other hand,ψ is harmonic onfi(Dε) − V ε, by the
choice of the Riemannian metric onN . Hence, by the maximum principle, the restriction

of ϕ ◦ f̃−1
i −ψ to fi(Dε)− V ε must take its maximum also at a point of∂(fi(Dε)−V ε).

The same holds for the minimum value. This implies that the restriction ofϕ ◦ f̃−1
i −ψ to

the compact setfi(Dε) attains each extremum either infi(∂Dε) or in V ε ∩ fi(Dε). The
conclusion of our claim follows immediately.
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Claim C. For everyi large enough, ifmaxDε |ϕ−ψ ◦f̃i | ≥ d−ε thenmaxDε |ϕ−ψ ◦f̃i |

≤ max∂Dε |ϕ−ψ ◦ fi |. Therefore,2(f̃i) ≤ 2(fi), and hence the new sequence(f̃i) is a
d-approximating sequence from(M, ϕ) to (N , ψ).

Proof of Claim C. By Claim B, there existsQ̄ ∈ fi(∂Dε) ∪ (V ε ∩ fi(Dε)) such that
|ϕ ◦ f̃−1

i (Q̄)−ψ(Q̄)| = max
fi (Dε) |ϕ ◦ f̃−1

i −ψ | = maxDε |ϕ−ψ ◦ f̃i | ≥ d − ε, under

our hypothesis. Sincẽf−1
i (Q̄) ∈ Dε, we have|ϕ ◦ f̃−1

i (Q̄)− ϕ(N)| ≤ ε. It follows that
|ϕ(N)−ψ(Q̄)| ≥ d−2ε and henceQ̄ 6∈ V ε (for i large enough), because of the assump-
tion (3) aboutDε. ThereforeQ̄ ∈ fi(∂Dε). Since the diffeomorphism̃f−1

i coincides with
f−1
i in fi(∂Dε), maxDε |ϕ − ψ ◦ f̃i | ≤ max∂Dε |ϕ − ψ ◦ fi |. So our claim is proved.

Lemma 5.1 (local nature of the concept of node) and the coincidence off̃i andfi
outsideDε immediately imply the next claim.

Claim D. The set of all wagons fromM − Dε to N is the same for(fi) and (f̃i). In
particular,

N+

M((f̃i)) ∩ (M−Dε) = N+

M((fi)) ∩ (M−Dε),
N−

M((f̃i)) ∩ (M−Dε) = N−

M((fi)) ∩ (M−Dε).
(5.0.1)

Finally, we can prove that under our hypotheses the new sequence(f̃i) is “better” than
(fi) in the sense expressed by the following statement, saying that there exists no wagon
fromM toN beginning inDε.

Claim E. The setNM((f̃i)) ∩Dε is empty.

Proof of Claim E.If anN ′
∈ NM((f̃i)) ∩ Dε existed, then there would exist a sequence

(Pr) of points ofM converging toN ′ and a strictly increasing sequence(ir) in N such
that the sequence(f̃ir (Pr)) converges and|ϕ(Pr) − ψ(f̃ir (Pr))| → d. Sincefi and f̃i
coincide outsideDε and∂Dε does not contain nodes for(fi) (hypothesis(2) aboutDε),
we can assume that all pointsPr belong toDε. Then, by Claim C, there would also exist
a converging sequence(Br) such that|ϕ(Br) − ψ(fir (Br))| → d, where eachBr is in
∂Dε. This would imply the existence of a node for(fi) belonging to∂Dε, once more
contradicting hypothesis(2).

In summary, we have seen thatDε does not meetNM((f̃i)), but contains at least
one node ofNM((fi)), while N+

M((f̃i)) ∩ (M − Dε) = N+

M((fi)) ∩ (M − Dε) and

N−

M((f̃i))∩ (M−Dε) = N−

M((fi))∩ (M−Dε) (Claim D). It follows that(f̃i) ≺ (fi).
This contradicts the hypothesis that(fi) is a minimal sequence. ut

Let us apply Lemma 5.2 to prove that the analytic folding number is never greater than 3
for closed surfaces.

Theorem 5.4. Assume thatM andN are two homeomorphic smooth closed surfaces
and thatϕ : M → R andψ : N → R are two Morse functions. Then, ifd denotes
the natural pseudodistance between the size pairs(M, ϕ) and(N , ψ), at least one of the
following properties holds:
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(i) d equals the distance between a critical value ofϕ and a critical value ofψ ;
(ii) d equals half the distance between two critical values ofϕ;

(iii) d equals half the distance between two critical values ofψ ;
(iv) d equals one third of the distance between a critical value ofϕ and a critical value

ofψ .

Proof. If d = 0, thenϕ andψ have the same global minimumµ. Hence,d = |µ − µ|

and our assertion is trivial.
So let us assumed > 0. Let (hi) be a minimal sequence whose maximal trains begin

and end at critical points of the measuring functions (Proposition 4.8(b)) and suppose
N1 ∈ M is the initial node of a maximal train (if no maximal train begins inM, it is
sufficient to exchange the roles of our surfaces; in this case (ii) and (iii) interchange in
the following). Thereforeϕ(N1) is a critical value forϕ. LetN2 ∈ N be the next node
in the train. Ifψ(N2) is a critical value forψ , then condition (i) holds. Otherwise, let
N3 ∈ M be the next node in the train (N3 exists becauseψ(N2) is not a critical value for
ψ , and henceN2 is not the final node of the train). Ifϕ(N3) is a critical value forϕ, then
(ii) holds. Otherwise, letN4 ∈ N be the next node in the train (N4 exists becauseϕ(N3)

is not a critical value forϕ, and henceN3 is not the final node of the train). Lemma 5.2
applied forN = N3 ensures thatψ(N4) = ϕ(N1)+3d is a critical value forψ . Therefore
d =

1
3(ψ(N4)− ϕ(N1)) and (iv) holds. ut

Remark 5.5. It may be interesting to note that Example 3.4 can be used to show that
the hypothesis ofh(∂�) being locally convex with respect toh(�) is necessary in Theo-
rem 5.3. In fact, consider the open surfacesM∗,N ∗ displayed in Figure 9, obtained from
the two surfacesM, N of Figure 5 by deleting suitable closed neighbourhoods of the
critical points. OnM∗ andN ∗ consider two Riemannian metricsµM∗ andµN ∗ such
thatϕ andψ are linear functions with respect toµM∗ andµN ∗ , respectively (cf. [8]).
The metricsµM∗ andµN ∗ are the ones induced by the embeddings ofM∗ andN ∗ in

Fig. 9. There exists a diffeomorphismh : N ∗
→M∗ preserving the height of the boundary points

(thick).
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Fig. 10. The metricsµM∗ andµN ∗ are the ones induced by the displayed embeddings ofM∗

andN ∗ into R3.

R3 displayed in Figure 10. Notice that∂M∗ is not locally convex with respect toM∗.
We observe that there exists a diffeomorphismh : N ∗ → M∗ preserving the height of
the boundary points. If there existed a diffeomorphismh̄ : N ∗ → M∗ harmonic inN ∗

and coinciding withh at ∂N ∗, it should preserve the height of every point inN ∗, since
the functionϕ − ψ ◦ h̄ : N ∗ → R would be harmonic inN ∗ and take its maximum and
minimum at points of∂N ∗ whereϕ −ψ ◦ h̄ vanishes. Moreover, we could easily extend
h̄ to a diffeomorphismh′ : N → M that preserves the height of every point outsideN ∗.
Therefore, there would exist an optimal diffeomorphism between the size pairs(N , ω),
(M, ω), contradicting what we said in Example 3.4.

Remark 5.6. Lemma 5.2 may be considered analogous to Lemma 3.2 proved in [4] for
curves, but the techniques used in the proof are substantially different, since here we
have to handle harmonic maps in place of linear maps in dimension 1. As a consequence,
because of the hypotheses required in Jost and Schoen’s theorem, problems about the po-
sition of images of critical points arise after the harmonization process, since, in contrast
to what happens in the case of curves, we do not know this position. As a result, in both
the 1-dimensional and 2-dimensional cases we can prove that if we consider the heights
of m consecutive nodes in a train of a minimal sequence, at least one of them is a crit-
ical value, but we have to setm = 2 for curves andm = 3 for surfaces, depending on
the different techniques and dimensional constraints involved in our proofs. This differ-
ence explains why the conclusion of Theorem 3.4 in [4] (for curves) is stronger than the
conclusion of Theorem 5.7 in this paper, concerning surfaces.

5.1. Weakening the hypotheses about the regularity of surfaces and measuring functions

Until now we have considered smooth closed surfaces and Morse measuring functions. By
repeating the proofs used in [2] to weaken our hypotheses about regularity (see Section 6
in that paper), we can get our main result via an approximation procedure:
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Theorem 5.7. Assume thatM andN are two homeomorphic closed surfaces of class
C1 and thatϕ : M → R andψ : N → R are two functions of classC1. Then, ifd
denotes the natural pseudodistance between the size pairs(M, ϕ) and (N , ψ), at least
one of the following properties holds:

(i) d equals the distance between a critical value ofϕ and a critical value ofψ ;
(ii) d equals half the distance between two critical values ofϕ;

(iii) d equals half the distance between two critical values ofψ ;
(iv) d equals one third of the distance between a critical value ofϕ and a critical value

ofψ .

6. Conclusions and further research

In this paper we have proved that for closed surfaces the relation between the natural
pseudodistance and the critical values of the measuring functions is stronger than the
one we proved in [2] for general dimension. In fact, Theorem 5.7 shows that the natu-
ral pseudodistance between two homeomorphicC1 closed surfaces associated withC1

measuring functions is always either the distance or half the distance or one third of the
distance between two suitable critical values of the measuring functions.

Unfortunately, our techniques cannot be used for larger dimensions, since the state-
ment of Jost and Schoen’s theorem fails in dimension strictly greater than 2 (cf. [10,
Section 5.8], and [5, Section 12]). Moreover, the application of this theorem requires the
approximability of homeomorphisms by means of diffeomorphisms. This procedure is
not available for dimensions strictly larger than 3 (cf., e.g., [14]). As a consequence we
do not know if results analogous to Theorem 5.7 hold for dimensions strictly larger than 2.
In other words, we wonder if there exist twon-manifolds equipped with regular measur-
ing functionsϕ, ψ such that their pseudodistance equals neitherD norD/2 norD/3, for
D varying in the set of all distances between the critical values ofϕ andψ .

We intend to study this problem and the availability of new techniques for studying
the generaln-dimensional case.

However, it is interesting to note that we do not know of any examples where the
analytic folding number equals 3, also in the bidimensional case. On the other hand,
we are not able to improve our result by proving that the analytic folding number never
equals 3, also in the case of surfaces (see Remark 5.6).

The difficulty in finding examples where the analytic folding number equals 3 de-
serves some further remarks. One technique that can be used for computing natural size
pseudodistances is based onsize functions(cf. [3]). The computation of size functions is
usually easy and gives us a lower bounds for natural size pseudodistances. Obviously,
when we are able to exhibit a sequence(fi) of homeomorphisms for which limi 2(fi)=s
we can claim that the natural size pseudodistance equalss. The key point is that the best
lower bounds we can obtain is either the distance or half the distance between two suit-
able critical values of the measuring functions (cf. Theorem 2 in [3]). Therefore, if an
example where the analytic folding number equals 3 really exists, we are not able to find
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and recognize it using the previously described technique. Apparently, new techniques
should be developed.

As regards the use of harmonic maps in our study, this corresponds to the property
that the deformation due to tension fields decreases both the energy and the maximum
change of the measuring functions, provided that we are far from their critical points.
The use of different kinds of deformations (e.g. curvature evolution of level lines of the
measuring functions) might be investigated. The main problem seems to be the possible
birth of degeneracies.

Furthermore, it might be interesting to examine the possibility of moving from the
study of trains of limitd-jumps to the study of relations obtained as limits ofd-approx-
imating sequences of homeomorphisms, with respect to the Hausdorff (or another more
suitable) topology.

In conclusion, various interesting questions remain open and deserve further study.
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