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Abstract. We identify theK-theoretic fiber of a localization of ring spectra in terms of theK-theory
of the endomorphism algebra spectrum of a Koszul-type complex. Using this identification, we
provide a negative answer to a question of Rognes for n > 1 by comparing the traces of the fiber of
the map K(BP〈n〉)→ K(E(n)) and of K(BP〈n− 1〉) in rational topological Hochschild homology.
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0. Introduction

This paper is about the algebraic K-theory of structured ring spectra, or E1-rings, occur-
ring in chromatic homotopy theory and the Ausoni–Rognes program for computing the
K-theory of the sphere spectrum. The two ring spectra of interest, the truncated Brown–
Peterson spectrum BP〈n〉 and the Johnson–Wilson theory E(n) (n ≥ 0), are constructed
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using the complex cobordism spectrum MU and exist for any prime p; their homotopy
rings are

π∗BP〈n〉 ∼= Z(p)[v1, . . . , vn] and π∗E(n) = Z(p)[v1, . . . , vn−1, v
±1
n ],

where vi has degree 2pi − 2.
The following well-known question1 of Rognes first appears in [5, 0.1]; see also [8,

Example 5.15], [10, Example 5.15], [7, Example 11.17], and the introduction to [14].

Question 0.1 (Rognes). Is the sequence

K(BP〈n− 1〉p)→ K(BP〈n〉p)→ K(E(n)p)

of connective algebraic K-theory spectra a fiber sequence of connective spectra?

The map K(BP〈n〉p)→ K(E(n)p) is induced by the map BP〈n〉 → E(n) which inverts vn
and p-completion, while K(BP〈n− 1〉p)→ K(BP〈n〉p) is the transfer map, obtained by
viewing BP〈n− 1〉p, the cofiber of multiplication by vn, as a compact BP〈n〉p-module.

When n = 0, this is a special case of a theorem of Quillen [31, Theorem 5], saying
that there is a fiber sequence K(Fp)→ K(Zp)→ K(Qp). In this case it is common to let
v0 = p in Zp and BP〈−1〉 = HFp. When n = 1, the sequence was conjectured by Rognes
and proved by Blumberg and Mandell in [14]. In fact, both Quillen and Blumberg–Mandell
prove p-local and integral versions of these statements.

The backdrop of the question of Rognes is the Ausoni–Rognes program to compute the
algebraicK-theory of the sphere spectrum while keeping control of chromatic phenomenon.
The layers in the chromatic tower are closely related to K(En), and it is expected that K(En)
should behave in a similar way to K(E(n)). However, there is a fundamental problem with
computing K(En) and K(E(n)): they are nonconnective ring spectra. There are no general
methods for computing the K-groups of nonconnective ring spectra, and it is in general
even difficult to produce candidate elements. The little success that has been had here is to
relate the K-theory of the nonconnective ring spectrum to the K-theory of connective ring
spectra, where there are a variety of methods of computation, such as using determinants
and traces or studying BGL(R)+.

One reason to study K(BP〈n〉p) in its own right is that it is expected to exhibit redshift,
a phenomenon visible for small values of n in which the K-theory of a ring spectrum
related to chromatic height n carries chromatic height n + 1 information [5, p. 7]. For
example, v0 acts trivially on Fp, whereas K(Fp)p ' HZp and hence K(Fp) carries a
highly non-trivial v0-self map: multiplication by p.

We give a negative answer to Rognes’ question in all of the remaining cases.

Theorem 0.2. For n > 1, the sequence

K(BP〈n− 1〉p)→ K(BP〈n〉p)→ K(E(n)p)

is not a fiber sequence of connective spectra.

1 The authors of [5] refer to this statement as an expectation. It has come to be known in the
literature as a conjecture, especially in the work of Barwick and Blumberg–Mandell.
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When n = 0, 1, both Quillen and Blumberg–Mandell relate the fiber of K(BP〈n〉p) →
K(E(n)p) to K(BP〈n− 1〉p) using a dévissage argument, and this perspective has been
used by Barwick and Lawson to prove some other examples of this localization behavior [9].
Most attempts to answer Rognes’ question for n > 1, such as the approach outlined by
Barwick [8], focus on conjectural dévissage arguments. Our theorem shows that in some
sense these cannot work in general. As a corollary of Theorem 0.2, the∞-category Z(f?)
of [8, Example 5.15] is not weakly contractible.

Our approach is Morita-theoretic. As motivation, consider the major result of Thomason
–Trobaugh [39, Theorem 7.4], the localization theorem. It states that if X is a quasi-
compact and quasi-separated scheme, and if U ⊆ X is a quasi-compact Zariski open with
complement Z, then there is a fiber sequence of nonconnective algebraic K-theory spectra

K(X on Z)→ K(X)→ K(U),

where K(X on Z) is the K-theory of perfect complexes on X that are acyclic on U .
In general K(X on Z) is not equivalent to K(Z), the K-theory of the closed sub-

scheme Z. The main examples when K(X on Z) is equivalent to K(Z) occur when
X and Z are regular and noetherian, and the argument passes through G-theory via
dévissage. However, Bökstedt and Neeman [20, Proposition 6.1] showed that nevertheless
K(X on Z) is the K-theory of a ring spectrum. More specifically, they showed that at the
level of derived categories, the kernel of the localization

Dqc(X)→ Dqc(U)

is generated by a single compact object K . If A = EndX(K)op denotes the opposite of the
dg-algebra of endomorphisms of K , then

K(A) ' K(X on Z),

so we can write our localization fiber sequence as

K(A)→ K(X)→ K(U). (1)

Antieau and Gepner [3, Proposition 6.9] proved the analogue of this result for localizations
of spectral schemes, which motivated our approach here. However, the truncated Brown–
Peterson spectra are not known to admit E∞-ring structures, a necessary input in [3].
Noncommutative localization sequences have been studied extensively in the K-theory
of ordinary rings (see Neeman and Ranicki [30] and the references there). We prove a
spectral noncommutative analogue of (1), which will be strong enough for our application
to Rognes’ question, and gives a partial generalization of Neeman–Ranicki. To state it,
let R be an E1-ring and let r ∈ π∗R be a homogeneous element such that {1, r, r2, . . .}

satisfies the right Ore condition. By Proposition 1.10, there is an E1-ring R[r−1
] and an

E1-ring map R→ R[r−1
] inducing an isomorphism (π∗R)[r

−1
] ∼= π∗(R[r

−1
]).

Theorem 0.3. For R and r ∈ π∗R as above, there is a fiber sequence

K(A)→ K(R)→ K(R[r−1
])

of spectra, where A = EndR(R/r)op.
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The fiber of the map K(BP〈n〉) → K(E(n)) has been considered before in Barwick’s
work [7, Example 11.16], where it is observed that the fiber is theK-theory of vn-nilpotent
BP〈n〉-modules. One of the main contributions of this paper is to identify the fiber as the
K-theory of an E1-ring. This is the special case of Theorem 0.3 when R = BP〈n〉 and
r = vn. In this case, we write A〈n− 1〉 = EndBP〈n〉(BP〈n〉/vn)op; in particular, we have a
natural E1-ring map BP〈n− 1〉 ' BP〈n〉/vn→ A〈n− 1〉.

Theorem 0.4. For all n ≥ 0, there is an E1-ring A〈n− 1〉 and a fiber sequence

K(A〈n− 1〉)→ K(BP〈n〉)→ K(E(n))

of spectra. Moreover, the transfer map K(BP〈n− 1〉)→ K(BP〈n〉) factors through the
map K(BP〈n− 1〉)→ K(A〈n− 1〉) induced by BP〈n− 1〉 → A〈n− 1〉.

Here is an outline of how we use Theorem 0.4 to prove Theorem 0.2. To begin, we show
that the homotopy ring of A〈n− 1〉 for n > 0 is

π∗A〈n− 1〉 ∼= Z(p)[v1, . . . , vn−1] ⊗3Z(p)〈ε1−2pn〉,

where ε1−2pn has degree 1− 2pn. Moreover, we show that if the question of Rognes has a
positive answer, then the natural map

K(BP〈n− 1〉)→ K(A〈n− 1〉)

must be an equivalence.
We use a rational trace argument to compare theK-theories of BP〈n− 1〉 and A〈n− 1〉.

After rationalization, we show that both BP〈n− 1〉Q = HQ⊗S BP〈n− 1〉 and A〈n− 1〉Q
= HQ ⊗S A〈n− 1〉 admit E∞-ring structures. Despite the dearth of computational
techniques for the K-theory of nonconnective ring spectra, the fact that π∗BP〈n− 1〉Q
and π∗A〈n− 1〉Q are both graded-commutative polynomial algebras allows us to use trace
methods to construct many classes in positive degree in K(A〈n− 1〉) that cannot come
from K(BP〈n− 1〉).

To construct these classes, we study the commutative diagram

BGL1(BP〈n− 1〉) //

��

�∞ K(BP〈n− 1〉) //

��

�∞ HHHQ(BP〈n− 1〉Q)

��

BGL1(A〈n− 1〉) // �∞ K(A〈n− 1〉) // �∞ HHHQ(A〈n− 1〉Q)

of units and trace maps. A Hochschild–Kostant–Rosenberg-type isomorphism yields the
identification

HHHQ
∗ (A〈n− 1〉Q) ∼= Q[v1, . . . , vn−1, δ2−2pn ] ⊗3Q〈σ1, . . . , σn−1, ε1−2pn〉, (2)

where the degree of σi is 2pi −1. Moreover, HHHQ
∗ (BP〈n− 1〉Q)→ HHHQ

∗ (A〈n− 1〉Q)
is the inclusion of the subalgebra generated by the vi and σi classes. Finally, we compute
the effect in homotopy of the compositions BGL1(BP〈n− 1〉) → HHHQ(BP〈n− 1〉Q)
and BGL1(A〈n− 1〉)→ HHHQ(A〈n− 1〉Q) to prove the following result.
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Theorem 0.5. If x = va1
1 · · · v

an−1
n−1 ε1−2pn is a monomial in π∗A〈n− 1〉 of positive total

degree, then the class

v
a1
1 · · · v

an−1
n−1 δ2−2pn +

n−1∑
i=1

aiv
a1
1 · · · v

ai−1
i · · · v

an−1
n−1 σiε1−2pn

is in the image of the map K(A〈n− 1〉)→ HHHQ(A〈n− 1〉Q) and not in the image of
HHHQ(BP〈n− 1〉Q)→ HHHQ(A〈n− 1〉Q).

From this fact we immediately obtain Theorem 0.2. It is also clear why this method does
not contradict the known cases n = 0 and n = 1 of Rognes’ question. Indeed, in those
cases there are no such monomials of positive total degree.

Remark 0.6. Building on work of Rognes [32, 33], Blumberg and Mandell [17, 18] also
give another approach to the computation of theK-groups of the sphere, which completely
determines the homotopy type of the fiber of K(S)→ K(Z) in terms of the K-groups of
Z, the homotopy groups of CP∞

−1, and the stable homotopy groups of spheres.

Outline. Sections 1 and 2 contain our theorem on localization sequences arising from
inverting elements in E1-rings and the trace machinery we will use. Section 3 provides
a concrete method for computing the trace map involving Kähler differentials, in some
cases. The E1-ring structures on BP〈n〉 are described briefly in Section 4. In Section 5 we
construct the E∞-ring structures on BP〈n− 1〉Q and A〈n− 1〉Q. Finally, in Section 6, we
give the proof of Theorem 0.2, resolving in the negative Rognes’ question for n > 1.

Notation. As a matter of convention, and unless noted otherwise, we will use∞-categories
throughout, following Lurie’s approach to stable homotopy theory developed in [27]. We
will speak of En-rings, as opposed to En-ring spectra, of E1-algebras over En-rings for
n > 1, and of right modules, as opposed to right module spectra. If C is an∞-category,
we will write either C(x, y) or mapC(x, y) for the space of maps between two objects
x, y ∈ C. If C is in addition stable, we will write MapC(x, y) for the mapping spectrum.
In the important case where C = ModA, the stable∞-category of right A-modules for an
E1-ring A, we write mapA(x, y) and MapA(x, y) for the mapping space and spectrum.

1. The K-theory fiber of a localization of rings

In this section, we introduce algebraic K-theory and prove a theorem which describes
the fiber in K-theory of a localization of an E1-ring in certain cases. Note that we follow
Lurie [27] in terminology wherever possible. In particular, using [12], we will view connec-
tive algebraicK-theory (denoted K) and nonconnective algebraicK-theory (denoted K) as
a functor defined on small stable∞-categories. There is no substantive difference between
this approach and the approach via Waldhausen categories: see [12, Section 7.2].

1.1. K-theory

We start by introducing some terminology about small stable∞-categories.
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Definition 1.1. 1. A small stable ∞-category C is idempotent complete if it is closed
under summands. The∞-category of small stable idempotent complete∞-categories
and exact functors between them is denoted by Catperf

∞ .

2. A sequence C
f
−→ D

g
−→ E in Catperf

∞ is exact if the composite C→ E is zero, C→ D is
fully faithful, and D/C→ E is an equivalence. Note that the cofiber is taken in Catperf

∞

and is the idempotent completion of the usual Verdier quotient.
3. Such a sequence is split-exact if moreover there exist right adjoints fρ : D→ C and
gρ : E→ D such that fρ ◦ f ' idC and g ◦ gρ ' idE.

4. Let Sp denote the∞-category of spectra, as defined in [27, Section 1.4]. An additive
invariant of small stable∞-categories is a functor F : Catperf

∞ → Sp that takes split-
exact sequences to split fiber sequences of spectra.

5. A localizing invariant of small stable∞-categories is a functor F : Catperf
∞ → Sp that

takes exact sequences to fiber sequences of spectra.

To connect exact sequences in Catperf
∞ to localization, let ModC = Funex(Cop,Sp), the

stable presentable∞-category of right C-modules in spectra. An exact sequence in Catperf
∞

then gives rise by left Kan extensions to an exact sequence

ModC→ ModD→ ModE,

and the functor ModD → ModE is a localization, in the sense that its right adjoint is
fully faithful. Moreover, if L : ModD → ModE is a localization such that the kernel is
generated by the∞-category C of objects x of D such that L(x) ' 0, then

C→ D→ E

is an exact sequence in Catperf
∞ .

Additive, or connective, K-theory is an additive invariant K : Catperf
∞ → Sp (see [12,

Section 7] and [13, Section 2]). When C is the∞-category associated to a Waldhausen
category by hammock localization, K(C) agrees with Waldhausen K-theory by [13, Theo-
rem 2.5].

Localizing, or nonconnective, K-theory is a localizing invariant K : Catperf
∞ → Sp. It

is defined in [12, Section 9]. The idea goes back to Bass. It agrees with the K-theory of
Thomason and Trobaugh for the relevant cases of schemes. By construction, there is a
natural equivalence K(C) →̃ τ≥0K(C), where τ≥0K(C) is the connective cover.

The question of Rognes is as stated about additive K-theory, but it will prove easier to
pass first through nonconnective K-theory, essentially for the results about localizations of
E1-rings, to which we now turn.

Definition 1.2. If A is an E1-ring, then K(A) and K(A) are defined as the connective
and nonconnective K-theories of ModωA, the small stable∞-category of compact right
A-modules.

Definition 1.3. Let C be a small stable idempotent complete∞-category. We will say that
a compact object M of C generates C if MapModC(M,N) ' 0 implies that N ' 0 for N
in ModC. Here MapModC(M,N) denotes the mapping spectrum from M to N .
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The following theorem is the main theorem of Morita theory for small stable∞-categories.

Theorem 1.4 (Schwede–Shipley [35, Theorem 3.3]). Suppose that C is a small idempo-
tent complete stable∞-category generated by an object M . If A = EndC(M)op, then
ModA ' ModC and hence ModωA ' C.

In this situation, we will also say that M is a compact generator of ModC (remembering
that C ' ModωC).

Corollary 1.5. In the situation of the theorem, K(A) ' K(C) and K(A) ' K(C).

We will heavily use a map from BGL1(A) to �∞ K(A) ' �∞K(A), the algebraic space
of A.

Definition 1.6. The group of units of an E1-ring A is defined as the homotopy pullback
in the square

GL1(A) //

��

�∞A

��

π0A
× // π0A

Multiplication induces a grouplike E1-algebra structure on the space GL1(A), which we
can deloop to obtain BGL1(A).

Unwinding the approach of [12, Section 7], we see that there is an equivalence

�∞ K(A) ' �|(S•ModωA)
eq
|,

where S•ModωA is the simplicial∞-category whose∞-category of n-simplices SnModωA
is equivalent to the functor category Fun([n− 1],ModωA), and where ModωA denotes the
∞-category of compact objects in ModA. Here, [n − 1] denotes the nerve of the graph
0→ 1→ · · · → n− 1, and [−1] = ∅.

Definition 1.7. The units map BGL1(A) → �∞ K(A) is induced by the map from
BGL1(A) into the 1-skeleton map([0],ModωA) of S•ModωA given by the subspace of func-
tors [0] → ModωA sending 0 to A.

In fact, similar reasoning defines a map from BAutA(P ) to �∞ K(A) for any compact
right A-module P . There is an induced map∐

P f.g. projective

BAutA(P )→ �∞ K(A)

of E∞-spaces, where the E∞-space structure on the left-hand side is induced by
direct sum of finitely generated projective modules.2 Since �∞ K(A) is grouplike,
the map factors through the group completion map

∐
P f.g. projective BAutA(P ) →

�B(
∐
P f.g. projective BAutA(P )).

2 Just as in ordinary algebra, a projective A-module is a retract of a free A-module AI for some
set I . See [27, Section 7.2.2].
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Theorem 1.8 ([22, Theorem VI.7.1]). If A is connective, the induced map

�B
( ∐
P f.g. projective

BAutA(P )
)
→ �∞ K(A)

is an equivalence.

Note that the presentation of [22] uses only finitely generated free A-modules. The proof
of the result stated here is no different, and has the correct K0 group.

1.2. Localizations of E1-rings

We are interested in identifying the fiber of K(A)→ K(B), where A is an E1-ring and B
is a localization of A obtained by inverting some elements of π∗A. It is not always possible
to invert elements in noncommutative rings. One way to ensure that it is possible is to
impose the following Ore condition.

Definition 1.9. Let A be an E1-ring, and let S ⊂ π∗A be a multiplicatively closed set of
homogeneous elements. Then S satisfies the right Ore condition if (1) for every pair of
elements x ∈ π∗A and s ∈ S there exist y ∈ π∗A and t ∈ S such that xt = sy, and (2) if
sx = 0 for some x ∈ π∗A and s ∈ S, then there exists t ∈ S such that xt = 0.

The conditions are particularly easy to verify when π∗A is in fact a graded-commutative
ring. The following proposition collects several facts due to Lurie about the localization of
an E1-ring at a multiplicative set satisfying the right Ore condition.

Proposition 1.10 (Lurie). Let A be an E1-ring, and let S ⊆ π∗A be a multiplicatively
closed set satisfying the right Ore condition. Then:

(1) there is an E1-ring S−1A and an E1-ring map A → S−1A, where π∗S−1A ∼=

S−1π∗A;
(2) the induced functor ModA→ ModS−1A is a localization;
(3) the induced functor ModA→ ModS−1A has as fiber the full subcategory ModNil(S)

A of
S-nilpotentA-modules, i.e., those rightA-modulesM such that for every homogeneous
element x ∈ π∗M , there exists s ∈ S such that xs = 0.

Proof. For (1), see [27, Proposition 7.2.4.20 and Remark 7.2.4.26]. This identifies S−1A

with an E1-ring A[S−1
], which is by definition the endomorphism algebra of the image of

A under a functor ModA→ ModLoc(S)
A and serves as a compact generator for ModLoc(S)

A .
This functor is a localization with kernel the S-nilpotent A-modules by [27, Proposi-
tion 7.2.4.17]. This proves (2) and (3). ut

The result of this section identifies the fiber in K-theory of an Ore localization generated
by a single element. The role of S-nilpotent modules has also been studied by Barwick [7,
Proposition 11.15]. Our identification below of a special S-nilpotent module can be viewed
as a partial generalization of the work of Neeman and Ranicki [30] to noncommutative
E1-rings.
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Theorem 1.11. LetA be an E1-ring, and let S = {1, r, r2, . . .} be a multiplicatively closed
subset of π∗A satisfying the right Ore condition and generated by a single homogeneous
element r ∈ πdA. IfM denotes the cofiber of the map 6dA

r
−→ A of right A-modules, then

there is a fiber sequence

K(EndA(M)op)→ K(A)→ K(S−1A)

of spectra.

Proof. By Proposition 1.10, there is a localization sequence

ModNil(S)
A → ModA→ ModS−1A.

It follows that after taking compact objects we obtain an exact sequence

ModNil(S),ω
A → ModωA→ Modω

S−1A

of small stable∞-categories, where ModNil(S),ω
A is equivalent to the stable∞-category

of S-nilpotent compact right A-modules. By definition of localizing K-theory and by
Corollary 1.5, it suffices to show that M is a compact generator of ModNil(S)

A . Since M is
built in finitely many steps from A by taking cofibers, it is an object of ModωA. Moreover,
the localization of M is clearly zero since r is a unit in S−1A.

By [27, Proposition 7.2.4.14], an A-module N is S-local if and only if MapA(A/s,N)
' 0 for all s ∈ S, where A/s denotes the cofiber of 6|s|A

s
−→ A. Under the hypothesis

above, we can replace this condition by the condition that MapA(A/r,N) ' 0. With
M = A/r , we will now argue that if MapA(M,N) ' 0 and N is S-nilpotent, then N ' 0.
This will show that M is a compact generator of ModNil(S)

A . Consider the cofiber sequence
6dA

r
−→ A→ M of right A-modules. Under the assumption that MapA(M,N) ' 0, the

induced map
N ' MapA(A,N)

r
−→ MapA(6

dA,N) ' 6−dN

of left A-modules is an equivalence. Since N is S-nilpotent, requirement (1) of the Ore
condition implies that every homogeneous element of π∗N is annihilated by multiplication
on the left by a power of r . Hence, N ' 0. ut

The localization at the heart of Rognes’ question is the map BP〈n〉 → E(n), where E(n)
is obtained from BP〈n〉 by inverting vn. Since π∗BP〈n〉 is in fact a commutative ring, the
right Ore condition is trivially satisfied. It follows from the theorem that if we can compute
the endomorphism ring of the cofiber of vn : 62pn−2BP〈n〉 → BP〈n〉, then we obtain an
E1-ring whoseK-theory can be analyzed and compared to theK-theory of BP〈n− 1〉. We
will return to the truncated Brown–Peterson spectra after introducing the computational
techniques we will use.

We briefly discuss two different directions in which one can generalize the theorem.
First of all one can consider localizations A → S−1A where S is generated by a

left-regular sequence (r1, . . . , rn) of homogeneous elements. We give the statement for
n = 2. Suppose that deg(ri) = di for i = 1, 2 and suppose that r1 and r2 commute up to
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homotopy when acting by multiplication on the left. That is, suppose that in Ho(ModA)
the left-hand square in

6d1+d2A
r1 //

r2
��

6d2A

r2

��

// 6d2M1 //

r2

��

6d1+d2+1A

6r2
��

6d1A
r1 // A // M1 // 6d1+1A

commutes, where M1 is the cofiber of r1 acting by multiplication on the left as a right A-
module map. In this case, the triangulated category axioms assert that there is an extension
of this diagram to the right by a map r2 : 6d2M1 → M1. The map r2 is an example of a
Toda bracket and need not be unique. We will say that (r1, r2) is a left-regular sequence
if the multiplicatively closed set generated by r1 and r2 satisfies the right Ore condition,
if r1 acts injectively on the homotopy of A, if the square above commutes, and if for
some choice of fill r2 : 6d2M1 → M1 the map in homotopy is injective. Note that a priori
(r1, r2) may be a left-regular sequence while (r2, r1) is not.

Proposition 1.12. Suppose that A is an E1-ring and S is the multiplicative set generated
by a left-regular sequence (r1, r2). Let M2 be the cofiber of 6d2M1

r2
−→ M1 for some

choice of map r2 as above which is injective in homotopy. Then there is a fiber sequence

K(EndA(M2)
op)→ K(A)→ K(S−1A)

of spectra.

Proof. We prove that M2 is a compact generator of the S-nilpotent spectra. Suppose that
N is S-nilpotent and that MapA(M2, N) ' 0. As above one then sees that r2 induces an
equivalence

MapA(M1, N)→ MapA(6
d2M1, N).

On the other hand, r2 acts nilpotently on the homotopy groups of N . Consider the Ext
spectral sequence

Es,t2 = Extsπ∗A(π∗M1, π∗N)t ⇒ πt−sMapA(M1, N).

By the right Ore condition and the left-regularity of r1, it follows that the right π∗A-
module π∗M1 has graded projective dimension 1. Therefore, the filtration on the abut-
ment is finite. But, r2 must then act nilpotently on π∗MapA(M1, N), which implies that
MapA(M1, N) ' 0. The argument concludes as in the proof of the theorem. ut

An appropriate similar hypothesis can be imposed on localizations of more elements to
ensure the existence of fiber sequences in K-theory with fiber given by the K-theory of an
endomorphism algebra.

In the second direction we can consider localizations of connective E∞-rings or more
generally of derived schemes (see [3]).
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Theorem 1.13. Let X be a quasi-compact and quasi-separated derived scheme and
U ⊆ X a quasi-compact Zariski open subscheme with complement Z. Then there is a fiber
sequence

K(A)→ K(X)→ K(U),

where K(A) ' K(X on Z) is the K-theory of an E1-ring spectrum A = EndX(M)op.

Proof. In this situation, Antieau and Gepner [3, Proposition 6.9] proved that there is a
single compact object M that generates the fiber of ModX → ModU . This completes the
proof. ut

Typically, M can be taken to be a kind of generalized Koszul complex. For example, when
X = SpecR is affine, and when U is the open set defined by inverting r1, . . . , rn all of
degree zero, then M can be taken as

n⊗
i=1

cofib
(
R

ri
−→ R

)
,

which is precisely the Koszul complex when R is an Eilenberg–MacLane spectrum and
the ri form a regular sequence.

2. Hochschild homology and trace

Throughout this section, R will denote an E∞-ring.

2.1. Hochschild homology

Definition 2.1. Let A be an E1-R-algebra and M an A-bimodule in ModR . The Hoch-
schild homology HHR(A,M) of A over R with coefficients in M is the geometric realiza-
tion of the cyclic bar construction Bcyc

• (A/R,M), the simplicial spectrum with level n the
R-module

Bcyc
n (A/R,M) = M ⊗R A

⊗n.

The face and degeneracy maps are given by the same formulas as in ordinary Hochschild
homology (see for instance [36, Definition 4.1.2]). If M = A with its natural bimodule
structure then we typically write Bcyc

• A for the simplicial spectrum and HHR(A) for
its geometric realization, omitting reference to R when no confusion can occur. When
R = Hπ0R is an Eilenberg–MacLane spectrum, our (implicit) use of the derived tensor
product implies that this definition can disagree with ordinary Hochschild homology
even when M and A are themselves Eilenberg–MacLane. It follows from the Tor spectral
sequence that no discrepancy occurs if their homotopy groups are flat over π0R.

We will need the following Hochschild–Kostant–Rosenberg theorem for our later com-
putations. Our argument follows the proof of a similar theorem of McCarthy and Mi-
nasian [28, Theorem 6.1]. Let CAlgR denote the∞-category of E∞-R-algebras, and let
SymR : ModR → CAlgR denote the symmetric algebra functor, which gives the free
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E∞-R-algebra on an R-module M . It is left adjoint to the forgetful functor ModR ←
CAlgR . Note also that if R→ S is a map of E∞-rings, then there is a natural equivalence
S ⊗R SymR(M) ' SymS(S ⊗R M).

Theorem 2.2. Let R be an E∞-ring, and let M be an R-module. The Hochschild homol-
ogy of the free E∞-R-algebra S = SymRM over R is given by

HHR(S) ' SymS(S ⊗R 6M)

as an E∞-S-algebra, where S ⊗R 6M is the tensor product of R-modules.

Proof. By McClure–Schwänzl–Vogt [29], there is an equivalence

HHR(S) ' S1
⊗R S = S

1
⊗R SymRM,

where S1
⊗R S refers to the simplicial structure on the category of E∞-R-algebras. As the

symmetric algebra functor SymR : ModR → CAlgR is a left adjoint, it commutes with all
all small colimits. Since the symmetric monoidal structure on CAlgR is the cocartesian
symmetric monoidal structure, SymR is symmetric monoidal for the cocartesian monoidal
structure on ModR . Thus, there is a natural equivalence SymR(M⊕6M) ' SymR(M)⊗R
SymR(6M). It follows that

S1
⊗R SymRM ' SymR(S

1
⊗R M) ' SymR(M ⊕6M)

' SymR(M)⊗R SymR(6M) ' SymSymRM
(SymRM ⊗R 6M),

as desired. ut

We will only apply this HKR-type theorem in the case where the base ring R is HQ and
M is a compact HQ-module. In this case, the result is especially simple and the reader
can compare this result to the main result [24].

Corollary 2.3. LetM be a compact HQ-module with a basis for the even homology given
by homogeneous elements x1, . . . , xm and for odd homology by homogeneous elements
y1, . . . , yn. Let S = SymHQM , so that π∗S ∼= Q[x1, . . . , xm] ⊗3Q〈y1, . . . , yn〉. Then

π∗ HHHQ(S) ∼= Q[x1, . . . , xm, δ(y1), . . . , δ(yn)] ⊗3Q〈y1, . . . , yn, δ(x1), . . . , δ(xm)〉,

where the δ(yi) and δ(xi) are elements in degrees |yi | + 1 and |xi | + 1, respectively,
induced from a map 6M → HHHQ(S).

2.2. The trace map

Bökstedt introduced a natural transformation K → HHS from additive K-theory to
Hochschild homology over the sphere called the topological Dennis trace map, generalizing
earlier work of Waldhausen [40] in the special case of K-theory of spaces. We will
refer to this simply as the trace map. Note that HHS is precisely what is usually termed
topological Hochschild homology and denoted by THH. This map and its refinements
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(such as topological cyclic homology) play a central role in the contemporary approach to
computations of K-groups. See Hesselholt and Madsen’s work [23] for an exemplary case.

There is another approach which rests on a definition of HHS for arbitrary small spectral
categories or stable ∞-categories. The idea goes back to Dundas and McCarthy [21];
see [16, Definition 3.4] for the definition for spectral categories. Blumberg, Gepner,
and Tabuada show that this definition defines a localizing invariant of small idempotent
complete∞-categories. It follows that HHS

0(S) is naturally bijective to the group of natural
transformations K→ HHS of localizing invariants. They give a conceptual identification
of Waldhausen’s trace, showing in [12, Theorem 10.6] that it is the unique such natural
transformation with the property that the composition

S→ K(S)→ HHS(S) →̃ S

is homotopic to the identity, where S→K(S) is the unit map inK-theory, and HHS(S)→̃S
is the augmentation, i.e., the inverse to the unit map S →̃ HHS(S) in Hochschild
homology.

Definition 2.4. If G is a grouplike E1-algebra in spaces, we let Bcyc
• G be the simplicial

space with Bcyc
n = G

n+1 and the usual face and degeneracy maps. Writing BcycG for the
geometric realization of Bcyc

• G, we obtain by [25, Theorem 6.2] a model for the free loop
space LBG of BG. There is a natural fibration sequence G→ BcycG→ BG, and there is
a section on the right BG→ BcycG given by including BG as the constant loops. This
map in fact exists even before geometric realizations as a map c : B•G→ Bcyc

• G which
on level n is described by

c(g1, . . . , gn) = (g
−1
n · · · g

−1
1 , g1, . . . , gn).

See [26, Proposition 7.3.4, Theorem 7.3.11]. This concrete cycle-level description will be
important below.

The following proposition is well-known and appears in similar forms in work of Bökstedt–
Hsiang–Madsen [19] and Schlichtkrull [34, Section 4.4].

Proposition 2.5. Let A be an E1-ring. The composition

6∞ BGL1(A)+→ K(A)→ K(A)→ HHS(A)

is equivalent to

6∞(BGL1(A))+
c
−→ 6∞(Bcyc GL1(A))+ ' Bcyc6∞ GL1(A)+→ BcycA = HHS(A),

where Bcyc6∞ GL1(A)+ → BcycA is induced by the map 6∞ GL1(A)+ → A

of E1-rings adjoint to the inclusion of units.
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Proof. Given an E1-ring A, there is a natural diagram of spectra

6∞ BGL1(τ≥0A)+ //

'

��

K(τ≥0A) //

��

K(τ≥0A) //

��

HHS(τ≥0A)

��

6∞ BGL1(A)+ // K(A) // K(A) // HHS(A)

where τ≥0A denotes the connective cover of A. In particular, to compute the restriction of
the trace K(A)→ HHS(A) to the classifying space of the units of A, we can assume that
A is connective. For connective rings, Waldhausen defined the trace map in the following
way [19, Section 5]. For each finitely generated projective right A-module P , look at the
map

BAutA(P )
c
−→ BcycAutA(P )→ �∞Bcyc EndA(P )→ �∞ HHS(A),

where EndA(P ) is the endomorphism algebra spectrum of P , and where the right-hand
map is the usual trace map in Hochschild homology (defined as in [41, Section 9.5]
or [16, Theorem 5.12]). The right-hand map is an equivalence if P is a faithful projective
right A-module by Morita theory. In any case, these maps are compatible with direct sum,
and hence they induce a well-defined map∐

P f.g. projective

BAutA(P )→ �∞ HHS(A)

which is compatible with the direct sum structure on the left. Therefore, they induce a
map from the group completion, which is equivalent to �∞ K(A) by Theorem 1.8, to
�∞ HHS(A). Using the adjunction between �∞ and 6∞+ completes the proof. ut

We will use homotopy classes in BGL1(A) and prove that they are nonzero in HHS(A).
This will have the consequence that they map to nonzero K-theory classes. More specifi-
cally, we will construct nonzero homotopy classes in the 1-skeleton of BGL1(A), and we
will need to know that they survive to nonzero classes in HHS(A). For this, we will need
to understand the Bökstedt spectral sequence converging to HHS, namely

E2
s,t = Hs(1op, πtB

cyc
• A)⇒ HHS

s+t (A).

This is nothing other than the homotopy colimit spectral sequence for the geometric
realization of a simplicial spectrum. Moreover, there are natural isomorphisms

Hs(1op, πtB
cyc
• A) ∼= Hs(C∗(πtB

cyc
• A))

for all t , whereC∗(πtB
cyc
• A) is the unnormalized chain complex associated to the simplicial

abelian group πtB
cyc
• A.

In particular, we would like to understand the map πtB• GL1(A) → πtB
cyc
• A of

simplicial abelian groups in terms of elements of these groups. The next proposition
provides the necessary formula, but we need to note a couple of easy lemmas first.

Lemma 2.6. If G is a grouplike E1-space, then the inverse map acts as −1 on πtG for
t ≥ 1.

Proof. This follows from the Eckmann–Hilton argument. ut
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Given two based spaces X and Y , consider the Tor spectral sequence

Es,t2 = Torπ∗Ss (π∗6
∞X+, π∗6

∞Y+)t ⇒ πs+t (6
∞X+ ⊗6

∞Y+),

with differentials dr of bidegree (−r, r − 1). When s = 0, we have π∗6∞X+ ⊗π∗S
π∗6

∞Y+, and this contributes to the lowest part of the filtration on the abutment because
every differential vanishes on E0,t

r . In particular, given a ∈ πtX and b ∈ πtY , the classes
a ⊗ 1 and 1⊗ b determine homotopy classes in πt (6∞X+ ⊗6∞Y+).

Lemma 2.7. Let X and Y be based spaces. Then the map

πt (X × Y )→ π st (X × Y )+→ πt (6
∞X+ ⊗6

∞Y+)

sends (a, b) to a ⊗ 1+ 1⊗ b.

Proof. If either a or b is zero, this is obvious. But (a, b) = (a, 0)+ (0, b). ut

Similar considerations apply in the following proposition. For the sake of clarity, write u for
the natural map GL1(A)→ �∞A, as well as the corresponding map πt GL1(A)→ πtA,
which is an isomorphism for t ≥ 1.

Proposition 2.8. The composition

πtBn GL1(A)→ πtB
cyc
n GL1(A)→ πtB

cyc
n 6∞ GL1(A)+→ πtB

cyc
n A

sends (g1, . . . , gn) to

(1⊗u(g1)⊗1⊗· · ·⊗1)+· · ·+ (1⊗· · ·⊗1⊗u(gn))− (u(g1+· · ·+gn)⊗1⊗· · ·⊗1)

for t ≥ 1.

Proof. The first map sends (g1, . . . , gn) to (−g1 − · · · − gn, g1, . . . , gn) by Lemma 2.6
and the description of the inclusion of the constant loops at the simplicial level. The rest
of the description then follows from Lemma 2.7 and the fact that u : GL1(A)→ �∞A

factors as GL1(A)→ �∞6∞ GL1(A)+→ �∞A. ut

3. Kähler differentials

In this section we study the composition

Tr : BGL1(A)→ �∞ K(A)→ �∞ HHS(A)→ �∞ HHHQ(AQ)

in the special case where AQ = HQ ⊗S A admits an E∞-ring structure. We can then
assume by [37, Theorem 1.2] that AQ is a rational commutative differential graded algebra,
which we do in this section.

Recall (for example from [26, Paragraph 5.42] in the connective case) that for a rational
commutative dga A the dg module �A/Q of Kähler differentials can be defined as the free
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A-module generated by symbols da for the homogeneous elements a of A modulo the
relations

d(ab) = ad(b)+ (−1)|a| |b|bd(a),

where the map d : A→ �A/Q is the universal derivation of A over Q. We should remark
that by using the cotangent complex one may obtain more information, but this is not
necessary in the present paper.

Proposition 3.1. Suppose that A is an E1-ring such that AQ admits an E∞-ring structure
(compatible with the E1-ring structure). Then there is a natural map

D : HHHQ(AQ)→ 6�AQ/Q

such that the composition

D ◦ Tr : π∗−1 GL1(A)→ K∗(A)→ HHS
∗(A)→ HHHQ

∗ (AQ)→ π∗−1�AQ/Q

agrees with the composition of rationalization A → AQ and the universal derivation
d : AQ→ �AQ/Q in homotopy groups in positive degrees.

Proof. The Hochschild complex

· · · → A⊗3
Q

∂0−∂1+∂2
−−−−−→ A⊗2

Q
∂0−∂1
−−−→ AQ→ 0

can be considered as a chain complex in chain complexes (or a double complex by changing
the vertical differentials using the vertical sign trick). Since AQ is graded-commutative,
∂0 − ∂1 = 0. Similarly,

(∂0 − ∂1 + ∂2)(a0 ⊗ a1 ⊗ a2) = a0a1 ⊗ a2 − a0 ⊗ a1a2 + (−1)|a2|(|a0|+|a1|)a2a0 ⊗ a1

= a0
(
a1 ⊗ a2 − 1⊗ a1a2 + (−1)|a2| |a1|a2 ⊗ a1

)
,

where the sign conventions are the usual ones for the Hochschild complex of a differential
graded algebra. See the material in [42, Section 9.9.1] on cyclic homology.

Hence, the map D : A⊗2
Q → �AQ/Q defined by

D(a0 ⊗ a1) = a0d(a1)

defines a quasi-isomorphism

A⊗2
Q /im(∂0 − ∂1 + ∂2)→ �AQ/Q,

and we write D also for the prolongation by zero to the entire Hochschild complex.
Since Tr is defined at the simplicial level, we look at

Tr : πtB1 GL1(A)→ πtB
cyc
1 A,

which is given by
Tr(a) = −a ⊗ 1+ 1⊗ a

by Proposition 2.8. Applying D, we get D ◦ Tr(a) = d(a) since d(1) = 0. ut

Write δ : 6A→ 6�A/Q for the suspension of d .
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Corollary 3.2. Let M be a compact HQ-module, and let A = SymHQM . There exists a
section

s : 6�A/Q→ HHHQ(A)

such that Tr factors at the level of homotopy groups as in the following commutative
diagram:

π∗−1 GL1(A) //

Tr

��

π∗−1A

δ

��

π∗−1�A/Q

s
��

HHHQ
∗ (A)

Proof. We can and do assume that M has zero differential, so that A is a formal rational
dga. Then �A/Q is a formal A-module, equivalent to A⊗HQ M . In particular, to give the
map s, we just have to specify where to map generators of the homology of M . Since the
map π∗D : HHHQ

∗ (A)→ π∗6�A/Q is surjective, such a section s exists, and we simply
pick one.

Note that by our choice of s and Proposition 3.1, the maps D ◦ Tr and D ◦ s ◦ δ do
agree at the level of homotopy groups. It follows that to prove the corollary we need to
show that the image of Tr is contained in the image of s.

Consider the Bökstedt spectral sequence computing HHHQ(A). There is a map of the
homotopy colimit spectral sequences for BGL1(A) and HHHQ(A) (the Bökstedt spectral
sequence) induced by Tr, which on E2 terms is given by

Hs(C∗(πtB• GL1(A)))→ Hs(C∗(πtB
cyc
• A)).

The left-hand side is concentrated in the terms E2
1,t , and it follows that the image of Tr is

contained in E∞1,t . But the proof of Proposition 3.1 implies that

E2
1,t = E∞1,t ∼= πt�A/Q.

Therefore, Tr factors through the image of s, as desired. ut

It follows that the classes δ(xi) and δ(yi) appearing in Corollary 2.3 can be chosen to be
the suspensions of d(xi) and d(yi).

4. The truncated Brown–Peterson spectra as algebras

Fix a prime p. Let BP denote the E4-ring constructed by Basterra and Mandell [11,
Theorem 1.1] as an E4-algebra summand of MU(p), the p-local complex cobordism
spectrum. The homotopy ring of BP is

π∗BP = Z(p)[v1, v2, . . .],

where vi has degree 2pi − 2. By convention, we set v0 = p ∈ π0BP. We will work
everywhere with E1-algebras over BP.
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Lemma 4.1. For any vi , BP/vi admits E1-algebra structures over BP.

Proof. By Strickland [38, Corollary 3.3], there exist products on BP/vi . Moreover, by [38,
Proposition 3.1], these are homotopy associative. It follows that we get A3-structures on
BP/vi . By Angeltveit [2, Corollary 3.7], which Angeltveit remarks in the introduction to
that section applies equally well over any E∞-ring, these extend to A∞-structures over
MU(p). Giving an A∞-structure over MU(p) is equivalent to making BP/vi an E1-ring
over MU(p). Using the E4-ring map BP→ MU(p) of [11, Section 5], we obtain E1-algebra
structures on BP/vi over BP by restriction. ut

In particular, since vi is not a zero-divisor and by the lemma, the cofiber BP/vi has the
expected homotopy ring, namely

π∗BP/vi ∼= Z(p)[v1, . . . , v̂i, . . .],

the quotient of π∗BP by the ideal generated by vi .
We define BP〈n〉 as the iterated cofiber

colim
i>n

BP/vn+1 ⊗BP · · · ⊗BP BP/vi .

Lemma 4.2. The truncated Brown–Peterson spectra BP〈n〉 admit E1-algebra structures
over BP.

Proof. Since the forgetful functor AlgBP → ModBP preserves filtered colimits, the un-
derlying BP-module of the colimit colimi>n BP/vn+1 ⊗BP · · · ⊗BP BP/vi in AlgBP is
BP〈n〉. ut

The proof shows that for any choice of E1-algebra structure on BP〈n〉 and BP/vn over BP,
we obtain a BP-algebra structure on BP〈n− 1〉. Just as above, the homotopy rings of the
truncated Brown–Peterson spectra are

π∗BP〈n〉 ∼= Z(p)[v1, . . . , vn]

for n ≥ 0. Additionally, by Proposition 1.10, given any E1-algebra structure on BP〈n〉
over BP, there is an E1-algebra structure on E(n) = BP〈n〉[v−1

n ] over BP obtained by
inverting vn.

Lemma 4.3. For n ≥ 1 and any E1-algebra structures on BP〈n〉 and BP/vn over BP, the
natural map BP〈n〉 → BP〈n− 1〉 is a map of E1-algebras over BP.

Proof. The map in question is the tensor product of BP〈n〉 with the map BP→ BP/vn in
AlgBP. ut

Remark 4.4. At the moment, it is not obvious to us that the different algebra structures
on BP〈n〉 all result in the same K-theories. Hence, we pick once and for all BP-algebra
structures on BP〈n− 1〉 and BP〈n〉 so that BP〈n〉 → BP〈n− 1〉 is a map of BP-algebras.
Our proofs work regardless of these choices, so there is no harm in them.
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The fiber sequence 62pn−2BP〈n〉
vn
−→ BP〈n〉 → BP〈n− 1〉 exhibits BP〈n− 1〉 as a

perfect right BP〈n〉-module. The E1-algebra

A〈n− 1〉 = EndBP〈n〉(BP〈n− 1〉)op

will play a central role in this paper. Using the forgetful functor ModBP〈n−1〉→ ModBP〈n〉,
we get an E1-algebra map BP〈n− 1〉 → A〈n− 1〉 over BP.

Lemma 4.5. As a left BP〈n− 1〉-module, A〈n− 1〉 is equivalent to

BP〈n− 1〉 ⊕61−2pnBP〈n− 1〉.

Proof. The defining sequence given by multiplication by vn on the left, 62pn−2BP〈n〉 →
BP〈n〉 → BP〈n− 1〉, is a cofiber sequence of right BP〈n〉-modules. Dualizing, we obtain
a cofiber sequence of left BP〈n〉-modules

MapBP〈n〉(BP〈n− 1〉,BP〈n〉)→ BP〈n〉
vn
−→ 62−2pnBP〈n〉.

Tensoring on the left over BP〈n〉 with the (BP〈n− 1〉,BP〈n〉)-bimodule BP〈n− 1〉, we
obtain a fiber sequence

A〈n− 1〉 → BP〈n− 1〉
vn
−→ 62−2pnBP〈n− 1〉

of left BP〈n− 1〉-modules. It suffices now to show that vn is nullhomotopic as a self-
map of BP〈n− 1〉. But vn is zero in the homotopy ring by definition of BP〈n− 1〉. As
BP〈n− 1〉 is an algebra, vn is nullhomotopic. ut

We will return to give a closer analysis of A〈n− 1〉 in the next section.

5. Rational E∞-structures

The goal of this section is to show that the HQ-algebras BP〈n− 1〉Q and A〈n− 1〉Q admit
E∞-ring structures and that BP〈n− 1〉Q → A〈n− 1〉Q is an E∞-ring map. Our argu-
ments for the rational E∞-ring structure on A〈n− 1〉Q uses explicit rational commutative
differential graded rings.

Remark 5.1. In order to construct the E∞-ring structures we are interested in we have to
replace BP〈n〉Q and A〈n〉Q by weakly equivalent models. This however does not affect
the rest of the argument, as all functors considered in this paper are homotopy invariant.

Proposition 5.2. For n ≥ 0, BP〈n〉Q is an E∞-HQ-algebra.

Proof. Fix a prime p. We begin by noting that BPQ admits a natural E∞-ring structure
arising from MUQ. Indeed, recall from [1] that π∗MUQ ∼= Q[m1, . . .], where mi is a
degree 2i class represented by a rational multiple of the cobordism class of CPi . To
construct the spectrum BPQ from MUQ, one kills each mi where i + 1 is not a p-power.
The choice of mi ∈ π2iMUQ determines by definition a map

SymHQ6
2iHQ→ MUQ
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of E∞-algebras over HQ. The E∞-HQ-algebra MUQ/mi is the pushout

SymHQ6
2iHQ

��

// MUQ

��

HQ // MUQ/mi

in E∞-HQ-algebras, and it follows from the cofiber sequence

62i SymHQ6
2iHQ→ SymHQ6

2iHQ→ HQ,

where the right-hand map is the map of E∞-HQ-algebras defined by sending a generator
to 0 ∈ π2iHQ, that

π∗MUQ/mi ∼= Q[m1, . . . , mi−1, m̂i, mi+1, . . .].

In other words, MUQ/mi is the cofiber of multiplication by mi on MUQ as a module. Just
as in the previous section, we now find that BPQ has an E∞-HQ-ring structure obtained
by taking the colimit

colim
i 6=pj−1

MUQ/mi →̃ BPQ

in CAlgMUQ , the category of E∞-algebras over MUQ. The same process works to reduce
from BPQ to BP〈n〉Q. ut

It would be convenient to view A〈n− 1〉Q as an E1-BP〈n− 1〉Q-algebra now that we
know that BP〈n− 1〉Q is an E∞-ring. However, simply having a map of E1-algebras
BP〈n− 1〉Q→ A〈n− 1〉Q is not enough to guarantee this.

Proposition 5.3. The map

BP〈n− 1〉Q→ A〈n− 1〉Q

makes A〈n− 1〉Q into an E1-BP〈n− 1〉Q-algebra.

Proof. As rationalization is a localization, A〈n− 1〉Q is equivalently the endomorphism
algebra of BP〈n− 1〉Q over BP〈n〉Q, i.e., A〈n− 1〉Q ' EndBP〈n〉Q(BP〈n− 1〉Q). Since
BP〈n〉Q is an E∞-ring, A〈n− 1〉Q is automatically equipped with the structure of a
BP〈n〉Q-algebra. Over the rationals, we have an E∞-ring map BP〈n− 1〉Q → BP〈n〉Q,
and this makes A〈n− 1〉Q into a BP〈n− 1〉Q-algebra. To see that this map agrees with the
map BP〈n− 1〉Q→ A〈n− 1〉Q coming from Morita theory note that both maps restrict
to equivalent maps

n−1⊕
i=1

62pi−2HQ→ A〈n− 1〉Q,

which is enough to conclude since BP〈n− 1〉Q is a free E∞-algebra. ut

In order to prove that A〈n− 1〉Q admits an E∞-ring structure, we need to know the
homotopy ring of A〈n− 1〉, which we determine now. Unfortunately, we do not say much
about the ring structure over S, but we do find A〈n− 1〉Q up to weak equivalence.
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Lemma 5.4. The homotopy ring of A〈n− 1〉 is

π∗A〈n− 1〉 ∼= 3π∗BP〈n−1〉〈ε1−2pn〉,

the graded exterior algebra over π∗BP〈n− 1〉 on one generator ε1−2pn in degree 1− 2pn.

Proof. Under the splitting of Lemma 4.5, we let ε = ε1−2pn denote the class of the map
61−2pnBP〈n− 1〉 → A〈n− 1〉. Because of degree considerations, ε2

= 0 in the homo-
topy ring of A〈n− 1〉. The description of π∗A〈n− 1〉 is correct as a left π∗BP〈n− 1〉-
module by Lemma 4.5. The only question is whether viε = εvi for 1 ≤ i ≤ n− 1. Since
π∗A〈n− 1〉 → π∗A〈n− 1〉Q is injective, it is enough to prove this statement rationally.
By Proposition 5.2, BP〈n〉Q is a formal rational dga on v1, . . . , vn. For the remainder of
the proof, we work entirely with BP〈n〉Q as a formal rational dga, and we use dg-modules
over BP〈n〉Q. Let X = cone(vn), where vn : 62pn−2BP〈n〉Q→ BP〈n〉Q. Thus, X is a dg
BP〈n〉Q-module with Xk = πkBP〈n〉Q ⊕ πk−1(6

2pn−2BP〈n〉Q), and with the differential
Xk → Xk−1 given by (

0 vn
0 0

)
.

Recall that A〈n− 1〉Q ' EndBP〈n〉Q(X). Each vi for 1 ≤ i ≤ n− 1 acts as an endomor-
phism of X in the obvious way, with matrix representation(

vi 0
0 vi

)
.

The element ε can be represented as well. Let

σ : π∗−1(6
2pn−2BP〈n〉Q)→ π1−2pn+∗BP〈n〉Q

be a fixed π∗BP〈n〉Q-module isomorphism. Then

ε =

(
0 σ

0 0

)
from 61−2pnX to X is a map of BP〈n〉Q-modules. For degree reasons, this map is unique
up to the choice of σ , which in turn is unique up to multiplying by a nonzero rational
number. Hence, we can assume that this ε represents ε1−2pn above, as X is cofibrant as a
dg BP〈n〉Q-module. Now, we see that viε = εvi for 1 ≤ i ≤ n− 1. ut

Similar ideas allow us to prove that A〈n− 1〉Q is equivalent to a commutative rational
dga.

Proposition 5.5. The algebra A〈n− 1〉Q admits the structure of a commutative rational
differential graded algebra.

Proof. For simplicity, let d = 2pn − 2. As in the proof above, we can assume that
A〈n− 1〉Q is the endomorphism dga of the cone X of vn. As a graded algebra,

A〈n− 1〉Q =
⊕
k

Homk
π∗BP〈n〉Q

(X,X),
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where the degree k part consists of homogeneous degree k maps of graded π∗BP〈n〉Q-
modules. Since X is isomorphic to π∗BP〈n〉Q ⊕ π∗6d+1BP〈n〉Q as a graded module,
it follows that A〈n− 1〉Q as a graded algebra is isomorphic to the graded matrix ring
M2(π∗BP〈n〉Q), determined by letting (

0 1
0 0

)
be in degree −d − 1 = 1− 2pn. So, an element of A〈n− 1〉Q of degree k is represented
by an element (

a b

c d

)
where a, d ∈ πkBP〈n〉Q, the element b is in πk+d+1BP〈n〉Q, and c ∈ πk−d−1BP〈n〉Q. The
differential on A〈n− 1〉Q is defined by the equation

d(f ) = dX ◦ f − (−1)kf ◦ dX

if f is homogeneous of degree k. With this convention,

d

((
a b

c d

))
=

(
vnc vnd

0 0

)
− (−1)k

(
0 avn
0 cvn

)
=

(
vnc vnd − (−1)kavn
0 −(−1)kcvn

)
for a homogeneous element f of degree k, written as an element of M2(π∗BP〈n〉Q).

Since π∗BP〈n〉Q is commutative and vn is a regular homogeneous element, the cycles
of degree k in A〈n− 1〉Q are all of the form(

a b

0 (−1)ka

)
.

Let Z be the graded subalgebra of A〈n− 1〉Q given by cycles such that vn does not divide
either a or b. This graded submodule when equipped with the trivial differential is a
dg-submodule (over Q or BP〈n− 1〉Q), and the inclusion respects multiplication and is
unital; that is, it is a dg-subalgebra of A〈n− 1〉Q. Because of the fact that π∗BP〈n〉Q is
concentrated in even degrees, and as d + 1 is odd, a and b can never be simultaneously
nonzero. It follows from this that Z is in fact a commutative differential graded algebra.
Now, we claim that the inclusion Z → A〈n− 1〉Q is a quasi-isomorphism. Indeed, the
map in homology is clearly injective, since all boundaries in A〈n− 1〉Q contain a vn-term,
and it is surjective because all cycles in which a vn-term appears must be boundaries (using
again the fact that a and b in the notation above are not simultaneously nonzero). As Z is
a commutative dga, the proposition follows. ut

Remark 5.6. An alternative way of proving the results in this section is via Goerss–
Hopkins obstruction theory. The obstruction groups for the existence of E∞-ring structures
on A〈n− 1〉Q lifting the square-zero structure on coefficients vanish, while the groups
parameterizing choices of lifts are zero except at p = 2.
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6. Rognes’ question

In this section we give a negative answer to the question of Rognes for n > 1 at all primes p.
Note that while we work with the non-p-completed Brown–Peterson and Johnson–Wilson
spectra for notational simplicity, no alterations are needed in the argument to handle the
p-complete case.

Question 6.1 (Non-p-complete Rognes question). For n > 0, is the sequence

K(BP〈n− 1〉)→ K(BP〈n〉)→ K(E(n)) (3)

a fiber sequence of connective spectra, where K(BP〈n− 1〉)→ K(BP〈n〉) is the transfer
map?

An affirmative answer would identify the fiber of a localization map in K-theory. Our
earlier results allow us to do this unconditionally when the localization comes from a
reasonable localization of E1-rings. In the case of truncated Brown–Peterson spectra, we
get the following result.

Theorem 6.2. Fix n > 0, and let A〈n− 1〉 = EndBP〈n〉(BP〈n− 1〉)op. There is a fiber
sequence

K(A〈n− 1〉)→ K(BP〈n〉)→ K(E(n))

of nonconnective K-theory spectra.

Proof. Since the homotopy ring π∗BP〈n〉 ' Z(p)[v1, . . . , vn] is graded-commutative,
the multiplicative subset generated by vn trivially satisfies the right Ore condition. The
localization is nothing other than the Johnson–Wilson spectrum E(n), and the cofiber of
62pn−2BP〈n〉

vn
−→ BP〈n〉 is the spectrum BP〈n− 1〉, viewed as a right BP〈n〉-module.

The theorem follows now from Theorem 1.11. ut

The transfer map in the statement of the question is obtained by viewing BP〈n− 1〉 as a
perfect right BP〈n〉-module.

Lemma 6.3. There is a commutative diagram

K(A〈n− 1〉) // K(BP〈n〉) // K(E(n))

K(BP〈n− 1〉)

OO 77

where the diagonal arrow is the transfer map and the vertical map is induced from the
algebra map BP〈n− 1〉 → A〈n− 1〉.
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Proof. There is a commutative diagram

ModA〈n−1〉 // ModBP〈n〉

ModBP〈n−1〉

OO 88

Here the horizontal arrow is the fully faithful functor arising from the equivalence of
vn-nilpotent BP〈n〉-modules and right A〈n− 1〉-modules, the diagonal arrow is the for-
getful functor along the map of E1-rings BP〈n〉 → BP〈n− 1〉, and the vertical map is
induced since the diagonal map lands in the subcategory of vn-nilpotent BP〈n〉-modules.
All three functors preserve compact objects, and the maps in K-theory in the statement of
the lemma are those induced by these three functors. ut

The next result is a trivial consequence of the lemma, but the observation is at the heart of
our approach to the question of Rognes.

Lemma 6.4. Suppose that (3) is a fiber sequence of connective spectra. Then K(BP〈n−1〉)
→ K(A〈n− 1〉) is an equivalence.

By the theorem of Blumberg and Mandell [14], when n = 1 the question has a positive
answer, and hence the theorem applies. We state the analogous result for complexK-theory.
Let A = Endku(HZ). Then the methods above give a fiber sequence

K(A)→ K(ku)→ K(KU).

On the other hand, Blumberg and Mandell [14] showed that at the level of connective
K-theory, one has a fiber sequence

K(HZ)→ K(ku)→ K(KU)

of connective spectra. It follows that K(HZ)→ K(A) is an equivalence. In this case, A
has nonzero homotopy groups π0A ∼= Z and π−3A ∼= Z · ε−3.

It is not difficult using group completion techniques to show that when n > 1 the map

Ki(BP〈n− 1〉)→ Ki(τ≥0A〈n− 1〉)

is not an isomorphism for general i > 0. However, because it seems difficult to analyze
the map K(τ≥0A〈n− 1〉)→ K(A〈n− 1〉), this does not directly solve Rognes’ question.
The strategy of the main theorem will be to compute classes in the image of the trace map
to topological Hochschild homology in order to conclude that there are positive degree
classes in K(A〈n− 1〉) not in the image of K(BP〈n− 1〉)→ K(A〈n− 1〉). This of course
implies that the question of Rognes (including the p-complete versions) has a negative
answer for n > 1.

Now we come to the main theorem of the paper.

Theorem 6.5. The transfer map K(BP〈n− 1〉) → K(A〈n− 1〉) is not an equivalence
when n > 1. In particular, for n > 1,

K(BP〈n− 1〉)→ K(BP〈n〉)→ K(E(n))

is not a fiber sequence of connective spectra.
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Proof. In view of the commutative diagram

K(BP〈n− 1〉) //

��

HHHQ(BP〈n− 1〉Q)

��

K(A〈n− 1〉) // HHHQ(A〈n− 1〉Q)

this is an immediate consequence of the next lemma. ut

By Proposition 5.5, A〈n− 1〉Q admits the structure of an E∞-HQ-algebra. Since the
homotopy ring π∗A〈n− 1〉Q is a free graded-commutative Q-algebra, it follows that
A〈n− 1〉Q is equivalent to a free E∞-HQ-algebra, so that Corollary 2.3 applies and gives

HHHQ
∗ (A〈n− 1〉Q) ∼= Q[v1, . . . , vn−1, δ2−2pn ] ⊗3Q〈σ1, . . . , σn−1, ε1−2pn〉, (4)

where the degree of σi is 2pi − 1 and the degree of ε1−2pn is 1− 2pn.

Lemma 6.6. If x = v
a1
1 · · · v

an−1
n−1 ε1−2pn is a monomial in π∗A〈n− 1〉 of positive total

degree, i.e.,
∑n−1
i=1 ai(p

i
− 1) ≥ pn, then the class

v
a1
1 · · · v

an−1
n−1 δ2−2pn +

n−1∑
i=1

aiv
a1
1 · · · v

ai−1
i · · · v

an−1
n−1 σiε1−2pn

is in the image of the map K(A〈n− 1〉)→ HHHQ(A〈n− 1〉Q) and not in the image of
HHHQ(BP〈n− 1〉Q)→ HHHQ(A〈n− 1〉Q).

Proof. Consider the commutative diagram

6∞ BGL1(BP〈n− 1〉)+ //

��

K(BP〈n− 1〉) //

��

HHHQ(BP〈n− 1〉Q)

��

6∞ BGL1(A〈n− 1〉)+ // K(A〈n− 1〉) // HHHQ(A〈n− 1〉Q)

Using Corollary 2.3, we see that the right-hand vertical map is in fact an inclusion of
algebras

Q[v1, . . . , vn−1] ⊗3Q〈σ1, . . . , σn−1〉

→ Q[v1, . . . , vn−1, δ2−2pn ] ⊗3Q〈σ1, . . . , σn−1, ε1−2pn〉.

If x has positive degree d, let y denote the class associated to x in

πd+1 BGL1(A〈n− 1〉) ∼= πdA〈n− 1〉.

By Corollary 3.2, the class y maps via the trace map and rationalization to the nonzero
element

v
a1
1 · · · v

an−1
n−1 δ2−2pn +

n−1∑
i=1

aiv
a1
1 · · · v

ai−1
i · · · v

an−1
n−1 σiε1−2pn
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of HHHQ
d+1(A〈n− 1〉Q). Because of the monomials involving ε1−2pn and δ2−2pn , this class

is not in the image of HHHQ(BP〈n−1〉Q). Of course, since its image in HHHQ
d+1(A〈n−1〉Q)

is nonzero, the class y must map to a nonzero class in Kd+1(A〈n− 1〉). This class cannot
be in the image of K(BP〈n− 1〉)→ K(A〈n− 1〉). ut

The proof of the theorem requires both the negative degree class ε1−2pn and the positive
degree class v1 in the homotopy groups of A〈n− 1〉. When n = 0, 1, there is no v1, which
is why this method does not contradict the earlier theorems of Quillen and Blumberg–
Mandell.

Remark 6.7. Recent work of Blumberg and Mandell [15] provides a different approach
to the homotopy groups of K(S) in the spirit of the Ausoni–Rognes program, in which
analyzing the K-theory of E(n) is skipped in favor of looking at En directly. Blumberg and
Mandell prove as an extension of their earlier work in [14] that there is a fiber sequence

K(W[[u1, . . . , un−1]])→ K(BPn)→ K(En) (5)

of connective spectra for all n > 0, where BPn denotes the connective cover of En, W is
the p-typical Witt ring, and the ui are in degree 0. Note, however, that the Ausoni–Rognes
program in principle allows a computation of K(BP〈n〉), whereas K(BPn) is more difficult
to compute using their techniques.

In the end, the successful dévissage-type results of Quillen [31], Blumberg–Mandell [14,
15], and Barwick–Lawson [9] can all be expressed in terms of Barwick’s theorem of
the heart [6, Theorem 8.7]. For example, consider the E∞-ring spectrum ku and its
localization KU = ku[β−1

]. In the notation of Section 1.2, there is an exact sequence
ModNil(S),ω

ku → Modωku → ModωKU, where S = {1, β, β2, . . .}. The natural Postnikov
t-structure on Modku is not bounded, but it restricts to a bounded t-structure on ModNil(S),ω

ku
with heart the category of finitely generated abelian groups.

Barwick’s theorem of the heart says that the connective K-theory of a stable ∞-
category with a bounded t-structure is equivalent to the connective K-theory of the heart.
Thus, we obtain the fiber sequence K(Z) → K(ku) → K(KU) of connective spectra.
The same argument establishes the fiber sequences in (5). In fact, Barwick’s theorem was
recently extended in [4] to negative K-theory when the heart is noetherian. Thus, there are
fiber sequences

K(Z)→ K(ku)→ K(KU)

and

K(W[[u1, . . . , un−1]])→ K(BPn)→ K(En)

of nonconnective K-theory spectra. This amounts to proving that the negative K-theory of
KU and En vanish. On the other hand, the following problem is open.

Question 6.8. Do the negative K-groups of E(n) vanish for n ≥ 2?
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Since π0BP〈n〉 ∼= Z(p) is regular and noetherian, K−i(BP〈n〉) = 0 for i ≥ 1 by [12, Theo-
rem 9.53]. So, we may ask well as about the negative K-theory of A〈n− 1〉. The question
of Rognes can be viewed as asking for some structure on ModωA〈n−1〉 that generalizes
that of a t-structure, with generalized heart equivalent to ModωBP〈n−1〉, as well as for a
generalization of the theorem of the heart. The main theorem of this paper shows that this
is too much to hope for.
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Boston, MA, 247–435 (1990) Zbl 0731.14001 MR 1106918

[40] Waldhausen, F.: Algebraic K-theory of topological spaces. II. In: Algebraic Topology (Aarhus,
1978), Lecture Notes in Math. 763, Springer, Berlin, 356–394 (1979) Zbl 0431.57004
MR 0561230

[41] Weibel, C. A.: An Introduction to Homological Algebra. Cambridge Stud. Adv. Math. 38,
Cambridge Univ. Press, Cambridge (1994) Zbl 0834.18001 MR 1269324

[42] Weibel, C. A.: The K-book. Grad. Stud. Math. 145, Amer. Math. Soc., Providence, RI (2013)
Zbl 1273.19001 MR 3076731

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0924.55005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1641115
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0731.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1106918
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0431.57004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0561230
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0834.18001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1269324
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1273.19001&format=complete
http://www.ams.org/mathscinet-getitem?mr=3076731

	0. Introduction
	1. The K-theory fiber of a localization of rings
	2. Hochschild homology and trace
	3. Kähler differentials
	4. The truncated Brown–Peterson spectra as algebras
	5. Rational E_-structures
	6. Rognes' question
	References

