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Abstract. Several authors have conjectured that Conway’s field of surreal numbers, equipped with
the exponential function of Kruskal and Gonshor, can be described as a field of transseries and
admits a compatible differential structure of Hardy type. In this paper we give a complete posi-
tive solution to both problems. We also show that with this new differential structure, the surreal
numbers are Liouville closed, that is, the derivation is surjective.
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1. Introduction

Conway’s class “No” of surreal numbers is a remarkable mathematical structure intro-
duced in [Con76]. Besides being a universal domain for ordered fields (in the sense that
every ordered field whose domain is a set can be embedded in No), it admits an exponen-
tial function exp : No→ No [Gon86] and an interpretation of the real analytic functions
restricted to finite numbers [All87], making it, thanks to the results of [Res93, DMM94],
into a model of the theory of the field of real numbers endowed with the exponential
function and all the real analytic functions restricted to a compact box [DE01].

It has been suggested that No could be equipped with a derivation compatible with
exp and with its natural structure of generalized power series field. One would like such
a derivation to formally behave as the natural derivation on the germs at infinity of func-
tions f : R → R belonging to a “Hardy field” [Bou76, Ros83, Mil12]. This can be
given a precise meaning through the notion of H -field [AD02, AD05], a formal algebraic
counterpart of the notion of Hardy field.

A related conjecture is that No can be viewed as a universal domain for various gen-
eralized power series fields equipped with an exponential function, including Écalle’s
field of transseries [É92] (introduced in connection with Dulac’s problem) and its vari-
ants, such as the logarithmic-exponential series of L. van den Dries, A. Macintyre
and D. Marker [DMM97, DMM01], the exponential-logarithmic series of S. Kuhlmann
[Kuh00], and the transseries of J. van der Hoeven [Hoe97, Hoe06] and M. Schmel-
ing [Sch01]. Referring to logarithmic-exponential series, in [DE01] the authors say that
“There are also potential connections with the theory of surreal numbers of Conway and
Kruskal, and super exact asymptotics”. Some years later, a more precise formulation was
given in [Hoe06]: “We expect that it is actually possible to construct isomorphisms be-
tween the class of surreal numbers and the class of generalized transseries of the reals with
so called transfinite iterators of the exponential function and nested transseries. A start of
this project has been carried out in collaboration with my former student M. Schmeling
[Sch01]. If this project could be completed, this would lead to a remarkable correspon-
dence between growth-rate functions and numbers.” Further steps in this direction were
taken by S. Kuhlmann and M. Matusinski [KM11, KM12] leading to the explicit conjec-
ture that No is a field of “exponential-logarithmic transseries” [KM15, Conj. 5.2] and can
be equipped with a “Hardy-type series derivation” [Mat14, p. 368].
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In this paper we give a complete solution to the above problems, showing that the
surreal numbers have a natural transseries structure in the sense of [Sch01, Def. 2.2.1]
(although not in the sense of [KM15]) and finding a compatible Hardy-type derivation.

We expect that these results will lead to a considerable simplification of the treatment
of transseries (which will be investigated in a forthcoming paper) and thus provide a
valuable tool for the study of the asymptotic behavior of functions. In the light of the
model completeness conjectures of [ADH13], we also expect that No, equipped with
this new differential structure, is an elementary extension of the field of the logarithmic-
exponential series.

In order to describe the results in some detail, we recall that the surreal numbers
can be represented as binary sequences of transfinite ordinal length, so that one can en-
dow No with a natural tree-like well-founded partial order <s called the “simplicity re-
lation”. Another very useful representation describes surreal numbers as infinite sums∑
x∈No axω

x , where x 7→ ωx is Conway’s omega-function, ax ∈ R for all x, and the
support {ωx : ax 6= 0} is a reverse well-ordered set, that is, every non-empty subset has a
maximum. In other words, No coincides with the Hahn field R((ωNo)) with coefficients
in R and monomial group (ωNo, ·) (see Subsection 2.3). In particular, we have a well
defined notion of infinite “summable” families in No. In this paper we prove:

Theorem A (6.30). Conway’s field No of surreal numbers admits a derivation D :
No→ No satisfying the following properties:

(1) Leibniz’ rule: D(xy) = xD(y)+ yD(x);
(2) strong additivity: D

(∑
i∈I xi

)
=
∑
i∈I D(xi) if (xi : i ∈ I ) is summable;

(3) compatibility with exponentiation: D(exp(x)) = exp(x)D(x);
(4) constant field R: ker(D) = R;
(5) H -field: if x > N, then D(x) > 0.

We call any function D : No→ No satisfying properties (1)–(5) in Theorem A a surreal
derivation. We show in fact that there are several surreal derivations, among which a
“simplest” one ∂ : No → No. We prove that the simplest derivation ∂ has additional
good properties, such as ∂(ω) = 1 and the existence of anti-derivatives.

Theorem B (7.7). The field No of surreal numbers equipped with ∂ is a Liouville closed
H -field with small derivation in the sense of [AD02, p. 3], that is, ∂ is surjective and
sends infinitesimals to infinitesimals.

In the course of the proof, we also discover that No is a field of transseries as anticipated
in [Hoe06].

Theorem C (8.10). No is a field of transseries in the sense of [Sch01, Def. 2.2.1].

As an application of the above results, we observe that the existence of surreal derivations
yields an immediate proof that No satisfies the statement of Schanuel’s conjecture “mod-
ulo R”, thanks to Ax’s theorem [Ax71], similarly to what was observed in [KMS13] for
various fields of transseries (Corollary 6.34). Since No is a monster model of the theory
of Rexp, the same statement follows for every elementary extension of Rexp. It is actu-
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ally known that any model of the theory of Rexp satisfies an even stronger Schanuel type
statement “modulo dcl(∅)” (see [JW08] and [Kir10]).

The strategy to prove the existence of a surreal derivation D is the following. Let
J ⊂ No be the non-unital ring of purely infinite numbers, consisting of the surreal num-
bers

∑
x∈No axω

x having only infinite monomials ωx in their support (that is, x > 0
whenever ax 6= 0). It is known that

ωNo
= exp(J),

so we can write No = R((ωNo)) = R((exp(J))). In other words, every surreal number
can be written in the form

∑
γ∈J rγ exp(γ ). We baptize this “Ressayre form” in honor of

J.-P. Ressayre, who showed in [Res93] that every “real closed exponential field” admits a
similar representation. A surreal derivation must satisfy

D
(∑
γ∈J

rγ exp(γ )
)
=

∑
γ∈J

rγD(exp(γ )) =
∑
γ∈J

rγ exp(γ )D(γ ). (1.1)

By using the displayed equation, the problem of defining D is reduced to the problem of
defining D(γ ) for γ ∈ J.

The iteration of this procedure is not in itself sufficient to find a definition of D.
For instance, the above equation gives almost no information on the values of D on the
subclass L consisting of the log-atomic numbers, the elements λ ∈ No such that all the
iterated logarithms logn(λ) are of the form exp(γ ) for some γ ∈ J. Indeed, for λ ∈ L,
the above equation reduces merely to D(exp(λ)) = exp(λ)D(λ), and it is easy to see that
this condition is not sufficient for a map DL : L→ No to extend to a surreal derivation.

As pointed out in the work of S. Kuhlmann and M. Matusinski [KM11, KM15], the
class L of log-atomic numbers is crucial for defining a derivation, so we should first
give some details about the relationship between L and No. From the definition it is not
immediate that L is non-empty, but it can be shown that ω ∈ L, and more generally that
every “ε-number” (see [Gon86] for the definition) belongs to L. In fact, in [KM15] there
is an explicit parametrization of a class of log-atomic numbers, properly including the
ε-numbers, called “κ-numbers”. In the same paper it is conjectured that the κ-numbers
generate L under application of log and exp. However, we will show that the class L
is even larger (Proposition 5.24) and we shall provide an explicit parametrization of the
whole of L (Corollary 5.17). It turns out that log-atomic numbers can be seen as the
natural representatives of certain equivalence classes (Definition 5.2) which are similar to
but finer than those in [KM15], and correspond exactly to the “levels” of a Hardy field
[Ros87, MM97], except that in our case there are uncountably many levels (actually a
proper class of them).

Once L is understood, consider the smallest subfield R〈〈L〉〉 of No containing R ∪ L
and closed under taking exp, log and infinite sums. We shall see that R〈〈L〉〉 is the
largest subfield of No satisfying axiom ELT4 of [KM15, Def. 5.1] (Proposition 8.6),
which was there proposed as part of a general notion of transseries (and is satisfied by
the logarithmic-exponential series of [DMM97] and the exponential-logarithmic series
of [Kuh00]). Clearly, any derivation on R〈〈L〉〉 satisfying (1)–(5) (as in Theorem A) is
uniquely determined by its restriction to L. A natural question is now whether R〈〈L〉〉
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= No. This is equivalent to the first part of Conjecture 5.2 in [KM15]. However, we
shall prove that axiom ELT4 fails in the surreal numbers, and therefore the inclusion
R〈〈L〉〉 ⊆ No is strict (Theorem 8.7).

Despite the fact that L does not generate No under exp, log and infinite sums, a funda-
mental issue in our construction is understanding how a surreal derivation should behave
on L. One can verify that if a map DL : L → No extends to a surreal derivation, then
necessarily DL(λ) > 0 for all λ ∈ L, and moreover

|log(DL(λ))− log(DL(µ))| <
1
n
|λ− µ| (1.2)

for all λ,µ ∈ L and all n ∈ N. This inequality plays a crucial role in this paper, and
it can be proved to hold for the natural derivation on any Hardy field closed under log,
provided λ, µ and |λ− µ| are positive infinite.

We start our construction by defining a “pre-derivation” DL : L → No>0 satisfying
(1.2) and DL(exp(λ)) = exp(λ)DL(λ) for all λ ∈ L. It turns out that the simplest pre-
derivation, which we call ∂L : L→ No>0, can be calculated by a rather explicit formula.
For this, we need a bit of notation involving a subclass of the κ-numbers of [KM15]. For
α ∈ On (where On is the class of all ordinal numbers) define inductively κ−α ∈ No as
the simplest positive infinite surreal number less than logn(κ−β) for all n ∈ N and β < α.
With this notation we have (see Definition 6.7)

∂L(λ) = exp
(
−

∑
∃n: expn(κ−α)>λ

∞∑
i=1

logi(κ−α)+
∞∑
i=1

logi(λ)
)

where α ranges over On. (For the sake of exposition, we shall use the above formula as
definition of ∂L, and only at the end of the paper shall we prove that it is the simplest
pre-derivation; see Theorem 9.6.)

Once ∂L : L → No>0 is given, we can use (1.1) to give a tentative definition of
a surreal derivation ∂ : No → No extending ∂L. We adopt the same formalism used
by Schmeling [Sch01]. First of all, we recall Schmeling’s notion of “path” . Given x =∑
γ∈J rγ exp(γ ) ∈ No, a path of x is a function P : N→ No such that
• P(0) is a term of x, that is, P(0) = rγ exp(γ ) for some rγ 6= 0;
• if P(n) = r exp(η), then P(n+ 1) is a term of η.
For the moment, we restrict our attention to R〈〈L〉〉. As we already mentioned, R〈〈L〉〉
satisfies axiom ELT4 of [KM15], which can be paraphrased as saying that for all x in
R〈〈L〉〉, every path P of x enters L, that is, there is n = nP ∈ N such that P(n) ∈ L.
Let P(x) be the set of all paths of x. Iterating (1.1), we immediately see that our desired
surreal derivation ∂ extending ∂L must satisfy

∂(x) =
∑

P∈P(x)

∏
i<nP

P(i) · ∂L(P (nP )), (1.3)

provided the terms on the right-hand side are “summable” in the sense of the Hahn field
structure of No.

Guided by this observation, we use the right-hand side of (1.3) as the definition of
∂(x) for x ∈ R〈〈L〉〉. For general x ∈ No, we define ∂(x) using the same equation, but
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discarding the paths P of x that never enter L. Our problem is now reduced to showing
that the above sum is indeed summable, so that ∂(x) is well defined.

A formally similar problem was tackled by Schmeling [Sch01] in order to extend
derivations on transseries fields to their exponential extensions. For our problem, we use
some of his techniques, even though our starting function ∂L is not a derivation, and No
cannot be seen as an exponential extension. Most importantly, however, we need to verify
that No is a field of transseries.

The key step is proving the existence of a suitable ordinal valued function NR :
No → On, which we call “nested truncation rank” (Theorem 4.26, Definition 4.27).
Using the inequality (1.2) and the fact that the values of ∂L are monomials, we are able
to prove by induction on the rank that the terms in (1.3) are summable, and therefore ∂ is
well defined. It is then easy to prove that ∂ is also a surreal derivation, proving Theorem A.
Theorem C also follows easily from the existence of the rank.

The study of the rank requires an in-depth investigation of the behavior of exp with
respect to the simplicity relation <s ; this is non-trivial, as in general it is not true that if
x is simpler than y, then exp(x) is simpler than exp(y) (e.g., ω is simpler than log(ω),
but exp(ω) is not simpler than exp(log(ω)) = ω). To carry out this analysis, we provide
a short characterization of exp which may be of independent interest (Theorem 3.8), and
prove that surreal numbers simplify under some natural operations that we call “nested
truncations” (see Definition 4.3 and Theorem 4.26). For instance, the classical truncation
of a series to one of its initial segments is a special case of nested truncation. Moreover, if
γ is a nested truncation of some δ ∈ J, then exp(γ ) is also a nested truncation of exp(δ).

Since simplicity is well-founded, nested truncations are well-founded as well. We then
define the rank NR : No→ On as the foundation rank of nested truncations (Definition
4.27). Thus in particular the rank strictly decreases under non-trivial nested truncations.
The properties of the rank are crucial to showing that ∂ is well defined. For instance, the
numbers of rank 0 are exactly the elements of ±L±1

∪ R (Corollary 5.10), on which ∂
can be easily calculated using ∂L. On the other hand, if γ ∈ J, then γ and exp(γ ) have
the same rank (Proposition 4.28).

The existence of the rank NR is essentially equivalent to the fact that No has a suitable
structure of field of transseries as was variously conjectured, so it is worth discussing
the critical axioms in some detail. We have already commented on the fact that R〈〈L〉〉
is the largest subfield of No satisfying axiom ELT4 of [KM15], but that unfortunately
R〈〈L〉〉 ( No. On the other hand, No satisfies a similar but weaker axiom named “T4”
in [Sch01], where it is given as part of an axiomatization of a more general notion of
transseries inspired by the nested expressions of [Hoe97]. In the context of the surreal
numbers, T4 reads as follows:

T4. For all sequences of monomials mi ∈ exp(J), with i ∈ N, such that

mi = exp(γi+1 + ri+1mi+1 + δi+1)

where ri+1 ∈ R∗, γi+1, δi+1 ∈ J, and S(γi+1) > S(ri+1mi+1) > S(δi+1) (where
S denotes support), there exists k ∈ N such that ri+1 = ±1 and δi+1 = 0 for all
i ≥ k.



Surreal numbers, derivations and transseries 345

Note that the sequence P(n) := rnmn (with r0 := 1) is a path of m0, according to the
definition given above. The condition δi+1 = 0 states that a path must stop bifurcating on
the “right” from a certain point on. (The aforementioned axiom ELT4 further prescribes
that γi+1 = 0, in which case the path eventually stops bifurcating on both sides, and
therefore enters L.) An immediate consequence of the existence of the rank NR is that T4
holds in the surreal numbers, from which Theorem C follows.

The proof of Theorem B, that ∂ is surjective, is based on other techniques, and it relies
on some further properties of the function ∂ . Indeed, to prove Theorem B we first verify
that ∂ satisfies the hypothesis of a theorem of Rosenlicht [Ros83], so that we may establish
the existence of asymptotic integrals (Proposition 7.4), and then we iterate asymptotic
integration transfinitely many times and prove, using a version of Fodor’s lemma, that the
procedure eventually yields an integral. We shall also give an example of a rather natural
surreal derivation that is not surjective (see Definition 6.6).

2. Surreal numbers

We assume some familiarity with the ordered field of surreal numbers [Con76, Gon86],
which we denote by No. In this section we give a brief presentation of the basic definitions
and results, and we fix the notation that will be used in the rest of the paper.

2.1. Order and simplicity

The usual definition of the class No of surreal numbers is by transfinite recursion, as in
[Con76]. However, it is also possible to give a more concrete equivalent definition, as in
[Gon86].

The domain of No is the class No = 2<On of all binary sequences of some ordinal
length α ∈ On, that is, functions of the form s : α→ 2 = {0, 1} (Gonshor writes “−,+”
instead of “0, 1”). The length (also called birthday) of a surreal number s is the ordinal
number α = dom(s). Note that No is not a set but a proper class, and all the relations
and functions we shall define on No are going to be class-relations and class-functions,
usually constructed by transfinite induction.

We say that x ∈ No is simpler than y ∈ No if x ⊆ y, i.e., if x is an initial segment
of y as a binary sequence; we shall then write x ≤s y. We say that x is strictly simpler
than y, written x <s y, if x ≤s y and x 6= y. Note that≤s is well-founded, and the empty
sequence, which will play the role of the number zero, is simpler than any other surreal
number. Moreover, the simplicity relation is a binary tree-like partial order on No, with
the immediate successors of a node x ∈ No being the sequences xa0 and xa1 obtained
by appending 0 or 1 at the end of the binary sequence x.

We can introduce a total order < on No in the following way. Writing xay for the
concatenation of binary sequences, we stipulate that xa0 < x < xa1 and more generally
xa0au < x < xa1av for every u, v. This defines a total order on No which coincides
with the lexicographic order on sequences of the same length.
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We say that a subclass C of No is convex if whenever x < y are in C, every surreal
number z such that x < z < y is also in C. It is easy to see that every non-empty convex
class contains a simplest number (given by the intersection

⋂
C).

Given two sets A,B ⊆ No with A < B (meaning that a < b for all a ∈ A and
b ∈ B), the class

(A;B) := {y ∈ No : A < y < B}

is non-empty and convex, and therefore it contains a simplest number x which is denoted
by

x = A | B.

Such a formula is called a representation of x, and we call (A;B) the associated convex
class.

Every surreal number x has several different representations x = A | B = A′ | B ′.
For instance, if A is cofinal with A′ and B is coinitial with B ′, then clearly (A;B) =
(A′;B ′). In this situation, we shall say that A | B = A′ | B ′ by cofinality. On the other
hand, it may well happen that A | B = A′ | B ′ even if A is not cofinal with A′ or B is not
coinitial with B ′, because two distinct convex classes may still have the same simplest
number in common. The canonical representation x = A | B is the unique one such that
A ∪ B is exactly the set of all surreal numbers strictly simpler than x.

Remark 2.1. By definition, if x = A | B and A < y < B, then x ≤s y.

However, it does not follow from x = A | B and x ≤s y that A < y < B.

Definition 2.2. We call a representation x = A | B simple if x ≤s y impliesA < y < B.

In other words, a representation is simple when the associated convex class (A;B) is as
large as possible. An example of a simple representation is the canonical one. In fact, we
have the following.

Proposition 2.3. Let c, x, y ∈ No. We have:

(1) if c <s x ≤s y, then c < x if and only if c < y;
(2) if x = A | B and A ∪ B contains only numbers strictly simpler than x, then A | B

is simple; in particular, every surreal number admits a simple representation ( for
instance the canonical one).

Proof. Point (1) follows at once from the definition of <. For (2), let x = A | B be as
in the hypothesis and let c ∈ A ∪ B. We have c <s x. If we now assume x ≤s y, then,
by (1), c < x ⇔ c < y. Since c ∈ A ∪ B was arbitrary, we obtain A < y < B, and
therefore A | B is simple. ut

2.2. Field operations

We can define ring operations +, · on No by induction on simplicity as follows:

x + y := {x′ + y, x + y′} | {x′′ + y, x + y′′}
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where x′ ranges over the numbers simpler than x such that x′ < x, and x′′ ranges over
the numbers simpler than x such that x < x′′; in other words, x = {x′} | {x′′} and
y = {y′} | {y′′} are the canonical representations of x and y respectively.

The definition of product is slightly more complicated:

xy := {x′y + xy′ − x′y′, x′′y + xy′′ − x′′y′′} | {x′y + xy′′ − x′y′′, x′′y + xy′ − x′′y′}.

The first expression in the left bracket ensures x′y + xy′ − x′y′ < xy, that is,
(x − x′)(y − y′) > 0. The mnemonic rule for the other expressions can be obtained
in a similar way.

Remark 2.4. The definitions of sum and product are uniform in the sense of [Gon86,
p. 15], that is, the equations that define x + y and xy continue to hold if we choose
arbitrary representations x = A | B and y = C | D (not necessarily the canonical ones)
and we let x′, x′′, y′, y′′ range over A,B,C,D respectively.

It is well known that these operations, together with the order, make No into an ordered
field, which is in fact a real closed field [Gon86, Thm. 5.10]. In particular, we have a
unique embedding of the rational numbers in No, so we can identify Q with a subfield
of No. The subgroup of dyadic rationals m/2n ∈ Q, with m, n ∈ N, correspond exactly
to the surreal numbers s : k→ {0, 1} of finite ordinal length k ∈ N.

The real numbers R can be isomorphically identified with a subfield of No by sending
z ∈ R to the number A | B where A ⊆ No is the set of rationals < z, and B ⊆ No is the
set of rationals > z. This turns out to be a homomorphism, and therefore it agrees with
the previous definition for z ∈ Q. We may thus write Q ⊂ R ⊂ No. By [Gon86, p. 33],
the length of a real number is at most ω (the least infinite ordinal). There are however
surreal numbers of length ω which are not real numbers.

The ordinal numbers can be identified with a subclass of No by sending the ordinal α
to the sequence s : α → {0, 1} with constant value 1. Under this identification, the ring
operations of No, when restricted to the ordinals On ⊂ No, coincide with the Hessenberg
sum and product of ordinal numbers. On the other hand, the sequence s : α → {0, 1}
with constant value 0 corresponds to the additive inverse of the ordinal α, that is, −α. We
remark that x ∈ On if and only if x admits a representation of the form x = A | B with B
empty, and similarly x ∈ −On if and only if we can write x = A | B with A empty.
Under the above identification of Q as a subfield of No, the natural numbers N ⊆ Q are
exactly the finite ordinals.

2.3. Hahn fields

Let 0 be an ordered abelian group, written multiplicatively. We recall the definition of the
Hahn field R((0)) with coefficients in R and “monomials” in 0. The domain of R((0))
consists of all the functions f : 0 → R whose support S(f ) := {m ∈ 0 : f (m) 6= 0} is
a reverse well-ordered subset of 0, that is, every non-empty subset of 0 has a maximum
(when 0 is a proper class, we still require that S(f ) be a set). For each f which is not
identically 0, S(f ) has a maximum element m; if f (m) > 0, we say that f is positive.
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For later reference, given m ∈M, the truncation of f at m is the function f |m :M→ R
which coincides with f on arguments > m and is zero on arguments ≤ m.

The sum of two elements f, g ∈ R((0)) is defined as

(f + g)(m) := f (m)+ g(m),

and their product is given by

(f · g)(m) :=
∑

n+o=m

f (n)g(o).

Since the supports are reverse well-ordered, only finitely many terms of the latter sum
can be non-zero, hence the product is well defined. These operations make R((0)) into
an ordered field (which is real closed when 0 is divisible).

It is well known that No can be endowed with a Hahn field structure. Towards this
goal, recall that two non-zero surreal numbers x, y ∈ No∗ are in the same archimedean
class if each of them is bounded in modulus by an integer multiple of the other: |x| ≤ k|y|
and |y| ≤ k|x| for some k ∈ N.

A positive surreal number x ∈ No∗ is called a monomial if it is the simplest positive
element in its archimedean class. The class M ⊂ No∗ of all monomials is a group under
multiplication (see Fact 2.17). A term is a non-zero real number r ∈ R∗ multiplied by a
monomial; we denote by R∗M the class of all terms.

One of Conway’s remarkable insights is that we can identify No with R((M)) in the
following way. Given f ∈ R((M)), write fm for the real number f (m). Note that fmm =
f (m)m ∈ RM is a well defined element of No. We define the map

∑
: R((M))→ No

by induction on the order type of the support.

Definition 2.5. Let f ∈ R((M)).

(1) If the support of f is empty, we define
∑
f := 0 ∈ No.

(2) If the support of f contains a smallest monomial n, we define∑
f :=

∑
f |n+ fnn.

(3) If the support of f is non-empty and has no smallest monomial, we define∑
f :=

{∑
f |m+ q ′m

} ∣∣∣ {∑ f |m+ q ′′m
}

where m varies in S(f ) and q ′, q ′′ vary among the rational numbers such that q ′ <
fm < q ′′.

We remark that in (3), for
∑
f to be well defined, one needs to show by a simultaneous

induction that each number on the left-hand side is smaller than each number on the
right-hand side (see [Gon86, p. 59] for a detailed argument).

By [Gon86, Lemma 5.3], if S(f ) contains a smallest element m, then
∑
f =∑

f |m + fmm can be characterized as the simplest surreal number such that, for every
q ′, q ′′ ∈ Q with q ′ < fm < q ′′, we have

∑
f |m+ q ′m <

∑
f <

∑
f |m+ q ′′m. It then

follows that the three cases in Definition 2.5 can be subsumed under a single equation, as
follows.
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Proposition 2.6. For every f ∈ R((M)) we have∑
f =

{∑
f |m+ q ′m

} ∣∣∣ {∑ f |m+ q ′′m
}

where m varies in S(f ) and q ′, q ′′ vary among the rational numbers such that q ′ <
fm < q ′′.

This also holds when S(f ) = ∅; indeed, in this case
∑
f is just the simplest surreal

numbers satisfying the empty set of inequalities, hence
∑
f = 0. We could in fact take

the above equation as the definition of
∑
f , but then it would be more difficult to verify

that
∑
(f + g) =

∑
f +

∑
g.

As a matter of notation, we write
∑

m∈M fmm for
∑
f , that is, we think of

∑
f as a

decreasing formal infinite sum of terms fmm with reverse well-ordered support. It turns
out that the map

∑
: R((M))→ No is an isomorphism of ordered fields (in particular it

is surjective), so we can identify f ∈ R((M)) with
∑
f =

∑
m fmm ∈ No and write

No = R((M)).

A short proof of surjectivity is in Conway’s book [Con76, pp. 32–33], which how-
ever should be integrated with some details that can be found in Gonshor (in particular
[Gon86, Lemmas 5.2 and 5.3]). We remark that Conway and Gonshor prove the result
in the opposite direction, by defining a map No → R((M)) which is the inverse of our∑
: R((M))→ No. For a full proof see [Gon86, Thm. 5.6].
Under the identification f =

∑
f we can drop the summation sign in Proposition

2.6. For instance, when f is a single monomial m, the equation reduces to

m = {q ′m} | {q ′′m}

where q ′, q ′′ range over the rational numbers with q ′ < 1 < q ′′.
The identification No = R((M))makes it possible to extend to No the various notions

that are given on Hahn fields:

Definition 2.7. Let x ∈ No and write x =
∑

m xmm.

• The support S(x) of x is the support of the corresponding element of R((M)), S(x) :=
{m ∈M : xm 6= 0}.
• The terms of x are the numbers in the set {xmm : xm 6= 0} ⊂ R∗M.
• The coefficient of m in x is xm.
• The leading monomial of x is the maximal monomial in S(x).
• The leading term of x is the leading monomial multiplied by its coefficient.
• Given n ∈M, the truncation of x at n is the number x|n :=

∑
m>n xmm. If y ∈ No is

a truncation of x, we write y E x, and y C x if moreover x 6= y.

The relation E is clearly a partial order with a tree-like structure, and it is actually a
weakening of the simplicity relation.

Proposition 2.8. If x E y, then x ≤s y.
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In [Gon86, Thm. 5.12] this statement is obtained as a corollary of an explicit calculation
of the binary sequence corresponding to an infinite sum, but it can also be immediately
deduced from Proposition 2.6. We include the proof to illustrate the method, as it will be
applied again.

Proof of Proposition 2.8. Given x ∈ No, by Proposition 2.6 we can write x = A | B

where
A = {x|n+ q ′n}, B = {x|n+ q ′′n}

with n varying in S(x), and q ′, q ′′ varying among the rational numbers such that q ′ <
xn < q ′′. Similarly, y = A′ | B ′ where

A′ = {y|n+ q ′n}, B ′ = {y|n+ q ′′n}

with n ∈ S(y) and q ′ < yn < q ′′ . Since x E y we have S(x) ⊆ S(y), and for every
n ∈ S(x) we have x|n = y|n and xn = yn. It follows that A ⊆ A′ and B ⊆ B ′, hence
x ≤s y. ut

2.4. Summability

The identification No = R((M)) makes it possible to extend to No the notion of infinite
sum.

Definition 2.9. Let I be a set and (xi : i ∈ I ) be an indexed family of surreal numbers.
We say that (xi : i ∈ I ) is summable if

⋃
i S(xi) is reverse well-ordered and if for each

m ∈
⋃
i S(xi) there are only finitely many i ∈ I such that m ∈ S(xi).

When (xi : i ∈ I ) is summable, we define its sum y :=
∑
i∈I xi as the unique surreal

number such that S(y) ⊆
⋃
i S(xi) and, for every m ∈M,

ym =
(∑
i∈I

xi

)
m
=

∑
i∈I

(xi)m.

By assumption, for each m there are finitely many i such that (xi)m 6= 0, so that each ym
is a well defined real number.

The result agrees with our previous definitions: if x ∈ No, then the family (xmm :
m ∈ S(x)) is obviously summable, and its sum

∑
m xmm in the sense just defined is

exactly x.

Remark 2.10. The following criterion of summability follows at once from the defini-
tion: (xi : i ∈ I ) is summable if and only if there are no injective sequences n 7→ in ∈ I

and monomials mn ∈ S(xin) such that mn ≤ mn+1 for every n ∈ N.

Remark 2.11. It can be verified that infinite sums are infinitely associative and distribu-
tive over products; see [Gon86] for the details.

Definition 2.12. A function F : No→ No is strongly linear if for all x =
∑

m xmm we
have F(x) =

∑
m xmF(m) (in particular, (xmF(m) : m ∈M) is summable).
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Proposition 2.13. If F : No→ No is strongly linear, then for any summable (xi : i ∈ I )
the family (F (xi) : i ∈ I ) is summable and

F
(∑
i∈I

xi

)
=

∑
i∈I

F(xi).

Proof. We have

F
(∑
i∈I

xi

)
= F

( ∑
m∈M

(∑
i∈I

xi

)
m
m
)
=

∑
m∈M

∑
i∈I

(xi)mF(m) =
∑
i∈I

F(xi). ut

2.5. Purely infinite numbers

We use Hardy’s notation “�” for the dominance relation.

Definition 2.14. Given x, y ∈ No we write:

• x � y if |x| ≤ k|y| for some k ∈ N;
• x ≺ y if |x| < k−1

|y| for all positive k ∈ N;
• x � y if k−1

|y| ≤ |x| ≤ k|y| for some positive k ∈ N;
• x ∼ y if x − y ≺ x (equivalently |1− y/x| ≺ 1 when x 6= 0).

We say that x ∈ No is finite if x � 1. We say that x is infinitesimal if x ≺ 1. We shall
denote the class of all infinitesimal numbers by o(1). In general, we denote by o(x) the
class of all y ∈ No such that y/x is infinitesimal, that is, y ≺ x. Note that x � y if and
only if x and y are in the same archimedean class.

We say that x ∈ No is purely infinite if all the monomials m ∈ M in its support are
infinite (or equivalently S(x) > 1). The non-unital ring of purely infinite numbers of No
will be denoted by J. We have a direct sum decomposition

No = J+ R+ o(1)

as a real vector space.
The surreal integers are the numbers in J+Z. They coincide with Conway’s “omnific

integers”, the numbers x such that x = {x − 1} | {x + 1}.

2.6. The omega-map

Another remarkable feature of surreal numbers is that the class M of monomials can be
parametrized in a rather canonical way by the surreal numbers themselves.

Definition 2.15 ([Con76, p. 31]). Given x ∈ No, we let

ωx := {0, kωx
′

} | {2−kωx
′′

}

where k ranges over the natural numbers, x′ ranges over the surreal numbers such that
x′ <s x and x′ < x, and x′′ over the surreal numbers such that x′′ <s x and x < x′′.
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As in the case of the ring operations, the above definition is uniform: if x = A | B is
any representation of x, the equation in the definition of ωx remains true if we let x′, x′′

range over A,B respectively. The following remark follows at once from the fact that for
x ≤s y the convex class associated to the above representation of ωx includes the convex
class associated to the corresponding representation of ωy .

Remark 2.16. If x ≤s y, then ωx ≤s ωy .

Fact 2.17 ([Con76, Thms. 19 and 20], [Gon86, Thms. 5.3 and 5.4]). The map x 7→ ωx

is an isomorphism from (No,+, <) to (M, ·, <). In particular, ωx is the simplest positive
representative of its archimedean class, ω0

= 1 and ωx+y = ωx · ωy .

From the equalities No = R((M)) and M = ωNo we obtain

No = R((ωNo)),

so every surreal number x can be written uniquely in the form

x =
∑
y∈No

ayω
y

where ay ∈ R and ay 6= 0 if and only if ωy is in the support of x. This representation
is called the normal form of x and it coincides with Cantor’s normal form when x ∈
On ⊂ No.

3. Exponentiation

3.1. Gonshor’s exponentiation

The surreal numbers admit a well behaved exponential function defined as follows.

Definition 3.1 ([Gon86, p. 145]). Let x = {x′} | {x′′} be the canonical representation
of x. We define inductively

exp(x) := {0, exp(x′) · [x − x′]n, exp(x′′)[x − x′′]2n+1} |

{
exp(x′′)
[x′′ − x]n

,
exp(x′)
[x′ − x]2n+1

}
where n ranges over N and

[x]n = 1+
x

1!
+ · · · +

xn

n!
,

with the further convention that the expressions containing terms of the form [y]2n+1 are
to be considered only when [y]2n+1 > 0.

It can be shown that the exponential function is a surjective homomorphism exp :
(No,+)→ (No>0, ·) which extends exp on R and makes (No,+, ·, exp) into an elemen-
tary extension of (R,+, ·, exp) (see [DMM94, Cors. 2.11, 4.6], [DE01] and [Res93]).

We recall here a list of properties that were proved in [Gon86]. We shall use them to
give an alternative characterization of exp.
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Fact 3.2. The function exp has the following properties:

• Definition 3.1 is uniform [Gon86, Cor. 10.1].
• The restriction of exp to R ⊆ No is the real exponential function [Gon86, Thm. 10.2].
• If ε ≺ 1, then the sequence (εn/n! : n ∈ N) is summable and exp(ε) =

∑
n ε

n/n!

[Gon86, Thm. 10.3].
• The function exp is an isomorphism from (No,+, <) to (No>0, ·, <). In particular,

exp(0) = 1 and exp(x + y) = exp(x) · exp(y) for every x, y ∈ No [Gon86, Cor. 10.1].
• If x > 0, then exp(ωx) = ωω

g(x)
, where g : No>0

→ No is defined by

g(x) := {c(x), g(x′)} | {g(x′′)},

and c(x) is the unique number such that ωc(x) and x are in the same archimedean class
[Gon86, Thm. 10.11].
• If x =

∑
y ayω

y is purely infinite, then [Gon86, Thm. 10.13]

exp
(∑
y

ayω
y
)
= ω

∑
y ayω

g(y)

.

Definition 3.3. Let log : No>0
→ No (called logarithm) be the inverse of exp. We also

let expn and logn be the n-fold iterated compositions of exp and log with themselves.

Remark 3.4. One can easily verify that if ε ≺ 1 we must have

log(1+ ε) =
∞∑
n=1

(−1)n−1 ε
n

n
.

We shall make repeated use of the fact that exp grows faster than any polynomial. In
particular we have:

Remark 3.5. If x > N, then exp(x) � xn for every n ∈ N.

3.2. Ressayre form

By [Gon86, Thms. 10.8, 10.9], the monomials are the image under exp of the purely
infinite surreal numbers:

exp(J) =M = ωNo.

Since No = R((M)) = R((ωNo)), it follows that No = R((exp(J))) as well, so every
surreal number x ∈ No can be written uniquely in the form

x =
∑
γ∈J

rγ exp(γ )

where rγ 6= 0 if and only if exp(γ ) ∈ S(x). We call this the Ressayre form of x ∈ No. We
stress that, unlike the case of the normal form x =

∑
y∈No ayω

y , the summation is over
elements of J.
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Definition 3.6. Given a non-zero number x =
∑
γ∈J rγ exp(γ ) we define `(x) ∈ J as

the maximal γ such that rγ 6= 0, or in other words, as the logarithm γ of the largest
monomial m = exp(γ ) in its support.

It is easy to verify that ` : No∗→ J satisfies:

• `(x + y) ≤ max{`(x), `(y)}, with equality if `(x) 6= `(y);
• `(xy) = `(x)+ `(y).

This makes −` into a Krull valuation. We call `(x) the `-value of x.

Remark 3.7. Given x, y ∈ No∗ we have:

• x � y if and only if `(x) ≤ `(y);
• x ≺ y if and only if `(x) < `(y);
• x � y if and only if `(x) = `(y);
• x ∼ y if and only if `(x − y) < `(x).

In particular, if x � 1, then `(x) > 0, hence `(x) � 1. We also observe that if x 6� 1,
then `(x) ∼ log(x).

3.3. A characterization of exp

In order to understand the interaction between exp and the simplicity relation<s , we first
give a rather short characterization of exp. We start with Gonshor’s description in Fact
3.2 and we further simplify it by dropping any references to the omega-map or to the
function g.

Theorem 3.8. The function exp : No → No is uniquely determined by the following
properties:

(1) if m ∈M>1 is an infinite monomial, then

exp(m) = {mk, exp(m′)k} | {exp(m′′)1/k}

where k ranges over the positive integers and m′,m′′ range over the set of monomials
simpler than m and such that respectively m′ < m and m < m′′;

(2) if γ =
∑

m∈M γmm ∈ J is a purely infinite surreal number, then

exp(γ ) = {0, exp(γ |m) exp(m)q
′

} | {exp(γ |m) exp(m)q
′′

}

where m ranges over S(γ ) and q ′, q ′′ range over the rational numbers such that
q ′ < γm < q ′′;

(3) if x = γ + r + ε, where γ ∈ J, r ∈ R and ε ∈ o(1), then

exp(γ + r + ε) = exp(γ ) · exp(r) ·
( ∞∑
n=0

εn

n!

)
where exp(r) is the value of the real exponential function at r .
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Point (1) is the minimum requirement that ensures that exp�M>1 is increasing and grows
faster than any power function. Point (2) shows that for γ ∈ J, exp(γ ) is the simplest
element satisfying some natural inequalities determined by the values of exp on the trun-
cations of γ . Point (3) just says that the behavior on the finite numbers is the one given
by the classical Taylor expansion of exp.
Proof of Theorem 3.8. (1) Let x ∈ No>0 be such that m = ωx . By Fact 3.2 we have
exp(m) = exp(ωx) = ωω

g(x)
. Since y = g(x) = {c(x), g(x′)} | {g(x′′)}, we have

ωg(x) = {0, kωc(x), kωg(x
′)
} | {k−1ωg(x

′′)
}

where k ranges over N∗. Computing ωy with y = ωg(x) we obtain

ωω
g(x)

= {0, jω0, jωkω
c(x)

, jωkω
g(x′)

} | {j−1ωk
−1ωg(x

′′)

}

where j and k range over N∗.
By cofinality, since k varies over the positive integers, we can drop the coefficients

j , j−1 and the first two expressions; moreover, {kωc(x) : k ∈ N∗} is cofinal with {kx :
k ∈ N∗}. We deduce that

ωω
g(x)

= {ωkx, ωkω
g(x′)

} | {ωk
−1ωg(x

′′)

}.

Now, recalling that ωky = (ωy)k and ωω
g(y)
= exp(ωy), we get

exp(m) = ωω
g(x)

= {mk, exp(ωx
′

)k} | {exp(ωx
′′

)1/k}.

Finally, by Remark 2.16, we note that the monomials m′,m′′ simpler than m with
m′ < m, m < m′′ are exactly those of the form ωx

′

, ωx
′′

with x′, x′′ simpler than x and
such that respectively x′ < x and x < x′′, and we are done.

(2) Given a purely infinite surreal number γ =
∑

m∈M γmm =
∑
y∈No ayω

y , let
G(γ ) :=

∑
y ayω

g(y). By Fact 3.2, we have exp(γ ) = ωG(γ ). It is immediate to see that
G is strictly increasing, strongly linear, surjective, and sends monomials to monomials.
In particular, for all n ∈M, G(γ )|n = G(γ |m) where m = G−1(n). By Proposition 2.6,

G(γ ) = {G(γ )|G(m)+ q ′G(m)} | {G(γ )|G(m)+ q ′′G(m)}

where m ranges over S(γ ) and q ′, q ′′ range over the rational numbers such that q ′ <
γm < q ′′.

By definition of ωy , setting y = G(γ ), we obtain

ωG(γ ) = {0, kωG(γ )|G(m)+q
′G(m)
} | {k−1ωG(γ )|G(m)+q

′′G(m)
}

with k ranging over N∗ and m, q ′, q ′′ as above. By cofinality, we can drop k:

ωG(γ ) = {0, ωG(γ )|G(m)+q
′G(m)
} | {ωG(γ )|G(m)+q

′′G(m)
}.

Since ωG(γ )|G(m)+qG(m) = ωG(γ |m)(ωG(m))q = exp(γ |m) exp(m)q , we get

exp(γ ) = ωG(γ ) = {0, exp(γ |n) exp(m)q
′

} | {exp(γ |m) exp(m)q
′′

},

as desired.
Part (3) follows easily from Fact 3.2. ut
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4. Nested truncations

Unlike the omega-map, the function exp is not monotone with respect to simplicity, as
x ≤s y does not always imply exp(x) ≤s exp(y); for instance, ω <s log(ω) while
exp(log(ω)) = ω <s exp(ω). However, under some additional assumptions exp does pre-
serve simplicity. For example, exp preserves simplicity if we know that x is a truncation
of y (this is well known, although it seems to have never been stated in this form).

Proposition 4.1. Let γ, δ ∈ J. If γ E δ, then exp(γ ) ≤s exp(δ).

Proof. The argument is similar to the one for Proposition 2.8, so we will be brief. As in
Theorem 3.8(2), we can write exp(γ ) = A | B where

A = {0, exp(γ |m) exp(m)q
′

}, B = {exp(γ |m) exp(m)q
′′

},

with m ∈ S(γ ) and q ′ < γm < q ′′. Similarly, exp(δ) = A′ | B ′ where

A′ = {0, exp(δ|m) exp(m)q
′

}, B ′ = {exp(δ|m) exp(m)q
′′

},

with m ∈ S(δ) and q ′ < δm < q ′′. Since γ E δ, we have A ⊆ A′ and B ⊆ B ′, and
therefore exp(γ ) ≤s exp(δ), as desired. ut

The above proposition is far from being sufficient for our purposes. For instance, since
exp(γ ) 6E exp(δ) for γ 6= δ in J, we cannot iterate it to compare exp(exp(γ )) and
exp(exp(δ)). We remedy this by defining a more powerful notion of “nested truncation”.

Definition 4.2. We say that a sum x1 + · · · + xn of surreal numbers is in standard form
if S(x1) > · · · > S(xn).

Given x ∈ No∗, we let sign(x) := 1 if x > 0 and sign(x) := −1 if x < 0.

Definition 4.3. For n ∈ N, we define
−
Jn on No∗ inductively as follows:

• x
−
J0 y if x E y;

• x
−
Jn+1 y if there are γ

−
Jn δ in J∗, z,w ∈ No and r ∈ R∗ such that

x = z+ sign(r) exp(γ ), y = z+ r exp(δ)+ w,

where both sums are in standard form.

We say that x
−
J y, or that x is a nested truncation of y, if x

−
Jn y for some n ∈ N. We

write x J y if x
−
J y and x 6= y.

It is important to observe that
−
J is defined only for non-zero surreal numbers, so that

0 6
−
J x for every x. This ensures that if x

−
J δ for some δ ∈ J∗, then x ∈ J∗ (see

Proposition 4.12).

Remark 4.4. Even if z + r exp(δ) + w is in standard form, and γ
−
J δ, the sum z +

sign(r) exp(γ ) might not be in standard form, and therefore it might not be a nested
truncation of z+ r exp(δ)+ w.
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Remark 4.5. For all x, y ∈ No∗ and z ∈ No, if z + x and z + y are both in standard
form, then x

−
J y if and only if z+ x

−
J z+ y. However, the equivalence may not hold if

one of the sums is not in standard form.

Remark 4.6. For all x, y ∈ No∗, if x
−
J y, then x > 0 if and only if y > 0. Moreover,

x
−
J y if and only if −x

−
J −y.

Remark 4.7. For all x ∈ No∗ and m ∈M, if x
−
J m, then x ∈M.

Nested truncations behave rather similarly to truncations. First of all, like E, the relation

−
J is a partial order.

Proposition 4.8. The relation
−
J is a partial order on No∗.

Proof. Reflexivity is trivial since x
−
J0 x always holds.

For antisymmetry, assume x
−
Jn y and y

−
J x for some n. We prove by induction on n

that x = y. Note first that the supports of x and y must clearly have the same order type.
In the case n = 0, since x E y, this immediately implies that x = y. If n > 0, write
x = z + sign(r) exp(γ ) and y = z + r exp(δ) + w in standard form with γ

−
Jn−1 δ.

The observation on the order type immediately implies that w = 0, and since y
−
J x, we

get r = sign(r) = ±1 and δ
−
J γ . By the inductive hypothesis we obtain γ = δ, hence

x = y.
For transitivity, assume x

−
Jn y −Jm u for some n,m ∈ N. If m = 0, then y E u,

from which it easily follows that x
−
Jn u. Similarly, if n = 0, then x E y, which implies

x
−
Jm u.

If m > 0 and n > 0, write y = z + sign(r) exp(γ ) and u = z + r exp(δ) + w in
standard form with γ

−
Jm−1 δ and γ, δ ∈ J∗. If x

−
Jn z, it follows from z E u that

x
−
Jn u, and we are done. If x 6

−
Jn z, we must have x = z + sign(r) exp(γ ′) in standard

form with γ ′
−
Jn−1 γ and γ ′ ∈ J∗. By induction on n, this implies that γ ′

−
J δ, which

means that x
−
J u, concluding the argument. ut

Remark 4.9. The relation
−
J is the smallest transitive relation such that:

• for all x, y ∈ No∗, x E y implies x
−
J y;

• for all γ, δ ∈ J∗, γ
−
J δ implies exp(γ )

−
J exp(δ) and − exp(γ )

−
J − exp(δ);

• for all m ∈M 6=1 and r ∈ R∗, sign(r)m
−
J rm;

• for all x, y ∈ No∗ and z ∈ No, if x
−
J y, then z + x

−
J z + y, provided both sums are

in standard form.

Moreover, the two relations share the following convexity property.

Proposition 4.10. For all x ∈ No, the class {y ∈ No : x E y} is convex.

Proof. Let x ∈ No and let u be in the convex hull of {y ∈ No : x E y}. This easily
implies that there exists y ∈ No with x E y such that u is between x and y, and in
particular |u− x| ≤ |y − x|. Since x E y, we have |y − x| ≺ m for all m ∈ S(x), which
implies that |u− x| ≺ m for all m ∈ S(x). Therefore, x E u, as desired. ut
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Proposition 4.11. For all x ∈ No∗, the class {y ∈ No∗ : x
−
J y} is convex.

Proof. Let x ∈ No∗ and let u be in the convex hull of {y ∈ No∗ : x
−
J y}. This easily

implies that there exist y ∈ No∗ and n ∈ N with x
−
Jn y such that u is between x and y.

We reason by induction on n to prove that x
−
Jn u.

If n = 0, the conclusion follows trivially from Proposition 4.10.
If n > 0, there are γ

−
Jn−1 δ both in J∗ and z,w ∈ No and r ∈ R∗ such that

x = z+ sign(r) exp(γ ), y = z+ r exp(δ)+ w,

with both sums in standard form. Since z E x, y, we have z E u as well by Proposition
4.10. Moreover, since u is between x and y, we have u 6= z. Therefore, there are unique
δ′ ∈ J, w′ ∈ No and r ′ ∈ R∗ such that

u = z+ r ′ exp(δ′)+ w′

is in standard form. Clearly sign(r ′) = sign(r) and δ′ is between δ and γ . By Remark
4.6, δ and γ have the same sign, hence δ′ 6= 0. By induction, we deduce that γ

−
Jn−1 δ

′,
whence x

−
Jn u, as desired. ut

Next we show that J, which is closed under E, is also closed under
−
J.

Proposition 4.12. For all x ∈ No∗ and δ ∈ J∗, if x
−
J δ, then x ∈ J∗.

Proof. If x E δ the conclusion is trivial. If x
−
Jn+1 δ, there are γ

−
Jn δ′ ∈ J∗, z,w ∈ No

and r ∈ R∗ such that

x = z+ sign(r) exp(γ ), δ = z+ r exp(δ′)+ w.

Note that δ′ > 0 since δ ∈ J. By Remark 4.6 we must have γ > 0. Moreover, clearly
z ∈ J. It follows that x ∈ J∗, as desired. ut

Finally, just like x E y implies x ≤s y (Proposition 2.8), also x
−
J y implies x ≤s y

(Theorem 4.26); in particular, the relation
−
J is well-founded. This implies that

−
J has an

associated ordinal rank which is crucial for our inductive proofs. The rest of the section
is devoted to the proof that

−
J is well-founded.

4.1. Products and inverses of monomials

We first establish a few formulas for products and inverses of monomials in the case we
are working with representations of a special type.

Definition 4.13. Let x = A | B with x > 0. We say that A | B is a monomial represen-
tation if for all y ∈ No and k ∈ N∗, we have A < y < B if and only if A < ky < B.
Equivalently, A | B is a monomial representation if:

• for every a ∈ A there is a′ ∈ A such that 2a ≤ a′;
• for every b ∈ B there is b′ ∈ B such that b′ ≤ 1

2b.

As the name suggests, monomial representations define monomials.
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Proposition 4.14. If x ∈ No>0 admits a monomial representation, then x ∈M.

Proof. Suppose that x = A | B is a monomial representation of x. Clearly, A < y < B

for every positive number y such that y � x, and in particular A < m < B for the unique
monomial m ∈M such that m � x. Since a monomial is the simplest positive element of
its archimedean class, we have m ≤s x. But x ≤s m holds as well, since x is the simplest
number such that A < x < B, and therefore x = m ∈M. ut

Conversely, all monomials admit monomial representations. In fact, we shall prove that
all simple representations of monomials are monomial.

Lemma 4.15. Let m, n ∈M with m <s n.

(1) If m < n, then km <s n for all k ∈ N.
(2) If m > n, then 2−km <s n for all k ∈ N.

Proof. (1) Let m < n be given. We wish to prove that km <s n. We recall that k =
{0, 1, . . . , k − 1} | ∅. By definition of product, we have km = A | B with

A = {k′m+ km′ − k′m′}, B = {k′m+ km′′ − k′m′′},

where k′ ranges over {0, 1, . . . , k − 1}.
By Remark 2.1, it suffices to check that A < n < B. We can easily verify that

k′m+ km′ − k′m′ = k′m+ (k − k′)m′ < km < n,

and therefore A < n. Moreover,

k′m+ km′′ − k′m′′ = k′m+ (k − k′)m′′ ≥ m′′.

But m′′ > m and m′′ <s m <s n, hence m′′ > n by Proposition 2.3. Therefore, A <

n < B, hence km <s n, as desired.
(2) Let m > n be given. We recall that 2−k = {0} | {2−k

′

} for k′ = 0, 1, . . . , k − 1,
hence 2−km = A | B with

A = {2−km′, 2−k
′

m+ 2−km′′ − 2−k
′

m′′}, B = {2−km′′, 2−k
′

m+ 2−km′ − 2−k
′

m′}.

Again, it suffices to verify that A < n < B. We compare each expression in the above
brackets with n.

• We have m′ <s m <s n and m′ < m. By Proposition 2.3 it follows that m′ < n and
a fortiori 2−km′ < n.
• If k > 0, the expression 2−k

′

m + 2−km′′ − 2−k
′

m′′ is negative (so in particular < n)
because m ≺ m′′ and k′ < k. If k = 0, the expression can be dropped since k′ ranges
over the empty set.
• Since m′′ <s m <s n and m′′ > m, we obtain n < m′′ by Proposition 2.3. Moreover,

since m′′ <s n and n is the simplest positive number in its archimedean class, m′′

must belong to a different archimedean class, and therefore n ≺ m′′. It follows that
n < 2−km′′, as desired.
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• If k > 0, then 2−k
′

m+ 2−km′ − 2−k
′

m′ > 2−km > n. If k = 0, the expression can be
dropped since k′ ranges over the empty set.

We have thus proved that A < n < B, whence 2−km <s n, as desired. ut

Corollary 4.16. Let x <s m ≤s z with m ∈M. Then x ≺ m if and only if x ≺ z.

Proof. By Proposition 2.3, x < m if and only if x < z. Excluding the trivial cases, we
may assume that x 6= 0. Moreover, recall that since m > 0 and x <s m we have x > 0,
and since m is the simplest number in its archimedean class we have x 6� m.

Let n be the unique monomial such that n � x; since x > 0 we have n ≤s x and
therefore n <s m. We apply Lemma 4.15 to m and n, distinguishing two cases.

If x ≺ m we have n ≺ m, and in particular n < m. Let k be any integer such that
kn > x. By Lemma 4.15(1), we have kn <s m. From kn <s m ≤s z and kn < m,
we obtain kn < z by Proposition 2.3. Since x < kn < z and k is arbitrarily large, we
conclude that x ≺ z, as desired.

If x � m we proceed similarly, applying Lemma 4.15(2) to m and 2−kn. ut

Corollary 4.17. The representation ωx = {0, kωx
′

} | {2−kωx
′′

} of Definition 2.15 is
simple.

Proof. By Remark 2.16, ωx
′

, ωx
′′

<s ω
x , hence by Lemma 4.15, kωx

′

, 2−kωx
′′

<s ω
x

for every k ∈ N. Therefore, by Proposition 2.3 the representation is simple. ut

Proposition 4.18. For all x ∈ M, any simple representation of x is a monomial repre-
sentation.

Proof. Suppose that x ∈ M and let y ∈ No be such that x = ωy . The representation
of ωy given by Definition 2.15 is clearly monomial, and it is also simple by Corollary
4.17. Since all simple representations A | B define the same convex class (A;B) =
{z ∈ No : A < z < B}, all simple representations are monomial, as desired. ut

Thanks to the above observation, we can find simplified formulas for the product of two
monomials and for the inverse of a monomial.

Proposition 4.19. Let m, n ∈M. If m = {m′} | {m′′} and n = {n′} | {n′′} are monomial
representations, then mn = {m′n+mn′} | {mn′′,m′′n}.

Proof. Since m, n > 0, we may discard the expressions m′, n′ that are strictly less than 0
from the representations of m and n. Since the representations are monomial, we then
obtain m′ ≺ m, m ≺ m′′, n′ ≺ n, n ≺ n′′. It follows immediately that {m′n + mn′} <
mn < {mn′′,m′′n}. Let now y ∈ No be such that {m′n + mn′} < y < {mn′′,m′′n}. We
need to prove that mn ≤s y.

By definition of product, we have mn = A | B with

A = {m′n+mn′ −m′n′,m′′n+mn′′ −m′′n′′},

B = {m′n+mn′′ −m′n′′,m′′n+mn′ −m′′n′}.
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By Proposition 2.3, it suffices to show that A < y < B. The inequality A < y follows
immediately from the assumption {m′n+mn′} < y, as the first expression in A is smaller
than m′n + mn′ and the second one is negative. For y < B, observe that since the given
representations of n,m are monomial, the assumption y < {mn′′,m′′n} implies y <

{k−1mn′′, k−1m′′n} for any positive k ∈ N. The inequality y < B then follows easily
from the fact that each element of B is dominated by an expression of the form mn′′ or
m′′n. ut

Proposition 4.20. If m = {m′} | {m′′} is a monomial representation, then

m−1
= {0, (m′′)−1

} | {(m′)−1
}

where (m′)−1 is only taken when m′ > 0.

Proof. Let
n := {0, (m′′)−1

} | {(m′)−1
}

where (m′)−1 is only taken when m′ > 0. We need to prove that mn = 1. We observe that
the above representation of n is monomial, and therefore n ∈M by Proposition 4.18. By
Proposition 4.19, mn = A | B where

A = {m′n,m′n+m(m′′)−1
}, B = {m(m′)−1,m′′n},

and (m′)−1 is only taken when m′ > 0. Using (m′′)−1 < n < (m′)−1, it is easy to verify
that A < 1 < B. Since A contains at least one non-negative number of the form m′n, it
follows that 1 = A | B = mn, as desired. ut

Corollary 4.21. If m, n ∈M and m ≤s n, then m−1
≤s n

−1.

Proof. Take a simple monomial representation m = {m′} | {m′′}, which exists by Propo-
sition 4.18. Since m ≤s n, we have {m′} < n < {m′′}. This immediately implies that

{0, (m′′)−1
} < n−1 < {(m′)−1

}

when m′ > 0, and therefore m−1
≤s n

−1 by Proposition 4.20. ut

4.2. Simplicity

Using the tools of the above subsection, we can prove several results regarding the inter-
action between exp and ≤s .

We start by generalizing the implication x E y → x ≤s y to sums in standard form.

Proposition 4.22. Let x, y, z ∈ No. If both z + x and z + y are in standard form and
x ≤s y, then z+ x ≤s z+ y.

Proof. Let z = {z′} | {z′′} and x = {x′} | {x′′} be canonical, and in particular simple,
representations. By definition of sum, we have z+ x = A | B where

A = {z′ + x, z+ x′}, B = {z′′ + x, z+ x′′}.
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It suffices to verify that A < z + y < B. Since x ≤s y and x = {x′} | {x′′} is simple, we
have x′ < y < x′′. After adding z on all sides, we get z+ x′ < z+ y < z+ x′′.

It remains to show that z′+x < z+y < z′′+x. Let z̃ be either z′ or z′′. Since z̃ <s z,
we have z 6E z̃ by Proposition 2.8, and therefore there is a monomial m ∈ S(z) such that
m � z̃ − z. Since z + x and z + y are in standard form, we know that x, y ≺ n for all
n ∈ S(z), and in particular x, y ≺ m. It follows that x − y ≺ m � z̃ − z, which implies
that |x− y| < |z̃− z|. If z̃ = z′, we get x− y < z− z′, or in other words, z′+ x < z+ y.
If z̃ = z′′, we get y − x < z′′ − z, or in other words, z+ y < z′′ + x.

Therefore, A < z+ y < B, which implies z+ x ≤s z+ y, as desired. ut

A similar statement holds when taking the exponential of sums expressed in standard
form, as follows.

Proposition 4.23. Let γ, δ, η ∈ J. If η+γ and η+δ are in standard form and exp(γ ) ≤s
exp(δ), then exp(η + γ ) ≤s exp(η + δ).

Proof. Let m = exp(η), n = exp(γ ) and o = exp(δ). Our hypothesis says that n ≤s o
and S(`(m)) � `(n), `(o), and we must prove that mn ≤s mo.

Consider the two canonical representations m = {m′} | {m′′}, n = {n′} | {n′′}. Recall
that since m, n are monomials, we must have m′ ≺ m, m ≺ m′′, n′ ≺ n, n ≺ n′′. Moreover,
since the representations are canonical, they are simple, and by Proposition 4.18 they are
monomial.

By Proposition 4.19, exp(η + γ ) = mn = A | B with

A = {m′n+mn′}, B = {mn′′,m′′n}.

It now suffices to prove that A < mo = exp(η + δ) < B, that is, m′n + mn′ <
mo < mn′′ and mo < m′′n. Simplifying further, it suffices to show that n′ ≺ o ≺ n′′ and
m′n ≺ mo ≺ m′′n.

Since n′, n′′ <s n ≤s o, the inequalities n′ ≺ o ≺ n′′ follow immediately from
Corollary 4.16 and n′ ≺ n ≺ n′′. For m′n ≺ mo ≺ m′′n, we note that it is equivalent to
`(m′n) < `(mo) < `(m′′n). Rearranging the terms, we wish to prove that `(m′)−`(m) <
`(o)− `(n) < `(m′′)− `(m).

Let m̃ be either m′ or m′′. If `(m) E `(m̃), then by Proposition 4.1 m = exp(`(m)) ≤s
exp(`(m̃)) = m̃, contradicting m̃ <s m. Therefore, `(m) 6E `(m̃), or in other words, there
is a monomial p ∈ S(`(m)) such that p � `(m̃)− `(m). From the hypothesis S(`(m)) �
`(n), `(o) we obtain S(`(m)) � `(o)−`(n), and in particular p � `(o)−`(n). Therefore,
`(m̃) − `(m) � `(o) − `(n), from which it follows that |`(m̃) − `(m)| > |`(o) − `(n)|.
Recalling that m̃ is one of m′ or m′′, this easily implies `(m′) − `(m) < `(o) − `(n) <
`(m′′)− `(m), as desired. ut

Moreover, exp preserves simplicity under suitable assumptions.

Proposition 4.24. Let m, n ∈ M>1 be such that m ≤s n and log(m) ≺ n. Then exp(m)
≤s exp(n) and exp(−m) ≤s exp(−n).
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Proof. It suffices to show that exp(m) ≤s exp(n), as the second part then follows from
Corollary 4.21. By Theorem 3.8(1), we have exp(m) = A | B with

A = {mk, exp(m′)k}, B = {exp(m′′)1/k},

where m′,m′′ range over the infinite monomials simpler than m and such that m′ < m,
m < m′′, and k runs over the positive integers. For the conclusion, it suffices to verify that
A < exp(n) < B.

Since m′ <s m ≤s n and m′ < m, we have m′ < n. It follows that km′ < n for all k
(since m′, n are monomials), and therefore exp(m′)k = exp(km′) < exp(n). Similarly,
since m′′ <s m ≤s n and m′′ > m, we have m′′ > n. This implies that k−1m′′ > n for
all k, and therefore exp(n) < exp(m′′)1/k .

Finally, since log(m) ≺ n and log(m), n > 0, we see that k log(m) < n for all k ∈ N.
In particular, exp(k log(m)) = mk < exp(n) for all k ∈ N. Therefore, A < exp(n) < B,
as desired. ut

Proposition 4.25. If γ ∈ J∗ and m ∈ M>1 is the leading monomial of γ , then
exp(sign(γ )m) ≤s exp(γ ).

Proof. By Corollary 4.21, it suffices to prove the case where γ > 0.
Let exp(m) = A | B be the representation given by Theorem 3.8(1). Since clearly

m � γ and γ > 0, there is some positive k ∈ N such that k−1m ≤ γ ≤ km, hence
exp(m)1/k ≤ exp(γ ) ≤ exp(m)k . It is now easy to verify that A < exp(m)1/k ≤
exp(γ ) ≤ exp(m)k < B, and therefore exp(m) ≤s exp(γ ), as desired. ut

Altogether, we are finally able to prove that x
−
J y implies x ≤s y.

Theorem 4.26. For all x, y ∈ No∗, if x
−
J y then x ≤s y. Therefore, the relation

−
J is

well-founded.

Proof. By definition there is some n ∈ N such that x
−
Jn y. We prove the conclusion by

induction on n. At the same time, we also prove that if we further assume x � 1, then
log |x| ≺ y.

First, assume n = 0, so that x E y. It immediately follows that x ≤s y by Proposition
2.8. Moreover, we have x � y; it follows that if x � 1, then log |x| ≺ x � y, as desired.

Now assume that n > 0. We first settle the case x = exp(γ ), y = exp(δ) ∈ M. By
assumption we must have γ

−
Jn−1 δ.

If n − 1 = 0, so γ E δ, then exp(γ ) ≤s exp(δ) by Proposition 4.1; moreover, if
exp(γ ) � 1, then log(exp(γ )) = γ � δ ≺ exp(δ), as desired.

If n − 1 > 0, we can write γ = z′ + sign(r ′) exp(γ ′), δ = z′ + r ′ exp(δ′) + w′ in
standard form with γ ′

−
Jn−2 δ

′, and necessarily γ ′, δ′ > 0. By inductive hypothesis, we
get exp(γ ′) ≤s exp(δ′) and log(exp(γ ′)) = γ ′ ≺ exp(δ′). Combining Corollary 4.21
with Propositions 4.24, 4.25 and 4.1 we get

exp(sign(r ′) exp(γ ′)) ≤s exp(sign(r ′) exp(δ′))
≤s exp(r ′ exp(δ′)) ≤s exp(r ′ exp(δ′)+ w′).
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By Proposition 4.23, we deduce that

exp(γ ) = exp(z′ + sign(r ′) exp(γ ′)) ≤s exp(z′ + r ′ exp(δ′)+ w′) = exp(δ),

so x ≤s y. Finally, if exp(γ ) � 1 we have γ, δ > 0. If z′ 6= 0, then log(exp(γ )) = γ �
δ ≺ exp(δ). If z′ = 0, we recall that γ ′ ≺ exp(δ′) � r ′ exp(δ′) + w′; it follows that
log(exp(γ )) = γ � exp(γ ′) ≺ exp(r ′ exp(δ′) + w′) = exp(δ). In both cases we obtain
log |x| ≺ y, as desired.

For general x and y, we must have x = z + sign(r) exp(γ ), y = z + r exp(δ) + w
in standard form, with γ

−
Jn−1 δ. Note in particular that exp(γ )

−
Jn exp(δ), and by

the previous argument, exp(γ ) ≤s exp(δ). By Proposition 2.8 we get sign(r) exp(γ ) ≤s
sign(r) exp(δ) ≤s r exp(δ) ≤s r exp(δ)+ w. By Proposition 4.22,

x = z+ sign(r) exp(γ ) ≤s z+ r exp(δ)+ w = y.

Finally, assume x � 1. If z 6= 0, then x � y, hence log |x| � log |y| ≺ y. If z = 0,
then log |x| ∼ `(|x|) = γ and γ > 0; by inductive hypothesis, we have log(γ ) ≺ δ =
`(|y|) ∼ log |y|, and therefore log |x| ∼ γ ≺ exp(log |y|) � y, as desired. ut

4.3. The nested truncation rank

We now use the well-foundedness of
−
J to define an appropriate notion of rank with ordi-

nal values. We shall see in Section 8 that the existence of this rank is essentially equivalent
to saying that No is a field of transseries in the sense of Schmeling.

Definition 4.27. For all x ∈ No∗, the nested truncation rank NR(x) of x is the foundation
rank of

−
J, so NR(x) := sup{NR(y)+ 1 : y J x} ∈ On. We also set NR(0) := 0.

Note that the real numbers all have rank zero, since they do not have proper nested trun-
cations. We shall describe in Corollary 5.10 all the other numbers of rank zero. Note
moreover that NR(x) = NR(−x) for all x ∈ No by Remark 4.6.

Proposition 4.28. For all γ ∈ J, NR(± exp(γ )) = NR(γ ).

Proof. The conclusion is trivial if γ = 0. If γ 6= 0, by definition x J exp(γ ) if and only
if x = exp(δ) for some δ ∈ J∗ with δ J γ , and x J − exp(γ ) if and only if x = − exp(δ)
for some δ ∈ J∗ with δ J γ . By Proposition 4.12, the only numbers δ ∈ No∗ with δ J γ

are in J∗. It follows easily by induction on NR(γ ) that NR(± exp(γ )) = NR(γ ). ut

Proposition 4.29. For all m ∈M 6=1 and r ∈ R∗, if r 6= ±1, then NR(rm) = NR(m)+1
> NR(m).

Proof. By definition, for all x ∈ No∗, x J rm if and only if x = sign(r)m or x J
sign(r)m. It follows that NR(rm) = NR(m)+ 1 when r 6= ±1. ut

Proposition 4.30. Let x ∈ No∗. If rm ∈ R∗M is a term of x, then:

(1) NR(rm) ≤ NR(x);
(2) if m is not minimal in S(x), then NR(rm) < NR(x).
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Proof. We prove the conclusion by induction on α := NR(x).
If m is not minimal in S(x), then there exists y ∈ No∗ such that y C x and rm is a

term of y. By definition of rank, we have NR(y) < α, hence NR(rm) < α by inductive
hypothesis, proving (2).

Suppose now that m is minimal, which means that we can write x = z + rm in
standard form for some z ∈ No. If m = 1, then clearly NR(rm) = 0 ≤ NR(x), so we
may assume that m 6= 1.

If r 6= ±1, since m 6= 1 we have x′ := z + sign(r)m J x. By definition, it follows
that NR(x′) < α, and by inductive hypothesis we must have NR(m) = NR(sign(r)m) ≤
NR(x′) < α. Therefore, by Proposition 4.29, NR(rm) = NR(m)+ 1 ≤ α.

If r = ±1, suppose for contradiction that NR(rm) ≥ α+1. Then there exists y J rm
such that NR(y) ≥ α. By Remarks 4.6 and 4.7, we must have y = rn for some n ∈ M.
Let x′ := z + rn. We claim that x′ J x, hence NR(x′) < α. Granted the claim, by
inductive hypothesis we have NR(y) = NR(rn) ≤ NR(x′) < α, a contradiction.

To prove the claim, by Remark 4.5 we only have to prove that z + rn is in standard
form. Suppose this is not the case. Then z 6= 0 and there is a term so ∈ R∗M of z such
that n ≥ o, while o > m since z+ rm is in standard form. By Proposition 4.11 it follows
that n

−
J o, hence NR(o) ≥ NR(n) ≥ α. On the other hand, z J x, hence NR(z) < α. By

inductive hypothesis, we get NR(o) ≤ NR(so) ≤ NR(z) < α, a contradiction. ut

5. Log-atomic numbers

As anticipated in the introduction, a crucial subclass of No is the one of log-atomic num-
bers. We define them as follows.

Definition 5.1. A positive infinite surreal number x ∈ No is log-atomic if logn(x) is an
infinite monomial for every n ∈ N. We denote by L the class of all log-atomic numbers.

Note that L ⊂ M>1 and exp(L) = log(L) = L. It turns out that log-atomic numbers
are natural representatives of a certain equivalence relation, similarly to monomials being
natural representatives of the archimedean equivalence �.

5.1. Levels

We first define an appropriate notion of magnitude, which is weaker than the dominance
relation �.

Definition 5.2. Given x, y ∈ No with x, y > N, we write:

• x �L y if x ≤ exph(k logh(y)) for some h, k ∈ N∗ (equivalently, logh(x) � logh(y)
for some h ∈ N);
• x ≺L y if x < exph(k

−1 logh(y)) for all h, k ∈ N∗ (equivalently, logh(x) ≺ logh(y)
for all h ∈ N);
• x �L y if exph(k

−1 logh(y)) ≤ x ≤ exph(k logh(y)) for some h, k ∈ N∗ (equivalently,
logh(x) � logh(y) for some h ∈ N).

We call the class [x] := {y ∈ No : y > N, y �L x} the level of x.
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Proposition 5.3. The relation �L is an equivalence relation. Moreover, x �L y if and
only if there exists h ∈ N such that logh(x) ∼ logh(y).

Proof. Since logh(x) � logh(y) implies logk(x) � logk(y) for all k ≥ h, we immedi-
ately see that �L is an equivalence relation. Moreover, if logh(x) � logh(y), then clearly
logh+1(x) ∼ logh+1(y), as desired. ut

Remark 5.4. The equivalence relation �L generalizes the notion of level in Hardy fields
as in [Ros87, MM97], whence the name. For instance, if x ∈ No satisfies x > N, we have
x �L xn for all n ∈ N∗ and x ≺L exp(x). While in those papers the only levels under
consideration are given by logn(x) and expn(x), the surreal numbers have uncountably
many levels, and in fact a proper class of them.

Proposition 5.5. Each level [x] is a union of positive parts of archimedean classes, and
�

L induces a total order on levels.

The proof is trivial and left to the reader.
We can verify that L is a class of representatives for the equivalence relation �L. For

instance, any two distinct log-atomic numbers necessarily have different levels.

Proposition 5.6. Let µ, λ ∈ L. If µ < λ, then µ ≺L λ.

Proof. Suppose towards a contradiction that µ �L λ and µ < λ. Then µ �L λ, so
there exists n ∈ N such that logn(µ) ∼ logn(λ). Since logn(µ) and logn(λ) are both
monomials, we obtain logn(µ) = logn(λ), hence λ = µ, a contradiction. ut

On the other hand, any positive infinite surreal number has the same level as some log-
atomic number.

Lemma 5.7. Let x, y > N. If x
−
J y, then x �L y.

Proof. Let n ∈ N be such that x
−
Jn y. We claim that logn(x) � logn(y), hence by

definition x �L y. We work by induction on n.
If x
−
J0 y, then obviously x � y.

If x
−
Jn+1 y, write x = z + sign(r) exp(γ ), y = z + r exp(δ) + w in standard form

with γ
−
Jn δ. If z 6= 0, then again x � y � z, hence a fortiori logn+1(x) � logn+1(y).

If z = 0, then log(x) ∼ `(x) = γ and log(y) ∼ `(y) = δ by Remark 3.7. By inductive
hypothesis, logn(γ ) � logn(δ). This immediately implies that logn+1(x) ∼ logn(γ ) �
logn(δ) ∼ logn+1(y), as desired. ut

Proposition 5.8. If x > N, then there exists λ ∈ L such that λ
−
J x, and therefore

λ �L x.

Proof. Suppose that there exists a counterexample x > N such that λ 6
−
J x for all λ ∈ L.

By Theorem 4.26, we may assume that x is minimal with respect to
−
J (for instance, we

may take x of minimal simplicity). Note that obviously x /∈ L.
Since x is positive infinite, we may write x = r0m0 + δ0 and then inductively

mn =: exp(rn+1mn+1 + δn+1)
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with rn ∈ R>0, mn ∈ M>1, δn ∈ J and rnmn + δn in standard form (in other words,
rn+1mn+1 is the leading term of log(mn)). We claim that rn = 1 and δn = 0 for all n ∈ N;
this implies that logn(x) = mn ∈M and so x is log-atomic. We reason by induction on n.

For n = 0, it suffices to note that m0 −
J x. By transitivity, λ 6

−
J m0 for all λ ∈ L. By

minimality of x, we must have x = m0, hence r0 = 1 and δ0 = 0.
If n > 0, assume that for all m < n we have rm = 1 and δm = 0. In particular,

we must have x = expn(rnmn + δn). It follows immediately that expn(mn) −J x, hence
λ 6
−
J expn(mn) for all λ ∈ L. By minimality of x, we must have rn = 1 and δn = 0, as

desired. ut

Corollary 5.9. L is a class of representatives for �L. Moreover, for each λ ∈ L, λ is the
simplest number in its level.

Proof. Let [x] be a given level. By Proposition 5.8, there exists λ ∈ L such that λ
−
J x

and λ �L x, and by Proposition 5.6, λ is unique. By Theorem 4.26, we also have λ ≤s x.
This shows that λ is the simplest number in [x], as desired. ut

Corollary 5.10. For all x ∈ No, NR(x) = 0 if and only if either x ∈ R or x = ±λ±1 for
some λ ∈ L.

Proof. It is easy to see that NR(r) = NR(±λ±1) = 0 for all r ∈ R and λ ∈ L.
Conversely, suppose that x satisfies NR(x) = 0. If x 6= 0, let r exp(γ ) be the leading

term of x. Since NR(x) = 0, by Proposition 4.30 we must have x = r exp(γ ), and by
Proposition 4.28 we have NR(γ ) = 0.

If γ = 0, then x = r ∈ R, and we are done. If γ 6= 0, then r = ±1 by Proposition
4.29. Since |γ | > N, by Proposition 5.8 there is µ ∈ L such that µ

−
J |γ |. Since NR(γ ) =

NR(−γ ) = 0, we must have γ = ±µ. Letting λ := exp(µ), it follows that x = ±λ±1, as
desired. ut

Corollary 5.11. For any x ∈ No such that `(x) 6= 0, there is n ∈ N such that `n(x) ∈ L,
where `n = ` ◦ · · · ◦ ` (n-fold composition).

Proof. Note first that `2(x) > N for any x ∈ No such that `(x) 6= 0. By Corollary
5.9, there is λ ∈ L such that `2(x) �

L λ, whence logn(`2(x)) ∼ logn(λ) = `n(λ) for
some n ∈ N. Since `(y) ∼ log(y) for all y > N, we get `n+2(x) ∼ `n(λ). But then
`n+3(x) = `n+1(λ) ∈ L, as desired. ut

5.2. Parametrizing the levels

Mimicking the definition of the omega-map, there is a natural way of defining a function
λ : No→ No>N whose values are the simplest representatives of�L-equivalence classes.

Definition 5.12. Let x ∈ No and let x = {x′} | {x′′} be its canonical representation. We
define

λx := {k, exph(k logh(λx′))} | {exph(k
−1 logh(λx′′))}

where h, k range over N∗.
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Note that the terms of the left-hand side are increasing in h and k, while those on the
right-hand side are decreasing in h and k.

Proposition 5.13. The function x 7→ λx is well defined, increasing, and if x < y, then
λx ≺

L λy .

Proof. By abuse of notation we say “λx is well defined” if there exists a (necessarily
unique) function z 7→ λz defined for all z ≤s x which satisfies the equation in Definition
5.12 on its domain of definition. Obviously, if λx is well defined, then λx > N and λz is
well defined for all z ≤s x. If x = {x′} | {x′′} is a canonical representation and λx is well
defined, then

{k, exph(k logh(λx′))} < λx < {exph(k
−1 logh(λx′′))}

for all h, k ∈ N∗. By definition of≺L, it follows that λx′ ≺L λx and λx ≺L λx′′ . Therefore,
if λx and λy are both well defined and y <s x, then

x < y ⇔ λx ≺
L λy, y < x ⇔ λy ≺

L λx .

The above equivalences then hold even without the assumption y <s x, since we can
always find some z between x and y with z ≤s x, y.

To prove that λx is well defined for every x, we proceed by induction on simplicity.
Consider the canonical representation x = {x′} | {x′′}. By inductive hypothesis we can
assume that all λx′ , λx′′ are well defined and therefore, by the above arguments, λx′ , λx′′
> N and λx′ ≺L λx′′ . By definition of ≺L it follows that k logh(λx′) < k−1 logh(λx′′) for
all h, k ∈ N∗, hence

exph(k logh(λx′)) < exph(k
−1 logh(λx′′))

for all h, k ∈ N∗. By the comment after Definition 5.12, this implies that the convex class
associated to the definition of λx is non-empty, and therefore λx is also well defined. ut

Remark 5.14. It is immediate to see that x ≤s y if and only if λx ≤s λy .

Corollary 5.15. The definition of λx is uniform.

Proof. The uniformity follows easily from the fact that if x < y, then λx ≺L λy . ut

Just as one proves that every surreal number x is in the same archimedean class as
some ωy , we can prove that every x > N is in the same level as some λy .

Proposition 5.16. For every x ∈ No with x > N there is a (unique) y ∈ No such that
x �L λy and λy ≤s x. In particular, λy is the simplest number in its level.

Proof. Since x is positive infinite, its canonical representation is of the form x=N∪A |B,
where A is greater than N. By induction on simplicity, we can assume that every element
c ∈ A ∪ B is in the same level as some λz ≤s c. Define F = {z : (∃a ∈ A)(a �L λz)}

and G = {z : (∃b ∈ B)(b �L λz)}. Note that F and G are sets. We distinguish two cases.
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If F 6< G, then there are z ∈ F and w ∈ G with z ≥ w, whence λz ≥ λw. Let a ∈ A
and b ∈ B be such that a �L λz ≤s a and b �L λw ≤s b. Since a < x < b and the
levels are convex, we immediately see that λz = λw (so z = w) and x �L a �L λz. In
particular, x �L λz ≤s a <s x, and we are done.

Suppose now that F < G. If x �L λy for some y ∈ F ∪G, we are done, so assume
otherwise. We must have [λy′ ] < x < [λy′′ ] for all y′ ∈ F and y′′ ∈ G. By inductive
hypothesis, we have A ⊂

⋃
y′∈F [λy′ ] and B ⊂

⋃
y′′∈G[λy′′ ]. Therefore, if we let y :=

F | G, we have x = N ∪ A | B = N ∪
⋃
y′∈F [λy′ ] |

⋃
y′′∈G[λy′′ ] = λy , and we are

done. ut

Corollary 5.17. We have L = λNo = {λx : x ∈ No}.

Proof. By Corollary 5.9 and Proposition 5.16, both classes L and λNo are exactly the
class of the simplest numbers in each level, and therefore they are equal. ut

Remark 5.18. It is easy to verify that λ0 = ω and λ1 = exp(ω).
Indeed, by definition we have λ0 = {k} | ∅ for k ranging over N, hence λ0 = ω.

It follows that λ1 = {k, exph(k logh(ω))} | ∅ for h, k ranging over N. We observe that
exp(ω) is log-atomic and exp(ω) �L ω, hence exp(ω) > exph(k logh(ω)) for all h, k ∈ N.
It follows that λ1 ≤s exp(ω). On the other hand, by Theorem 3.8 we have exp(ω) =
{ωk} | ∅ for k ranging over N. Since λ1 > ωk = exp(k log(ω)) for all k ∈ N, we get
exp(ω) ≤s λ1, hence λ1 = exp(ω), as desired.

With a similar argument, one can verify that λn = expn(ω) and λ−n = logn(ω) for
all n ∈ N. It follows, for instance, that there exist several log-atomic numbers between ω
and exp(ω), such as λ1/2, and in particular several levels between [ω] and [exp(ω)].

5.3. κ-numbers

We recall here the notion of κ-numbers defined in [KM15, Def. 3.1]. They can again be
defined by using an appropriate notion of magnitude.

Definition 5.19. Given x, y ∈ No with x, y > N, we write:

• x �K y if x ≤ exph(y) for some h ∈ N;
• x ≺K y if x < logh(y) for all h ∈ N;
• x �K y if logh(y) ≤ x ≤ exph(y) for some h ∈ N.

It is easy to verify that �K is an equivalence relation, and �K induces a total order on
its equivalence classes. The following proposition is also easy, and its proof is left to the
reader.

Proposition 5.20. For all x, y ∈ No with x, y > N, x �L y implies x �K y.

The κ-numbers are a natural class of representatives for the �K-classes.
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Definition 5.21 ([KM15, Def. 3.1]). Let x ∈ No and let x = {x′} | {x′′} be its canonical
representation. We define

κx := {expn(0), expn(κx′)} | {logn(κx′′)},

where n runs in N. We let κNo be the class of all numbers of the form κx .

Remark 5.22. It can be easily verified that κ0 = ω and κ1 = ε0, where ε0 is the least
ordinal such that ωε0 = ε0 [KM15, Ex. 3.3].

One can verify that this definition is uniform, and again x ≤s y if and only if κx ≤s κy .
One can also see that for every x > N there exists a κy ≤s x such that κy �K x.
In particular, κy is the simplest number in its �K-equivalence class. Moreover, x < y

implies κx ≺K κy . We refer to [KM15] for more details.
It is proved in [KM15] that logn(κx) is always of the form ωω

y
, and in particular

belongs to M, showing that κ-numbers are log-atomic. We rephrase their statement as
follows, and we give an extremely short proof exploiting the relationship between �L

and �K.

Theorem 5.23 ([KM15, Thm. 4.3]). κNo ⊆ L.

Proof. Since κx is the simplest number in its �K-equivalence class, by Proposition 5.20
it must also be the simplest number in its level. Therefore, by Corollary 5.9, κx = λ for
some λ ∈ L, as desired. ut

It was conjectured in [KM15, Conj. 5.2] that κNo generates all the log-atomic numbers by
iterated applications of exp and log. However, we can exhibit numbers in L that are not
of this form.

Proposition 5.24. There are numbers in L that cannot be obtained from numbers in κNo
by finitely many applications of exp and log.

Proof. As seen in Remark 5.18, there are log-atomic numbers between ω and exp(ω),
such as λ1/2. On the other hand, it is easy to verify that no number of the form logn(κ)
or expn(κ), with n ∈ N and κ ∈ κNo, lies between ω and exp(ω). Indeed, this is trivial if
κ = ω, while if κ ′ < ω < κ ′′ we have κ ′ ≺K ω ≺K κ ′′, and in particular expn(κ

′) < ω <

exp(ω) < logn(κ
′′) for all n ∈ N. Therefore, λ1/2 6= expn(κ) and λ1/2 6= logn(κ) for all

n ∈ N and κ ∈ κNo, as desired. ut

For our construction, the κ-numbers that matter are actually the ones of the form κ−α for
α ∈ On.

Remark 5.25. If α ∈ On, then

κ−α = N | {logn(κ−β) : n ∈ N, β < α},

so κ−α is the simplest positive infinite number less than logn(κ−β) for all n ∈ N and
β < α. Moreover, if β < α, then κ−β <s κ−α and of course κ−α < κ−β .
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Proposition 5.26. The sequence (κ−α : α ∈ On) is decreasing and coinitial in the posi-
tive infinite numbers, that is, every positive infinite number is greater than some κ−α . In
particular, L is coinitial in the positive infinite numbers.

Proof. Let x > N. We know that x �K κy for some y. It now suffices to recall that there
exists an α ∈ On such that −α < y, and therefore κ−α ≺K κy �

K x. In particular,
κ−α < x, as desired. ut

6. Surreal derivations

6.1. Derivations

We begin with our definition of surreal derivation. It is the specialization to surreal num-
bers of other notions which have been defined by several authors in the context ofH -fields
or transseries.

Definition 6.1. A surreal derivation is a functionD : No→ No satisfying the following
properties:

(1) Leibniz rule: D(xy) = xD(y)+ yD(x);
(2) strong additivity: D(

∑
i∈I xi) =

∑
i∈I D(xi) if (xi : i ∈ I ) is summable;

(3) compatibility with exponentiation: D(exp(x)) = exp(x)D(x);
(4) constant field R: ker(D) = R;
(5) H -field: if x > N, then D(x) > 0.

Conditions (4) and (5), together with the fact thatD is a derivation, make the pair (No,D)
into an H -field, the abstract counterpart of the notion of Hardy field. In the definition of
H -field [AD02] one also requires that if |x| ≤ c for some c ∈ ker(D), then there is
d ∈ ker(D) such that |x − d| < c for every positive c ∈ ker(D); however, this is always
true when ker(D) = R.

Remark 6.2. When x is infinitesimal, point (3) follows from (1) and (2). Indeed, if x is
infinitesimal we have

D(exp(x)) = D
(

1+ x +
x2

2!
+ · · ·

)
.

By strong additivity and the Leibniz rule we get

D(exp(x)) = D(x)+ xD(x)+
x2

2!
D(x)+ · · · = exp(x)D(x).

Remark 6.3. By (2) and (5), if x, y > N and x � y, then D(x) > D(y) > 0.

Before embarking on the construction of a surreal derivation, we recall a few properties
that can be easily derived from the above axioms. We remark that these properties hold in
any Hardy field closed under the functions exp and log.
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Proposition 6.4. Let D be a surreal derivation and let x, y ∈ No. We have:

(1) if 1 6� x � y, then D(x) � D(y);
(2) if 1 6� x ∼ y, then D(x) ∼ D(y);
(3) if 1 6� x � y, then D(x) � D(y).

Proof. Without loss of generality, we may assume that x, y > 0.
(1) Assume 1 6� x � y. For all r ∈ R we have x − ry � x and x − ry > 0.
If x � x − ry � 1, then D(x − ry) = D(x) − rD(y) > 0. Therefore, |D(x)| >

|r| · |D(y)| for all r ∈ R, hence D(x) � D(y).
If x � x − ry ≺ 1, then 1

x−ry
� 1, hence D

( 1
x−ry

)
= −

D(x)−rD(y)

(x−ry)2
> 0, i.e.,

D(x) < rD(y). Therefore, |D(x)| > |r| · |D(y)| for all r ∈ R, hence D(x) � D(y).
(2) Assume 1 6� x ∼ y. We have x−y ≺ x. By (1), it follows thatD(x) � D(x−y) =

D(x)−D(y), which means D(x) ∼ D(y), as desired.
(3) Assume 1 6� x � y. The conclusion is trivial if x = y = 0, so assume x 6= 0.

We have x ∼ ry for some r ∈ R∗. By (2) we have D(x) ∼ D(ry) = rD(y) � D(y), as
desired. ut

The following proposition will play a crucial role.

Proposition 6.5. Let D be a surreal derivation. Given x, y ∈ No, if x, y, x − y are
positive infinite, then

log(D(x))− log(D(y)) ≺ x − y � max{x, y}.

Proof. Since x, y, (x − y) > N, we have D(x),D(y),D(x − y) > 0, or in other words
D(x) > D(y) > 0. Moreover, for every r ∈ R>0 we have exp(r(x − y)) > N, so
exp(rx) � exp(ry). Taking the inverses we get exp(−rx) ≺ exp(−ry).

Since y � 1, we have exp(−ry) ≺ 1, and another application of Proposition 6.4
yields D(exp(−rx)) ≺ D(exp(−ry)). In particular, |D(exp(−rx))| < |D(exp(−ry))|;
since D is compatible with exp, we get

exp(−rx) · r ·D(x) < exp(−ry) · r ·D(y).

Taking the logarithms on both sides and rearranging the summands, we get

log(D(x))− log(D(y)) < r(x − y).

Since this holds for an arbitrary r ∈ R>0, and log(D(x)) > log(D(y)), we obtain

log(D(x))− log(D(y)) ≺ x − y � max{x, y},

as desired. ut
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6.2. Derivatives of log-atomic numbers

As anticipated in the introduction, we shall construct a surreal derivation by first giving
its values on the class L. Clearly, if we want to take a function D : L→ No and extend
it to a surreal derivation, it must at least satisfy the inequality of Proposition 6.5, and also
D(λ) > 0 for all λ ∈ L.

With some heuristics, it is not difficult to find a map ∂ ′L : L → No>0 satisfying the
inequalities of Proposition 6.5 and compatible with exp. If λ ∈ L, we must have ∂ ′L(λ) =
λ ·∂ ′L(log λ). Iterating, we obtain ∂ ′L(λ) = λ · log(λ) · log2(λ) · . . . · logi−1(λ) ·∂

′

L(logi(λ)),
or equivalently ∂ ′L(λ) = exp(log(λ) + log2(λ) + log3(λ) + · · · + logi(λ)) · ∂

′

L(logi(λ)).
This suggests the following definition.

Definition 6.6. If λ ∈ L, we let

∂ ′L(λ) := exp
( ∞∑
i=1

logi(λ)
)
.

We remark that (logi(λ))
∞

i=1 is a strictly decreasing sequence of monomials, hence it is
summable. It is an easy exercise to check that ∂ ′L does satisfy the inequalities of Proposi-
tion 6.5. It can be further shown that ∂ ′L extends to a surreal derivation ∂ ′ : No→ No (by
using Theorem 6.32). However, this derivation is not the “simplest” possible one with re-
spect to the simplicity relation, and moreover its behavior is not really nice: for instance,
there is no x ∈ No such that ∂ ′(x) = 1.

The simplest function ∂L : L → No>0 satisfying the inequalities of Proposition 6.5
is given by a similar but different formula involving a subclass of κ-numbers (those with
indices of the form −α where α is an ordinal, see Definition 5.21 and Remark 5.25). We
postpone to Section 9 the proof that ∂L is indeed the simplest one.

Definition 6.7. If λ ∈ L, we let

∂L(λ) := exp
(
−

∑
κ−α�Kλ

∞∑
i=1

logi(κ−α)+
∞∑
i=1

logi(λ)
)

where α ranges over On.

Remark 6.8. The sequence (κ−α)α∈On is decreasing (see Remark 5.25), guaranteeing
that the family (logi(κ−α)) in the definition of ∂L(λ) is summable. The largest possible
value of κ−α is κ0 = ω, which implies that if λ �K ω we have

∂L(λ) = exp
( ∞∑
i=1

logi(λ)
)
= ∂ ′L(λ).

Another special case is when λ = κ−α for some α ∈ On. In this case the terms of the
form logi(λ) cancel out and the formula specializes to

∂L(κ−α) = exp
(
−

∑
β<α

∞∑
i=1

logi(κ−β)
)

where β ranges over On. In particular, ∂L(ω) = ∂L(κ0) = 1.
In any case, we have ∂L(λ) ∈M for all λ ∈ L.
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Before proving that ∂L : L→ No>0 extends to a surreal derivation ∂ : No→ No, let us
first verify that the necessary condition given by Proposition 6.5 is met.

Proposition 6.9. For all λ,µ ∈ L, log(∂L(λ))− log(∂L(µ)) ≺ max{λ,µ}.

Proof. Without loss of generality we may assume that µ < λ. Clearly, the inequality
κ−α �

K λ implies κ−α �K µ, hence

log(∂L(λ))− log(∂L(µ)) =
∑

µ�Kκ−α≺Kλ

∞∑
i=1

logi(κ−α)+
∞∑
i=1

(logi(λ)− logi(µ))

where α ranges over On. It follows that

log(∂L(λ))− log(∂L(µ)) � max
i≥1

{
logi(λ), logi(µ), max

µ�Kκ−α≺Kλ
{logi(κ−α)}

}
.

However, if κ−α ≺K λ, then logi(κ−α) ≺ λ for all i ≥ 1, and moreover logi(µ) ≺ µ ≺ λ
and logi(λ) ≺ λ for all i ≥ 1. Therefore, the right-hand side of the above inequality is
≺ λ = max{λ,µ}, as desired. ut

Proposition 6.10. For all λ ∈ L, ∂L(exp(λ)) = exp(λ)∂L(λ).

Proof. Let λ ∈ L. Clearly, κ−α �K λ if and only if κ−α �K exp(λ). Therefore,

∂L(exp(λ)) = exp
(
−

∑
κ−α�Kexp(λ)

∞∑
i=1

logi(κ−α)+
∞∑
i=1

logi(exp(λ))
)

= exp
(
−

∑
κ−α�Kλ

∞∑
i=1

logi(κ−α)+
∞∑
i=1

logi(λ)+ λ
)
= exp(λ)∂L(λ). ut

The proof that ∂L extends to a surreal derivation is by induction on the rank NR, and uses
ideas from [Sch01]. In the proof we shall not use the actual definition of ∂L, but only the
fact that ∂L satisfies the inequalities of Proposition 6.5, is compatible with exp, and takes
values in R∗M.

6.3. Path-derivatives

We consider the following sequences of terms, as in [Sch01].

Definition 6.11. Define a path to be a sequence of terms P : N → R∗M such that
P(i + 1) is a term of `(P (i)) for all i ∈ N. We denote by P(x) the set of paths such that
P(0) is a term of x.

Note that P(0) /∈ R (as otherwise there would be no possible value for P(1)) and P(i+1)
∈ R∗M>1 for every i (because J ∩ R∗M = R∗M>1).

Remark 6.12. If λ ∈ L there exists a unique path P such that P(0) = λ, and for that
path P(i) = logi(λ) ∈ L for all i.
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Definition 6.13. Given a path P : N→ R∗M we define its path-derivative ∂(P ) ∈ RM
as follows:

(1) if there is k ∈ N such that P(k) ∈ L, we let ∂(P ) :=
∏
i<k P(i) · ∂L(P (k));

(2) if P(i) /∈ L for all i ∈ N, then ∂(P ) := 0.

The value of ∂(P ) does not depend on the choice of k in (1), since ∂L(P (i)) = P(i) ·

∂L(P (i + 1)) whenever P(i) ∈ L, thanks to the fact that ∂L is compatible with exp.
Therefore, if P(i) ∈ L, then for every k ≥ i we have

∂(P ) = P(0) · P(1) · . . . · P(k − 1) · ∂L(P (k)).

We now wish to define ∂(x) as the sum of all the path-derivatives of the paths in P(x).
Indeed, we can prove that the family (∂(P ) : P ∈ P(x)) is summable.

Lemma 6.14. If P is a path, then 1 ≺ P(i + 1) � log(|P(i)|) ≺ P(i) for all i > 0.

Proof. Trivial, since P(i) ∈ J∗ for all i > 0. ut

Lemma 6.15. If t � u are in R∗M, and t ′ is a term of `(t) but not of `(u), then
(t ′)n ≺ u/t for all n ∈ N.

Proof. We need to prove n · `(t ′) < `(u) − `(t). The hypothesis on t ′ implies that
`(u) 6= `(t) and r ·t ′ is a term of `(u)−`(t) for some r ∈ R∗. In particular, t ′ � `(u)−`(t).
Now observe that `(u)− `(t) is positive and belongs to J, hence `(u)− `(t) > N. Since
exp(x) > xn for all x > N and n ∈ N, we have

(t ′)n � (`(u)− `(t))n ≺ exp(`(u)− `(t)) � u/t

for all n ∈ N, as desired. ut

Lemma 6.16. Let P and Q be paths such that ∂(P ), ∂(Q) 6= 0. If P(0) � Q(0) and
P(1)n ≺ Q(0)/P (0) for all n ∈ N, then ∂(P ) ≺ ∂(Q). More generally, suppose that
there exists i such that:

• P(j) � Q(j) for all j ≤ i;
• P(i + 1)n ≺ Q(i)/P (i) for all n ∈ N.

Then ∂(P ) ≺ ∂(Q).

Proof. We prove the first part, as the second then follows easily.
Write xj := P(j) and yj := Q(j). Let k > 1 be such that xk, yk ∈ L. We need to

prove that

∂(P ) = x0 · x1 · . . . · xk−1 · ∂L(xk) ≺ y0 · y1 · . . . · yk−1 · ∂L(yk) = ∂(Q).

We observe that y2, . . . , yk−1 ∈ J are infinite. Therefore, it suffices to prove the
stronger inequality

x0 · x1 · . . . · xk−1 · ∂L(xk) ≺ y0 · y1 · ∂L(yk),
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or equivalently,

x1 · . . . · xk−1 ·
∂L(xk)

∂L(yk)
≺
y0y1

x0
.

By Lemma 6.14, 1 ≺ xk ≺ · · · ≺ x2 � log |x1| ≺ x1, and similarly yk � log |y1| ≺ y1.
By Proposition 6.9 we have

log(∂L(xk))− log(∂L(yk)) ≺ max{xk, yk} � max{log |x1|, log |y1|}.

In particular, ∂L(xk)/∂L(yk) ≤ max{|x1|, |y1|}. By the hypothesis on x1 = P(1) we get∣∣∣∣x1 · . . . · xk−1 ·
∂L(xk)

∂L(yk)

∣∣∣∣ ≤ |x1|
k−1
·max{|x1|, |y1|} ≤ |x1|

k
· |y1| ≺

y0y1

x0
,

reaching the desired conclusion. ut

Corollary 6.17. Let P andQ be two paths such that ∂(P ), ∂(Q) 6= 0. Suppose that there
exists i ∈ N such that:

• P(j) � Q(j) for all j ≤ i;
• P(i + 1) is not a term of `(Q(i)).

Then ∂(P ) ≺ ∂(Q).

Proof. By Lemma 6.15 we have P(i + 1)n ≺ Q(i)/P (i) for all n ∈ N. It then follows
from Lemma 6.16 that ∂(P ) ≺ ∂(Q), as desired. ut

Lemma 6.18. Given P ∈ P(x), we have NR(P (0)) ≤ NR(x), and if equality holds, then
the support of x has a minimum m and P(0) = rm for some r ∈ R∗.

Similarly, for all i ∈ N we have NR(P (i + 1)) ≤ NR(P (i)), and if equality holds,
then the support of `(P (i)) has a minimum m and P(i + 1) = rm for some r ∈ R∗.

Proof. Immediate by Proposition 4.30. ut

Corollary 6.19. For all x ∈ No, there is at most one path P ∈ P(x) such that NR(P (i))
= NR(x) for all i ∈ N.

Proposition 6.20. For all x ∈ No, the family (∂(P ) : P ∈ P(x)) is summable.

Proof. Since ∂(P ) ∈ RM for all P ∈ P(x), we just need to prove that there is no
sequence (Pj )j∈N of distinct paths in P(x) such that ∂(P0) � ∂(P1) � · · · . Suppose that
such a sequence exists. Since the paths are distinct, there exists a minimum integerm such
that Pj (m) 6= Pk(m) for some j, k, and clearly Pj (i) = P0(i) for all i < m and all j .

Let α := NR(x). We work by primary induction on α and secondary induction on m
to reach a contradiction. Let r exp(γ ) be the term of maximum `-value among {Pj (0) :
j ∈ N}.

If NR(γ ) = α, then by Lemma 6.18, r exp(γ ) is also the term of minimum `-value,
hence Pj (0) = P0(0) for all j , and therefore m > 0.

If NR(γ ) < α, then after extracting a subsequence, we may assume that r exp(γ ) =
P0(0) � P1(0) � · · · (possibly changing the value of m, which however will not be
relevant in this case).
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Now, if Pj (1) is not a term of γ = `(P0(0)) for some j ∈ N, then by Corollary 6.17
we get ∂(P0) � ∂(Pj ), a contradiction. Therefore, Pj (1) is a term of γ for all j ∈ N.
Consider the paths P ′j defined by P ′j (i) := Pj (i+1) for i ∈ N and letm′ be the minimum
integer such that P ′j (m

′) 6= P ′k(m
′) for some j, k. Clearly, in the case NR(γ ) = α we

have m′ = m− 1. Moreover, P ′j ∈ P(γ ) for all j ∈ N.
By the equality

∂(Pj ) = Pj (0) · ∂(P ′j )

and P0(0) � P1(0) � · · · , it follows that ∂(P ′0) � ∂(P
′

1) � · · · . Since we have either
NR(γ ) < α, or NR(γ ) = α andm′ < m, this contradicts the inductive hypothesis that no
such sequence may exist in P(γ ).

Therefore, (∂(P ) : P ∈ P(x)) is summable, as desired. ut

6.4. A surreal derivation

Thanks to Proposition 6.20, we can finally define ∂ : No → No by summing all the
path-derivatives.

Definition 6.21. We define ∂ : No→ No by

∂(x) :=
∑

P∈P(x)
∂(P ).

We claim that ∂ : No→ No is indeed a surreal derivation.

Definition 6.22. Given x ∈ No \ R, its dominant path is the path Q ∈ P(x) such that
Q(0) is the term of x of maximum non-zero `-value, and Q(i + 1) is the leading term of
`(Q(i)) for all i ∈ N.

Lemma 6.23. If x ∈ No \ R and Q is the dominant path of x, then ∂(Q) 6= 0 and ∂(Q)
is the leading term of ∂(x).

Proof. Let Q ∈ P(x) be the dominant path of x. Without loss of generality, we may
assume that x 6� 1 (if x � 1, it suffices to subtract the leading real number), so that Q(0)
is the leading term of x, and Q(i + 1) is the leading term of `(Q(i)). Letting `i be the
i-fold composition `◦· · ·◦`, it follows that `(Q(i)) = `i+1(x) for all i ∈ N. By Corollary
5.11, there exists k ∈ N such that Q(k) ∈ L, and therefore ∂(Q) 6= 0. Let P ∈ P(x) be
any other path different from Q and such that ∂(P ) 6= 0.

We distinguish two cases. Suppose first that P(i + 1) is a term of `(Q(i)) for all i.
By definition of Q, this clearly implies that Q(i) � P(i) for all i ∈ N. Moreover, we
must have Q(i) = P(i) for all i > k. Since Q 6= P , there must be an i ≤ k such that
Q(i) � P(i), and it follows immediately that ∂(Q) � ∂(P ).

In the other case, take the minimal j ∈ N such that P(j +1) is not a term of `(Q(j)).
By definition of Q, we have Q(i) � P(i) for all j ≤ i. By Corollary 6.17, we have
∂(Q) � ∂(P ) in this case as well. Since ∂(x) =

∑
P∈P(x) ∂(P ) by definition, we con-

clude that ∂(Q) is the leading term of ∂(x), as desired. ut



378 Alessandro Berarducci, Vincenzo Mantova

Corollary 6.24. For all x ∈ No, ∂(x) = 0 if and only if x ∈ R.

Proof. By Lemma 6.23, if x /∈ R, then ∂(x) 6= 0. Conversely, if x ∈ R, then P(x) = ∅,
whence ∂(x) = 0, as desired. ut

Corollary 6.25. If x > N, then ∂(x) > 0.

Proof. By Lemma 6.23, it suffices to prove that if x > N and P is the dominant path
of x, then ∂(P ) > 0.

By definition, ∂(P ) = P(0) · P(1) · . . . · P(k − 1) · ∂L(P (k)), where k is such that
P(k) ∈ L. We can easily prove by induction that P(i) > N for all i. Indeed, P(0) > N by
assumption. If P(i) > N, then `(P (i)) > 0; since P(i+1) is the leading term of `(P (i)),
we must have P(i + 1) > 0 as well. Since P(i + 1) ∈ J, it follows that P(i + 1) > N,
concluding the induction. Moreover, ∂L(P (k)) > 0, since ∂L takes only positive values.
Therefore, ∂(P ) > 0, as desired. ut

Proposition 6.26. The function ∂ is strongly linear, hence strongly additive.

Proof. It suffices to observe that if x =
∑

m xmm, then

∂(x) =
∑

P∈P(x)
∂(P ) =

∑
m∈S(x)

∑
P∈P(m)

xm∂(P ) =
∑
m

xm∂(m).

By Remark 2.10 it follows that ∂ is strongly additive. ut

Proposition 6.27. For all γ ∈ J, ∂(exp(γ )) = exp(γ )∂(γ ).

Proof. Let γ ∈ J. Consider the bijection P(exp(γ )) → P(γ ) sending P ∈ P(exp(γ ))
to the path P ′ ∈ P(γ ) defined by P ′(i) := P(i + 1) for i ∈ N. Recall that by definition
∂(P ) = exp(γ ) · ∂(P ′). We thus obtain

∂(exp(γ )) =
∑

P∈P(exp(γ ))

∂(P ) = exp(γ )
∑

P∈P(γ )
∂(P ) = exp(γ )∂(γ ). ut

Proposition 6.28. For all x, y ∈ No, ∂(xy) = x∂(y)+ y∂(x).

Proof. We first prove the conclusion on M. Let m, n ∈ M and write m = exp(γ ) and
n = exp(δ) with γ, δ ∈ J. By Proposition 6.27, we get ∂(m) = exp(γ )∂(γ ), ∂(n) =
exp(δ)∂(δ) and ∂(mn) = exp(γ +δ)∂(γ +δ). By Proposition 6.26, we conclude ∂(mn) =
m∂(n)+ ∂(m)n.

For the general case, let x, y ∈ No and write x =
∑

m xmm and y =
∑

n ynn. By
Proposition 6.26 again, we have ∂(xy) = ∂(

∑
m,n xmynmn) =

∑
m,n xmyn∂(mn) =∑

m,n(xmm · yn∂(n)+ xm∂(m) · ynn) = x∂(y)+ y∂(x), as desired. ut

Corollary 6.29. For all x ∈ No, ∂(exp(x)) = exp(x)∂(x).
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Proof. Let x ∈ No. Write x = γ + r + ε with γ ∈ J, r ∈ R and ε ∈ o(1). Since ε
is infinitesimal, we can apply strong additivity (Proposition 6.26) and the Leibniz rule
(Proposition 6.28) as in Remark 6.2 to obtain ∂(exp(ε)) = exp(ε)∂(ε). Since γ ∈ J,
we have ∂(exp(γ )) = exp(γ )∂(γ ) by Proposition 6.27. By Corollary 6.24, we also have
∂(exp(r)) = 0 = exp(r)∂(r). By Leibniz’ rule applied to exp(γ ) exp(r) exp(ε) = exp(x)
we conclude that ∂(exp(x)) = exp(x)∂(x), as desired. ut

Therefore, ∂ is a surreal derivation.

Theorem 6.30. The function ∂ : No→ No is a surreal derivation extending ∂L.

Proof. The function ∂ satisfies Leibniz’ rule by Proposition 6.28, strong additivity by
Proposition 6.26, it is compatible with exponentiation by Corollary 6.29, its kernel is R
by Corollary 6.24, and it is an H -field derivation by Corollary 6.25. ut

Remark 6.31. The restriction of ∂ : No → No to L, the map ∂L, takes values in the
subfield R〈〈L〉〉 of No. Since ∂ is calculated using finite products and infinite sums, we
can easily verify that ∂(R〈〈L〉〉) ⊆ R〈〈L〉〉. Therefore, the restriction ∂�R〈〈L〉〉 induces a
structure of H -field on R〈〈L〉〉.

In more generality, with the same proof we obtain:

Theorem 6.32. Let D : L→ No>0 be a map such that:

• log(D(λ))− log(D(µ)) ≺ max{λ,µ} for all λ,µ ∈ L;
• D(exp(λ)) = exp(λ)D(λ) for all λ ∈ L;
• D(L) ⊂ R∗M.

Then D extends to a surreal derivation on No.

Once we have a derivation, we can apply Ax’s theorem to deduce some transcendence
results. If V is a Q-vector space and W is a subspace of V , we say that a set H ⊂ V

is Q-linearly independent modulo W if its projection to the quotient V/W is Q-linearly
independent.

Theorem 6.33 ([Ax71]). Let (K,D) be a differential field. If x1, . . . , xn, y1, . . . , yn are
such thatD(xi) = D(yi)/yi for i = 1, . . . , n, and x1, . . . , xn are Q-linearly independent
modulo ker(D), then

tr.degker(D)(x1, . . . , xn, y1, . . . , yn) ≥ n+ 1.

In our case, it suffices to take (No, ∂) as differential field and yi = exp(xi) to deduce the
following corollary.

Corollary 6.34. If x1, . . . , xn ∈ No are Q-linearly independent modulo R, then

tr.degR(x1, . . . , xn, exp(x1), . . . , exp(xn)) ≥ n+ 1.
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We remark that this is just a special case of a much more general statement regarding all
models of the theory of Rexp. We recall the general version for completeness.

Theorem 6.35 ([JW08], [Kir10]). LetRE be a model of the theory of Rexp. If x1, . . . , xn
∈ R are Q-linearly independent modulo dcl(∅), then

tr.degdcl(∅)(x1, . . . , xn, E(x1), . . . , E(xn)) ≥ n+ k

where k is the exponential transcendence degree of x1, . . . , xn over dcl(∅).

The above statement can be proved by noting that the definable closure operator coincides
with the exponential-algebraic closure [JW08, Thm. 4.2] and that the above Schanuel
type statement holds modulo the exponential-algebraic closure of the empty set [Kir10,
Thm. 1.2].

7. Integration

We can easily prove that the derivation ∂ of Definition 6.21 is surjective, or in other words,
every surreal number has an integral. Our proof is based on a theorem of Rosenlicht that
links the existence of integrals to the values of the logarithmic derivative [Ros83].

We quote here the relevant theorem. Let K be a Hardy field. If f ∈ K , we denote
by f ′ its derivative, and we let v be the valuation onK whose valuation ring is the convex
hull of Q in K . Recall that f ∼ g means v(f − g) > v(g).

Fact 7.1 ([Ros83, Thm. 1]). Let K be a Hardy field and consider the set of valuations
9 := {v(f ′/f ) : f ∈ K, v(f ) 6= 0}. If f ∈ K∗ is such that v(f ) 6= sup9, then there
exists u0 ∈ K

∗with v(u0) 6= 0 such that whenever u ∈ K∗ and |v(u0)| ≥ |v(u)| > 0, we
have (

f ·
f u/u′

(f u/u′)′

)′
∼ f.

The result of Rosenlicht shows that every f ∈ K∗ with f 6= sup9 has an asymp-
totic integral, i.e., a function g whose derivative g′ is asymptotic to f . In particular,
if sup9 does not exist, then every f ∈ K∗ has an asymptotic integral. The proof is
purely algebraic and holds more generally in the context of H -fields, and in particular it
holds for the surreal numbers No equipped with our derivation ∂ : No → No and the
valuation −`. To be able to apply Rosenlicht’s result, the first step is to check whether
{`(∂(x)/x) : x ∈ No, `(x) 6= 0} has an infimum.

Proposition 7.2. The class 9L := {`(∂(λ)/λ) : λ ∈ L} has no infimum in J.

Proof. Since ∂(λ)/λ = ∂(log(λ)) and L = log(L), we have 9L = {`(∂(λ)) : λ ∈ L}.
Moreover, the sequence y(α) := `(∂(κ−α)) is coinitial in 9L by Proposition 5.26 and
Remark 6.3, so it suffices to prove that the class {y(α) : α ∈ On} has no infimum in J.
Recall that y(α) = log(∂(κ−α)) = −

∑
β<α

∑
∞

i=1 logi(κ−β) and observe that if β < α,
then y(β) C y(α) and y(β) > y(α).
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Let x < y(α) for all α ∈ On, with x ∈ J. We must show that x is not the infimum of
{y(α) : α ∈ On} in J. Since the supports S(y(α)) are increasing in α, their intersection
with S(x)must stabilize, so there areA ⊆ S(x) and γ ∈ On such that S(y(α))∩S(x) = A
for all α ≥ γ . Let m be the maximal monomial such that xm 6= y(γ )m. For all α ≥ γ , by
construction of γ , and since y(γ ) E y(α), the same m is also the maximal monomial such
that xm 6= y(α)m, and y(α)m = y(γ )m. Since x < y(γ ), we must have xm < y(γ )m.
Now take any x′ ∈ J such that x′|m = x|m and xm < x′m < y(γ )m. Then x < x′ < y(α)

for all α ≥ γ , and therefore for all α. This means that x is not an infimum of {y(α) :
α ∈ On} in J, as desired. ut

In fact, the same proof also shows that 9L has no infimum even in No.

Corollary 7.3. The class 9 := {`(∂(x)/x) : x ∈ No, `(x) 6= 0} has no infimum in J.

Proof. We have ∂(x)/x = ∂(log |x|). Moreover, `(x) 6= 0 if and only if log |x| > N.
Since log(No>0) = No, we have 9 = {`(∂(x)) : x > N}. Since L is coinitial with all the
infinite positive elements of No (see Proposition 5.26), it follows that 9L = {`(∂(λ)) :
λ ∈ L} is coinitial with 9 by Remark 6.3. But 9L has no infimum in J by Proposition
7.2, so 9 does not either. ut

We can now apply [Ros83, Thm. 1] to show that every surreal number has an asymptotic
integral: for every x ∈ No∗ there is a y ∈ No∗ such that x ∼ ∂(y). For later convenience,
we construct an asymptotic integral y belonging to R∗M 6=1.

Proposition 7.4. There is a class function A : No∗ → R∗M 6=1 such that x ∼ ∂(A(x))
for all x ∈ No∗.

Proof. We define A : No∗→ R∗M 6=1 as follows. Let x ∈ No∗. By Corollary 7.3, `(x) is
not an infimum for9. Therefore, by [Ros83, Thm. 1] applied to (No, ∂), there is u0 ∈ No
with `(u0) 6= 0 such that for any u ∈ No with 0 < |`(u)| ≤ |`(u0)| we have

x ∼ ∂

(
x ·

(xu/∂(u))

∂(xu/∂(u))

)
.

This gives an asymptotic integral y := x ·
(xu/∂(u))
∂(xu/∂(u))

of x which in fact depends on
the choice of u. For definiteness, we choose u := κ−α with α minimal (such an α al-
ways exists, since the elements of κNo are coinitial in the positive infinite numbers by
Proposition 5.26).

We make a minor adjustment to obtain an asymptotic integral belonging to R∗M 6=1.
Let r ∈ R be the coefficient of the monomial 1 in y, so that y− r 6� 1, and define A(x) as
the leading term of y− r . Clearly A(x) ∼ y− r , hence ∂(A(x)) ∼ ∂(y− r) = ∂(y) ∼ x,
while A(x) ∈ R∗M 6=1, as desired. ut

Using the above observation, one could try to use [Kuh11, Thm. 47] to obtain actual
integrals; however, one should adapt the notion of “spherically complete” to the class No
and verify that the proof goes through. This argument is rather delicate, as the field No,
with the valuation −`, may not be spherically complete if seen from a more powerful
model of set theory, for instance when using an inaccessible cardinal.
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For completeness, we give a different self-contained argument. To find a solution to
the differential equation ∂(y) = x for a given x, we simply iterate the above procedure
for finding an asymptotic integral, and we verify that the procedure converges using a
specialized version of Fodor’s lemma.

Lemma 7.5 (Specialized Fodor’s lemma). Let f : On \ {∅} → On be a class function
such that f (α) < α for all α ∈ On \ {∅}. Then there exists β ∈ On such that f−1(β) is
a proper class.

Proof. Suppose that f−1(β) is a set for each β ∈ On. We define a class function g :
On → On by induction: given α ∈ On, we let g(α) be the minimum ordinal strictly
greater than all the elements of f−1(β) ∪ {g(β)} for β < α. This is a strictly increasing
continuous function g : On→ On. As is well known, the ordinal α0 := supn<ω g

(n)(0)
satisfies g(α0) = α0. By definition, we have α0 = g(α0) > f−1(β) for all β < α0,
and in particular f (α0) 6= β for all β < α0. Therefore, f (α0) ≥ α0, contradicting the
hypothesis. ut

Proposition 7.6. The surreal derivation ∂ : No→ No is surjective.

Proof. Clearly, ∂(0) = 0, so 0 is in the image of ∂ .
Now take a surreal number x ∈ No∗. We inductively define a sequence of terms

tα ∈ R∗M 6=1 as follows. We start with t0 := A(x). If tβ has been defined for every
β < α, and x 6=

∑
β<α ∂(tβ), we define

tα := A
(
x −

∑
β<α

∂(tβ)
)
,

otherwise we stop. We claim that `(tβ) is strictly decreasing for all β < α, so that∑
β<α tβ is a surreal number and

∑
β<α ∂(tβ) is its derivative, ensuring that tα is well

defined. In fact, we may assume by induction that `(tβ) is strictly decreasing and we only
need to check that `(tα) < `(tβ), i.e. tα ≺ tβ , for all β < α.

By construction, tβ 6� 1 for all β < α, hence, by Proposition 6.4, `(∂(tβ)) is strictly
decreasing for β < α. Now fix γ < α. By definition of asymptotic integral,

∂(tα) ∼ x −
∑
β<α

∂(tβ) � max
{∣∣∣x −∑

β≤γ

∂(tβ)

∣∣∣, ∣∣∣ ∑
γ<β<α

∂(tβ)

∣∣∣}.
Note that this is true even if the last sum is empty, namely when α = γ + 1. Since
∂(tβ) ≺ ∂(tγ ) for all γ < β < α, then

∑
γ<β<α ∂(tβ) ≺ ∂(tγ ). Moreover, again by

definition of asymptotic integral, x−
∑
β≤γ ∂(tβ) = (x−

∑
β<γ ∂(tβ))− ∂(tγ ) ≺ ∂(tγ ).

Therefore, ∂(tα) ≺ ∂(tγ ), and by Proposition 6.4 we get tα ≺ tγ , as desired.
We now claim that there is an α such that x =

∑
β<α ∂(tβ). Suppose that x 6=∑

β<α ∂(tβ) for all α ∈ On. Let mα be the leading monomial of x −
∑
β<α ∂(tβ). Re-

call that by construction mα � x −
∑
β<α ∂(tβ) ∼ ∂(tα); since `(∂(tα)) is strictly de-

creasing, the sequence mα is strictly decreasing as well, and in particular injective. Let
f : On → On be the class function that sends α to the minimum β ∈ On such that
mα ∈ S(∂(tβ)) ∪ S(x); clearly, such a β always exists and it must be strictly less than α.
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Since f (α) < α for all α ∈ On, by Lemma 7.5 there exists a β ∈ On such that
f−1(β) is a proper class. However, by definition of f the class {mα : α ∈ f−1(β)} is
actually a subset of S(∂(tβ))∪ S(x). Since the map α 7→ mα is injective, this implies that
S(∂(tβ)) ∪ S(x) contains a proper class, a contradiction.

Therefore, for some α we have x =
∑
β<α ∂(tβ) = ∂(

∑
β<α tβ), as desired. ut

Theorem 7.7. The differential field (No, ∂) is a Liouville closed H -field with small
derivation in the sense of [AD02, p. 3].

Proof. By Proposition 7.6, the function ∂ is surjective. In particular, the differential equa-
tions ∂(x) = y and ∂(x)/x = ∂(log |x|) = y always have solutions in No, and there-
fore (No, ∂) is Liouville closed. Moreover, since ∂(ω) = 1, we see that if x ≺ 1, then
∂(x) ≺ ∂(ω) = 1, which means by definition that the derivation is small, as desired. ut

Remark 7.8. The conclusion of Corollary 7.3 applies to R〈〈L〉〉 as well. Since the re-
maining construction is done using just field operations and infinite sums, we can easily
verify that R〈〈L〉〉, equipped with the derivation ∂�R〈〈L〉〉 (see Remark 6.31), is Liouville
closed as well.

8. Transseries

As anticipated in Section 4, the fact that the nested truncation
−
J is well-founded is related

in an essential way to the structure of No as a field of transseries. We discuss here in
which sense No can be seen as a field of transseries and compare the result to a previous
conjecture.

8.1. Axiom ELT4 of [KM15]

We mentioned in the introduction that a rather natural object to consider is the smallest
subfield of No containing L and closed under some natural operations.

Definition 8.1. We let R〈〈L〉〉 be the smallest subfield of No containing R(L) and closed
under infinite sums, exponentiation and logarithm.

A natural question is whether No = R〈〈L〉〉; we can see that this is equivalent to the first
part of Conjecture 5.2 in [KM15]. However, we can verify that the inclusion is strict. To
prove this, we characterize R〈〈L〉〉 in terms of paths.

Proposition 8.2. For all x ∈ No, x ∈ R〈〈L〉〉 if and only if for every path P ∈ P(x)
there exists i such that P(i) ∈ L.

Proof. Let F be the class of all x ∈ No such that for every P ∈ P(x) there exists i
such that P(i) ∈ L. If x /∈ R〈〈L〉〉, then clearly there is some term r exp(γ ) in x with
γ /∈ R〈〈L〉〉. Iterating this procedure we produce an infinite path P ∈ P(x) with P(0) =
r exp(γ ) and P(i) /∈ R〈〈L〉〉 for every i ∈ N. In particular, P(i) /∈ L for all i, hence
x /∈ F. Since x was arbitrary, we have proved F ⊆ R〈〈L〉〉.
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For the other inclusion, it is enough to observe that F is a field containing R ∪ L and
closed under infinite sums, exp and log. The verification is easy once we recall that when
x is finite, exp(x) and log(1+ x) are given by power series expansions. The details are as
follows:

(1) F is clearly closed under infinite sums, it contains R∪L, and if x ∈ F, then each term
of x is in F;

(2) for γ ∈ J, we have γ ∈ F if and only if r exp(±γ ) ∈ F for all r ∈ R∗;
(3) by (2), if t, u ∈ R∗M ∩ F, then t · u ∈ R∗M ∩ F and t−1

∈ R∗M ∩ F;
(4) by infinite distributivity, if x, y ∈ F, then x · y ∈ F;
(5) expanding the definitions of exp and log (see Theorem 3.8 and Remark 3.4) and using

(1)–(4), we find that if x ∈ F, then exp(x) and log(x) are in F.

Therefore, R〈〈L〉〉 ⊆ F, hence F = R〈〈L〉〉, as desired. ut

The above proposition shows that R〈〈L〉〉 is a “field of exponential-logarithmic trans-
series” in the sense of [KM15, Def. 5.1]. We omit here the full definition of exponential-
logarithmic transseries and just recall their main defining property.

Definition 8.3. Let F be a subfield of No. Following [MR93] we say that F is truncation
closed if for every f ∈ F and m ∈M we have f |m ∈ F.

For instance, R〈〈L〉〉 is a truncation closed subfield of No. The following definition is a
slight variation of [KM15, Def. 5.1].

Definition 8.4 ([KM15, Def. 5.1]). A truncation closed subfield F of No closed under
log satisfies ELT4 if the following holds:

ELT4. For all sequences of monomials mi ∈M ∩ F, with i ∈ N, such that

mi = exp(γi+1 + ri+1mi+1 + δi+1)

where ri+1 ∈ R∗, γi+1, δi+1 ∈ J, and γi+1+ ri+1mi+1+ δi+1 is in standard form,
there is k ∈ N such that ri+1 = 1 and γi+1 = δi+1 = 0 for all i ≥ k.

Remark 8.5. ELT4 implies that the sequence (mi) eventually satisfies mi ∈ L. We can
rephrase this in terms of paths: a truncation closed subfield F of No closed under log
satisfies ELT4 if and only if for every x ∈ F and every path P ∈ P(x) there exists k such
that P(k + 1) ∈ L.

Proposition 8.6. R〈〈L〉〉 is the largest truncation closed subfield of No closed under log
and satisfying ELT4.

Proof. By Remark 8.5 and Proposition 8.2, the field R〈〈L〉〉 satisfies ELT4, and any other
truncation closed subfield F of No closed under log and satisfying ELT4 is included
in R〈〈L〉〉. ut

In [KM15, Conj. 5.2] it was conjectured that No satisfies ELT4, which is equivalent to
saying that R〈〈L〉〉 = No. However, the latter is not the case.
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Theorem 8.7. We have R〈〈L〉〉 ( No.

Proof. Let (mi) be a sequence of monomials in M>1 such that mi+1 ≺ log(mi).
For i ∈ N, let Ci be the non-empty convex class defined by

Ci := exp(m1 + exp(m2 + · · · + exp(mi + o(mi)) . . .)).

Since mi+1 ≺ log(mi), we have `(exp(mi+1 + o(mi+1))) < 2mi+1 ≺ log(mi) � `(mi),
and in particular exp(mi+1+o(mi+1)) ⊆ o(mi). Therefore, Ci+1 ⊆ Ci . By the saturation
properties of surreal numbers, the intersection

⋂
i Ci is non-empty.

Let x ∈
⋂
i Ci . We can write, for every i ∈ N,

x = x0 = exp(m1 + exp(m2 + · · · + exp(mi + xi) . . .))

where xi ≺ mi for i > 0. By construction we have xi = exp(mi+1+xi+1). Note, however,
that this may not be the Ressayre representation of xi , as xi+1 is not necessarily in J.

Write xi = γi + ri + εi with γi ∈ J, ri ∈ R and εi ∈ o(1). By the assumption xi ≺ mi
we get γi ≺ mi . Moreover, since xi > exp

( 1
2mi+1

)
� 1, we have γi 6= 0.

Now define P(i) as the leading term of γi for i ∈ N. We claim that P is a path in P(x).
Recall that if y = γ + r + ε with γ ∈ J, r ∈ R and ε ∈ o(1), then `(exp(y)) = γ . It
follows that

`(P (i)) = `(γi) = `(xi) = `(exp(mi+1 + γi+1 + ri+1 + εi+1)) = mi+1 + γi+1.

Since P(i+1) is a term of γi+1, it is also a term of `(P (i)), hence P is a path, and clearly
P ∈ P(x).

Since `(P (i)) = `(γi) = mi+1 + γi+1, where γi+1 6= 0, we have P(i) /∈M ⊃ L for
all i. By Proposition 8.2 we have x /∈ R〈〈L〉〉, and therefore R〈〈L〉〉 ( No. ut

Despite the fact that some paths may not end in L, recall that if x ∈ No \ R and P is its
dominant path, then there exists i such that P(i) ∈ L (see Corollary 5.11 or Lemma 6.23).

8.2. Axiom T4 of [Sch01]

We have seen that axiom ELT4 fails in No. However, as we prove in this section, No
satisfies a weaker axiom called “T4” in [Sch01, Def. 2.2.1]. In fact, we shall see that T4 is
essentially equivalent to the fact that the relation

−
J of nested truncation is well-founded.

This will show that No is a field of transseries as axiomatized by Schmeling.
We recall the definition of transseries in [Sch01]. One starts with an ordered field

C equipped with an increasing group homomorphism exp : (C,+) → (C∗, ·), with
exp(x) ≥ 1+x for all x ∈ C and Im(exp) = C>0. We are then given an ordered group 0,
an additive group B ⊆ C((0)) containing C((0≤0)) and an increasing homomorphism
exp : (B,+) → (C((0))∗, ·) extending exp : C → C∗ to B. We say that C((0))
equipped with exp is a field of transseries if

T1. Im(exp) = C((0))>0;
T2. 0 ⊆ exp(C((0>0)));
T3. exp(x) =

∑
∞

n=1 x
n/n! for all x ∈ C((0<0));
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T4. for all sequences of monomials mi ∈ 0, with i ∈ N, such that

mi = exp(γi+1 + ri+1mi+1 + δi+1)

where ri+1 ∈ C
∗, γi+1, δi+1 ∈ C((0

>0)), and γi+1+ ri+1mi+1+ δi+1 is in standard
form, there is k ∈ N such that ri+1 = ±1 and δi+1 = 0 for i ≥ k.

If we take C = R, 0 = M = exp(J) and B = No, then No = R((M)) equipped with
exp is clearly a model of T1–T3. Axiom T4 is related to the nested truncation

−
J: it is not

difficult to see that assuming T4 one can easily deduce that
−
J is well-founded. We shall

now verify that since
−
J is well-founded (Theorem 4.26), axiom T4 holds on No, thereby

proving that No is a field of transseries.

Definition 8.8. Consider a path P and write

P(i) = ri exp(γi+1 + P(i + 1)+ δi+1)

where 0 6= ri ∈ R, γi+1, δi+1 ∈ J, and γi+1 + P(i + 1)+ δi+1 is in standard form.
We say that P satisfies T4 if there exists k ∈ N such that ri+1 = ±1 and δi+1 = 0 for

all i ≥ k.
We say that x ∈ No satisfies T4 if all paths in P(x) satisfy T4.

Clearly, T4 is equivalent to saying that every x ∈ No satisfies T4.

Lemma 8.9. Let x ∈ No and P ∈ P(x). If NR(P (i)) = NR(x) for all i ∈ N, then P
satisfies T4.

Proof. By Lemma 6.18, P(0) = r0m0 with r0 ∈ R∗ and m0 minimal in S(x), and for
all i ∈ N, P(i + 1) = ri+1mi+1 with ri+1 ∈ R∗ and mi+1 minimal in `(P (i)). By
Propositions 4.28, 4.29 and 4.30, it follows that NR(`(P (i))) = NR(P (i)) = NR(x) for
all i and ri = ±1 for all i ∈ N. Therefore, P satisfies T4. ut

We can now prove that T4 holds on No.

Theorem 8.10. Axiom T4 holds in No (with C = R and 0 =M), hence No is a field of
transseries in the sense of [Sch01, Def. 2.2.1].

Proof. We prove that all x ∈ No satisfy T4. Let x ∈ No, and assume by induction that y
satisfies T4 for all y ∈ No with NR(y) < α := NR(x).

Let P ∈ P(x) be any path. If NR(P (j)) < α for some j ∈ N, then by inductive
hypothesis the path i 7→ P(j + i) in P(P (j)) satisfies T4, hence P itself satisfies T4. On
the other hand, if NR(P (j)) = α for all j ∈ N, then P satisfies T4 by Lemma 8.9. Since
P was an arbitrary path, x satisfies T4, as desired. ut

9. Pre-derivations

The purpose of this section is to show that ∂L (Definition 6.7) is the simplest function
(in the sense of Theorem 9.6) with positive values satisfying the inequalities of Proposi-
tion 6.5. As anticipated in the introduction, we call such functions “pre-derivations”.
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Definition 9.1. A pre-derivation is a map DL : L→ No>0 such that

log(DL(λ))− log(DL(µ)) ≺ max{λ,µ}

and DL(exp(λ)) = exp(λ)DL(λ) for all λ,µ ∈ L.

By Theorem 6.32, any pre-derivation with values in R∗M can be extended to a surreal
derivation. We shall verify that ∂L has an inductive definition that involves a variant of the
inequalities of Definition 9.1. As a corollary, ∂L is the simplest pre-derivation. We first
observe that pre-derivations must satisfy the following condition.

Proposition 9.2. If DL is a pre-derivation, then

log
(

DL(λ)∏l−1
i=0 logi(λ)

)
− log

(
DL(µ)∏m−1

i=0 logi(µ)

)
≺ max{logl(λ), logm(µ)}

for all λ,µ ∈ L and l, m ∈ N.

Proof. The conclusion follows trivially from

log(DL(logl(λ)))− log(DL(logm(µ))) ≺ max{logl(λ), logm(µ)}

since DL(λ)/
∏l−1
i=0 logi(λ) = DL(logl(λ)) and DL(µ)/

∏m−1
i=0 logi(µ) = DL(logm(µ)).

ut

We now use the above inequalities to give an inductive definition for ∂L.

Lemma 9.3. Let x ∈ No be such that x > N. If α ∈ On is the minimum ordinal such
that κ−α �K x, then κ−α ≤s x.

Proof. Let z ∈ No be the unique number such that x �K κ−z. It follows that κ−z ≤s x.
Therefore, α ∈ On is the minimum ordinal such that −α ≤ −z. Since the representation
−α = ∅ | {−β : β < α} is simple, and −z < −β for all β < α, we have −α ≤s −z. It
follows that κ−α ≤s κ−z ≤s x, as desired. ut

Lemma 9.4. For all λ ∈ L, ∂L(λ) is the simplest number x ∈ No>0 such that

log
(

x∏l−1
i=0 logi(λ)

)
− log

(
∂L(µ)∏m−1

i=0 logi(µ)

)
≺ max{logl(λ), logm(µ)}

for all µ ∈ L such that µ <s λ and for all l, m ∈ N.

Proof. Let λ ∈ L and let x ∈ No>0 be a number satisfying the above inequalities. We
need to prove that ∂L(λ) ≤s x. If λ = ω, then ∂L(λ) = 1, and we already know that
1 ≤s x since x > 0. For arbitrary λ, we claim that log(∂L(λ)) E log(x). When λ 6= ω,
this clearly implies that ∂L(λ) −J x, hence ∂L(λ) ≤s x by Theorem 4.26.

Since ∂L is a pre-derivation, we have

log
(

∂L(λ)∏l−1
i=0 logi(λ)

)
− log

(
∂L(µ)∏m−1

i=0 logi(µ)

)
≺ max{logl(λ), logm(µ)}
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for all l, m ∈ N and µ ∈ L. It follows that

log
(

x∏l−1
i=0 logi(λ)

)
− log

(
∂L(λ)∏l−1

i=0 logi(λ)

)
≺ max{logl(λ), logm(µ)}

for all l, m ∈ N and µ <s λ. Expanding the two logarithms, we get

log(x)− log(∂L(λ)) ≺ max{logl(λ), logm(µ)} (9.1)

for all l, m ∈ N and µ <s λ.
In order to prove log(∂L(λ)) E log(x), let m be a monomial in the support of

log(∂L(λ)). We need to prove that

log(x)− log(∂L(λ)) ≺ m.

Let α be the minimum ordinal such that κ−α �K λ. By Lemma 9.3, we have κ−α ≤s λ.
Note moreover that κ−α �K λ ≺K κ−β for all β < α. We distinguish two cases.

If λ = κ−α , then log(∂L(λ)) = −
∑
β<α

∑
∞

i=1 logi(κ−β). Therefore, m is of the form
logi(κ−β) for some β < α and i ∈ N. Note that κ−β <s κ−α = λ and κ−β �K κ−α . It
follows that logl(λ) < logi(κ−β) for all l ∈ N. Taking µ = κ−β and m = i in (9.1), we
get log(x)− log(∂L(λ)) ≺ logi(κ−β) = m, as desired.

If λ 6= κ−α , then log(∂L(λ)) = −
∑
κ−β�Kλ

∑
∞

i=1 logi(κ−β) +
∑
∞

i=1 logi(λ), and
κ−α <s λ. By the choice of α we also have κ−α �K λ, which means that for all l ∈ N
there existsm ∈ N such that logm(κ−α) < logl(λ). Since κ−α <s λ, we can take µ = κ−α
in (9.1) and deduce that for all l ∈ N we have

log(x)− log(∂L(λ)) ≺ logl(λ).

If m = logl(λ) for some l ∈ N, we are done. If m = logi(κ−β) for some i ∈ N and some
κ−β �

K λ, then there exists l such that logl(λ) < logi(κ−β), and therefore

log(x)− log(∂L(λ)) ≺ logl(λ) ≺ logi(κ−β) = m,

as desired. ut

Remark 9.5. Lemma 9.4 shows that one can define inductively ∂L(λ) as the simplest
x ∈ No>0 satisfying the inequalities of the lemma. However, the fact that x is the sim-
plest such number is not essential, and other choices of x ∈ R∗M satisfying the same
inequalities are possible and lead to other surreal derivations.

Theorem 9.6. LetDL : L→ No>0 be a pre-derivation. If λ ∈ L is a number of minimal
simplicity such that DL(λ) 6= ∂L(λ), then ∂L(λ) <s DL(λ).

Proof. Let λ ∈ L is a number of minimal simplicity such that DL(λ) 6= ∂L(λ). By
assumption,DL(µ) = ∂L(µ) for all µ <s λ. SinceDL is a pre-derivation, by Proposition
9.2 it follows that for all µ <s λ and l, m ∈ N we have

log
(

DL(λ)∏l−1
i=0 logi(λ)

)
− log

(
∂L(µ)∏m−1

i=0 logi(µ)

)
≺ max{logl(λ), logm(µ)}.

By Lemma 9.4, this implies that ∂L(λ) <s DL(λ), as desired. ut
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Remark 9.7. A similar argument can be applied to the function ∂ ′L of Definition 6.6 to
prove that for all λ ∈ L, ∂ ′L(λ) is the simplest infinite number x ∈ No>0 such that for all
µ <s λ and l, m ∈ N we have

log
(

x∏l−1
i=0 logi(λ)

)
− log

(
∂ ′L(µ)∏m−1

i=0 logi(µ)

)
≺ max{logl(λ), logm(µ)}.

In particular, ∂ ′L is the simplest pre-derivation with only infinite values.
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