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Abstract. We study the spectrum of adjacency matrices of random graphs. We develop two tech-
niques to lower bound the mass of the continuous part of the spectral measure or the density
of states. As an application, we prove that the spectral measure of bond percolation in the two-
dimensional lattice contains a non-trivial continuous part in the supercritical regime. The same
result holds for the limiting spectral measure of a supercritical Erdős–Rényi graph and for the spec-
tral measure of a unimodular random tree with at least two ends. We give examples of random
graphs with purely continuous spectrum.
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1. Introduction

This work is devoted to the spectral analysis of adjacency matrices of deterministic and
random graphs (the latter is traditionally called quantum percolation). The motivation
comes from three distinct directions: random matrices, random trees, and random Schrö-
dinger operators.

1.1. Random matrices and Erdős–Rényi graphs

Wigner introduced the study of random matrices to mathematical physics, and his first
paper on the subject was on the density of states. He showed that the empirical distribution
of the eigenvalues of a random symmetric matrix with entries picked from some fixed
distribution with exponential moments, converges, after scaling, to the famous Wigner
semicircle law.
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A particular example is the adjacency matrix of Erdős–Rényi random graphs on n
vertices, where each edge is present with a fixed probability p. In this case, it is not hard
to show that the semicircle limit holds as np → ∞. At the forefront of current research
is the sparse case, when np → c ∈ (0,∞). In this case, the limit µc is quite unlike
the Wigner semicircle law: it is supported on the entire real line and has a dense set of
atoms [13]. This and related questions have been discussed in the physics literature—see
notably Bauer and Golinelli [5, 4]. When c→∞, the measureµc rescaled by c converges
to the Wigner semicircle law. This suggests (but by no means implies) that there may be
a continuous part for large c, which has been an open problem.

Our first theorem establishes this in a strong sense.

Theorem 1.1. The measure µc has a continuous part if and only if c > 1.

This result is a corollary to our investigation of random trees.

1.2. Percolation on regular trees

The spectra of random trees is a very active area of random Schrödinger operators; it is in
this setting that the celebrated extended states conjecture was first proved for a continuous
perturbation of the regular tree.

A slightly different perturbation is given by Bernoulli bond percolation with high
enough parameter p. Here each edge of the graph of the regular tree Td is removed inde-
pendently with probability 1− p ∈ [0, 1].

First, a quick definition: the spectral measure of the adjacency matrix of a (possibly
infinite) bounded degree rooted graph is the unique probability measure whose kth mo-
ments are given by the number of closed walks of length k. This can be extended to a
more general setting (Section 1.5).

For the spectral measure (without taking expectation), for p close to 1, Keller [26] has
shown that the component of the root has continuous spectrum with positive probability. It
is an open problem when the continuous part appears. However, for the expected spectral
measure µ, we can show

Theorem 1.2. The critical value for the existence of continuous part in the expected spec-
tral measure µ for percolation on d-regular trees is 1/d .

This can be generalized to Galton–Watson trees. In fact, we will show that a bounded
degree unimodular tree has continuous spectrum as long as it has at least two ends (Sec-
tion 1.6).

In contrast Bhamidi, Evans and Sen [8] have proved that the limiting spectral mea-
sures for various popular models of random trees, for example uniform random trees and
trees generated by preferential attachment scheme, have a dense set of atoms (this does
not rule out the existence of some continuous part). Lelarge, Salez and the first author [11]
have given examples of Galton–Watson trees with arbitrarily high minimal degree and an
atom at 0 for the expected spectral measure.
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1.3. Percolation on Euclidean lattices

The study of the regularity of the density of states is of prime importance in the litera-
ture on random Schrödinger operators. The study of random Hamiltonians generated by
percolation on Zd was initiated by de Gennes, Lafore and Millot [14, 15] in the 1950’s
under the name of quantum percolation. The study of the density of states is a prelim-
inary step toward understanding the behavior of the eigenvectors—see e.g. Kirkpatrick
and Eggarter [30], Chayes et al. [13] or Veselić [40] and references therein. After more
than half a century, it is still a very active field of research, and proving the existence of
Anderson delocalization remains the main open challenge in the area. One of the issues
of quantum percolation models is that the lack of regularity of percolation graphs does
not allow one to use Wegner estimates.

In parallel, the study of the spectral properties of graphs and countable groups has a
long history; see Mohar and Woess [34] for an early survey on the matter. Kesten [27]
computed the spectral measure of the infinite d-regular tree (the Cayley graph of the free
group with d generators). This spectral measure is absolutely continuous. This is not the
case for every infinite Cayley graph. Indeed, Grigorchuk and Żuk [20] have proved that
the spectral measure of the usual lamplighter group is purely atomic (see also Lehner,
Neuhauser and Woess [31]). Hence, neither connectivity nor regularity are necessary to
guarantee the regularity of the spectral measure.

For site or bond percolation on Zd the expected spectral measure µ can be defined
through moments, spectral theory, or simply as the limit of the empirical eigenvalue dis-
tribution on finite boxes (Section 1.5).

When the percolation has only finite components, the expected spectral measureµ is a
countable mixture of atomic measures, so it is purely atomic. On the other end, for p = 1
the percolation is simply Zd rooted at the origin and its spectral measure is absolutely
continuous. In fact, it is the convolution of d arcsine distributions [34, Section 7.B].

Theorem 1.3. For Bernoulli bond percolation on Z2, the expected spectral measure has
a continuous part if and only if p > pc.

In this paper, the focus is on the adjacency operator of a graph. The same study could
be generalized to discrete Laplacian or combinatorial Laplacian or weighted graphs. In
the next section, we discuss unimodular random graphs, a convenient framework which
allows us to discuss all the above spectral questions. Our contribution to this theory is that
we can define the expected spectral measure for unimodular random graphs in complete
generality (Proposition 1.4).

1.4. Unimodular random graphs

We first briefly introduce the theory of local weak convergence of graph sequences and
the notion of unimodularity. It was introduced by Benjamini and Schramm [7] and has
become a popular topology for studying sparse graphs since then. Let us briefly introduce
this topology; for further details we refer to Aldous and Lyons [2].

A graph G = (V ,E) is said to be locally finite if for all v ∈ V , the degree of v
in G, degG(v), is finite. A rooted graph (G, o) is a locally finite and connected graph
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G = (V ,E) with a distinguished vertex o ∈ V , the root. Two rooted graphs (Gi, oi) =
(Vi, Ei, oi), i ∈ {1, 2}, are isomorphic if there exists a bijection σ : V1 → V2 such that
σ(o1) = o2 and σ(G1) = G2, where σ acts on E1 through σ({u, v}) = {σ(u), σ (v)}. We
will denote this equivalence relation by (G1, o1) ' (G2, o2). In graph theory terminology,
an equivalence class of rooted graphs is an unlabeled rooted graph. We denote by G∗ the
set of unlabeled rooted graphs.

The local topology is the smallest topology such that for any g ∈ G∗ and integer
t ≥ 1, the G∗ → {0, 1} function f (G, o) = 1((G, o)t ' g) is continuous, where (G, o)t
is the induced rooted graph spanned by the vertices at graph distance at most t from o.
This topology is metrizable and the space G∗ is separable and complete.

For a finite graph G = (V ,E) and v ∈ V , one writes G(v) for the connected com-
ponent of G at v. One defines the probability measure U(G) ∈ P(G∗) as the law of the
equivalence class of the rooted graph (G(o), o) where the root o is sampled uniformly
on V . If (Gn)n≥1 is a sequence of finite graphs, we shall say that Gn has local weak limit
ρ ∈ P(G∗) if U(Gn) → ρ weakly in G∗. A measure ρ ∈ P(G∗) is called sofic if there
exists a sequence (Gn)n≥1 of finite graphs whose local weak limit is ρ.

The notion of unimodularity can be thought of as invariance under moving the root,
but it requires some subtlety to get the definition right. Towards this end, we define locally
finite connected graphs with two roots (G, o, o′) and extend the notion of isomorphism
to such structures. We define G∗∗ as the set of equivalence classes of graphs (G, o, o′)
with two roots and equip G∗∗ with its natural local topology. A function f on G∗∗ can be
extended to a function on connected graphs with two roots (G, o, o′) through the isomor-
phism classes. Then a measure ρ ∈ P(G∗) is called unimodular if for any measurable
function f : G∗∗→ R+, we have

Eρ
∑
v∈V

f (G, o, v) = Eρ
∑
v∈V

f (G, v, o), (1)

where under Pρ , (G, o) has law ρ. It is immediate to check that ifG is finite then U(G) is
unimodular. More generally, all sofic measures are unimodular, and the converse is open;
for a discussion see [2]. It is however known that all unimodular probability measures
supported on rooted trees are sofic (see Elek [18], Bowen [12] and Benjamini, Lyons and
Schramm [6]). We will denote by Puni(G∗) the set of unimodular measures. It is closed
under the local weak topology.

Any Cayley graph G of a finitely generated group 0 is unimodular (more precisely,
for any v ∈ 0, the measure ρ which puts a Dirac mass at the equivalence class of (G, v)
is unimodular) [2, Section 3].

With a slight abuse of language, we shall say that a random rooted graph (G, o) is
unimodular if the law of its equivalence class in G∗ is unimodular.

1.5. The spectral measure of graphs

Let V be countable and G = (V ,E) be a locally finite graph. Its adjacency operator,
denoted by A, is defined for vectors ψ ∈ `2(V ) with finite support by the formula

Aψ(u) =
∑

v: {u,v}∈E

ψ(v).
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By construction A is symmetric. If it is assumed further that the degrees of vertices are
bounded by an integer d , then we readily check that A has norm bounded by d . Hence,
A is a self-adjoint operator. For any ψ ∈ `2(V ) with ‖ψ‖22 = 1, we may thus define the
spectral measure with vector ψ , denoted by µψA , as the unique probability measure on R
such that for all integers k ≥ 1, ∫

xk dµ
ψ
A = 〈ψ,A

kψ〉. (2)

For example if |V | = n is finite, then A is a symmetric matrix. If (v1, . . . , vn) is an
orthonormal basis of eigenvectors associated to eigenvalues (λ1, . . . , λn), we find

µ
ψ
A =

n∑
k=1

〈vk, ψ〉
2δλk (3)

(if V is not finite, µψA has a similar decomposition over the resolution of the identity of A
but we shall not need this here).

Now, we denote by ev(u) = 1{u=v} the coordinate vector associated to v ∈ V . Note
that if two rooted graphs are isomorphic then the spectral measures associated to the
coordinate vector for the root (simply called the spectral measure at the root) are equal.
It thus makes sense to define µeoA for elements of G∗. Then, if ρ ∈ P(G∗) is supported on
graphs with bounded degrees, we may consider the expected spectral measure of the root:

µρ = EρµeoA . (4)

In particular, if |V | = n is finite, (3) implies

µU(G) =
1
n

n∑
k=1

δλk .

It is the empirical distribution of the eigenvalues of the adjacency matrix.
It is not clear a priori how to extend this construction to random graphs without

bounded degrees. For finitely supported ψ ∈ `2(V ), the spectral measure µψA is prop-
erly defined if A is essentially self-adjoint. More generally, if ρ ∈ P(G∗) is such that
ρ-a.s. A is essentially self-adjoint, we define µρ = EρµeoA as in (4). It can be difficult
to check that adjacency operators are essentially self-adjoint (for a criterion of essential
self-adjointness of the adjacency operator of trees see [11], and for a characterization see
Salez [37, Theorem 2.2]). It turns out however that for unimodular measures, A is always
ρ-a.s. essentially self-adjoint and µρ = EρµeoA is thus well-defined without any bounded
degree assumption.

Proposition 1.4. For any ρ ∈ Puni(G∗),
(i) the adjacency operator A is ρ-a.s. essentially self-adjoint,

(ii) if ρn ∈ Puni(G∗) and ρn→ ρ, then µρn converges weakly to µρ .

If a sequence (Gn)n≥1 of finite graphs has local weak limit ρ then the empirical distribu-
tion of the eigenvalues of their adjacency matrices converges weakly to µρ . In this last
case, if moreover degGn(v) ≤ θ for some θ > 0 and all v ∈ V (Gn), then by using Lück’s
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approximation [32, 39, 1], the convergence can even be strengthened to the pointwise
convergence of all atoms.

1.6. Existence of continuous spectrum in unimodular trees

In this paper, we will develop two simple tools to prove the existence of a continuous part
of the spectral measure of unimodular graphs. In addition to the examples given at the
beginning of the introduction, we will present many cases where these two tools can be
applied.

A weighted graph (G,ω) is a graph G = (V ,E) equipped with a weight function
ω : V 2

→ Z such that ω(u, v) = 0 if u 6= v and {u, v} /∈ E. The weight function is edge-
symmetric if ω(u, v) = ω(v, u) and ω(u, u) = 0. Note that, for edge-symmetric weight
functions, the set of edges such that ω(e) = k spans a subgraph of G. A line ensemble of
G is an edge-symmetric weight function L : V 2

→ {0, 1} such that for all v ∈ V ,∑
u

L(u, v) ∈ {0, 2}.

We will think of L as a subgraph of G which consists of a union of vertex-disjoint copies
of Z.

It is straightforward to extend the local weak topology to weighted graphs. The def-
inition of unimodularity carries over naturally to weighted graphs (see the definition of
unimodular network in [2]). Now, consider a unimodular graph (G, o). If, on an enlarged
probability space, the weighted graph (G,L, o) is unimodular and L is a.s. a line en-
semble then we shall say that L is an invariant line ensemble of (G, o). We call P(o ∈ L)
the density of L.

Theorem 1.5. Let (T , o) be a unimodular tree with law ρ. If L is an invariant line en-
semble of (T , o) then for each real λ,

µρ(λ) ≤ P(o /∈ L)µρ′(λ)

where, if P(o /∈ L) > 0, ρ′ is the law of the rooted tree (T \L, o) conditioned on the root
o /∈ L. In particular, the total mass of atoms of µρ is bounded above by P(o /∈ L).

We will check in Section 5.1 below that the measure ρ′ is indeed unimodular. As a con-
sequence, if (T , o) has an invariant line ensemble such that P(o ∈ L) = 1 then µρ is
continuous. Our next result gives the existence of an invariant line ensemble for a large
class of unimodular trees. We recall that for a rooted tree (T , o), a topological end is just
an infinite non-backtracking path in T starting from o.

Proposition 1.6. Let (T , o) be a unimodular tree. If T has at least two topological ends
with positive probability, then (T , o) has an invariant line ensemble L with positive den-
sity, P(o ∈ L) > 0. Moreover, we have the following lower bounds.

(i) P(o ∈ L) ≥ 1
6
(E deg(o)−2)2

E deg(o)2 as long as the denominator is finite.
(ii) Let q be the probability that T \{o} has at most one infinite component. If deg(o) ≤ d

a.s., then P(o ∈ L) ≥ 1
3 (E deg(o)− 2q)/d.
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One of the natural examples where the conditions of Proposition 1.6 are not satisfied is
the infinite skeleton tree which consists of a semi-infinite line Z+ := {0, 1, 2, . . .} with
i.i.d. critical Poisson Galton–Watson trees attached to each of the vertices of Z+. Assign
0 ∈ Z+ to be the root of this infinite skeleton tree. It is the local weak limit of the uniform
trees on n labeled vertices.

Let P ∈ P(Z+) with positive and finite mean. The unimodular Galton–Watson tree
with degree distribution P (commonly known as size-biased Galton–Watson tree) is the
law of the random rooted tree obtained as follows. The root has a number d of children
sampled according to P , and, given d , the subtrees of the children of the root are inde-
pendent Galton–Watson trees with offspring distribution

P̂ (k) =
(k + 1)P (k + 1)∑

` `P (`)
. (5)

These unimodular trees appear naturally as a.s. local weak limits of random graphs with a
given degree distribution [17, 16, 9]. It is also well known that the Erdős–RényiG(n, c/n)
has a.s. local weak limit the Galton–Watson tree with offspring distribution Poi(c). Note
that if P is Poi(c) then P̂ = P . The percolation on the hypercube {0, 1}n with parame-
ter c/n has the same a.s. local weak limit.

If P has first moment µ1 and second moment µ2, then the first moment of P̂ is
µ̂ = (µ2 − µ1)/µ1. If P 6= δ2 and µ̂ ≤ 1, then the unimodular Galton–Watson tree
is a.s. finite. If µ̂ > 1 (µ̂ = ∞ is allowed), the tree is infinite with positive probability.
Proposition 1.6 now implies that the following phase transition exists for the existence of
a continuous part in the expected spectral measure.

Corollary 1.7. Let ρ be a unimodular Galton–Watson tree with degree distribution
P 6= δ2. Denote by µ̂ the first moment of P̂ . Then µρ contains a non-trivial continu-
ous part if and only if µ̂ > 1.

Note that for some choices of P , it is false that the total mass of the atomic part of µρ is
equal to the probability of extinction of the tree—it is only a lower bound (see [11]).

Let us conclude the introduction with a few open questions.

1.7. Open questions

Question 1.8. Consider a unimodular Galton–Watson tree with degree distribution P
with finite support and P(0) = P(1) = 0. Does the expected spectral measure have only
finitely many atoms?

Theorem 1.3 naturally inspires the following question. We strongly believe that the an-
swer is yes.

Question 1.9. Does supercritical bond percolation on Zd have a continuous part in its
expected spectral measure for every d ≥ 2?

In view of the result of Grigorchuk and Żuk [20] on the lamplighter group, the next
problem has some subtlety.
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Question 1.10. Is there some monotonicity in the weights of the atoms of the spectral
measure ( for some non-trivial partial order on unimodular measures)?

Our main results concern percolation on lattices and trees. This motivates the following
question.

Question 1.11. What can be said about the regularity of the spectral measure for other
non-amenable/hyperbolic graphs and for other planar graphs (such as the uniform infi-
nite planar triangulation in Angel and Schramm [3])?

We have seen that regular trees with degree at least 2 contain invariant line ensembles
with density 1. A quantitative version of this would be that if the degree is concentrated,
then the density is close to 1. Based on the last part of Proposition 1.6, the following
formulation is natural.

Question 1.12. Is there a function f with f (x)→ 1 as x → 1 such that every unimodu-
lar tree of maximal degree d ≥ 2 contains an invariant line ensemble with density at least
f (E deg(o)/d)?

Two more open questions (Questions 5.8 and 5.9) can be found in Section 5.

2. The monotone labeling technique

In this section we will use a carefully chosen labeling of the vertices of a graph to prove
regularity of its spectrum, the intuition being that a labeling gives an order on the vertices
to solve the eigenvalue equation at each vertex.

Definition 2.1. Let G = (V ,E) be a graph. A map η : V → Z is a labeling of the
vertices of G with integers. We shall call a vertex v

(i) prodigy if it has a neighbor w with η(w) < η(v) and such that all other neighbors of
w also have label less than η(v),

(ii) level if it is not prodigy and if all of its neighbors have the same or lower labels,
(iii) bad if none of the above holds.

Finite graphs. We start with the simpler case of finite graphs.

Theorem 2.2. Let G be a finite graph, and consider a labeling η of its vertices with
integers. Let `, b denote the numbers of level and of bad vertices, respectively. For any
eigenvalue λ with multiplicity m, if j̀ is the multiplicity of the eigenvalue λ in the sub-
graph induced by level vertices with label j , then

m ≤ b +
∑
j

j̀ .

Consequently, for any multiplicities m1, . . . , mk of distinct eigenvalues we have

m1 + · · · +mk ≤ kb + `.
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Proof. Let S be the eigenspace for the eigenvalue λ of multiplicitym. Consider the set of
bad vertices, and letB be the space of vectors which vanish on that set. For every integer j ,
let Lj denote the set of level vertices with label j and let Aj denote the eigenspace of λ
in the induced subgraph of Lj . With the notation of the theorem, dimAj = j̀ . We extend
the vectors in Aj to the whole graph by setting them to zero outside Lj . Let A⊥j be the
orthocomplement of Aj . Recall that for any vector spaces A,B we have dim(A ∩ B) ≥
dimA− codimB. Let S′ = S ∩ B ∩

⋂
j A
⊥

j , and note that

dim S′ ≥ dim S − codimB −
∑
j

codimA⊥j = m− b −
∑
j

dimAj . (6)

However, we claim that the subspace S′ is trivial. Let f ∈ S′. We now prove, by induction
on the label j of the vertices, low to high, that f vanishes on vertices with label j . Suppose
that f vanishes on all vertices with label strictly below j . Clearly, f vanishes on all bad
vertices since f ∈ B. Consider a prodigy vertex v with label j . Then, by induction
hypothesis, v has a neighbor w such that f vanishes on all neighbors of w except perhaps
at v. But the eigenvalue equation

λf (w) =
∑
u∼w

f (u)

implies that f also vanishes at v. Now, observe that the outer vertex boundary of Lj (all
vertices that have a neighbor in Lj but are not themselves in Lj ) is contained in the union
of the set of bad vertices, the set of level vertices with label strictly below j and the set
of prodigy vertices with label j . Hence, we know that f vanishes on the outer vertex
boundary of Lj . This means that the restriction of f to Lj has to satisfy the eigenvector
equation. But since f ∈ A⊥j , we get f (v) = 0 for v ∈ Lj , and the induction is complete.

We have thus proved that S′ is trivial. Now (6) implies that m ≤ b+
∑
j dimAj . This

gives the first statement of Theorem 2.2.
For the second statement, letAi,j denote the eigenspace of λi in the induced subgraph

of Lj . Summing the above inequality over i, we get

m1 + · · · +mk ≤ bk +
∑
j

∑
i

dimAi,j ≤ bk +
∑
j

|Lj | = bk + `. ut

Unimodular graphs. We now prove the same theorem for unimodular random graphs
which may possibly be infinite. To make the above proof strategy work, we need a suit-
able notion of normalized dimension for infinite-dimensional subspaces of `2(V ). This
requires some basic concepts of operator algebras. First, as usual, if (G, o) is a unimod-
ular random graph, we shall say that a labeling η : V (G) → Z is invariant if on an
enlarged probability space, the vertex-weighted rooted graph (G, η, o) is unimodular.

There is a natural von Neumann algebra associated to unimodular measures. More
precisely, let G∗ denote the set of equivalence classes of locally finite connected (pos-
sibly weighted) graphs endowed with the local weak topology. There is a canonical
way to represent an element (G, o) ∈ G∗ as a rooted graph on the vertex set V (G) =
{o, 1, 2, . . . , N}withN ∈ N∪{∞} (see Aldous and Lyons [2]). We set V = {o, 1, 2, . . . },
H = `2(V ) and define B(H) as the set of bounded linear operators onH . Now, for a fixed
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ρ ∈ Puni(G∗), we consider the Hilbert space H of ρ-measurable functions ψ : G∗ → H

such that Eρ‖ψ‖2 <∞with inner product Eρ〈ψ, φ〉. Let us denote by L∞(G∗,B(H), ρ)
the ρ-measurable maps B : G∗→ B(H) with ‖B‖ ∈ L∞(G∗, ρ).

Now, for any bijection σ : V → V , we consider the orthogonal operator λσ defined by
λσ (ev) = eσ(v) for all v ∈ V . We introduce the algebra M of maps in L∞(G∗,B(H), ρ)
which commute with the operators λσ , i.e. for any σ , ρ-a.s. B(G, o)=λ−1

σ B(σ(G), o)λσ .
In particular, B(G, o) does not depend on the root. It can be checked that M is a von
Neumann algebra of operators on the Hilbert space H (see [2, §5] and Lyons [33] for
details). Moreover, the linear map M→ C defined by

τ(B) = Eρ〈eo, B(G, o)eo〉,

where B : (G, o) 7→ B(G, o) ∈M and under Eρ , G has distribution ρ, is a normalized
faithful trace. Observe finally thatG = (V (G),E) ∈ G∗ can be extended to a graph on V
(all vertices in V \ V (G) are isolated). Then the adjacency operator A : (G, o) 7→ A(G)

defines a densely defined operator affiliated to M (see again [33] for details).
A closed vector space S of H such that PS , the orthogonal projection to S, is an ele-

ment of M will be called an invariant subspace. Recall that the von Neumann dimension
of such a vector space S is just

dim S := τ(PS) = Eρ〈eo, PSeo〉.

We refer e.g. to Kadison and Ringrose [25].

Theorem 2.3. Let (G, o) be a unimodular random graph with distribution ρ, and con-
sider an invariant labeling η of its vertices with integers. Let `, b denote the probabilities
that the root is level or bad, respectively. For integer j and real λ, let j̀ be the von Neu-
mann dimension of the eigenspace of λ in the subgraph spanned by level vertices with
label j . The spectral measure µρ satisfies

µρ(λ) ≤ b +
∑
j

j̀ .

Consequently, for any distinct real numbers λ1, . . . , λk , we have

µρ(λ1)+ · · · + µρ(λk) ≤ kb + `.

In particular, if b = 0, then the atomic part of µρ has total weight at most `.

Proof. We first assume that there are only finitely many labels. Let S be the eigenspace
of λ, that is, the subspace of f ∈ `2(V ) satisfying, for all w ∈ V ,

λf (w) =
∑
u∼w

f (u). (7)

Consider the set of bad vertices, and let B be the space of vectors which vanish on that
set. For every integer j let Lj denote the set of level vertices with label j . Let Aj denote
the eigenspace of λ in the induced subgraph of Lj ; extend the vectors in Aj to the whole
graph by setting them to zero outside Lj . Let A⊥j be the orthocomplement of Aj .
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For any two invariant vector spaces R, Q we have

dim(R ∩Q) ≥ dimR + dimQ− 1

(see e.g. [23, exercice 8.7.31]). Setting S′ = S ∩ B ∩
⋂
j A
⊥

j leads to

dim S′ ≥ dim S + dimB − 1+
∑
j

(dimA⊥j − 1) = µρ(λi)− b −
∑
j

dimAj .

However, we claim that the subspace V ′i is trivial. Let f ∈ V ′i . We now prove, by in-
duction on the label j of the vertices, low to high, that f vanishes on vertices with label
j . The argument is exactly similar to the case of finite graphs presented before. Suppose
that f vanishes on all vertices with label strictly below j . Clearly, f vanishes on all bad
vertices since f ∈ B. Consider a prodigy vertex v with label j . Then v has a neighbor
w such that f vanishes on all neighbors of w except perhaps at v. But the eigenvalue
equation (7) implies that f also vanishes at v. By now, we know that f vanishes on the
outer vertex boundary of Lj . This means that the restriction of f to Lj has to satisfy the
eigenvector equation. But since f ∈ A⊥j , we get f (v) = 0 for v ∈ Lj , and the induction
is complete.

We have proved that µρ(λi) ≤ b+
∑
j dimAj ; it is the first statement of the theorem

in the case of finitely many labels. When there are infinitely many labels, for every ε we
can find n such that P(|η(o)| > n) ≤ ε. We can relabel all vertices with |η(v)| > n by
−n− 1; this may make them bad vertices, but will not make designation of vertices with
other labels worse. The argument for finitely many labels gives

µρ(λ) ≤ b + ε +

n∑
j=−n−1

dimAj ≤ b + 2ε +
n∑

j=−n

dimAj ≤ b + 2ε +
∑
j

j̀ ,

and letting ε→ 0 completes the proof of the first statement.
For the second statement, letAi,j denote the eigenspace of λi in the induced subgraph

of Lj . Summing the above inequality over i, we get

µρ(λ1)+ · · · + µρ(λk) ≤ bk +
∑
j

∑
i

dimAi,j ≤ bk +
∑
j

P(o ∈ Lj ) = bk + `. ut

Vertical percolation. There are simple examples where we can apply Theorems 2.2–2.3.
Consider the graph of Z2. We perform a vertical percolation by removing some vertical
edge {(x, y), (x, y + 1)}. We restrict to the n × n box [0, n − 1]2 ∩ Z2. We thus obtain
a finite graph 3n on n2 vertices. We consider the labeling η((x, y)) = x. It appears that
all vertices with label different from 0 are prodigy. The vertices on the y-axis are bad
and there are no level vertices. By Theorem 2.2, the multiplicity of any eigenvalue of the
adjacency matrix of 3n is bounded by n = o(n2).

Similarly, let p ∈ [0, 1]. We remove each vertical edge {(x, y), (x, y + 1)} indepen-
dently with probability 1− p. We obtain a random graph 3(p) with vertex set Z2. Now,
we root this graph 3(p) at the origin and obtain a unimodular random graph. We claim
that its expected spectral measure µρ is continuous for any p ∈ [0, 1]. Indeed, let k ≥ 1
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be an integer and U be a random variable sampled uniformly on {0, . . . , k − 1}. We con-
sider the labeling η((x, y)) = x + U mod(n). It is not hard to check that this labeling
is invariant. Moreover, all vertices such that η(x, y) 6= 0 are prodigy while vertices such
that η(x, y) = 0 are bad. It follows from Theorem 2.3 that the mass of any atom of µρ is
bounded by 1/k. Since k is arbitrary, we deduce that µρ is continuous.

The same holds on Zd , d ≥ 2, in the percolation model where we remove edges of
the form {u, u+ ek} with u ∈ Zd and k ∈ {2, . . . , d}.

3. The minimal path matching technique

In this section, we give a new tool to upper bound the multiplicities of eigenvalues.

Definition 3.1. Let G = (V ,E) be a finite graph, I = {i1, . . . , ib} and J = {j1, . . . , jb}

be two disjoint subsets of V of equal cardinality. A path matching5 = {π`}1≤`≤b from I

to J is a collection of self-avoiding paths π` = (u`,1, . . . , u`,p`) in G such that for some
permutation σ on {1, . . . , b} and all 1 ≤ ` 6= `′ ≤ b,

• π`′ ∩ π` = ∅,
• u`,1 = i` and u`,p` = jσ(i`).

We will call σ the matching map of 5. The length of 5 is defined as the sum of the
lengths of the paths,

|5| =

b∑
`=1

|π`| =

b∑
`=1

p`.

(Note that by the length of a self-avoiding path π`, we mean the number of vertices on it,
rather than the number of edges.) Finally,5 is a minimal path matching from I to J if its
length is minimal among all possible path matchings.

Connections between multiplicities of eigenvalues and paths have already been known
for a long time (see e.g. Godsil [19]). Kim and Shader [29, Theorem 8] provide a nice
argument that connects the two notions in trees. This was the starting point for the proof
of the following theorem.

Theorem 3.2. Let G = (V ,E) be a finite graph and I, J ⊂ V be two subsets of car-
dinality b. Assume that the set of path matchings from I to J is not empty and that all
minimal path matchings from I to J have the same matching map. Then if |V | − ` is the
length of a minimal path matching and if m1, . . . , mr are the multiplicities of the distinct
eigenvalues λ1, . . . , λr of the adjacency matrix of G, we have

r∑
i=1

(mi − b)+ ≤ `.

Consequently, for any 1 ≤ k ≤ r ,

m1 + · · · +mk ≤ kb + `.

We will aim at applying Theorem 3.2 with b small and |V | − ` proportional to |V |.
Observe that ` is the number of vertices not covered by the union of the paths involved
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in a minimal path matching. Theorems 3.2 and 2.3 have the same flavor but they are
not equivalent to each other. We note that, in contrast to Theorems 2.2 and 2.3, we do
not have a version of Theorem 3.2 which holds for possibly infinite unimodular graphs.
Unlike Theorem 2.2, we do not have either a version which bounds the multiplicity of
an eigenvalue in terms of its multiplicities in subgraphs. On the other hand, Theorem 3.2
will be used to show the existence of non-trivial continuous part for the expected spectral
measure of two-dimensional supercritical bond percolation. It is not clear how to apply
Theorem 2.2 or Theorem 2.3 to get this result.

Following [29], the proof of Theorem 3.2 is based on the divisibility properties of
characteristic polynomials of subgraphs. For I, J ⊂ V , we define (A − x)I,J as the
matrix A− x where the rows with indices in I and columns with indices in J have been
removed. We define the polynomial associated to the (I, J )-minor as

PI,J (A) : x 7→ det (A− x)I,J .

We introduce the polynomial

1b(A) = GCD(PI,J (A) : |I | = |J | = b),

where GCD is the (unique) monic polynomial g of highest degree such that all arguments
are some polynomial multiples of g. Recall also that any polynomial divides 0. Observe
that if |I | = b then PI,I (A) is a polynomial of degree |V | − b. It follows that the degree
of1b is at most |V | − b. For the reader’s convenience, let us record that1b in this article
corresponds to 1|V |−b in [29].

The next lemma is the key to relating multiplicities of eigenvalues and characteristic
polynomial of subgraphs.

Lemma 3.3. If A is the adjacency matrix of a finite graph and m1, . . . , mr are the mul-
tiplicities of its distinct eigenvalues λ1, . . . , λr , then

1b(A) =

r∏
i=1

(x − λi)
(mi−b)+ .

Consequently,
r∑
i=1

(mi − b)+ = deg(1b(A)).

Proof. We set |V | = n. If B(x) ∈Mn(R[x]) is an n× n matrix with polynomial entries,
we may define analogously PI,J (B(x)) = detB(x)I,J and 1b(B(x)) (we retrieve our
previous definition with B(x) = A − x). Let B1(x), . . . , Bn(x) be the columns of B(x).
A simple calculation gives, for j 6= 1,

det (Bj (x), B2(x), . . . , Bn(x))I,J =

detB(x)I,J if 1 ∈ J,
0 if 1 6∈ J, j 6∈ J,
± detB(x)I,(J\{j})∪{1} if 1 6∈ J, j ∈ J,
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where the sign in the third case above is a function of j and J . Now the multi-linearity of
the determinant implies that

det (w11B1(x)+ w21B2(x)+ · · · + wn1Bn(x), B2(x), . . . , Bn(x))I,J

is a weighted sum of determinants of minors of the form (I, J ′) where |J ′| = |J |. It
is thus divisible by 1b(B(x)). The same holds for the rows of B(x). We deduce that if
U,W ∈ Mn(R), then 1b(B(x)) divides 1b(UB(x)W). It follows that if U and W are
invertible,

1b(UB(x)W) = 1b(B(x)).

We may now come back to our matrix A. Since A is symmetric, the spectral theorem
gives A = UDU∗ with U orthogonal and D diagonal with mi entries equal to λi . We
have U(D − x)U∗ = A− x. Hence,

1b(A− x) = 1b(D − x).

It is immediate to check that if I 6= J , then PI,J (D − x) = 0 and

PI,I (D − x) =
∏
k /∈I

(Dkk − x) =

r∏
i=1

(λi − x)
mi−mi (I ),

where mi(I ) =
∑
k∈I 1(Dkk = λi). The lemma follows easily. ut

Proof of Theorem 3.2. We set |V | = n. We can assume without loss of generality that
the matching map of minimal length matchings is the identity. We consider the matrix
B ∈Mn(R) obtained from A by setting

Bej` = ei` for 1 ≤ ` ≤ b, Bej =
∑
i /∈I

Aij ei for j /∈ J .

In graphical terms, B is the adjacency matrix of the oriented graph Ḡ obtained fromG as
follows: (1) all edges adjacent to a vertex in J are oriented inwards, (2) all edges adjacent
to a vertex in I are oriented outwards, (3) all other edges ofG have both orientations, and
(4) for each 1 ≤ ` ≤ b, an oriented edge from j` to i` is added. We define

B(x) = B − xD,

where D is the diagonal matrix with Dii = 1− 1(i ∈ I ∪ J ). Expanding the determinant
along the columns J , it is immediate to check that

detB(x) = det (A− x)I,J .

We find
PI,J (A) =

∑
τ

(−1)τ
∏
v∈V

B(x)v,τ (v) =
∑
τ

(−1)τQτ (x),

where the sum is over all permutations of V . Consider a permutation such that Qτ 6= 0.
We decompose τ into disjoint cycles. Observe that Qτ 6= 0 implies that any cycle of
length at least 2 coincides with a cycle in the oriented graph Ḡ. Hence, Qτ = 0 unless
τ(j`) = i` and (τ k(i`), k ≥ 0) is a path in Ḡ. We define σ(i`) = τp`(i`) as the first
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element in J which is met in the path. We may decompose these paths into disjoint paths
π` = (τ k(i`), 0 ≤ k ≤ p`) in G from i` to jσ(`). This defines a path matching 5 =
{π1, . . . , πb}. The contribution to Qτ of any cycle of length at least 2 is 1 (since off-
diagonal entries of A and B are 0 or 1). Also, the signature of a product of disjoint cycles
is the product of their signatures. So finally, it follows that

PI,J (A) =
∑
5

ε(5) detB(x)5,5 =
∑
5

ε(5) det (A− x)5,5, (8)

where the sum is over all path matchings from I to J and ε(5) is the signature of the
permutation τ on 5 defined as follows: if 5 = {π1, . . . , πb}, π` = (i`,1, . . . , i`,p`) and
σ is the matching map of 5, then τ(i`,k) = i`,k+1 for 1 ≤ k ≤ p` − 1, and τ(i`,p`) =
τ(jσ(`)) = iσ(`).

Observe that det (A−x)5,5 is a polynomial of degree n−|5| and leading coefficient
(−1)n−|5|. Recall also that the signature of a cycle of length k is (−1)k+1. By assumption,
if 5 is a minimal path matching then its matching map is the identity; it follows that

ε(5) = (−1)n−`+b.

Hence, from (8), PI,J (A) is a polynomial of degree ` and leading coefficient m(−1)b

where m is the number of minimal path matchings. By assumption 1b(A) divides
PI,J (A), in particular deg(1b(A)) ≤ `. It remains to apply Lemma 3.3. ut

Vertical percolation (revisited). Let us revisit the example of vertical percolation on
Z2 introduced in the previous paragraph. We consider the graph 3n on the vertex set
[0, n−1]2∩Z2 where some vertical edges {(x, y), (x, y+1)} have been removed. We set
I = {(0, 0), (0, 1), . . . , (0, n− 1)} and J = {(n− 1, 0), (n− 1, 1), . . . , (n− 1, n− 1)}.
Consider the path matchings from I to J . Since none of the horizontal edges of the graph
of Z2 have been removed, the minimal path matching is unique: it matches (0, k) to (n−
1, k) along the path ((0, k), (1, k), . . . , (n−1, k)). In particular, the length of the minimal
path matching is n2. We may thus apply Theorem 3.2; we find that the multiplicity of any
eigenvalue is bounded by n = o(n2). By pointwise convergence of atoms, this implies
that the limiting spectral measure is continuous. Note that Theorems 2.2 and 3.2 give the
same bound on the multiplicities for this example.

Lamplighter group. The assumption that all minimal path matchings have the same
matching map is important in the proof of Theorem 3.2. It is used to guarantee that the
polynomial in (8) is not identically zero. Consider a Følner sequence Bn in the Cayley
graph of the lamplighter group Z2 o Z [20] where Bn consists of the vertices of the form
(v, k) ∈ ZZ

2 × Z with v(i) = 0 for |i| > n and |k| ≤ n. There is an obvious minimal
matching inBn covering all the vertices where each path is obtained by shifting the marker
from −n to n and keeping the configurations of the lamps unaltered along the way. But
the condition on the unicity of the matching map is not fulfilled. In this case, it is not hard
to check that there is a perfect cancellation on the right hand side of (8). This is consistent
with the fact that the spectral measure of this lamplighter group is purely atomic.
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4. Supercritical bond percolation on Z2

In this section, we will prove Theorem 1.3 by finding an explicit lower bound on the total
mass of the continuous part of µρ in terms of the speed of the point-to-point first passage
percolation on Z2. We fix p > pc(Z2) = 1/2.

We will use a finite approximation of Z2. Let 3n(p) be the (random) subgraph of
the lattice Z2 obtained by restricting the p-percolation on Z2 to the (n + 1) × (n + 1)
box [0, n]2 ∩ Z2. We simply write 3n for 3n(1). As mentioned in the introduction,
perc(Z2, p), the open connected component of the origin for the p-percolation on Z2, is
the local weak limit of U(3n(p)), and hence by Proposition 1.4, Eµpn converges weakly
to µρ as n → ∞, where µpn is the empirical eigenvalue distribution of 3n(p) and the
average E is taken with respect to the randomness of 3n(p).

Now, assume that, given a realization of the random graph 3n(p), we can find two
disjoint subsets of vertices U and V of 3n(p) with |U | = |V | and a minimal vertex-
disjoint path matching Mn of 3n(p) between U and V such that:

(i) The vertices of U and V are uniquely paired up in any such minimal matching of
3n(p) between U and V .

(ii) |U | = o(n2).
(iii) There exists a constant c > 0 such that the size ofMn is at least cn2, with probability

converging to one.

If there exists such a matching satisfying (i)–(iii) above, then Theorem 3.2 says that for
any finite subset S ⊂ R,

P(µpn (S) ≤ 1− c) = 1− o(1),

and consequently Eµpn (S) ≤ (1 − c) + o(1). Then by Lück approximation (see [40,
Corollary 2.5], [39, Theorem 3.5] or [1]), µρ(S) = limn→∞ Eµpn (S) ≤ 1 − c for any
finite subset S, which implies that the total mass of the continuous part of µρ is at least c.
Hence, in order to prove Theorem 1.3, it is sufficient to prove the existence with high
probability of such pairs of sets of disjoint vertices.

A natural way to construct this is to find2(n) vertex-disjoint paths in3n(p) between
its left and right boundary. Suppose that there exists a collection ofm disjoint left-to-right
crossings of 3n(p) that match the vertex (0, ui) on the left boundary to the vertex (n, vi)
on the right boundary for 1 ≤ i ≤ m. Without loss of generality, we can assume 0 ≤ u1 <

· · · < um ≤ n. Since two vertex-disjoint left-to-right crossings in Z2 can never cross each
other, we always have 0 ≤ v1 < · · · < vm ≤ n. Now we take U = {(0, ui) : 1 ≤ i ≤ m}
and V = {(n, vi) : 1 ≤ i ≤ m}. We consider all vertex-disjoint path matchings between
U and V in 3n(p) (there exists at least one such matching by our hypothesis) and take
Mn to be a minimal matching between U and V . Clearly, (i) and (ii) above are satisfied.
Since any left-to-right crossing contains at least n + 1 vertices, the size of Mn is at least
(n + 1)m. Thus to prove (iii) we need to show that with high probability we can find
at least cn vertex-disjoint left-to-right crossings in 3n(p). This is a well-known fact in
percolation theory (see, for example, [21, Lemma 11.22, Theorem 7.68]); we include a
proof for completeness.
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Towards this end, let `n denote the maximum number of vertex-disjoint paths
in 3n(p) between its left and right boundary. By Menger’s theorem, `n is also equal
to the size of a minimum vertex cut of 3n(p), that is, a set of vertices of smallest size
that must be removed to disconnect the left and right boundary of 3n(p). Note that to
bound `n from below, it suffices to find a lower bound on the size of a minimum edge cut
of 3n(p), since the size of a minimum edge cut is always bounded above by 4 times the
size of a minimum vertex cut—because deleting all the edges incident to the vertices in
a minimum vertex cut gives an edge cut. The reason behind considering minimum edge
cuts instead of minimum vertex cuts is that the size of the former can be related to a
certain line-to-line first passage time in the dual graph of 3n, whose edges are weighted
by i.i.d. Ber(p). We describe this connection below.

Let 3∗n be the dual graph of 3n, i.e., the graph with vertex set {(x + 1/2, y + 1/2) :
0 ≤ x ≤ n − 1,−1 ≤ y ≤ n}, and edges connecting vertices in neighboring cells such
that each crosses an edge of 3n. To each edge e of 3∗n, we assign a random weight of
value 1 or 0 depending on whether the unique edge of 3n which e crosses is present or
absent in the graph 3n(p). Hence, the edge weights of 3∗n are i.i.d. Ber(p). Now here is
a crucial observation. The size of a minimum edge cut of 3n(p), by duality, is the same
as the minimum weight of a path from the top to the bottom boundary of 3∗n. Moreover,
since the dual lattice of Z2 is isomorphic to Z2, the minimum weight of a top-to-bottom
crossing in 3∗n is equal in distribution to the line-to-line passage time tn+1,n−1(Ber(p))
in Z2, where

tn,m(F ) := inf
{∑
e∈γ

t (e) : γ is a path in Z2 joining (0, a), (n, b) for some 0 ≤ a, b ≤ m

and γ is contained in [0, n] × [0, m]
}
,

and the t (e)’s, the weights of the edges e of Z2, are i.i.d. with non-negative distribution F .
By [22, Theorem 2.1(a)], for any non-negative distribution F we have

lim inf
n→∞

1
n
tn,n(F ) ≥ ν(F ) a.s., (9)

where ν(F ) < ∞ is called the speed (or time-constant) of the first passage percolation
on Z2 with i.i.d. F edge weights, that is,

1
n
a0,n(F )→ ν(F ) in probability,

where

a0,n(F ) := inf
{∑
e∈γ

t (e) : γ is a path in Z2 joining (0, 0) and (n, 0)
}
.

It is a classical fact due to Kesten [28] that ν(F ) > 0 if and only if F(0) < pc(Z2) = 1/2.
This ensures that ν(Ber(p)) > 0 in the supercritical regime p > 1/2. Therefore, for any
ε > 0, with probability tending to one,

tn+1,n−1(Ber(p)) ≥ tn+1,n+1(Ber(p)) ≥ (ν(Ber(p))− ε)(n+ 1),
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which implies that
lim
n→∞

P
(
`n ≥

1
4 (ν(Ber(p))− ε)n

)
= 1.

Hence (iii) is satisfied with c = 1
4 (ν(Ber(p))−ε) for any ε > 0. Therefore, the total mass

of the continuous part of µρ is bounded below by 1
4ν(Ber(p)).

This concludes the proof of Theorem 1.3. ut

5. Spectrum of unimodular trees

5.1. Stability of unimodularity

We will repeatedly use the fact that unimodularity is stable by weight mappings, global
conditioning and invariant percolation. More precisely, let (G, o) be a unimodular random
weighted rooted graph with distribution ρ. Weights on G are denoted by ω : V 2

→ Z.
The following trivially holds:

Weight mapping: Let ψ : G∗ → Z and φ : G∗∗ → Z be measurable functions. We
define Ḡ as the weighted graph with weights ω̄, obtained from G by setting ω(u, u) =
ψ(G, u) for u ∈ V , and ω(u, v) = φ(G, u, v) for u, v ∈ V 2 with {u, v} ∈ E(G). The
random rooted weighted graph (Ḡ, o) is unimodular. Indeed, the G∗ → G∗ map G 7→ Ḡ

is measurable and we can apply (1) to f (G, u, v) = h(Ḡ, u, v) for any measurable h :
G∗∗→ R+.

Global conditioning: Let A be a measurable event on G∗ which is invariant by re-
rooting, i.e. for any (G, o) and (G′, o) in G∗ such that G and G′ are isomorphic, we have
(G, o) ∈ A iff (G′, o) ∈ A. Then, if ρ(A) > 0, the random rooted weighted graph (G, o)
conditioned on (G, o) ∈ A is also unimodular (apply (1) to f (G, u, v) = 1((G, u) ∈
A)h(G, u, v) for any measurable h : G∗∗→ R+).

Invariant percolation: Let B ⊂ Z. We may define a random weighted graph Ĝ with
edge set E(Ĝ) ⊂ E(G) by putting the edge {u, v} ∈ E(G) in E(Ĝ) if both ω(u, v) and
ω(v, u) are in B. We leave the remaining weights unchanged. Then the random weighted
rooted graph (Ĝ(o), o) is also unimodular (apply (1) to f (G, u, v) = h(Ĝ(u), u, v) for
any measurable h : G∗∗→ R+).

As an application, the measure ρ′ defined in the statement of Theorem 1.5 is uni-
modular. Indeed, consider the weight mapping defined by ω(v, v) = 1(v ∈ L) for
v ∈ V , and ω(u, v) = ω(v, u) = 1(ω(u, u) = ω(v, v)) for {u, v} ∈ E. Then we
perform an invariant percolation with B = {1} and finally a global conditioning by
A = {all vertices in G satisfying ω(v, v) = 0}.

5.2. Proof of Theorem 1.5

Consider the unimodular weighted tree (T , L, o). Our main strategy will be to construct
a suitable invariant labeling on T using the invariant line ensemble L and then apply
Theorem 2.3.

We may identify L as a disjoint union of countable lines (`i)i . Each such line ` ⊂ L
has two topological ends. We enlarge our probability space and associate to each line
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an independent Bernoulli variable with parameter 1/2. This allows us to orient each line
` ⊂ L. This can be done by choosing the unique vertex on the line ` whose distance
from the root o is minimum and then by picking one of its two neighbors on ` using the
Bernoulli coin toss.

Let us denote by ( Èi)i the oriented lines. We thus obtain a unimodular weighted graph
(T , ω, o) where ω(u, v) = 1 if the oriented edge (u, v) ∈ Èi for some k, ω(u, v) = −1 if
(v, u) ∈ Èi , and otherwise ω(u, v) = 0.

Now, we fix some integer k ≥ 1. There are exactly k functions η : V → Z/kZ
such that the discrete gradient of η is equal to ω (i.e. η(u) − η(v) = ω(v, u) mod(k) for
any u, v ∈ V with {u, v} ∈ E) since given the gradient ω, the function η is completely
determined by its value at the root. We may enlarge our probability space in order to
sample, given (T , ω, o), such a function η uniformly at random. Then the vertex-weighted
random rooted graph (T , η, o) is unimodular.

In summary, we have obtained an invariant labeling η of (T , o) such that all vertices
v ∈ V outside L are level, all vertices in L such that η(v) 6= 0 are prodigy, and vertices
in L such that η(v) = 0 are bad. By Theorem 2.3, we deduce that for any real λ,

µρ(λ) ≤ P(o is bad)+
∑
j

j̀ ,

where j̀ = E〈eo, Pj eo〉 and Pj is the projection operator of the eigenspace of λ in the
adjacency operator Aj spanned by the vertices with label j . Now, observe that all level
vertices with label j are at graph distance at least 2 from the set of level vertices with
label i 6= j . This implies that the operators Aj commute and A′, the adjacency operator
of T ′ = T \ L, can be decomposed as a direct sum of the operators Aj . It follows that if
P ′ is the projection operator of the eigenspace of λ in A′ then∑

j

j̀ = E〈eo, P ′eo〉 = P(o /∈ L)µρ′(λ).

Also, by construction, P(o is bad) is upper bounded by 1/k. Since k is arbitrary, we find

µρ(λ) ≤ P(o /∈ L)µρ′(λ).

This concludes the proof of Theorem 1.5. ut

Remark 5.1. In the proof of Theorem 1.5, we have used Theorem 2.3. It is natural to ask
if we could have used Theorem 3.2 together with some finite graph sequence (Gn) having
local weak limit (T , o) instead. We could match the set of v ∈ L such that η(v) = 1 to
the set of v ∈ L such that η(v) = k − 1 forbidding the set of v ∈ L with η(v) = 0.
Note however that if the weighted graph (Gn, ηn) has local weak limit (T , η, o) then
the boundary of η−1

n (j) for j ∈ Z/kZ has cardinality (2/k + o(1))P(o ∈ L)|V (Gn)|.
In particular, the sequence (Gn) must have a small Cheeger constant. This implies for
example that we could not use the usual random graphs as finite approximations of infinite
unimodular Galton–Watson trees with degree distribution P such that P(0) = P(1) = 0
since they have a Cheeger constant bounded away from 0 (see Durrett [17]).
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5.3. Construction of invariant line ensembles on unimodular trees

We will say that a unimodular tree (T , o) is Hamiltonian if there exists an invariant line
ensemble L that contains the root o with probability 1. As a first example, we show that
infinite d-regular trees are Hamiltonian.

Lemma 5.2. For any integer d ≥ 2, the infinite d-regular tree is Hamiltonian.

Proof. The case d = 2 is trivial: in this case T = (V ,E) itself is a line ensemble. Let
us assume d ≥ 3. On a probability space, we attach to each oriented edge (u, v) an
independent variable, ξ(u, v), uniformly distributed on [0, 1]. With probability one, for
each u ∈ V , we may then order its d neighbors according to the value of ξ(u, ·). This
gives a weighted graph (T , ω, o) such that, for each u ∈ V with {u, v} ∈ E, ω(u, v) ∈
{1, . . . , d} is the rank of the vertex v with respect to u. Note that ω(u, v)may be different
from ω(v, u).

We now build a line ensemble as follows. The root picks its first two neighbors, say
u1, u2, and we set L(u1, o) = L(u2, o) = 1; for the other neighbors, we set L(u, o) = 0.
To define further values of L, let us introduce some notation. For u 6= v, let T vu be the tree
rooted at u spanned by the vertices whose shortest path in T to v meets u, and let av(u) be
the first visited vertex on the shortest path from u to v (see Figure 1). Then, we iteratively
define L(u, ·) as follows for a vertex u for which L(ao(u), ·) has already been defined:
If L(u, ao(u)) = 1, then we pick the first neighbor of u in T ou according to the ranking
ω(u, ·), say v1, and set L(u, v1) = 1. If, on the other hand, L(u, ao(u)) = 0, then we
pick the first two neighbors of u in T ou , say v1, v2, and we set L(u, v1) = L(u, v2) = 1.
In both cases, for any other neighbor w of u in T ou , we set L(u,w) = 0.

u
av(u)

v

T v
u

u av(u) v

T vu

Fig. 1. Definition of av(u) and T vu .

Iterating this procedure gives a line ensemble which covers all vertices. It is however
not so clear that this line ensemble is indeed invariant since, in the construction, the root
seems to play a special role. In order to verify (1), it is sufficient to restrict to functions
f (G,L, u, v) such that f (G,L, u, v) = 0 unless {u, v} ∈ E (see [2, Proposition 2.2]).
Letting v1, . . . , vd be the neighbors of the root, we have

E
d∑
k=1

f (T , L, o, vk)

= (d − 2)E[f (T , L, o, v1) | L(v1, o) = 0] + 2E[f (T , L, o, v1) | L(v1, o) = 1].

We notice that the rooted trees T vu , u 6= v, are isomorphic (T vu is a (d − 1)-ary tree) and
that, given the value of L(u, v1), the restrictions of L to T ov1

and T v1
o have the same law
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(and are independent). Since L(u, v) = L(v, u), it follows that, for ε ∈ {0, 1},

E[f (T , L, o, v1) | L(v1, o) = ε] = E[f (T , L, v1, o) | L(o, v1) = ε].

We have thus checked that L is an invariant line ensemble. ut

Lemma 5.3. Let k ≥ 3. Every unimodular tree with all degrees either 2 or k has an
invariant line ensemble of density E deg(o)/k.

Proof. Sample the unimodular random tree (T , o). Consider the k-regular labeled tree T ′

that one gets by contracting each induced subgraph which is a path to a single edge labeled
by the number of vertices. This tree has an invariant line ensemble L′ with density 1; it
corresponds to a line ensemble L in T . Since each edge in T ′ is contained in L′ with
probability 2/k, it follows that each edge of T is contained in L with probability 2/k.
Thus the expected degree of L at the root of T given T is (2/k) deg(o). The claim follows
after averaging over T . ut

The following proves Proposition 1.6(ii) for the case q = 0 (i.e. when there are no
“bushes”).

Proposition 5.4. Let T be a unimodular tree with degrees in {2, 3, . . . , d}. Then T con-
tains an invariant line ensemble with density at least 1

3E deg(o)/d . In fact, when d ≥ 6
the density is at least 1

3E deg(o)/(d − 4).

A tree constructed of d-stars with paths of length m emanating shows that in some cases
the optimal density can be arbitrarily close to E deg(o)/d . In this sense our bound is sharp
up to a factor of 1/3.

Proof of Proposition 5.4. If d ≥ 6 we argue as follows. We may write uniquely the degree
of a vertex as 3k + 2j where j = 0, 1, 2 and k is a non-negative integer. We then split
this vertex into k groups of vertices of degree 3 and j groups of vertices of degree 2 (see
Figure 2). We can perform this in a unimodular fashion by ordering the adjacent edges
of a vertex uniformly at random (see the proof of Lemma 5.2). This way we obtain a
countable collection (Tn)n≥1 of trees where all degrees are either 2 or 3.

By Lemma 5.3 each of these trees contains invariant line ensembles with expected
degree 2

3E degTn(o). In particular, the expected degree of their union F1 in T is 2
3E deg(o).

We thus have found an invariant subforest F1 of F0 = T with degrees in {0, 2, 4, . . . ,
2k + 2j} and expected degree 2

3E deg(o).
Iterating this construction i times we get a sequence of subforests Fi with expected

degree
( 2

3

)iE deg(o). The maximal degree of Fi is bounded above by some di (with
d0 = d), which satisfy the following recursion: if di = 3k + 2j with j = 0, 1, 2, then
di+1 = 2k + 2j . In particular, di is even for i ≥ 1, and

di+1 ≤
2
3di +

4
3 . (10)

Let k be the first value such that dk ≤ 4; by checking cases we see that dk = 4,
and either dk−1 = 5 or dk−1 = 6. Assuming k > 1 we also know that dk−1 is even, so



3700 Charles Bordenave et al.

Fig. 2. Example of a splitting: the vertex of degree 8 = 3× 2+ 2× 1 is split into two vertices of
degree 3 and one vertex of degree 2, and similarly for its neighbors of degree larger than 3.

dk−1 = 6. Otherwise, k = 1 and then d0 = d . However the assumption d ≥ 6 yields
d0 = d = 6. Hence in any case dk−1 = 6. Now using (10) inductively we see that for
1 ≤ i ≤ k we have dk−i ≥ 4

3

( 3
2

)i
+ 4. Setting i = k and rearranging we get

(
2
3

)k
≥

4
3

1
d − 4

.

The forest Fk has degrees in {0, 2, 4}. Another application of Lemma 5.3 (with k = 4
there) gives an invariant line ensemble with density

1
4

(
2
3

)k
E deg(o) ≥

1
3
E deg(o)
d − 4

.

If d = 5, then k = 1, and the above argument gives an invariant line ensemble with
density 1

4

( 2
3

)
E deg(o).

The only cases left are d = 3, 4. In the first case, just use Lemma 5.3 with k = 3. In
the second, split each degree 4 vertex into two groups of degree 2 vertices as above. Then
apply Lemma 5.3 with k = 3 to get a subforest with degrees in {0, 2, 4}. Then apply the
lemma again with k = 4. The density lower bounds are given by 1

3E deg(o), 1
6E deg(o)

respectively, and this proves the remaining cases. ut

Recall that the core C of a tree T is the induced subgraph of cut vertices. Here a cut vertex
is a vertex whose removal breaks T into at least two infinite components. The following
is a reformulation of part (ii) of Proposition 1.6.

Corollary 5.5 (Removing bushes). Let (T , o) be an infinite unimodular tree with core C
and maximal degree d. Then Proposition 5.4 holds with E deg(o) replaced by E deg(o)−
2P(o /∈ C).



Mean quantum percolation 3701

Proof. We clarify that degC(o) = 0 if o /∈ C. It suffices to show that E degC(o) =
E deg(o) − 2P(o /∈ C). For this, let every vertex v with degC(v) = 0 send unit mass to
the unique neighbor vertex closest to C (or closest to the single end of T in case C is
empty). We have

degC(o) = deg(o)− r − 1(o /∈ C)

where r is the amount of mass o receives. The claim now follows by mass transport:
formula (1) applied to f (G, o, v) equal to the amount of mass sent by o to v gives
P(o /∈ C) = Er . ut

We are now ready to prove the main assertion of Proposition 1.6, repeated here as follows.

Corollary 5.6. Let (T , o) be a unimodular tree with at least two ends with positive prob-
ability. Then T contains an invariant line ensemble with positive density.

Proof. We may decompose the measure according to whether T is finite or infinite and
prove the claim separately. The finite case being trivial, we now assume that T is infinite.

Consider the core C of T . If T has more than one end, then C has the same ends as T ,
in particular it is not empty. Thus for the purposes of this corollary we may assume that
T = C, or in other words all degrees of T are at least 2.

If E deg(o) = 2, then T is a line almost surely and we are done. So next we consider
the case E deg(o) > 2.

Let Fd be a subforest where all edges incident to vertices of degree more than d are
removed. Then degFd (o) → degT (o) a.s. in a monotone way. Thus by the Monotone
Convergence Theorem, E degFd (o)→ E degT (o) > 2. Pick a d so that E degFd (o) > 2.
Corollary 5.5 applied to the components of Fd now yields the claim. ut

Part (i) of Proposition 1.6 is restated here as follows.

Corollary 5.7. Let T be a unimodular tree and assume that E deg(o)2 is finite. Then T
contains an invariant line ensemble L with density

P(o ∈ L) ≥
1
6
(E deg(o)− 2)2+

E deg(o)2
.

Proof. Let d ≥ 1 be an integer. For each vertex v we mark (deg(v)− d)+ incident edges
at random. To set up a mass transport argument, we let each vertex send mass 1 along
each of its marked edges. The unmarked edges form a forest Fd with the same vertices
as T and maximal degree d; we now bound its expected degree. Note that the degree of
the root in Fd is bounded below by the same in T minus the total amount of mass sent or
received. These two quantities are equal in expectation, so we get

E degFd (o) ≥ E deg(o)− 2E(deg(o)− d)+.

By Proposition 5.4 applied to components of Fd , as long as d ≥ 6 we get an invariant line
ensemble L with density

P(o ∈ L) ≥
1
3

1
d − 4

(
E deg(o)− 2− 2E(deg(o)− d)+

)
.
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To bound the last term, note that if we set c = deg(o) − d , then the inequality
4(deg(o) − d)+d ≤ deg(o)2 reduces to 4cd ≤ (c + d)2, which certainly holds. Thus
we can bound

P(o ∈ L) ≥
1
3

1
d − 4

(
E deg(o)− 2−

E deg(o)2

2d

)
.

Now set d = dE deg(o)2/(η−2)e ≥ η2/(η−2) ≥ 8, where η = E deg(o) can be assumed
to be more than 2. Using the bound dxe − 4 ≤ x we get the claim. ut

5.4. Maximal invariant line ensemble

Let (T , o) be a unimodular rooted tree with distribution ρ. In view of Theorem 1.5 and
Proposition 1.6, we may wonder what it is the value

6(ρ) = supP(o ∈ L),

where the supremum is taken over all invariant line ensembles L of (T , o). Recall that a
line ensemble L of (T , o) is a weighted graph (T , L, o) with weights L(u, v) in {0, 1}.
By diagonal extraction, the set of {0, 1}-weighted graphs of a given (locally finite) rooted
graph G = (G, o) is compact for the local topology. Hence, the set of probability mea-
sures on rooted {0, 1}-weighted graphs such that the law of the corresponding unweighted
rooted graph is fixed is a compact set for the local weak topology. Recall also that the set
of unimodular measures is closed in the local weak topology. By compactness, it follows
that there exists an invariant line ensemble, say L∗, such that

6(ρ) = P(o ∈ L∗).

It is natural to call such an invariant line ensemble a maximal invariant line ensemble.

Question 5.8. What is the value of 6(ρ) for ρ a unimodular Galton–Watson tree?

Let L∗ be a maximal invariant line ensemble and assume P(o ∈ L∗) < 1. Then ρ′, the
law of (T \ L∗, o) conditioned on o /∈ L∗, is unimodular. Assume for simplicity that ρ is
supported on rooted trees with uniformly bounded degrees. Then, by Proposition 1.6 and
the maximality of L∗, it follows that if (T ′, o) has law ρ′, then a.s. T ′ has either 0 or 1
topological end. Theorem 1.5 asserts that the atoms of µρ are atoms of µρ′ . We believe
that the following is true.

Question 5.9. Is it true that if ρ is a unimodular Galton–Watson tree then ρ′ is supported
on finite rooted trees?

5.5. Two examples

With Theorem 1.5, we can give many examples of unimodular rooted trees (T , o) with
continuous expected spectral measure. Indeed, by Theorem 1.5 all Hamiltonian trees have
continuous spectrum.
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Ring graphs. An example of a Hamiltonian unimodular tree is the unimodular ring tree
obtained as follows. Let P ∈ P(Z+) with finite positive mean. We build a multi-type
Galton–Watson tree with three types {o, a, b}. The root o has type o and has two type-a
children and a number of type-b children sampled according P . Then, a type-b vertex has
two type-a children and a number of type-b children sampled independently according
to P̂ given by (5). A type-a vertex has one type-a child and a number of type-b children
sampled according to P . We then remove the types and obtain a rooted tree. By con-
struction, it is Hamiltonian: the edges connecting type-a vertices to their genitor is a line
ensemble covering all vertices. We can also check easily that it is unimodular.

If P has two finite moments, consider a graphic sequence d(n) = (d1(n), . . . , dn(n))

such that the empirical distribution of d(n) converges weakly to P and whose second
moment is uniformly integrable. Sample a graph Gn with vertex set Z/nZ uniformly
on graphs with degree sequence d(n) and, if they are not already present, add the edges
{k, k + 1}, k ∈ Z/nZ. The a.s. weak limit of Gn is the above ring tree. This follows from
the known result that the uniform graph with degree sequence d(n) has a.s. weak limit
the unimodular Galton–Watson tree with degree distribution P [17, 16, 9].

Alternatively, consider a random graph Gn on Z/nZ with the edges {k, k + 1}, k ∈
Z/nZ, and any other edge is present independently with probability c/n. Then the a.s.
weak limit of Gn will be the unimodular ring tree with P = Poi(c). Note that Gn is the
Watts–Strogatz graph [41].

Stretched regular trees. Let us give another example of application of Theorem 1.5.
Fix an integer d ≥ 3. Consider a unimodular rooted tree (T , o) with only vertices of
degree 2 and degree d . Denote its law by ρ. An example is a unimodular Galton–Watson
tree with degree distribution P = pδ2 + (1 − p)δd , 0 < p < 1. Then, arguing as
in Proposition 1.6, a.s., all segments of degree 2 vertices are finite. Contracting these
finite segments, we obtain a d-regular infinite tree. Hence, by Lemma 5.2, there exists an
invariant line ensemble L of (T , o) such that a.s. all degree d vertices are covered. By
Theorem 1.5, the atoms of µρ are contained in the set of atoms in the expected spectral
measure of rooted finite segments. Eigenvalues of finite segments of length n are of the
form λk,n = 2 cos(πk/(n + 1)), 1 ≤ k ≤ n. This proves that the atomic part of µρ is
contained in 3 =

⋃
k,n{λk,n} ⊂ (−2, 2).

On the other hand, if ρ is a unimodular Galton–Watson tree with degree distribution
P =pδ2+(1−p)δd , 0 < p < 1, then the support ofµρ is equal to [−2

√
d − 1, 2

√
d − 1].

Indeed, recall that µρ = EρµeoA and∫
x2kµ

eo
A = 〈eo, A

2keo〉

is equal to the number of paths in T of length 2k starting and ending at the root. An upper
bound is certainly the number of such paths in the infinite d-regular tree. In particular,
from Kesten [27], ∫

x2kµ
eo
A ≤ (2

√
d − 1+ o(1))2k.
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This implies that the convex hull of the support of µρ lies in [−2
√
d − 1, 2

√
d − 1]. The

other way around, recall first that if µ is the spectral measure of the infinite d-regular
tree then µ(I) > 0 if I is an open interval in [−2

√
d − 1, 2

√
d − 1] (see [27]). Recall

also that for the local topology on rooted graphs with degrees bounded by d, the map
G 7→ µ

eo
A(G) is continuous in P(R) equipped with the weak topology (follows e.g. from

Reed and Simon [36, Theorem VIII.25(a)]). Hence, there exists an integer t ≥ 1 such that
if (T , o)t is d-regular then µeoA(T )(I ) > 0. Observe finally that under ρ the probability that
(T , o)t is d-regular is positive. Since µρ = EρµeoA , this implies that µρ(I ) > 0.

We have thus proved that for a unimodular Galton–Watson tree with degree distribu-
tion P = pδ2 + (1− p)δd , µρ restricted to the interval [2, 2

√
d − 1] is continuous.

6. Proof of Proposition 1.4

Restricted to sofic measures, the proof of this proposition is contained in [11], [10]. To
bypass this limitation, we introduce some concepts of operator algebras. We consider the
von Neumann algebra M introduced in Section 2.

Statement (i) is a consequence of Nelson [35]. First, since A : (G, o) 7→ A(G) is
affiliated to M, from [24, Remark 5.6.3], Ā, the closure of A, is also affiliated to M.
Moreover, from [35, Theorem 1], A∗ is affiliated to M (see [38, discussion below Theo-
rem 2.2]). To prove statement (i) we should check that Ā = A∗ (indeed, denoting by R
the range of an operator, if R(Ā + iI ) = H then ρ-a.s. R(A(G) + iI ) = H ). Now, we
introduce Vn(G) = {v ∈ V : degG(v) ≤ n, degG(u) ≤ n and for all {u, v} ∈ E(G)} and
let Pn ∈ M be the projection onto Hn = {ψ ∈ H : ρ-a.s. supp(ψ(G, o)) ⊂ Vn(G)}.
Observe that if ψ ∈ Hn, then ρ-a.s.

‖APnψ‖
2
=

∑
v∈V

1(deg(v) ≤ n)
( ∑
u: {u,v}∈E

ψ(u)
)2
≤ n

∑
v∈V

∑
u: {u,v}∈E

ψ2(u) ≤ n2
‖ψ‖2.

Hence, APn is bounded and it follows that Hn is in the domain of both Ā and A∗. We
deduce that Ā and A∗ coincide on Hn. Moreover, since ρ is a probability measure on
locally finite graphs,

Pρ
(
deg(o) > n or ∃v : {v, o} ∈ E, deg(v) > n

)
= ε(n)→ 0. (11)

Finally, since for any B ∈M, dim ker(B) ≥ Pρ(eo ∈ ker(B)), we deduce that dimHn ≥

1− ε(n). From [35, Theorem 3], Ā and A∗ are equal.
Let us prove statement (ii). Consider a sequence (ρn) converging to ρ in the local weak

topology. From Skorokhod’s representation theorem one can define a common probabil-
ity space such that the rooted graphs (Gn, o) converge for the local topology to (G, o)
where (Gn, o) has distribution ρn and (G, o) has distribution ρ. Then, the following
two facts hold true: (a) for any compactly supported ψ ∈ `2(V ), for n large enough,
Anψ = Aψ , where An and A are the adjacency operators of Gn and G; and (b) if P de-
notes the probability measure of the joint laws of (Gn, o) and (G, o), from statement (i),
P-a.s. A and An are essentially self-adjoint with common core, the compactly supported
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ψ ∈ `2(V ). These last two facts imply the strong resolvent convergence [36, Theorem
VIII.25(a)]. From (2), the Cauchy–Stieltjes transform of µeoA is a diagonal coefficient of
the resolvent,

〈eo, (A− zI)
−1eo〉 =

∫
dµ

eo
A

x − z
.

This implies that ρ-a.s. µeoAn converges weakly to µeoA (recall that the pointwise conver-
gence of the Cauchy–Stieltjes transform on C+ is equivalent to weak convergence). Tak-
ing expectation, we conclude that µρn = EρµeoAn converges weakly to µρ = EρµeoA . ut
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