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Abstract. We present a categorification of the non-crossing partitions given by crystallographic
Coxeter groups. This involves a category of certain bilinear lattices, which are essentially deter-
mined by a symmetrisable generalised Cartan matrix together with a particular choice of a Coxeter
element. Examples arise from Grothendieck groups of hereditary artin algebras.
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1. Introduction

It has long been understood that the exceptional objects, or more generally the excep-
tional sequences and tilting objects, play a central role in understanding categories of
modules or sheaves, and more recently also in the theory of cluster categories. Over a
finite-dimensional hereditary algebra, the dimension vectors of the exceptional modules,
the so-called real Schur roots, also occur in the canonical decomposition, and so describe
the indecomposable summands of a general module of fixed dimension vector. In this
setting it is therefore of interest to be able to determine combinatorially the subset of real
Schur roots inside the set of all real roots. Work in this direction includes [51, 53, 16].
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Inspired by [39] we introduce the notion of generalised Cartan lattice (0,E), which
is a lattice 0 equipped with a non-degenerate bilinear form, together with a choice of
orthogonal exceptional sequence E. The prototypical example of such a generalised Car-
tan lattice is the Grothendieck group K0(A) of a finite-dimensional hereditary algebra A
equipped with the Euler form, together with the classes of the simple modules (suitably
ordered). Each such lattice has an associated symmetrisable generalised Cartan matrix,
and hence we can define the Weyl group (more precisely the Coxeter system) W(0,E)
and the set of real roots 8(0,E). We also have a natural choice of Coxeter element,
denoted cox(0), and thus the poset NC(0,E) of non-crossing partitions.

We recall that non-crossing partitions were introduced by Kreweras [38] and later
generalised in the context of Coxeter groups by Brady and Watt [7, 8], and indepen-
dently by Bessis [4]; see also Armstrong’s memoir [1]. One connection between non-
crossing partitions and representations of quivers has already been pointed out by Ingalls
and Thomas [34]; it arises from the categorification of cluster algebras [20] via cluster
categories [9, 40].

We also introduce the notion of a (mono-)morphism between generalised Cartan lat-
tices, and thus construct the category C. We then show that the map (0,E) 7→ W(0,E),
sending a generalised Cartan lattice to its associated Weyl group, is functorial. More pre-
cisely, we have the following result, summarising Theorems 5.2 and 5.6.

Theorem 1.1. Let φ : (0′, E′)→ (0,E) be a morphism of generalised Cartan lattices.

(1) The map φ restricts to an inclusion 8(0′, E′)→ 8(0,E).
(2) There is an injective group homomorphism φ∗ : W(0

′, E′) → W(0,E), acting on
reflections as sa 7→ sφ(a).

(3) The map φ∗ identifies NC(0′, E′) with the subposet {w ≤ φ∗(cox(0′))} of NC(0,E).

This theorem is an analogue (for Weyl groups of symmetrisable Kac–Moody Lie al-
gebras) of a result of Bessis [4] which describes for finite Coxeter groups the non-crossing
partitions as Coxeter elements of parabolic subgroups. However, W(0′, E′) need not be
parabolic when W(0,E) is infinite (Example 5.7). It turns out that the subgroups of
W(0,E) arising from subobjects of (0′, E′) ⊆ (0,E) form a distinguished class of
subgroups which are determined by their Coxeter elements cox(0′) (Corollary 5.8).

We can also regard our results as providing a combinatorial model for the category H
of hereditary abelian categories arising in the representation theory of algebras. More
precisely, the objects in H are the categories modA of finitely generated modules over an
hereditary artin algebra A. The morphisms in H are fully faithful exact functors, modulo
natural isomorphisms, having an extension closed essential image.

The map sending an abelian category to its Grothendieck group yields a faithful
functor

H→ C, modA 7→ K0(A),

and provides the link between representation theory and combinatorics (Corollary 7.3).
Applying our results to modA we now obtain the following formulation (Corollary 7.5)
of a result by Ingalls–Thomas [34] and Igusa–Schiffler [33].
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Theorem 1.2. Let A be a finite-dimensional hereditary algebra. Let Sub(modA) denote
the poset of subcategories of modA of the form C(X) for some exceptional sequence X,
ordered by inclusion, and let NC(K0(A)) be the poset of non-crossing partitions attached
to the generalised Cartan lattice K0(A). Then there is a natural isomorphism of posets
Sub(modA) ∼= NC(K0(A)) sending the subcategory C(X) to the non-crossing partition
cox(C(X)).

In particular, two exceptional sequences X and Y are equivalent under the braid
group action if and only if they determine the same non-crossing partition.

Note that this point of view is also apparent in the work of Happel [27] (see Theorem 7.4).
Also, the study of the categories C(X) ⊂ modA is quite natural, since they can be char-
acterised in a number of different ways: they are the thick subcategories such that the
inclusion admits a left or right adjoint; or as the thick subcategories either generated by,
or perpendicular to, an exceptional sequence; or the subcategories obtained by restriction
of scalars along a homologixal epimorphism (see Theorem A.4). In particular, all finitely
generated thick subcategories arise in this way (see Remark A.5).

Much of the proofs of these theorems can be done entirely in the language of gen-
eralised Cartan lattices, exploiting the transitive braid group action on factorisations of
the Coxeter element [2, 33]. In particular, we introduce the notion of a real exceptional
sequence, and use these to define the morphisms in C. We then show in Proposition 3.6
that the map F 7→ cox(F ) determines a surjective map from real exceptional sequences
to non-crossing partitions. However, we do not know of any combinatorial proof of the
facts that the fibres of this map are precisely the orbits under the braid group action, and
that each fibre contains an orthogonal exceptional sequence.

To prove these two results we need the fact that every generalised Cartan lattice arises
as the Grothendieck group K0(A) of an hereditary artin algebra A. We then show that
under any such realisation, the real exceptional sequences in K0(A) correspond precisely
to the exceptional sequences in modA (Proposition 4.6). We can then apply the theory of
perpendicular categories to finish the proof.

As an application to Coxeter systems, we note that in [2] it is shown that the factori-
sations of a parabolic Coxeter element form a single orbit under the braid group action.
It follows however from our results that the factorisations of any non-crossing partition
form a single orbit, and moreover there is one factorisation which forms a simple system.

As an application to representation theory, we show that the set of dimension vectors
of exceptional A-modules depends only on K0(A), leading in turn to an essentially root-
theoretic proof of Gabriel’s Theorem 4.9. This answers the question posed by Gabriel in
[21, Section 4], but now for all Dynkin types, not just ADE-type. We also show that the
theorem of Crawley-Boevey [13] and Ringel [48] is a consequence of the transitivity of
the braid group action for Coxeter systems.

We also give an algorithm, based on the work of Schofield (Proposition A.10) and
Derksen–Weyman [16], for checking whether a given exceptional sequence of (pseudo-
real) roots is actually a real exceptional sequence. An explicit example of this is given in
Example 6.4.



2276 Andrew Hubery, Henning Krause

In the last section we also relate our approach to the study of Hom-free sets, which
are collections of exceptional objects having pairwise only zero homomorphisms. In fi-
nite representation type there is an obvious bijection between the two points of view,
given by sending a subcategory C closed under kernels, cokernels and extensions to its
set of simple objects (Proposition 7.6). It is therefore interesting to note that this approach
linking Catalan combinatorics and the representation theory of algebras was already ob-
served in the early 1980s by Gabriel and his school [44, 22]. In [23] Gabriel and de la
Peña counted the Hom-free sets of indecomposable modules for Dynkin quivers and ob-
tained the Coxeter–Catalan numbers of ADE-type. On the other hand, Riedtmann [44]
used such sets to classify the representation-finite self-injective algebras of type A.

For another intriguing correspondence between representations of hereditary algebras
and Weyl group elements see [42].

For the convenience of the reader we include in the appendix a survey of the perpen-
dicular calculus, as well as a discussion on the various notions of crystallographic Coxeter
groups.

2. Bilinear lattices and exceptional sequences

The Grothendieck group of an abelian or triangulated category is an abelian group with
some additional structure given by the corresponding bilinear Euler form. In this section
we provide an axiomatic treatment which is inspired by work of Lenzing on Grothendieck
groups of canonical algebras [39]. In particular, the following definition of a bilinear lat-
tice is taken from there. We then consider exceptional sequences and the action of the
braid group in this setting, modelling their properties in the Grothendieck group of an
abelian or triangulated category. Exceptional sequences were introduced in the Moscow
school of vector bundles (see for instance [6, 25, 26, 50]); later they appeared in represen-
tation theory [13, 48]. The axiomatic treatment in the context of bilinear lattices seems to
be new.

Bilinear lattices

A bilinear lattice is an abelian group 0 together with a non-degenerate bilinear form

〈−,−〉: 0 × 0→ Z.

Here, non-degenerate means that 〈x,−〉 = 0 implies x = 0, and 〈−, y〉 = 0 implies
y = 0. Note that 0 is torsion-free. The corresponding symmetrised form is

(x, y) = 〈x, y〉 + 〈y, x〉 for x, y ∈ 0.

For a subset S of 0 one defines the right and left orthogonal complements

S⊥ := {x ∈ 0 | 〈s, x〉 = 0 for all s ∈ S},
⊥S := {x ∈ 0 | 〈x, s〉 = 0 for all s ∈ S}.

In the following 0 denotes a bilinear lattice.
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Roots

An element a ∈ 0 is called a pseudo-real root, or just a root, if 〈a, a〉 > 0 and 〈a,x〉
〈a,a〉

,
〈x,a〉
〈a,a〉

∈ Z for all x ∈ 0. For such a root a one has the following transformations:

la : 0→ 0, x 7→ x −
〈a, x〉

〈a, a〉
a,

ra : 0→ 0, x 7→ x −
〈x, a〉

〈a, a〉
a,

sa : 0→ 0, x 7→ x − 2
(x, a)

(a, a)
a.

Note that ra and la are adjoint with respect to the bilinear from, in the sense that

〈ra(x), y〉 = 〈x, la(y)〉 for all x, y ∈ 0,

and each sa is a reflection, so fixes a subgroup of corank one and sends a 7→ −a.
If 0′ is another bilinear lattice, with bilinear form 〈−,−〉′, then an isometry

φ : 0′ → 0 is a group homomorphism preserving the bilinear forms, so 〈φ(x), φ(y)〉 =
〈x, y〉′ for all x, y ∈ 0′.

We will also need the group Aut(0) := Aut(0, (−,−)), the group of all automor-
phisms of 0 preserving the symmetrised bilinear form.

Lemma 2.1. Let a ∈ 0′ be a root and let φ : 0′→ 0 be a group homomorphism preserv-
ing the symmetrised bilinear forms. Then sφ(a)φ = φsa (as maps 0′→ 0). In particular,
if a, b ∈ 0 are roots, then so too is sb(a) and ssb(a) = sbsasb.

Proof. Straightforward computations, where for the second statement we set 0′ = 0 and
φ = sb. Note that in the first part we have abused notation somewhat, since φ(a) ∈ 0
need not be a root, but sφ(a) is well-defined on the image of φ. ut

The radical of 0 is by definition

rad0 := {x ∈ 0 | 〈x,−〉 = −〈−, x〉} = {x | (x,−) = 0}.

This is clearly invariant under Aut(0).

Exceptional sequences

A sequence E = (e1, . . . , er) of roots in 0 is called exceptional of length r if 〈ei, ej 〉 = 0
for all i > j . The sequence E is complete if ZE = 0. The empty sequence E = ∅
is exceptional of length zero. An exceptional sequence of length two is also called an
exceptional pair.

Given a sequence E = (e1, . . . , er) of roots we write

lE := le1 · · · ler , rE := rer · · · re1 , sE := se1 · · · ser ,
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and denote by ZE the subgroup of 0 generated by e1, . . . , er . We observe that, for each
x ∈ 0, the following all lie in ZE:

lE(x)− x, rE(x)− x, sE(x)− x.

Of particular interest are the transformations sE for exceptional sequences E.
We begin with some elementary observations.

Lemma 2.2. Let E = (e1, . . . , er) be an exceptional sequence in 0. Then ZE∩E⊥ = 0.
In particular, the ei are linearly independent, so ZE has rank r .
Proof. Take

∑
i aiei ∈ ZE ∩ E⊥ and apply 〈ei,−〉 for i = r, . . . , 1 in turn. ut

Lemma 2.3. Let E = (e1, . . . , er) be an exceptional sequence in 0. Then:
(1) lE(x) ∈ E⊥ for x ∈ 0 and lE(x) = x for x ∈ E⊥.
(2) lE(x) = 0 iff x ∈ ZE.
(3) 0 = ZE ⊕ E⊥.
(4) 〈lE(x), y〉 = 〈x, y〉 for x ∈ 0 and y ∈ E⊥.
(5) sE(x) = lE(x) for x ∈ ⊥E.
In particular, lE is the projection from 0 onto E⊥ along ZE.
Proof. The proofs are by induction on r . Set E′ = (e1, . . . , er−1).

(1) Let x ∈ 0. We have rE′(er) = er , so

〈er , lE′ ler (x)〉 = 〈rE′(er), ler (x)〉 = 〈er , ler (x)〉 = 0.

Thus lE(x) ∈ (E′)⊥ ∩ e⊥r = E
⊥.

If x ∈ E⊥, then lei (x) = x for all i by definition, so lE(x) = x.
(2) If x ∈ ZE, then

lE(x) ∈ ZE ∩ E⊥ = 0.
If lE(x) = 0, then ler (x) ∈ ZE′ by induction, and therefore

x = ler (x)+
〈er , x〉

〈er , er 〉
er ∈ ZE.

(3) This follows from (1) and (2).
(4) Use the fact that lE(x)− x ∈ ZE for all x ∈ 0.
(5) If x ∈ ⊥E, then sei (x) = lei (x) for all i by definition. ut

Proposition 2.4. Let E = (e1, . . . , er) be an exceptional sequence in 0 and x ∈ 0. Then

〈y, sE(x)〉 =

{
−〈x, y〉 if y ∈ ZE,
〈y, x〉 if y ∈ ⊥E.

Proof. For y ∈ ⊥E use the fact that sE(x) − x ∈ ZE. Suppose therefore that y ∈ ZE.
The proof is by induction on r . Set E′ = (e1, . . . , er−1). If y ∈ ZE′, then er ∈ ⊥y, so

〈y, sE(x)〉 = 〈y, sE′ser (x)〉 = −〈ser (x), y〉 = −〈x, y〉.

If y ∈ Zer , then since sE′(z)− z ∈ ZE′ ⊆ e⊥r for all z, we have

〈y, sE′ser (x)〉 = 〈y, ser (x)〉,

and a direct computation shows that this equals −〈x, y〉. ut
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The Coxeter transformation

Let 0 be a bilinear lattice and suppose that 0 admits a complete exceptional sequence
E = (e1, . . . , en). The Coxeter transformation of 0 is by definition

cox(0) := sE .

This does not depend on the choice of E by Proposition 2.4. Now identify 0 = Zn and
define an n× n matrix C by 〈x, y〉 = xtCy.

Proposition 2.5. The matrix C is invertible. The automorphism of 0 given by

x 7→ c(x) := (−C−1Ct )x

equals cox(0), and satisfies 〈−, c(x)〉 = −〈x,−〉 for all x ∈ 0.

Proof. We have

〈x, y〉 = xtCy = ytCtx = −ytC(−C−1Ct )x = −〈y, c(x)〉.

Thus c = cox(0) by Proposition 2.4. ut

The braid group action

For an integer r≥1 let Br be the braid group on r strands, with generators σ1, . . . , σr−1
and relations

σiσj = σjσi for |i − j | > 1,
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ r − 2.

We also consider the wreath product {±1} o Br , the semidirect product {±1}r o Br of the
braid group with the sign group, with multiplication given by

σi(ε1, . . . , εr)σ
−1
i := (ε1, . . . , εi−1, εi+1, εi, εi+2, . . . , εr).

Proposition 2.6. Let r ≥ 1 be an integer. Then the wreath product {±1} o Br acts on
exceptional sequences of length r via

σi(e1, . . . , er) := (e1, . . . , ei−1, ei+1, sei+1(ei), ei+2, . . . , er),

σ−1
i (e1, . . . , er) := (e1, . . . , ei−1, sei (ei+1), ei, ei+2, . . . , er),

ε(e1, . . . , er) := (ε1e1, . . . , εrer).

Proof. We check that the relations for the braid group hold, the rest being clear. Let
E = (e1, . . . , er) be an exceptional sequence. A quick computation using Lemma 2.1
shows that σiE and σ−1

i E are again exceptional sequences and that σiσ−1
i E = E =

σ−1
i σiE. The identity σiσjE = σjσiE for |i − j | > 1 is immediate. For the identity
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σiσi+1σiE = σi+1σiσi+1E, it is enough to show this when i = 1 and r = 3. In this case
we have E = (e, f, g) and

σ1σ2σ1E = (g, sg(f ), sgsf (e)),

σ2σ1σ2E = (g, sg(f ), ssg(f )sg(e)).

Now use the identity ssg(f ) = sgsf sg from Lemma 2.1. ut

Note that if (e, f ) is an exceptional pair, then se(f ) = le(f ) by Lemma 2.3, and dually
sf (e) = rf (e), so we can express the action of the braid group in terms of the maps l
and r .

Lemma 2.7. Let E and F be exceptional sequences in 0 and σ ∈ {±1} o Br .

(1) ZσE = ZE.
(2) If ZE = ZF , then sE = sF . In particular, sσE = sE .
(3) If sE = sF , then ZE + rad0 = ZF + rad0.
(4) If e, f ∈ 0 are roots and se = sf , then e = ±f .

Proof. (1) It is clear that ZσE = ZE for each generator of Br and each element of the
sign group. Thus ZσE = ZE for all σ ∈ {±1} o Br .

(2) Suppose that ZE = ZF . Then ⊥E = ⊥F , so sE = sF by Proposition 2.4, using
the fact that the form 〈−,−〉 is non-degenerate and 0 = ZE ⊕ ⊥E.

(3) Suppose that sE = sF . Given x ∈ ZF write x = x′ + x′′ with x′ ∈ ZE and
x′′ ∈ ⊥E. Using Proposition 2.4 we see for all y ∈ 0 that

−〈y, x′〉 − 〈y, x′′〉 = −〈y, x〉 = 〈x, sF (y)〉 = 〈x, sE(y)〉

= 〈x′, sE(y)〉 + 〈x
′′, sE(y)〉 = −〈y, x

′
〉 + 〈x′′, y〉.

Thus x′′ ∈ rad0, and it follows that ZF ⊆ ZE + rad0. The other inclusion holds by
symmetry.

(4) Using (3) we have e = αf + r with α ∈ Z and r ∈ rad0. Thus

−e = se(e) = sf (e) = e − 2αf,

and so r = 0. It follows that Ze ⊆ Zf . The other inclusion holds by symmetry. ut

3. Generalised Cartan lattices

In this section we introduce the main object of interest, namely the category of gener-
alised Cartan lattices, and show how to associate to every generalised Cartan lattice a
symmetrisable generalised Cartan matrix, and hence a Weyl group and root system, as
well as the poset of non-crossing partitions.
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Generalised Cartan lattices

An exceptional sequence E = (e1, . . . , er) in a bilinear lattice 0 is said to be orthogonal
provided 〈ei, ej 〉 ≤ 0 for all i 6= j . A generalised Cartan lattice is a pair (0,E) consisting
of a bilinear lattice 0 and a complete orthogonal exceptional sequence E = (e1, . . . , en).

We fix a partial order on 0 by saying a ≥ 0 provided a =
∑
i αiei with αi ≥ 0 for

all i.
If (0,E) is a generalised Cartan lattice, then the matrix

C(0,E) := (〈ei, ei〉
−1(ei, ej ))i,j (3.1)

is a symmetrisable generalised Cartan matrix.1

The converse also holds.

Lemma 3.1. Every symmetrisable generalised Cartan matrix C = D−1B is of the form
C(0,E) for some generalised Cartan lattice (0,E).

Proof. Let C = D−1B be a symmetrisable generalised Cartan matrix of size n with
D = diag(di). Take 0 = Zn with standard basis {e1, . . . , en} and equip 0 with the
bilinear form given by

〈ei, ej 〉 :=


bij if i < j,

di if i = j,
0 if i > j.

Then E = (e1, . . . , en) is a complete, orthogonal exceptional sequence, (0,E) is a gen-
eralised Cartan lattice, and C(0,E) = C. ut

Weyl groups and non-crossing partitions

The Weyl group W = W(0,E) of a generalised Cartan lattice is defined to be the sub-
group of Aut(0) generated by the simple reflections S := {se1 , . . . , sen}. Then (W, S) is a
Coxeter system [35, Proposition 3.13]. In general, a Coxeter element in (W, S) is a prod-
uct of all the generators in S, in some order. Thus cox(0) is always a Coxeter element in
the Weyl group W(0,E).

Note that the Weyl group depends only on the Cartan matrix C(0,E), and that dif-
ferent choices of orthogonal exceptional sequences in 0 can give rise to the same Cartan
matrix.

The set of real roots is

8 = 8(0,E) := {w(ei) | w ∈ W(0,E), 1 ≤ i ≤ n} ⊆ 0.

1 Following Kac [35] we call an integral square matrix C a symmetrisable generalised Cartan
matrix if cii = 2 and C = D−1B for some diagonal matrix D = diag(di) and symmetric matrix B
with di > 0 and bij ≤ 0 for i 6= j .
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By Lemma 2.1 we see that each real root is a (pseudo-real) root. Moreover, every real root
is either positive or negative (combine Theorem 1.2 and Proposition 3.7(b) from [35]).
Finally, if a = w(ei) ∈ 8, then −a = wsei (ei) ∈ 8 and

sw(ei ) = wseiw
−1
∈ W(0,E).

A reflection in W is thus defined to be an element of the form sa for a ∈ 8, so the set of
all reflections is

T := {sa | a ∈ 8} = {wsw
−1
| w ∈ W, s ∈ S}.

Remark 3.2. The set of reflections depends on the choice of Coxeter system. For exam-
ple, the dihedral group D12 of order 12 has two presentations as a Coxeter group

D12 = 〈s, t | s
2
= t2 = (st)6 = 1〉

= 〈s, u, v | s2
= u2

= v2
= (su)3 = (sv)2 = (uv)2 = 1〉

coming from the isomorphism D12 ∼= D6 × C2. Note that t = uv and v = (st)3, so that
the Coxeter elements agree, st = suv. In the first presentation there are six reflections,
whereas there are only four in the second presentation.

The absolute length `(w) of w ∈ W is the minimal r ≥ 0 such that w can be written as a
product w = t1 · · · tr of reflections ti ∈ T . The absolute order on W is then defined as

u ≤ v provided `(u)+ `(u−1v) = `(v).

For another description of this length we refer to [19].
Relative to a Coxeter element c one defines the poset of non-crossing partitions

NC(W, c) := {w ∈ W | id ≤ w ≤ c}.

When (0,E) is a generalised Cartan lattice, with Weyl groupW and Coxeter element sE ,
we also write NC(0,E) instead of NC(W, sE).

Observe that if u ≤ w are non-crossing partitions, say w = uv, then since w =
v(v−1uv) also v is a non-crossing partition.

The braid group Br acts on the set of all r element sequences in any group via

σi(x1, . . . , xr) := (x1, . . . , xi−1, xi+1, x
−1
i+1xixi+1, xi+2, . . . , xr).

Note that the product of the group elements remains the same.
The braid group action on factorisations of the Coxeter element is transitive whenever

W is a Coxeter group; we record this important result for later use. For finite Coxeter
groups, a proof can be found in a letter of Deligne [14]. For the absolute length of the
Coxeter element see Dyer [19].

Theorem 3.3 (Igusa–Schiffler [33], see also [2]). Let (W, S) be a Coxeter system of
rank |S| = n and let c be a Coxeter element. Then `(c) = n and the braid group Bn acts
transitively on the set of sequences (t1, . . . , tn) of reflections such that t1 · · · tn = c. ut
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Real exceptional sequences

Let (0,E) be generalised Cartan lattice of rank n. A subsequence of a sequence
(f1, . . . , fr) of elements of 0 is one of the form (fi1 , . . . , fis ) for 1 ≤ i1 < · · · < is ≤ r;
it is an initial subsequence if ij = j for all j . A real exceptional sequence is a subse-
quence of a complete exceptional sequence (f1, . . . , fn) where each fi is a real root.

Observe that the action of the wreath product {±1} o Br on exceptional sequences
of length r restricts to an action on real exceptional sequences. This is clear from the
definition of the action, using the fact that 8 = −8.

Lemma 3.4. The map (f1, . . . , fr) 7→ (sf1 , . . . , sfr ) sending a real exceptional sequence
to the sequence of reflections in the Weyl group is equivariant for the action of the braid
group Br .

Proof. It is enough to check this for the generators σ±1
i , and hence just for r = 2. The

result now follows from the identity sse(f ) = sesf se from Lemma 2.1. ut

Lemma 3.5. The real exceptional sequences in (0,E) are precisely the initial subse-
quences of the sequences σE for σ ∈ {±1}oBn. In particular, the wreath product {±1}oBn
acts transitively on the set of complete real exceptional sequences.

Proof. Using the braid group action it is clear that every real exceptional sequence is an
initial sequence of a complete real exceptional sequence. Now let F = (f1, . . . , fn) be
any complete real exceptional sequence. Then sF = sE = cox(0), so by Theorem 3.3
there exists σ ∈ Bn such that σ(se1 , . . . , sen) = (sf1 , . . . , sfn). Consider (g1, . . . , gn) :=

σ(e1, . . . , en). Then each gi is a real root and sfi = sgi by the previous lemma, so
fi = ±gi by Lemma 2.7(4). ut

The following relates real exceptional sequences to non-crossing partitions, and improves
upon Lemma 2.7(3).

Proposition 3.6. Let (0,E) be a generalised Cartan lattice and consider the map
F 7→ sF from real exceptional sequences to the Weyl group. Then the image is precisely
NC(0,E), and sF = sF ′ if and only if ZF = ZF ′.

Proof. Let F be a real exceptional sequence. By the previous lemma, F is an initial
subsequence of σE for some σ ∈ {±1} o Bn, say σE = (F,G). Then cox(0) = sE =
sF sG, and so sF ∈ NC(0,E).

Next let w ∈ NC(0,E) be a non-crossing partition. By Theorem 3.3 we can write
w = t1 · · · tr with (t1, . . . , tn) = σ(se1 , . . . , sen) for some σ ∈ Bn. Set (f1, . . . , fn) :=

σ(e1, . . . , en) and F = (f1, . . . , fr). Then F is a real exceptional sequence, ti = sfi for
all i, and w = sF .

Finally, suppose sF = sF ′ for two real exceptional sequences F and F ′. Set
w = s−1

F cox(0). Then w is again a non-crossing partition (since cox(0) = wv for
v = w−1sFw), so w = sG for some real exceptional sequence G. It follows that
both (F,G) and (F ′,G) are complete real exceptional sequences, and hence ZF =
G⊥ = ZF ′. ut
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Remark 3.7. One of the main results in this article, Theorem 5.2, is that the fibres of
the map F 7→ sF are precisely the orbits of the braid group, and moreover each such
orbit contains an orthogonal real exceptional sequence (so the sublattice ZF is naturally
a generalised Cartan lattice). To prove this, however, we will need to relate generalised
Cartan lattices to Grothendieck groups of hereditary algebras.

Morphisms of generalised Cartan lattices

A morphism2 φ : (0′, E′) → (0,E) between generalised Cartan lattices is an isometry
φ : 0′→ 0 such that φE′ is a real exceptional sequence in 0.

We observe that every such morphism φ necessarily preserves the bilinear form
〈−,−〉, not just the symmetric form (−,−).

Lemma 3.8. The generalised Cartan lattices form a category in which all morphisms are
monomorphisms. ut

The following gives a more conceptual description of the morphisms.

Proposition 3.9. The morphisms (0′, E′)→ (0,E) between generalised Cartan lattices
are precisely those isometries φ : 0′→ 0 sending real exceptional sequences in 0′ to real
exceptional sequences in 0. ut

We observe that a morphism φ : (0′, E′) → (0,E) maps 8(0′, E′) into 8(0,E). It is
not a priori clear, however, that we have induced morphismsW(0′, E′)→ W(0,E) and
NC(0′, E′)→ NC(0,E). This functoriality will be established in §5.

Real roots for generalised Cartan lattices

We discuss the difference between pseudo-real and real roots.

Lemma 3.10. LetE = (e1, . . . , en) be a complete exceptional sequence in a bilinear lat-
tice 0. Then a =

∑
i αiei is a pseudo-real root if and only if 〈a, a〉 > 0 and αi

〈ei ,ei 〉
〈a,a〉

∈ Z
for all i. In particular, if 〈ei, ei〉 = 1 for all i, so C(0,E) is symmetric, then a is a
pseudo-real root if and only if 〈a, a〉 = 1.

Proof. Let a =
∑
i αiei be a pseudo-real root. We want to show that αi〈ei, ei〉 ∈ 〈a, a〉Z

for all 1 ≤ i ≤ n. Clearly

α1〈e1, e1〉 = 〈a, e1〉 ∈ 〈a, a〉Z,

so the result holds for i = 1. Now let i > 1 and assume by induction that the result holds
for all j < i. Since ej is a root we know that 〈ej , ei〉 ∈ 〈ej , ej 〉Z, so, by induction, for each

2 We do not know a reasonable definition of a morphism which covers, for instance, morphisms
of the form K0(A

′) → K0(A) induced by an arbitrary algebra homomorphism A → A′ (cf.
Theorem 7.2).
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j < i we can find an integer λj such that αj 〈ej , ei〉 = λj 〈a, a〉. Since 〈a, ei〉 ∈ 〈a, a〉Z,
the same holds for

αi〈ei, ei〉 = 〈a, ei〉 −
∑
j<i

αj 〈ej , ei〉 = 〈a, ei〉 −
∑
j<i

λj 〈a, a〉.

Conversely, suppose a =
∑
i αiei satisfies 〈a, a〉 > 0 and αi〈ei, ei〉 ∈ 〈a, a〉Z for

all i. Fix r ∈ {1, . . . , n}. Again, since ei is a root, we have αi〈ei, er 〉, αi〈er , ei〉 ∈ 〈a, a〉Z.
It follows that 〈a,er 〉

〈a,a〉
,
〈er ,a〉
〈a,a〉
∈ Z, and hence a is a pseudo-real root.

For the second statement, it is clear that 〈a, a〉 = 1 implies that a is a pseudo-real
root. Suppose therefore that a =

∑
i αiei is a pseudo-real root and that 〈ei, ei〉 = 1 for

all i. Then by considering 〈a, ei〉 for i = 1, . . . , n in turn, we deduce that d := 〈a, a〉 > 0
divides each αi , so d2 divides d , and hence d = 1. ut

Using this, it is easy to see that in general there are roots which are not real.

Example 3.11. Consider the generalised Cartan lattice 0 = Z4 with bilinear form given
by the matrix 

1 −2 0 0
0 1 −1 0
0 0 1 −2
0 0 0 1

 .
Thus 0 is the Grothendieck group of the path algebra of the quiver (see §4)

· −→−→ · −→ ·
−→
−→ ·

We take E = (e1, . . . , e4) to be the standard basis in order. Then the element a =
(1, 1, 3, 1) is a pseudo-real root but not a real root.

Let (0,E) be a generalised Cartan lattice with Cartan matrix C. We say that C is in-
decomposable if we cannot permute the rows and columns to obtain a block diagonal
matrix. When C is indecomposable we say that C is of

(1) Dynkin type if it is positive definite, which is if and only if there exists a > 0 such
that Ca > 0;

(2) affine type if it is positive semidefinite but not positive definite, which is if and only
if there exists a > 0 such that Ca = 0;

(3) indefinite type otherwise, which is if and only if there exists a > 0 such that Ca < 0;
(4) hyperbolic type if it is indefinite, but all its proper principal submatrices3 are of

Dynkin or affine type.

See for example [35, Sections 4 and 5].

Theorem 3.12. Let (0,E) be a generalised Cartan lattice. If (0,E) is of Dynkin, affine
or hyperbolic type, or else has rank two, then every pseudo-real root is in fact a real root.

3 A principal submatrix is obtained by deleting a set of columns and the matching rows.
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Proof. We first show that every pseudo-real root is either positive or negative. For Dynkin,
affine or hyperbolic types this is [35, Lemma 5.10(b)], so suppose that 0 has rank two and
write E = (e, f ). Set a := 〈e, e〉, b := 〈f, f 〉 and c := −〈e, f 〉. Let x = me − nf be
a pseudo-real root where m, n are integers having the same sign. Then d := 〈x, x〉 =
am2
+ bn2

+ cmn is a sum of three positive integers. On the other hand, d divides both
am = 〈x, e〉 and bn = 〈f, x〉, yielding a contradiction.

The proof now follows as for [35, Proposition 5.10(b)]. Explicitly, let x > 0 be a
pseudo-real root of minimal height in its W orbit. Since 〈x, x〉 > 0 we have se(x) < x

for some e ∈ E, so by minimality se(x) < 0. Hence x = me for some m, and then
necessarily x = e. ut

Generalised Cartan lattices of Dynkin type

We finish this section by discussing the special case when (0,E) is of Dynkin type.
Recall that every Coxeter system (W,E) gives rise to a symmetric bilinear form (see

Appendix B).

Theorem 3.13 ([32, Theorem 6.4]). Let (W, S) be a Coxeter system. Then W is finite if
and only if the corresponding symmetric bilinear form is positive definite. ut

In the finite case we also have the following fundamental result giving a geometric inter-
pretation of the absolute length.

Lemma 3.14 (Carter’s Lemma [11]). Let (W, S) be a Coxeter system, and suppose that
W is finite. Then `(w) = dim Im(id − w). Moreover, w = sa1 · · · sar is reduced if and
only if the roots ai are linearly independent.

Proof. Since W is finite, the symmetric bilinear form is positive definite.
By induction on r we see that if w = sa1 · · · sar is a product of reflections, then

id− w =
∑
i

(λi,−)ai where λi := 2sar · · · sai+1(ai)/(ai, ai).

In particular, Im(id− w) ⊆ Span(ai), and so dim Im(id− w) ≤ `(w).
Conversely, Im(id−w) is the orthogonal complement to Fix(w) = Fix(w−1). More-

over, by [32, Theorem 1.1(d)], w can be written as a product of reflections sa for roots
a ∈ Im(id − w). In particular, if w 6= id, then there exists some root a ∈ Im(id − w).
Write a = x − w(x). Then (x, x) = (w(x),w(x)) implies 2(a, x) = (a, a), and hence
sa(x) = x−a = w(x). Thus saw(x) fixes everything in Fix(w) as well as x. By induction
on dimension we deduce that w can be written as a product of at most dim Im(id − w)
reflections, so `(w) ≤ dim Im(id− w).

This proves that `(w) = dim Im(id− w).
Next suppose that w = sa1 · · · sar with the ai linearly independent. Then so too are

the λi above, and hence we can find xi ∈ V such that (λi, xj ) = δij . It follows that
(id − w)(xi) = ai , and so dim Im(id − w) = r . Thus `(w) = r and the expression is
reduced.
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On the other hand, if w = sa1 · · · sar is reduced, then r = dim Im(id − w) ≤
dim Span(ai), and so the ai must be linearly independent. ut

Finally, we have another characterisation of Dynkin type. Again, this is true for all Cox-
eter groups, but we offer a simple proof for Weyl groups exhibiting the usefulness of
generalised Cartan lattices (cf. [29]).

Theorem 3.15. Let (0,E) be a generalised Cartan lattice, with Weyl group W and Cox-
eter element c. Then (0,E) is of Dynkin type if and only if T is finite, if and only if
NC(0,E) is finite, if and only if c has finite order.

Proof. We know from Theorem 3.13 that (0,E) is of Dynkin type if and only if W is
finite. Also, it is clear thatW finite implies T is finite, which in turn implies that NC(W, c)
is finite. Next, if NC(W, c) is finite, then since every reflection sa for a ∈ {cr(ei)} is a
non-crossing partition, c must have finite order on each ei , so c has finite order in W .
Finally, assume that c has finite order h. Write c = s1 · · · sn, and set

pi := sn · · · si+1(ei) and qi := s1 · · · si−1(ei) = −c(pi).

We note that if a ∈ 8+, then c(a) < 0 if and only if a = pi for some i, and c−1(a) < 0
if and only if a = qi for some i.

If T is infinite, then there exists some a ∈ 8+ not of the form cr(pi) or cr(qi). It
follows that δ := a+ c(a)+ · · ·+ ch−1(a) > 0 is c-invariant. Then necessarily si(δ) = δ
for all i, so δ ∈ rad0. Now, using Proposition 2.4 we get

〈δ, c(x)〉 = −〈x, δ〉 = 〈δ, x〉.

Also, by induction we have ri · · · r1(δ) =
∑
j>i δj ej , and hence

〈δ, pi〉 < 0 and 〈δ, qi〉 > 0.

It follows that cr(pi) > 0 for all r ≤ 0, so that c has infinite order, a contradiction. Thus
T must be finite, and hence W is finite (as in [32, Exercise 5.6(2)]). ut

4. Grothendieck groups of hereditary algebras

The Grothendieck group of a finite-dimensional hereditary algebra is an example of a
generalised Cartan lattice, and in fact each generalised Cartan lattice is of this form
(Lemma 4.1). In this section we concentrate on exceptional sequences of modules over
hereditary algebras and discuss the braid group action.
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Hereditary algebras

Let k be a field andA a finite-dimensional k-algebra. We denote by modA the category of
finite-dimensional A-modules and by projA the full subcategory consisting of projective
A-modules.

The Grothendieck group K0(A) is by definition the Grothendieck group of the exact
category projA with the bilinear form given by

〈[X], [Y ]〉 := dimk HomA(X, Y ).

This group is free of finite rank, with basis the classes of the indecomposable projective
A-modules.

Now suppose that A has finite global dimension. Let K0(modA) denote the
Grothendieck group of the abelian category modA and observe that the inclusion
projA → modA induces an isomorphism K0(A)

∼
−→ K0(modA) which identifies the

bilinear form on K0(A) with the Euler form on K0(modA), given as

〈[X], [Y ]〉 :=
∑
i≥0

(−1)i dimk ExtiA(X, Y ).

We view this isometry as an identification.
Finally, an algebra A is called hereditary if each A-module has a projective resolution

of length at most one. This is equivalent to saying that every submodule of a projective
module is again projective.

The following lemma shows that every generalised Cartan lattice can be realised as
the Grothendieck group of a finite-dimensional hereditary algebra.

Lemma 4.1. The assignment A 7→ K0(A) has the following properties:

(1) Let A be a finite-dimensional hereditary algebra. Then we can order a complete set
of representatives for the simple A-modules as S1, . . . , Sn so that, if we set ei := [Si]
and E := (e1, . . . , en), then (K0(A),E) is a generalised Cartan lattice.

(2) Let (0,E) be a generalised Cartan lattice, where E = (e1, . . . , en). Given a finite
field k there exists a finite-dimensional hereditary k-algebra A and an isometry 0

∼
−→

K0(A) sending each ei to the class of a simple A-module.

Proof. (1) Note first that [S1], . . . , [Sn] form a basis forK0(A). Also, each EndA(Si) is a
division algebra and each Ext1A(Si, Sj ) is an EndA(Sj )-EndA(Si)-bimodule. In particular,
〈[Si], [Si]〉 divides both 〈[Si], [Sj ]〉 and 〈[Sj ], [Si]〉 for all j . Thus each [Si] is a pseudo-
real root.

Now, each non-zero morphism between indecomposable projective A-modules is a
monomorphism since A is hereditary. Thus each indecomposable projective is excep-
tional (since A is finite-dimensional) and we can order a representative set of indecom-
posable projective modules as P1, . . . , Pn such that HomA(Pi, Pj ) = 0 for i < j . Let
Si = Pi/radPi be the simple top of the projective Pi . Then the long exact sequence for
HomA(−, Sj ) yields

0→ HomA(Si, Sj )→ HomA(Pi, Sj )→ HomA(radPi, Sj )→ Ext1A(Si, Sj )→ 0.
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Since HomA(radPi, Sj ) = 0 for all j ≤ i it follows that each Si is exceptional, and that
([S1], . . . , [Sn]) is a complete, orthogonal exceptional sequence.

(2) We follow [21, Section 7] and [31, Section 5]. Let ki/k be a field extension of
degree 〈ei, ei〉 and kij/k a field extension of degree −〈ei, ej 〉 for i < j . Set kij = 0
for i ≥ j . We regard each kij as a kj -ki-bimodule. Then A0 =

∏
i ki is a semisimple

k-algebra and A1 =
⊕

i,j kij an A0-bimodule, so the tensor algebra

A :=
⊕
p≥0

Ap where Ap := A1 ⊗A0 · · · ⊗A0 A1 (p times)

is a finite-dimensional hereditary k-algebra. Denote by εi the idempotent ofA given by the
identity of ki . Then the Pi := Aεi give a representative set of indecomposable projective
A-modules, with simple tops Si = ki , and εj (radPi/rad2 Pi) ∼= kij . Thus

EndA(Si) ∼= ki and Ext1A(Si, Sj ) ∼= HomA(radPi, Sj ) ∼= Homkj (kij , kj )

(see for example [3, Proposition 2.4.3]), so that 〈[Si], [Sj ]〉 = 〈ei, ej 〉 as required. ut

Given a finite-dimensional hereditary algebra A, we will abuse notation and just write
K0(A) for the corresponding generalised Cartan lattice with the natural choice of a com-
plete orthogonal exceptional sequence given by the simple A-modules.

Exceptional sequences

Let A be a finite-dimensional hereditary algebra. A module X ∈ modA is called excep-
tional if it is indecomposable and Ext1A(X,X) = 0. A sequence (X1, . . . , Xr) of finite-
dimensionalA-modules is called exceptional if eachXi is exceptional and HomA(Xi, Xj )

= 0 = Ext1A(Xi, Xj ) for all i > j . Such a sequence is complete if r equals the rank of
K0(A), and is orthogonal if HomA(Xi, Xj ) = 0 for all i 6= j . For example, any excep-
tional sequence consisting of simples is necessarily orthogonal.

We begin by recalling the following useful lemmas of Happel and Ringel, and Kerner.

Lemma 4.2 ([28, Lemma 4.1]). Let X and Y be indecomposable modules. If
Ext1A(X, Y ) = 0, then any homomorphism Y → X is either mono or epi. In particu-
lar, if X is exceptional, then EndA(X) is a division algebra. ut

Lemma 4.3 ([36, Lemma 8.2]). Let X and Y be rigid modules, so Ext1A(X,X) = 0 =
Ext1A(Y, Y ). If [X] = [Y ] in K0(A), then X ∼= Y . ut

Proposition 4.4. Let X be exceptional. Then [X] ∈ K0(A) is a real root.

Proof. We first note that the result holds whenK0(A) has rank two, by Theorem 3.12 (cf.
[46, Section 3]).

In general, let X be a non-simple exceptional module. By Schofield’s result, Proposi-
tion A.10, we can find an orthogonal exceptional pair (U, V ) such that X ∈ C(U, V ) is
not simple. Since [U ], [V ] < [X], we know by induction that [U ] and [V ] are real roots.
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Moreover, as above, [X] is obtained from either [U ] or [V ] by applying an element of the
subgroup 〈s[U ], s[V ]〉 ≤ W . Hence [X] is also a real root. ut

It follows that each exceptional sequence (X1, . . . , Xr) in modA yields an exceptional
sequence ([X1], . . . , [Xr ]) in K0(A). Moreover, if the former is complete (respectively
orthogonal), then so too is the latter.

The real roots of the form ±[X] for an exceptional object X are called real Schur
roots. If the algebra A is of finite representation type (so the corresponding Weyl group
W(K0(A)) is finite), or if rkK0(A) = 2, then all real roots are real Schur roots. The
following example exhibits a real root which is not a real Schur root.

Example 4.5. Consider the path algebra of the quiver

·

· ·

There is a unique indecomposable module X with dimension vector

[X] = 2
1 1.

Then [X] is a real root, but the module X is not exceptional.

The braid group action

Let X = (X1, . . . , Xr) be an exceptional sequence in modA. We define C(X) to be
the smallest full subcategory of modA containing each Xi and closed under kernels,
cokernels and extensions. Then C(X) is equivalent to the module category of a finite-
dimensional hereditary algebra by Theorem A.4. Also, by Corollary A.8, for each integer
1 ≤ i < r there exist unique modules RXi+1(Xi) and LXi (Xi+1) in C(X) yielding excep-
tional sequences

(X1, . . . , Xi−1, Xi+1, RXi+1(Xi), Xi+2, . . . , Xr),

(X1, . . . , Xi−1, LXi (Xi+1), Xi, Xi+2, . . . , Xr).

Following [13, 48], the braid group Br acts on exceptional sequences of length r via

σi(X1, . . . , Xr) := (X1, . . . , Xi−1, Xi+1, RXi+1(Xi), Xi+2, . . . , Xr),

σ−1
i (X1, . . . , Xr) := (X1, . . . , Xi−1, LXi (Xi+1), Xi, Xi+2, . . . , Xr).

In fact, we can describe the modules LX(Y ) and RY (X) explicitly, using the five-term
exact sequences (A.1) and (A.2), together with Remark A.2. Let (X, Y ) be an exceptional
pair. If HomA(X, Y ) = 0, then LX(Y ) is the middle term of the universal extension

0→ Y → LX(Y )→ Ext1A(X, Y )⊗EndA(X) X→ 0.

Otherwise, if HomA(X, Y ) 6= 0, then every morphism is either mono or epi by Lem-
ma 4.2. In this case the canonical morphism HomA(X, Y )⊗EndA(X)X→ Y is also mono
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or epi, by [45, Lemma 3.1], and we defineLX(Y ) to be its cokernel or kernel, respectively.
Thus LX(Y ) is given by one of the following exact sequences:

0→ HomA(X, Y )⊗EndA(X) X
can
−→ Y → LX(Y )→ 0,

0→ LX(Y )→ HomA(X, Y )⊗EndA(X) X
can
−→ Y → 0.

An analogous description is used for RY (X).
We observe that this definition appears more natural once one passes to the derived

category Db(modA), where the functors LE and RE are defined with respect to any
exceptional object E (see [6]). Then LX(Y ) and RY (X) coincide up to translation with
the objects defined in Db(modA) via the functors LX and RY .

Connection to real exceptional sequences

We now want to compare, for a finite-dimensional hereditary algebra A, exceptional se-
quences in modA, real exceptional sequences in K0(A), and non-crossing partitions in
W(K0(A)).

We say that two exceptional sequences (X1, . . . , Xr) and (Y1, . . . , Yr) in modA are
isomorphic provided Xi ∼= Yi for all i.

Proposition 4.6. The maps

(X1, . . . , Xr) 7→ ([X1], . . . , [Xr ]) and (f1, . . . , fr) 7→ (sf1 , . . . , sfr )

yield Br -equivariant bijections between

(1) isomorphism classes of exceptional sequences of length r in modA,
(2) real exceptional sequences of length r in K0(A), up to the action of the sign group,

and
(3) sequences (t1, . . . , tr) of reflections in the Weyl group W(K0(A)) such that w =

t1 · · · tr is a non-crossing partition of absolute length r .

Proof. Let (X1, . . . , Xr) be an exceptional sequence. By Corollary A.8 we can extend it
to a complete exceptional sequence (X1, . . . , Xn). As each [Xi] is a real root by Propo-
sition 4.4, ([X1], . . . , [Xn]) is a complete real exceptional sequence in K0(A), and hence
([X1], . . . , [Xr ]) is a real exceptional sequence of length r . Moreover, this map yields an
injection, since if X and Y are exceptional modules such that [X] = [Y ], then X ∼= Y by
Lemma 4.3.

To see that this map is Br -equivariant, it is enough to check it for the generators σ±1
i ,

and hence just for r = 2. Let (X, Y ) be an exceptional pair in modA. If HomA(X, Y ) = 0,
or if there is a monomorphismX ↪→ Y , then the construction ofLX(Y ) yields [LX(Y )] =
s[X]([Y ]). Otherwise, there is an epimorphism X � Y and [LX(Y )] = −s[X]([Y ]). This
proves the result for σ−1

i . The proof for σi is analogous.
Let F = (f1, . . . , fr) be a real exceptional sequence. Then sF = sf1 · · · sfr is a non-

crossing partition of absolute length r by Proposition 3.6, and so (sf1 , . . . , sfr ) has the
required properties. It is Br -equivariant by Lemma 3.4. Moreover, this map also yields an
injection, since if e, f are real roots such that se = sf , then e = ±f by Lemma 2.7.
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Finally, as in Lemma 4.1 let S = (S1, . . . , Sn) be a complete, orthogonal exceptional
sequence in modA consisting of simple modules. Set ei := [Si] and si = sei , so that
E := (e1, . . . , en) is a complete, orthogonal exceptional sequence in K0(A) and the
Coxeter element is c = s1 · · · sn.

Now let (t1, . . . , tr) be a sequence of reflections in W such that t1 · · · tr is a non-
crossing partition of absolute length r . Write the Coxeter element as c = t1 · · · tn. Then by
Theorem 3.3 we have (t1, . . . , tn) = σ(s1, . . . , sn) for some σ ∈ Bn. Set (X1, . . . , Xn) :=

σ(S1, . . . , Sn). It follows that (X1, . . . , Xr) is an exceptional sequence and s[Xi ] = ti for
all i. Thus the composition of the three maps is the identity, so they are all bijections. ut

Using this proposition we get an alternative proof of the following transitivity result.

Theorem 4.7 (Crawley-Boevey [13], Ringel [48]). Let A be a finite-dimensional hered-
itary algebra, and set n to be the rank ofK0(A). Then the braid group Bn acts transitively
on the isomorphism classes of complete exceptional sequences in modA.

Proof. The bijection between isomorphism classes of complete exceptional sequences
and factorisations of the Coxeter element is equivariant for the action of the braid group.
Since the action on factorisations of the Coxeter element is transitive by Theorem 3.3, so
too is the action on complete exceptional sequences. ut

We can also use Proposition 4.6 to characterise the real Schur roots amongst all real roots
using non-crossing partitions.

Corollary 4.8. Let a ∈ K0(A) be a real root. Then a is a real Schur root if and only if
sa ∈ NC(K0(A)). In particular, this depends only on K0(A), and not on the algebra A
itself. ut

We finish by observing that Proposition 4.6 can be reformulated as saying that excep-
tional sequences in modA correspond to paths in the Hasse diagram of NC(K0(A)). For,
sequences of reflections (t1, . . . , tr) in W(K0(A)) with w = t1 · · · tr a non-crossing par-
tition of absolute length r are represented by paths of length r which start at the unique
minimal element (see also [34, p. 1534]). The number of complete exceptional sequences
for algebras of finite representation type is computed in [41]; we refer to that paper for
further historical comments.

Application to Gabriel’s Theorem

We can use the results obtained so far to give a root-theoretic proof of Gabriel’s Theo-
rem, so in particular not requiring the development of Auslander–Reiten theory, or even
reflection functors (cf. [17, 47]). As such, this answers the question posed by Gabriel in
[21, Section 4], but now for all Dynkin types, not just ADE-type.

Theorem 4.9. Let A be a finite-dimensional hereditary algebra, either of Dynkin type or
of rank two. Then the mapX 7→ [X] induces a bijection between the isomorphism classes
of exceptional modules and the positive real roots. Moreover, A is representation-finite if
and only if it is of Dynkin type, which is if and only if every indecomposable module is
exceptional.
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Proof. Corollary 4.8 tells us that the map X 7→ s[X] induces a bijection between the iso-
morphism classes of exceptional A-modules and those reflections which are non-crossing
partitions. For the first part it is therefore enough to show that when W is finite or has
rank two, then every reflection is a non-crossing partition.

Suppose first thatW is finite, and let t ∈ T be any reflection. By Carter’s Lemma 3.14
we have `(tc) ≤ n = `(c), and since we cannot have equality we must have `(tc) < n.
Thus t < c is a non-crossing partition.

Now suppose that W has rank two, say with simple reflections s, t . The only two
Coxeter elements are c = st and c−1

= ts. Clearly every reflection in W is of the
form crsc−r or cr tc−r for some r ∈ Z, so every reflection lies in both NC(W, c) and
NC(W, c−1).

For the second part, if A is representation-finite, then there are only finitely many
exceptional modules up to isomorphism, so only finitely many non-crossing partitions.
By Theorem 3.15 this implies that W is finite, so A is of Dynkin type.

Assume next that every indecomposable module is exceptional. Given a > 0 in
K0(A), letX be anA-module with [X] = a and dim EndA(X)minimal. Then Ext1A(X,X)
= 0. For, this is clear ifX is indecomposable, so assumeX = Y⊕Z with Ext1(Y, Z) 6= 0.
Then there is a non-split short exact sequence 0 → Z → X′ → Y → 0, in which
case [X′] = a and dim EndA(X′) < dim EndA(Y ⊕ Z), a contradiction. It follows that
〈a, a〉 = 〈[X], [X]〉 > 0, so A is of Dynkin type by the classification of generalised
Cartan lattices given before Theorem 3.12. Since there are now only finitely many non-
crossing partitions, we also see that A is representation-finite.

Finally, if A is of Dynkin type, then the lemma below tells us that every indecompos-
able module is exceptional, completing the proof. ut

We call an A-module X a brick provided EndA(X) is a division algebra.

Lemma 4.10 ([47]). Let A be a finite-dimensional hereditary algebra. If there is an in-
decomposable A-module X which is not exceptional, then there is a brick X′ ⊆ X which
is not exceptional. In particular, 〈[X′], [X′]〉 ≤ 0, so that A is not of Dynkin type.
Proof. If X is not a brick, then take an endomorphism f such that I := Im(f ) has
minimal dimension. Note that Ext1A(I,M) 6= 0 for every indecomposable summand M
of Ker(f ). Next, by minimality, I is a brick. The image of HomA(I,X) in EndA(I ) is a
proper left ideal (as the sequence is not split), and so must be zero. Thus HomA(I,Ker(f ))
∼= HomA(I,X) is non-zero. Take an indecomposable summand X1 of Ker(f ) such that
there is a non-zero map I → X1. Again, by minimality, this must be injective, and hence
we have an epimorphism Ext1A(X1, X1) � Ext1A(I,X1), so that X1 is not exceptional.
The result now follows by induction on dimX. ut

5. The subobjects of generalised Cartan lattices

In this section we establish the correspondence between subobjects of generalised Cartan
lattices and non-crossing partitions. Later on we illustrate this by looking at representa-
tions of hereditary algebras. In fact, the proof of our main result uses representations of
hereditary algebras in an essential way (see Remark 3.7).
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Subobjects

Fix a category and an object X in this category. Two monomorphisms φ : U → X and
φ′ : U ′→ X are equivalent if φ factors through φ′ and φ′ factors through φ. The equiva-
lence class of a monomorphism φ ending inX is denoted by [φ]; they form the subobjects
of X and Sub(X) denotes the set of these subobjects. Defining [φ] ≤ [φ′] if φ factors
through φ′ gives a partial order on Sub(X).

The following lemma provides a crucial step in our proof of the main theorem. It
would be interesting to have a purely combinatorial proof which avoids the use of hered-
itary algebras.

Lemma 5.1. Let (0,E) be a generalised Cartan lattice, and F a real exceptional se-
quence of length r . Then

(1) (ZF, σF) is a generalised Cartan lattice for some σ , and
(2) if F ′ is any other real exceptional sequence such that ZF ′ = ZF , then there exists

σ ∈ {±1} o Br such that F ′ = σF .

Proof. Let E = (e1, . . . , en). By Lemma 4.1 we can find a finite-dimensional hereditary
k-algebra A and simple A-modules Si such that [Si] = ei .

(1) Write F = (f1, . . . , fr). By Proposition 4.6 we can find an exceptional sequence
X = (X1, . . . , Xr) in modA such that F = ε([X1], . . . , [Xr ]) for some ε ∈ {±1}r .
Then C(X) ∼= modB for some finite-dimensional hereditary algebra, by Theorem A.4,
so ZF = K0(C(X)) is naturally a generalised Cartan lattice.

(2) Begin by extending X to a complete exceptional sequence (X, Y ) for some Y =
(Y1, . . . , Ys). Set gi := [Yi] and G = (g1, . . . , gs). Then (F,G) is a complete real
exceptional sequence in 0.

Now let F ′ = (f ′1, . . . , f
′
r ) be another real exceptional sequence such that ZF ′ = ZF .

Again, we can lift this modulo the sign group action to an exceptional sequence X′ =
(X′1, . . . , X

′
r). Note that ZG = ⊥F = ⊥F ′, so that (F ′,G) is also a complete real ex-

ceptional sequence in 0. It follows from Proposition 4.6 that (X′, Y ) is also complete
exceptional sequence in modA. Therefore C(X) = C(Y )⊥ = C(X′), and so X′ = σ(X)
for some σ ∈ Br by Theorem 4.7. Hence F ′ and σ(F ) agree up to signs. ut

Let Exc(0,E) be the set of equivalence classes of real exceptional sequences in (0,E),
where two such sequences of length r are equivalent if they determine the same orbit
under the action of {±1} o Br . We make this into a poset by saying that [G] ≤ [F ] if G is
an initial subsequence of some σF .

Theorem 5.2. Let (0,E) be a generalised Cartan lattice. Then there are canonical poset
isomorphisms

Sub(0,E)
∼
−→ Exc(0,E)

∼
−→ NC(0,E).

The first sends the class of a monomorphism φ : (0′, E′) → (0,E) to [φE′], and the
second sends [F ] to sF .
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Proof. By Proposition 3.6 the map Exc(0,E) → NC(0,E), F 7→ sF , is well-defined
and surjective. Moreover, sF = sF ′ if and only if ZF = ZF ′, which by Lemma 5.1(2)
occurs if and only if [F ′] = [F ]. To see that it is an isomorphism of posets, note that
sF ′ ≤ sF if and only if sF = sF ′sF ′′ for some F ′′; since we have a bijection, this is if and
only if (F ′, F ′′) = σF for some σ , or equivalently [F ′] ≤ [F ].

Now consider the map Sub(0,E) → Exc(0,E). Given monomorphisms (0′′, E′′)
ψ
−→ (0′, E′)

φ
−→ (0,E) of generalised Cartan lattices, we know that ψE′′ is a real excep-

tional sequence in (0,E′), so it is an initial subsequence of some σE′. Thus φψE′′ is
an initial subsequence of σφE′, and hence [φψE′′] ≤ [φE′]. This shows that we have a
map of posets.

Conversely, if σE is again orthogonal, then the identity map on 0 yields an isomor-
phism of generalised Cartan lattices (0,E) ∼= (0, σE). By Lemma 5.1 (1) we there-
fore have a well-defined map Exc(0,E) → Sub(0,E) sending [F ] to the class of the
inclusion (ZF, σF) ↪→ (0,E), and this map is inverse to the one above. Moreover,
if [F ′] ≤ [F ], where for simplicity F ′ and F are both orthogonal, then the inclusion
(ZF ′, F ′) ↪→ (0,E) factors through (ZF,F ) ↪→ (0,E). Thus Exc(0,E)→ Sub(0,E)
is also a map of posets. ut

We write cox for the map Exc(0) → NC(0), E′ 7→ sE′ , as well as for the composition
Sub(0)→ NC(0).

Corollary 5.3. Each morphism φ : (0′, E′)→ (0,E) of generalised Cartan lattices in-
duces a commutative diagram

Sub(0′, E′)
∼

−−−−→ Exc(0′, E′)
∼

−−−−→ NC(0′, E′)y y y
Sub(0,E)

∼
−−−−→ Exc(0,E)

∼
−−−−→ NC(0,E)

It follows that (0,E) 7→ NC(0,E) determines a functor from the category of generalised
Cartan lattices to the category of posets.

Proof. We know that φ sends real exceptional sequences in (0′, E′) to real exceptional
sequences in (0,E). This preserves the action of the wreath product and the notion
of being an initial subsequence, so induces a morphism Exc(0′, E′) → Exc(0,E) of
posets. Since [ψ] ∈ Sub(0′, E′) is sent to [φψ] ∈ Sub(0,E), the square on the left is
commutative. ut

The Weyl group

We now show that the assignment (0,E) 7→ W(0,E) is also functorial, and restricts to
the functor (0,E) 7→ NC(0,E) constructed above. The proof requires several steps.

Lemma 5.4. Let (0,E) be an indecomposable generalised Cartan lattice of rank n + 1
and with Weyl group W := W(0,E). Let 0′ ≤ 0 be a sublattice with basis {f1, . . . , fn}

consisting of real roots and write W ′ ≤ W for the subgroup generated by sf1 , . . . , sfn .
Then the restriction map W ′→ Aut(0′) is injective.
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Proof. Suppose w ∈ W ′ fixes each fi . We need to show that w is the identity. It will
be convenient at times to extend scalars to the rationals, yielding the vector spaces
Q0′ ≤ Q0.

Take e ∈ E \ 0′ and set x := w(e) − e. Assume for contradiction that x 6= 0. We
claim that x ∈ rad(0) and x is either positive or negative.

Note first that x ∈ 0′. Next, for all f ∈ 0′ we have w(f ) = f , so

(e, f ) = (w(e), w(f )) = (e + x, f ),

and hence (x, f ) = 0 for all f ∈ 0′. In particular, (x, x) = 0. Also,

(e, e) = (w(e), w(e)) = (e + x, e + x) = (e, e)+ 2(e, x),

and hence (e, x) = 0. Thus x ∈ rad(0).
Next write x = x+−x− with x+, x− ≥ 0 having disjoint support. Note that (x+, e′) =

(x−, e
′) for all e′ ∈ E. If e′ is not in the support of x+ then the left hand side is non-

positive, whereas if e′ is not in the support of x− then the right hand side is non-positive.
We conclude that (x+, e′) = (x−, e′) ≤ 0 for all e′ ∈ E.

Finally, w(e) = e+ x is a real root, so it is either positive or negative. If x+ > 0, then
x− = 0 or x− = e, and in the latter case (x−, e) > 0, a contradiction. Thus x = x+ > 0.
Otherwise, if x+ = 0, then x = −x− < 0. This proves the claim.

By the description of the different types of Cartan matrices given before Theorem 3.12
we see that we have reduced to the case when (0,E) is of affine type. In this case
rad(0) = Zδ for some δ > 0 [35, Theorem 5.6(b)], so x = mδ with m 6= 0. In par-
ticular, δ ∈ Q0′, say δ =

∑
i λifi .

Define for a ∈ Q0 the translation ta ∈ Aut(Q0) via ta(y) := y − (a, y)δ and set
L := {ta | a ∈ Q0}. Note that vta = tv(a)v for all v ∈ W .

As in [35, Chapter 6] we can find e0 ∈ E such that if we write

E0
:= E \ {e0}, 00

:= ZE0, W 0
:= W(00, E0) and L0

:= {ta | a ∈ Q00
},

then (00, E0) is a generalised Cartan lattice of Dynkin type and W is a subgroup of
W 0nL0 [35, Proposition 6.5]. Accordingly, we can writew = w̄ta . Sincew(y)−y ∈ Zδ
for all y ∈ 0, the same holds for w̄. On the other hand, w̄(y) − y ∈ 00 for all y ∈ 0.
Since 00

∩ Zδ = {0} we deduce that w̄ = id and w = ta .
Observe now that there exist ai ∈ Q0′ such that

w(y) = y −
∑
i

(ai, y)fi for all y ∈ 0.

For, this clearly holds for each reflection sfi , so it holds for all v ∈ W ′ by induction on
length.

Comparing this with the formula for ta and using the fact that the fi are linearly
independent gives ai − λia ∈ rad(Q0) = Qδ for all i, and hence a ∈ Q0′. To complete
the proof note that w(f ) = f for all f ∈ 0′ implies (a, f ) = 0 for all f ∈ 0′, and hence
(a, a) = 0. On the other hand a ∈ Q00, where the bilinear form is positive definite, so
a = 0. Hence w = id. ut
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Proposition 5.5. Let (0,E) be a generalised Cartan lattice and F = (f1, . . . , fr) a real
exceptional sequence. Set 0′ = ZF and choose σ such that σF is orthogonal. Then the
assignment w 7→ w|0′ induces an isomorphism

W(0,E) ⊇ 〈sf1 , . . . , sfr 〉
∼
−→ W(0′, σF ). (5.1)

Proof. Let w ∈ 〈sf1 , . . . , sfr 〉 fix 0′ pointwise. We need to show that w = id.
Extend F to a complete real exceptional sequence (f1, . . . , fn) for (0,E). Given

r < i ≤ n set Fi = (f1, . . . , fr , fi) and 0i = ZFi . By Lemma 5.1(1) there exists
τi ∈ {±1} o Br+1 such that (0i, τiFi) is a generalised Cartan lattice, so we can apply
Lemma 5.4 to deduce that w is the identity on 0i . This holds for each such i, so w is the
identity on the whole of 0. ut

Theorem 5.6. Let φ : (0′, E′) → (0,E) be a morphism of generalised Cartan lattices,
so yielding an injection on the set of real roots. Then the map sa 7→ sφ(a) yields an injec-
tive group homomorphism φ∗ : W(0

′, E′)→ W(0,E), and this restricts to the poset ho-
momorphism NC(0′, E′)→ NC(0,E) constructed previously. In particular, the map φ∗
identifies NC(0′, E′) with {w ∈ NC(0,E) | w ≤ φ∗(cox(0′, E′))}.

Proof. The map φ∗ is just the inverse of the isomorphism (5.1) constructed above. For
the second statement we just need to observe that if F ′ is any real exceptional sequence
in (0′, E′), then φ∗(sF ′) = sφ(F ′). ut

Pointed Coxeter groups

For a Coxeter group W = W(0,E) we give a group-theoretic description of the sub-
groups of W which are of the form W(0′, E′) for some subobject (0′, E′) ⊆ (0,E). If
W is finite, then these subgroups are known to be parabolic [4, Lemma 1.4.3]. This is
no longer true when W is infinite. Moreover, the Coxeter diagram of such a subgroup is
not necessarily obtained by removing vertices from the diagram of W . The authors are
grateful to Christian Stump for suggesting the following example.

Example 5.7. Consider a Coxeter group W = 〈s, t, u〉 of affine type Ã2 with Coxeter
element c = stu. The factorisation c = s(tut)t yields a non-crossing partition s(tut) and
the corresponding subgroupW ′ = 〈s, tut〉 is affine of type Ã1. ThusW ′ is not a parabolic
subgroup.

Let us define a pointed Coxeter group as a triple (W, S, c) consisting of a Coxeter system
(W, S) and a Coxeter element c. A pointed Coxeter group (W ′, S′, c′) is a subgroup of
(W, S, c) if W ′ is a subgroup of W and NC(W ′, c′) = {w ∈ NC(W, c) | w ≤ c′}. Note
that any such subgroup is determined by its Coxeter element since it is generated by its
non-crossing partitions.

The following is an immediate consequence of Theorem 5.6.

Corollary 5.8. Let (0,E) be a generalised Cartan lattice. Then (W(0,E), cox(0))
is a pointed Coxeter group and the assignment (0′, E′) 7→ (W(0′, E′), cox(0′)) in-
duces an order preserving bijection between the subobjects of (0,E) and the subgroups
of (W(0,E), cox(0)). ut
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Remark 5.9. It is known that, in a Coxeter group, every subgroup generated by reflec-
tions is itself a Coxeter group [15, 18]. Thus if w ∈ NC(W, c) and w = t1 · · · tr is a
reduced expression as a product of reflections, then the subgroup generated by the ti is
again a Coxeter group. However, it is not clear from their work that the subgroup depends
only on w and not on the choice of reduced expression, nor that w is then a Coxeter
element for the subgroup.

6. Non-crossing partitions revisited

In this section we relate various properties of non-crossing partitions to our categorifica-
tion.

The Kreweras complement

Let (0,E) be a generalised Cartan lattice and

NC(0,E) = {w ∈ W(0) | id ≤ w ≤ cox(0)}

the corresponding poset of non-crossing partitions. Given a sublattice 1 ⊆ 0, we can
form its orthogonal complements ⊥1 and 1⊥ with respect to 〈−,−〉. These induce two
operations on Sub(0,E) which correspond to the formation of Kreweras complements in
NC(0,E) via the isomorphism

cox : Sub(0,E)
∼
−→ NC(0,E).

Proposition 6.1. Taking 1 ⊆ 0 to ⊥1 and 1⊥ induces two order reversing bijections
Sub(0,E)→ Sub(0,E) which are mutually inverse. Moreover,

cox(⊥1) = cox(1)−1 cox(0) and cox(1⊥) = cox(0) cox(1)−1.

Proof. Let (1,E′) be in Sub(0,E). Thus E′ = (e1, . . . , er) is a subsequence of σE =
(e1, . . . , en) for some σ ∈ {±1} o Bn. Set E′′ = (er+1, . . . , en). Then ⊥1 = ZE′′ and
(⊥1,E′′) is in Sub(0,E). We have cox(0) = sE = sE′sE′′ and therefore

cox(⊥1) = sE′′ = s
−1
E′
sE = cox(1)−1 cox(0).

The argument for 1⊥ is similar. ut

Corollary 6.2. Let (0,E) be a generalised Cartan lattice. Then every interval in
NC(0,E) is isomorphic to NC(0′, E′) for some subobject (0′, E′) of (0,E).

Proof. Let [x, y] be an interval in NC(0,E) and set (0′, E′) = cox−1(x−1y). Then it
follows from Proposition 6.1 that [x, y] and NC(0′, E′) are isomorphic. ut
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The Auslander–Reiten translate as a cyclic automorphism

Let (0,E) be a generalised Cartan lattice with Coxeter element c := cox(0). Clearly
conjugation by c induces a poset automorphism on the set of non-crossing partitions
NC(0,E), having order the Coxeter number h in Dynkin type. This automorphism has
been much studied recently, especially in the context of cyclic sieving; see for example
[1, Section 3.4.6] as well as [5] and the references therein.

Now suppose that we have realised (0,E) as the Grothendieck group of a finite-
dimensional hereditary algebra A. Then we can define the Auslander–Reiten translate
τ = D Ext1A(−, A) on the module category modA (see for example [3, Section 4.12]),
or more naturally as an exact autoequivalence of the derived category Db(modA). In this
case we have

HomDb(modA)(Y, τX)
∼= DHomDb(modA)(X, Y [1])

(see [27, Proposition 3.8]), and hence 〈Y, τX〉 = −〈X, Y 〉 for all X and Y . Thus [τX] =
c[X], so the action of τ on exceptional sequences corresponds, via the isomorphism
Exc(0,E) ∼= NC(0,E), to conjugation by the Coxeter element c.

Constructing non-crossing partitions

It seems to be a hard problem to determine when an element of the Weyl group is a non-
crossing partition, or equivalently to distinguish the real exceptional sequences inside
the set of all exceptional sequences. One simplification is that it is enough to check this
pairwise.

Lemma 6.3. Let (W, S) be a Coxeter system coming from a symmetrisable Cartan ma-
trix, and c a Coxeter element. For a product w = t1 · · · tr of reflections, the following are
equivalent:

(1) w ∈ NC(W, c) and `(w) = r .
(2) ti 6= tj and ti tj ∈ NC(W, c) for all i < j .

Proof. This follows from Proposition 4.6, for if A is a finite-dimensional hereditary al-
gebra, then a sequence X = (X1, . . . , Xr) in modA is exceptional if and only if (Xi, Xj )
is an exceptional pair for all i < j . ut

Using our categorification, it is possible to construct an algorithm for determining whether
or not a given sequence is a real exceptional sequence. This is based on Proposition A.10,
together with the Derksen–Weyman algorithm [16].

Let (0,E) be a generalised Cartan lattice, say with E = (e1, . . . , en), and a =
(a1, . . . , ar) an exceptional sequence of positive pseudo-real roots.

(1) We begin by applying the Derksen–Weyman algorithm to ar . This computes the
canonical decomposition of ar , which is a sum of real and imaginary Schur roots.
So, if the algorithm returns ar , then we know that ar is a real Schur root.
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(2) We next compute the projective roots pi = sn · · · si+1(ei), as used in the proof of
Theorem 3.15, and apply the Derksen–Weyman algorithm to each of the roots lar (pi)
in turn. Let M be indecomposable with dimM = ar and assume that M is not pro-
jective. Then lar (pi) is the dimension vector of the universal extension of M by Pi ,
the projective module of dimension vector pi . Thus the canonical decompositions
of the lar (pi) yield the dimension vectors of the indecomposable summands of the
Bongartz complement B of M , and HomA(M,B) = 0. If, on the other hand, M is
projective, then the Bongartz complement is just the sum of the other indecomposable
projectives, and the lar (pi) are the dimension vectors of the cokernels of the minimal
right add(M)-approximations of the projectives. It therefore follows as in [30, The-
orem 16] that, in both cases, the Derksen–Weyman algorithm applied to the lar (pi)
produces n − 1 real Schur roots, say p̄1, . . . , p̄n−1, other than ar , and that these are
the projective roots for a⊥r .

(3) From the p̄i , we can easily construct an orthogonal exceptional sequence Ē :=
(ē1, . . . , ēn−1) such that (Ē, a⊥r ) is a subobject of (0,E). We now express each of
a1, . . . , ar−1 in terms of Ē, noting that each ai must be a positive linear combination
of the ēi , otherwise a will not be a real exceptional sequence by Corollary A.9. Now
repeat these steps using the sequence Ē inside the sublattice a⊥r .

Example 6.4. Following Schofield [53], consider the path algebra of the quiver

· ·

· · ·

· ·

and take exceptional modules X and Y having dimension vectors

x =
1

1
2 1 2

1

1
and y =

0

0
1 1 1

0

0
.

Then X and Y both lie in the inhomogeneous tube of length four, have quasi-length three,
and c2(x) = y. It follows that dim Hom(X, Y ) = dim Ext1(X, Y ) = 1, and similarly
dim Hom(Y,X) = dim Ext1(Y,X) = 1, so both 〈x, y〉 = 0 = 〈y, x〉 but neither (X, Y )
nor (Y,X) is an exceptional pair.

In terms of our algorithm, we have

i 1 2 3 4 5 6 7

pi
1

0
1 1 1

1

1

0

1
1 1 1

1

1

0

0
1 1 1

1

1

0

0
0 1 1

1

1

0

0
0 0 1

1

1

0

0
0 0 0

1

0

0

0
0 0 0

0

1

lx(pi)
2

1
3 2 3

2

2

1

2
3 2 3

2

2

2

2
5 3 5

3

3

2

2
4 3 5

3

3

1

1
2 1 3

2

2

1

1
2 1 2

2

1

1

1
2 1 2

1

2

Thus the canonical decompositions of the lx(pi) are

lx(p1) = p̄1 + p̄5, lx(p2) = p̄2 + p̄5, lx(p3) = p̄1 + p̄2 + p̄5 + p̄6,

lx(p4) = p̄1+p̄2+p̄5, lx(p5) = p̄3+p̄4+p̄5, lx(p6) = p̄3+p̄5, lx(p7) = p̄4+p̄5,
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where

i 1 2 3 4 5 6

p̄i
1

0
1 1 2

1

1

0

1
1 1 2

1

1

0

0
0 0 1

1

0

0

0
0 0 1

0

1

1

1
2 1 1

1

1

0

0
1 0 0

0

0

ēi
1

0
1 1 0

0

0

0

1
1 1 0

0

0

0

0
0 0 1

1

0

0

0
0 0 1

0

1

1

1
1 1 1

1

1

0

0
1 0 0

0

0

In particular y = ē1 + ē2 + ē3 + ē4 − ē5, so y is not a positive linear combination.
Note also that one cannot just take the minimal positive elements in x⊥ as the simples,

for such a collection must contain
0

0
0 1 1

0

0
instead of ē5.

7. Hereditary categories

We consider the category H of hereditary abelian categories arising in the representation
theory of algebras. More precisely, the objects in H are the categories modA of finitely
generated modules over an hereditary artin algebra A.4 The morphisms in H are fully
faithful exact functors, modulo natural isomorphisms, having an extension closed essen-
tial image.

Homological epimorphisms

Following [24], a ring homomorphism A → B is called a homological epimorphism if
restriction of scalars induces an isomorphism

ExtnB(X, Y )
∼
−→ ExtnA(X, Y )

for all n ≥ 0 and all B-modules X, Y . The homomorphism is finite if B is finitely gener-
ated when viewed as an A-module.

Lemma 7.1. Let f : A → B be a finite homological epimorphism between artin alge-
bras. Then the restriction of scalars modB → modA is a full exact embedding having
a left adjoint, whose essential image is closed under kernels, cokernels and extensions.
Conversely, if A is hererditary, then every such subcategory of modA arises in this way.

Proof. Since f is finite, the restriction of scalars functor goes between the categories of
finitely generated modules. Moreover, this functor is always exact and has extension of
scalars as a left adjoint. Finally, since f is a homological epimorphism, the functor is
fully faithful and the essential image is closed under kernels, cokernels and extensions.

Conversely, let A be hereditary and C ⊆ modA a full subcategory closed under ker-
nels, cokernels and extensions. Then ExtnC(X, Y )

∼= ExtnA(X, Y ) for all n ≥ 0 and all

4 The centre of an hereditary artin algebra A is semisimple, and A is said to be connected if the
centre is a field, say k. In that case A is actually a finite-dimensional k-algebra.
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X, Y ∈ C. If C is also a reflective subcategory, so the inclusion has a left adjoint L, then
LA is a projective generator for C. Thus C is equivalent to mod EndA(LA), and the map
EndA(A) → EndA(LA) induced by the functor L yields a homological epimorphism
f : A → EndA(LA). Finally, the isomorphism HomA(A,LA) ∼= EndA(LA) is now an
isomorphism of right A-modules, showing that f is finite.

In fact, using the isomorphisms LA ∼= HomA(A,LA) ∼= EndA(LA), we can endow
LA with the structure of an algebra, in which case the algebra homomorphism f : A→

LA corresponds to the identity in EndA(LA). ut

Recall from Lemma 4.1 that every generalised Cartan lattice can be realised asK0(A) for
some hereditary artin algebra A.

Theorem 7.2. If f : A → A′ is a finite homological epimorphism between hereditary
artin algebras, then restriction of scalars induces a morphism f ∗ : K0(A

′)→ K0(A) of
generalised Cartan lattices. Conversely, every morphism of generalised Cartan lattices
ending in K0(A) is up to isomorphism of the form f ∗ : K0(A

′)→ K0(A) for some finite
homological epimorphism f : A→ A′ between hereditary artin algebras.

Proof. Let f : A→ A′ be a homological epimorphism. Then f ∗ is necessarily an isom-
etry. Moreover, restriction of scalars via f sends exceptional sequences in modA′ to ex-
ceptional sequences in modA, so by Propositions 3.9 and 4.6 the map f ∗ is a morphism
of generalised Cartan lattices.

Conversely, by Theorem 5.2 together with Proposition 4.6, every morphism of gener-
alised Cartan lattices ending in K0(A) is equivalent to one of the form φ : K0(C(X)) ↪→
K0(A) where X is an exceptional sequence in modA. By Theorem A.4 there is a finite
homological epimorphism f : A → A′ such that restriction of scalars identifies modA′

with C(X), and hence φ = f ∗. ut

Corollary 7.3. Let C denote the category of generalised Cartan lattices. Taking an hered-
itary abelian category C to its Grothendieck group K0(C) induces a faithful functor
H→ C which reflects isomorphisms.

Proof. Fix a functor φ : modA′ → modA representing a morphism in H, yielding
the morphism of generalised Cartan lattices φ∗ : K0(A

′) → K0(A), [X] 7→ [φ(X)].
Also, φ is an equivalence if and only if φ∗ is an isomorphism. Let ψ : modA′ →
modA be another such functor, and suppose that φ∗ = ψ∗. Then [φ(A′)] = [ψ(A′)],
so φ(A′) ∼= ψ(A′) by Lemma 4.3. Since φ is naturally isomorphic to − ⊗A′ φ(A′), and
similarly for ψ , we conclude that φ ∼= ψ . ut

It is clear that the functor H→ C is not full. For, fix two fields k and k′. Then K0(k
′) ∼=

K0(k) in C, but mod k′ ∼= mod k in H if and only if k′ ∼= k. Also, each derived equivalence
Db(modA′)

∼
−→ Db(modA) induces an isomorphism K0(A

′)
∼
−→ K0(A) in C, but again

modA′ and modA need not be equivalent in H. We do however have the following result.

Theorem 7.4 (Happel [27, Theorem 5.12]). Let A be a finite-dimensional algebra over
an algebraically closed field k. Assume that A is basic and simply connected. Then A
is derived equivalent to the path algebra kQ of a Dynkin quiver Q if and only if their
generalised Cartan lattices are isometric, K0(A) ∼= K0(kQ). ut
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We can now express Theorem 5.2 in terms of a fixed hereditary artin algebra A. In this
case set Sub(modA) to be the set of subcategories of modA of the form C(X) for some
exceptional sequence X. The poset structure on Sub(modA) is given by inclusion of
subcategories.

Corollary 7.5. LetA be an hereditary artin algebra. Then there is a natural isomorphism
of posets Sub(modA) ∼= NC(K0(A)). In particular, two exceptional sequences X and Y
are equivalent under the braid group action if and only if cox(C(X)) = cox(C(Y )). ut

Non-crossing partitions and Hom-free sets

Let A be an hereditary artin algebra. By a Hom-free set in modA we will mean a set
{S1, . . . , Sr} of exceptional modules satisfying HomA(Si, Sj ) = 0 for all i 6= j . Such
Hom-free sets were studied by various authors [10, 23, 43, 44, 12].

Proposition 7.6. Let X be an exceptional sequence in modA. Then the map sending
C(X) to the set of simple objects in C(X) induces an injective map from NC(K0(A))

to the Hom-free sets up to isomorphism. If A is representation-finite, then this map is a
bijection.

Proof. If X is an exceptional sequence, then C(X) ∼= modB for some hereditary artin
algebra B, by Theorem A.4, and hence the simple objects in C(X) form a Hom-free set.
Conversely, C(X) is uniquely determined by its set of simple objects. Using Corollary 7.5
we know that the non-crossing partitions are in bijection with the subcategories of the
form C(X) for X exceptional. Thus the map sending C(X) to its set of simple objects
induces an injective map from the set of non-crossing partitions to the Hom-free sets up
to isomorphism.

If now A is representation-finite, then any Hom-free set can be arranged to form an
exceptional sequence. For, the (isomorphism classes of) indecomposable A-modules are
partially ordered using the Auslander–Reiten quiver, so Ext1A(M,N) 6= 0 implies N ≺
M . It follows that every Hom-free set arises as the set of simple objects in C(X) for some
exceptional sequence X. ut

When A is representation-finite, this observation can be used to enumerate the non-
crossing partitions. This was already done by Gabriel and de la Peña in [23, Sec-
tions 2.6, 2.7] and from ‘painful calculations’ they obtained the Coxeter–Catalan numbers
of ADE-type.5

Example 7.7. The map from non-crossing partitions to Hom-free sets is in general not
surjective. For, consider the path algebra of the quiver

·

· ·

5 Note however that their form for the Coxeter–Catalan number of typeD has not been simplified,
and although they have the correct number for E8, their numbers for E6 and E7 are slightly wrong.
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Then the exceptional modules X and Y having dimension vectors

[X] = 1
0 0 and [Y ] = 0

1 1

form a Hom-free set, but neither (X, Y ) nor (Y,X) is an exceptional pair.

Let F = (f1, . . . , fr) be a real exceptional sequence in a generalised Cartan lattice
(0,E). Writing fi =

∑
j λij ej in terms of E we may define the height of F to be

ht(F ) :=
∑
i,j |λij |.

Lemma 7.8. Let (0,E) be a generalised Cartan lattice, and F a real exceptional se-
quence in 0. If F ′ = σF has minimal height in the orbit of F , then the roots in F ′ are
unique up to sign.

Proof. By Lemma 4.1 we can realise (0,E) as K0(A) for some hereditary artin al-
gebra A, and by Proposition 4.6 we can lift F (up to sign) to an exceptional sequence
X = (X1, . . . , Xr) in modA. Then ht(F ) equals the length `A(X) := `A(X1⊕· · ·⊕Xr).
Thus if F ′ has minimal height, then the roots in F ′ are precisely the classes of the simple
objects in C(X). ut

Appendix A. Perpendicular calculus

In this appendix we collect some basic facts about perpendicular categories, following
Geigle–Lenzing [24, Section 3], Schofield [52, Section 2], and Crawley-Boevey [13].

Let A be an hereditary artin algebra. We consider the category modA of finitely gen-
erated A-modules.

For a subset X ⊆ modA we define the right and left perpendicular categories to be
the full subcategories

X⊥ := {Y ∈ modA | HomA(Xi, Y ) = 0 = Ext1A(Xi, Y ) for all Xi ∈ X},
⊥X := {Y ∈ modA | HomA(Y,Xi) = 0 = Ext1A(Y,Xi) for all Xi ∈ X}.

These are clearly closed under kernels, cokernels and extensions. We also consider C(X),
the smallest full subcategory of modA closed under kernels, cokernels and extensions
and containing each Xi ∈ X.

The following proposition describes simultaneously adjoints of the inclusions
C(X) → modA and C(X)⊥ → modA via a five-term exact sequence (see also [24,
Proposition 3.5] and [37, Theorem 2.2]).

Proposition A.1. Let C ⊆ modA be a full subcategory closed under kernels, cokernels
and extensions. Assume that X ∈ C is a relative projective generator.

(1) Each A-module M fits into a functorial exact sequence

0→ M̄C⊥
→ MC→ M → MC⊥

→ M̄C→ 0 (A.1)

with MC, M̄C ∈ C and MC⊥ , M̄C⊥
∈ C⊥.
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(2) The map M 7→ MC⊥ yields a left adjoint for the inclusion C⊥→ modA.
(3) The map M 7→ MC yields a right adjoint for the inclusion C→ modA.
(4) C = ⊥(C⊥).

Proof. We first note that C = C(X) and C⊥ = X⊥.
(1) Given M ∈ modA we set XM → M to be a right add(X)-approximation of M ,

so XM ∈ add(X) and HomA(X
′, XM) → HomA(X

′,M) is surjective for all X′ ∈
add(X). Note that its kernel L satisfies Ext1A(X

′, L) = 0 and its cokernel N satisfies
HomA(X

′, N) = 0 and Ext1A(X
′, N) ∼= Ext1A(X

′,M) for all X′ ∈ add(X).
Consider the push-out diagram

XL XLy y
0 −−−−→ L −−−−→ XM −−−−→ My y ∥∥∥
0 −−−−→ M̄C⊥

−−−−→ MC −−−−→ My y
0 0

It follows from the comments above that MC ∈ C and M̄C⊥
∈ C⊥.

Next let
ε : 0→ N → E→ X1

N → 0

be a universal extension, so X1
N ∈ add(X) and HomA(X

′, X1
N ) → Ext1A(X

′, N) is sur-
jective for all X′ ∈ add(X). It follows that Ext1A(X

′, E) = 0 for all X′ ∈ add(X).
Consider a right add(X)-approximation XE → E and let F be the image of the

composition XE → E → X1
N . Then F is in C, and is relative projective since it is a

submodule of X1
N , so F ∈ add(X). The Snake Lemma now yields an exact commutative

diagram
0 −−−−→ G −−−−→ XE −−−−→ F −−−−→ 0y y y
0 −−−−→ N −−−−→ E −−−−→ X1

N −−−−→ 0y y y
0 −−−−→ N ′ −−−−→ MC⊥

−−−−→ M̄C −−−−→ 0y y y
0 0 0

Again, M̄C ∈ C and MC⊥
∈ C⊥. Also, since the top row is split and HomA(X

′, N) = 0
for all X′ ∈ add(X), the map G→ N is zero, so N ′ ∼= N .
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Putting this together yields the five-term exact sequence

0→ M̄C⊥
→ MC→ M → MC⊥

→ M̄C→ 0.

(2) Since MC⊥ , M̄C⊥
∈ C⊥ we deduce that HomA(Y,MC)

∼= HomA(Y,M) for all
Y ∈ C.

(3) Analogously, HomA(M
C⊥ , Y ) ∼= HomA(M, Y ) for all Y ∈ C⊥.

(4) It is clear that C ⊆ ⊥(C⊥), so let M ∈ ⊥(C⊥) and consider the five-term exact
sequence. The morphism M → MC⊥ is zero, so we are left with an extension

0→ M̄C⊥
→ MC→ M → 0.

This must split, so M̄C⊥
= 0 and M ∼= MC lies in C. ut

Remark A.2. We observe that ifX ∈ modA is an exceptional module, then C = C(X) =
add(X), so has X itself as a relative projective generator. In this case, given M , we can
take a minimal right approximation

XM = HomA(X,M)⊗EndA(X) X→ M,

and the kernel already lies in X⊥. Similarly we can take a minimal universal extension
using X1

M = Ext1A(X,M)⊗EndA(X) X, and the push-out to M ′ has middle term in X⊥. It
follows that

MC = HomA(X,M)⊗EndA(X) X and M̄C = Ext1A(X,M)⊗EndA(X) X.

There is an analogue of Proposition A.1 describing the right adjoint of the inclusion
⊥C→ modA; we state it for completeness.

Proposition A.3. Let C ⊆ modA be a full subcategory closed under kernels, cokernels
and extensions. Assume that X ∈ C is a relative injective cogenerator.

(1) Each A-module M fits into a functorial exact sequence

0→ M̄C
→ M⊥C→ M → MC

→ M̄⊥C→ 0 (A.2)

with MC, M̄C
∈ C and M⊥C, M̄⊥C ∈

⊥C.
(2) The map M 7→ M⊥C yields a right adjoint for the inclusion ⊥C→ modA.
(3) The map M 7→ MC yields a left adjoint for the inclusion C→ modA.
(4) C = (⊥C)⊥. ut

Theorem A.4. Let A be an hereditary artin algebra and C ⊆ modA a full subcategory.
Then the following are equivalent:

(1) The inclusion C → modA admits a left adjoint and C is closed under kernels,
cokernels and extensions.

(1′) The inclusion C → modA admits a right adjoint and C is closed under kernels,
cokernels and extensions.
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(2) There is a finite homological epimorphism A → B such that restriction of scalars
induces an equivalence modB

∼
−→ C.

(3) There is an exceptional sequence X in modA such that C = C(X).
(4) There is an exceptional sequence Y in modA such that C = Y⊥.

(4′) There is an exceptional sequence Z in modA such that C = ⊥Z.

In this case X has length rkK0(B), while Y and Z have length rkK0(A)− rkK0(B).

Proof. (1)⇔(2): This follows from Lemma 7.1. Using the duality (modA)op ∼
−→

modAop we obtain (1′)⇔(2).
(2)⇒(3): By Lemma 4.1 we have a complete, orthogonal exceptional sequence S =

(S1, . . . , Sr) in modB consisting of simple B-modules, and clearly modB = C(S). Set-
ting Xi ∈ C to be the image of Si , we deduce that X = (X1, . . . , Xr) is an exceptional
sequence and C(X) = C. Moreover note that modB, and hence C, has both a relative
projective generator and a relative injective cogenerator.

(4)⇒(1): Let Y = (Y1, . . . , Yr) be an exceptional sequence, and set Ȳ :=

(Y1, . . . , Yr−1). Note that we can view Ȳ as an exceptional sequence in Y⊥r , in which
case its relative right perpendicular category is Ȳ⊥ ∩ Y⊥r = Y⊥. Now, by Remark A.2
we know that C(Yr) = add(Yr), so by Proposition A.1 the inclusion Y⊥r → modA has
a left adjoint, and hence by (1)⇒(2) we have Y⊥r ∼= modB for some finite homological
epimorphismA→ B. Thus by induction on the length of Y we know that Y⊥→ Y⊥r also
has a left adjoint. Composing these yields a left adjoint to the inclusion Y⊥ → modA.
The implication (4′)⇒(1′) is dual.

(3)⇒(4): Let X = (X1, . . . , Xr) be an exceptional sequence. We claim that C(X) =
⊥(X⊥) = (⊥X)⊥. We prove the first identity, the second being dual.

As above, set X̄ := (X1, . . . , Xr−1), an exceptional sequence in X⊥r . The relative
right perpendicular category of X̄ in X⊥r is X̄⊥ ∩X⊥r = X

⊥, and the relative left perpen-
dicular category of the latter is ⊥(X⊥) ∩ X⊥r . On the other hand, X⊥r ∼= modB for some
finite homological epimorphism A → B, so by induction on the length of X we know
that ⊥(X⊥) ∩X⊥r = C(X̄).

Now apply Proposition A.1 to a module M ∈ ⊥(X⊥) with respect to the category
C(Xr). This yields a five-term exact sequence

0→ M0 → M1 → M → M2 → M3 → 0

with M1,M3 ∈ C(Xr) ⊂
⊥(X⊥), and hence M0,M2 ∈ X

⊥
r ∩

⊥(X⊥) = C(X̄). Thus
Mi ∈ C(X) for all i, whence M ∈ C(X). This proves the claim.

Now, to prove the implication (3)⇒(4), set C′ := ⊥X and note that C(X) = (⊥X)⊥ =
(C′)⊥. Using the implication (4′)⇒(3) we know that C′ = C(Y ) for some exceptional
sequence Y , and hence C(X) = Y⊥ as required. The implication (3)⇒(4′) is dual. ut

Remark A.5. Let C ⊆ modA be a full subcategory closed under kernels, cokernels and
extensions. Then the inclusion C → modA admits left and right adjoints if and only if
the Loewy lengths of the objects in C are bounded [21, 8.2]. This holds, for example, if
A is representation-finite or if C is finitely generated.
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We now list some useful consequences of this result.

Corollary A.6. Let X be an exceptional sequence in modA. Then C(X) contains both
a relative projective generator and a relative injective cogenerator, so Propositions A.1
and A.3 hold for C(X).

Proof. We know that C(X) ∼= modB for some hereditary artin algebra B. ut

Recall that an exceptional sequence X = (X1, . . . , Xr) in modA is called complete pro-
vided that r = rkK0(A).

Corollary A.7. Let X be an exceptional sequence in modA. Then modA = C(X,X⊥).
In particular,

X is complete ⇔ C(X) = modA ⇔ X⊥ = 0.

Proof. Consider the five-term exact sequence given in Proposition A.1 with respect to
the subcategory C(X). It follows that modA = C(X,X⊥) and also that C(X) = modA
if and only if X⊥ = 0. On the other hand, we know from Lemmas 2.2 and 2.3 that the
rank of K0(C(X)) equals the length of X and that K0(modA) = K0(C(X)) ⊕ K0(X

⊥).
Therefore X is complete if and only if X⊥ = 0. ut

Corollary A.8 ([13, Lemma 1]). Let (X1, . . . , Xr) be an exceptional sequence in modA
which is not complete. Then for each 0 ≤ i ≤ r there exists an A-module Y such that
the sequence (X1, . . . , Xi, Y,Xi+1, . . . , Xr) is exceptional. Moreover, if this sequence is
complete, then Y is unique up to isomorphism.

Proof. We know that ⊥(X1 ⊕ · · · ⊕ Xi) ∩ (Xi+1 ⊕ · · · ⊕ Xr)
⊥ is equivalent to modB

for some hereditary artin algebra B of rank rkK0(A) − r , so let Y be any exceptional
B-module. If this sequence is complete, then rkK0(A) = r + 1, so rkK0(B) = 1 and Y
is unique up to isomorphism. ut

Corollary A.9. Let X = (X1, . . . , Xr) be an exceptional sequence in modA. Then a
rigid module Y lies in C(X) if and only if there exists some Z ∈ C(X) with [Z] = [Y ]. In
particular, if X is orthogonal, then this happens if and only if [Y ] is a non-negative linear
combination of the [Xi].

Proof. Consider the five-term exact sequence

0→ B → C → Y → B ′→ C′→ 0

coming from Proposition A.1, where B,B ′ ∈ C(X)⊥ and C,C′ ∈ C(X). Let I be the
image of the map Y → B ′. Then Ext1A(Y, Y )� Ext1A(Y, I ) implies that Ext1A(Y, I ) = 0,
and hence 〈[Y ], [I ]〉 ≥ 0. On the other hand, if Z ∈ C(X), then HomA(Z, I ) ↪→

HomA(Z, B
′) = 0 implies that HomA(Z, I ) = 0, and hence 〈[Z], [I ]〉 ≤ 0.

Now, if [Z] = [Y ], then 〈[Y ], [I ]〉 = 0, and so I = 0. Thus the five-term sequence
degenerates to a short exact sequence 0 → B → C → Y → 0, in which case [B] =
[C] − [Y ] ∈ K0(C(X)) ∩K0(C(X)

⊥) = 0, so that B = 0 and Y ∼= C ∈ C(X). ut

The following result, due to Schofield [51] (see also [49]), can be viewed as a reduction
theorem for constructing exceptional modules.
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Proposition A.10 ([51]). Let X be a non-simple exceptional module. Then there exists
an orthogonal exceptional pair (U, V ) and a non-split short exact sequence of the form

0→ V b → X→ Ua → 0.

Proof. Given a proper submodule M of X, consider the five-term exact sequence from
Proposition A.1(1) for M with respect to the subcategory C = ⊥X. If the map MC →

M is non-zero, then so too is the composition MC → M → X, a contradiction since
MC ∈

⊥X. Thus the sequence degenerates to give 0 → M → Xr → N → 0 for some
non-zero N ∈ C. It follows, by applying HomA(N,−), that Ext1A(N,N) = 0. Thus,
taking any indecomposable summand Y of N , we see that (X, Y ) is an exceptional pair
such that Y is generated by X (that is, is a factor of some Xr ). In particular, X is not a
simple object in C(X, Y ). By Theorem A.4(2) we can write C(X, Y ) = C(U, V ) for some
orthogonal exceptional pair (U, V ), and clearly every non-simple object L ∈ C(U, V ) fits
inside a non-split short exact sequence of the form 0→ V b → L→ Ua → 0. ut

Appendix B. Crystallographic Coxeter groups

Let (W, S) be a Coxeter system. As usual, for s, t ∈ S denote the order of st by mst .
Following [32, Sections 5, 6] we can define “the geometric representation” of W by
taking a real vector space V with basis es for s ∈ S equipped with the symmetric bi-
linear form (es, et ) := − cos

(
π/mst

)
, with the convention that this equals −1 whenever

mst = ∞. There is then a faithful representation σ : W → GL(V ) sending s to the re-
flection σs : λ 7→ λ − 2(es, λ)es . We may then declare (W, S) to be a crystallographic
Coxeter group (relative to σ ) provided W stabilises a lattice in V . This leads to the fol-
lowing result.

Proposition B.1 ([32, Proposition 6.6]). A Coxeter system (W, S) is crystallographic if
and only if

(1) mst ∈ {2, 3, 4, 6,∞} for all s 6= t in S, and
(2) in each circuit of the Coxeter graph, the number of edges labelled 4 (resp. 6) is even.

ut

On the other hand, the term “crystallographic Coxeter group” is also used in the literature
to describe those groups which arise as the Weyl group of a Kac–Moody Lie algebra. This
occurs if and only if condition (1) above holds, so mst ∈ {2, 3, 4, 6,∞} for all s 6= t in S
(use [35, Proposition 3.13]).

Here we are interested in Weyl groups of symmetrisable Kac–Moody Lie algebras. It
is therefore of interest to have an equivalent characterisation of these groups.

Theorem B.2. A Coxeter system (W, S) arises as the Weyl group of a symmetrisable
Kac–Moody Lie algebra if and only if

(1) mst ∈ {2, 3, 4, 6,∞} for all s 6= t in S, and
(2) in each circuit of the Coxeter graph not containing the edge label∞, the number of

edges labelled 4 (resp. 6) is even.
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Proof. Let C = (cij ) be a symmetrisable generalised Cartan matrix, say C = D−1B

with B symmetric and D diagonal. Let W be the corresponding Weyl group, so with
simple reflections si and exponents mij given by the table

cij cji 0 1 2 3 ≥ 4
mij 2 3 4 6 ∞

Suppose we have a circuit in the Coxeter graph of W not containing the edge label ∞,
say with vertices i1, . . . , in ordered cyclically. Then the product∏

l

(cl,l+1cl+1,l) =
∏
l

(c2
l,l+1dl/dl+1) =

∏
l

c2
l,l+1

is a square. It follows that the number of 2s (resp. 3s) is even. Hence the number of edges
labelled 4 (resp. 6) is even. Thus condition (2) holds, and we already know that condition
(1) holds.

Conversely, let (W, S) be a Coxeter system satisfying conditions (1) and (2). We first
define the diagonal matrixD. Ignore all edges in the Coxeter graph having label∞. Then
for each connected component, chose any vertex i and set di := 1. If j is another vertex in
the same component, then there is a path in the Coxeter graph from i to j not containing
∞ as an edge label; set dj := 2a3b, where a is the number of 4s in the path modulo 2, and
b is the number of 6s in the path modulo 2. By condition (2) this number is independent
of the chosen path.

We now define the matrix C. Given an edge i j
m in the Coxeter graph, define

the pair (cij , cji) := (−l/di,−l/dj ), where

l :=


0, m = 2,
lcm(di, dj ), m = 3, 4, 6,
2 lcm(di, dj ), m = ∞.

Note that if m = 3, 4, 6, then from the construction of the matrix D we must have
lcm(di, dj ) = max(di, dj ) and cij cji = m. Otherwise, if m = ∞, then cij cji ≥ 4.
We conclude that C is a generalised Cartan matrix, that DC is symmetric, and that the
corresponding Weyl group is isomorphic to W . ut
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