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Abstract. Let G be a semisimple algebraic Lie group and H a reductive subgroup. We find geo-
metrically the best even integer p for which the representation of G in L2(G/H) is almost Lp . As
an application, we give a criterion which detects whether this representation is tempered.
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1. Introduction

Let G be an algebraic semisimple Lie group and H a reductive subgroup. The natural
unitary representation ofG in L2(G/H) has been studied over years since the pioneering
work of I. M. Gelfand and Harish-Chandra.

Thanks to many mathematicians including E. van den Ban, P. Delorme, M. Flensted-
Jensen, S. Helgason, T. Matsuki, T. Oshima, H. Schlichtkrull, J. Sekiguchi, among others,
many properties of this representation are known when G/H is a symmetric space,
i.e. whenH is the set of fixed points of an involution ofG. Most of the preceding work in
this case is built on the fact that the ring D(G/H) of G-invariant differential operators is
commutative, and that the disintegration of L2(G/H) (Plancherel formula) is essentially
the expansion of L2-functions into joint eigenfunctions of D(G/H).

This paper deals with a more general reductive subgroup H , for which we cannot
expect that the ring D(G/H) is commutative, and a complete change of the machinery
would be required in the study of L2(G/H). We address the following question: What
kind of unitary representations occur in the disintegration ofG/H? More precisely, when
are all of them tempered?

The aim of this paper is to give an easy-to-check necessary and sufficient condition
onG/H under which all these irreducible unitary representations are tempered, or equiv-
alently L2(G/H) is tempered, and in particular has a ‘uniform spectral gap’. We note that
irreducible tempered representations were completely classified more than 30 years ago
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by Knapp and Zuckerman [14], whereas non-tempered ones are still mysterious and have
not been completely understood. Our criterion singles out homogeneous spaces G/H
for which irreducible non-tempered unitary representations occur in the disintegration of
L2(G/H). More generally, we give, for any even integer p, a necessary and sufficient
condition under which L2(G/H) is almost Lp (see Theorem 4.1).

Our criterion is new even when G/H is a reductive symmetric space where the disin-
tegration of L2(G/H) was established up to the classification of discrete series represen-
tations for (sub)symmetric spaces [1, 8, 20]. Indeed, irreducible unitary representations
that contribute to L2(G/H) in the direct integral are obtained as a parabolic induction
from discrete series for subsymmetric spaces, but a subtle point arises from discrete se-
ries with singular parameters. In fact, all possible discrete series were captured in [21],
but the non-vanishing conditions for these modules are sometimes combinatorially com-
plicated, and the modules with singular parameters would yield the worst decay of ma-
trix coefficients if they do not vanish. (This complication does not occur in the case of
group manifolds because Harish-Chandra’s discrete series do not allow singular parame-
ters.) Algebraically, the underlying (g,K)-modules are certain Zuckerman derived func-
tor modules Aq(λ) (see [13] for general theory) with possibly singular λ crossing many
walls of the Weyl chambers, so that the Langlands parameter may behave in an unsta-
ble way and even the modules themselves may disappear. A necessary condition for the
non-vanishing of discrete series for reductive symmetric spaces with singular parameter
was proved in [18] that corrected the announcement in [21], whereas a number of gen-
eral methods to verify the non-vanishing of Aq(λ)-modules have been developed more
recently in [15, Chapters 4, 5], [22] for some classical groups, but the proof of the suffi-
ciency of the non-vanishing condition in [18] has not been given so far.

Beyond symmetric spaces, very little has been known on the unitary representation
of G in L2(G/H) (cf. [16]).

Here is an outline of the paper. As a baby case, we first study the unitary represen-
tations of a semisimple group in L2(V ) where V is a finite-dimensional representation.
We give a necessary and sufficient condition on V for the representation in L2(V ) be
tempered (Theorem 3.2), or more generally, to be almost Lp. The heart of the paper is
Section 4 where we prove the main results (Theorem 4.1) for reductive homogeneous
spacesG/H . In a subsequent paper we show that this criterion suffices to give a complete
classification of the pairs (G,H) of algebraic reductive groups for which the unitary rep-
resentation of G on L2(G/H) is non-tempered. To give a flavor of what is possible, we
collect a few applications of this criterion in Section 5, omitting the details of the compu-
tational verification.

2. Preliminary results

Here we collect a few well-known facts on almost Lp representations, on tempered rep-
resentations and on uniform decay of matrix coefficients.

2.1. Almost Lp representations

In this paper all Lie groups will be real Lie groups. Let G be a unimodular Lie group and
π be a unitary representation of G in a Hilbert space Hπ .
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Definition 2.1. Let p ≥ 2. The unitary representation π is said to be almost Lp if there
exists a dense subset D ⊂ Hπ for which the coefficients cv1,v2 : g 7→ 〈π(g)v1, v2〉 are in
Lp+ε(G) for all ε > 0 and all v1, v2 in D.

Let K be a maximal compact subgroup of G.

Lemma 2.2. A unitary representation π is almost Lp if and only if there exists a dense
subset D0 ⊂ Hπ of K-finite vectors for which the coefficients cv1,v2 are in Lp+ε(G) for
all ε > 0 and all v1, v2 in D0.

Proof. We first notice that for all v1, v2 in D and all k1, k2 in K the two vectors π(k1)v1
and π(k2)v2 have a coefficient with the same Lp+ε-norm:

‖cπ(k1)v1,π(k2)v2‖Lp+ε = ‖cv1,v2‖Lp+ε .

Let dk be the Haar probability measure on K . For any two K-finite functions f1
and f2 on K , bounded by 1, the two vectors w1 :=

∫
K
f1(k)π(k)v1 dk and w2 :=∫

K
f2(k)π(k)v2 dk have a coefficient with bounded Lp+ε-norm:

‖cw1,w2‖Lp+ε ≤ ‖cv1,v2‖Lp+ε .

These vectors wi live in a dense set D0 of K-finite vectors of Hπ . ut

2.2. Tempered representations

The following definition is due to Harish-Chandra (see also [2, Appendix F]).

Definition 2.3. The unitary representation π is said to be tempered if π is weakly con-
tained in the regular representation λG of G in L2(G), i.e. every coefficient of π is a
uniform limit on every compact subset of G of a sequence of sums of coefficients of λG.

Here are a few basic facts on tempered representations.
Let G′ ⊂ G be a finite index subgroup. A unitary representation π of G is tempered

if and only if π is tempered as a representation of G′.
A unitary representation π of a reductive group G is tempered if and only if π is

tempered as a representation of the derived subgroup [G,G].

Proposition 2.4 (Cowling, Haagerup and Howe [7, Theorems 1, 2 and Corollary]). Let
G be a semisimple connected Lie group with finite center, and m a positive integer.

A unitary representation π of G is almost L2 if and only if π is tempered.
More generally, π is almost L2m if and only if π⊗m is tempered.

Remark 2.5. When G is amenable, according to the Hulanicki–Reiter Theorem (see [2,
Theorem G.3.2]), every unitary representation of G is tempered. However, when G is
non-compact, the trivial representation is not almost L2.

The following remark was used implicitly in the introduction.
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Remark 2.6. When a unitary representation π ofG is a direct integral π =
∫
⊕
πλ dµ(λ)

of irreducible unitary representations πλ, the representation π is tempered if and only if
the representations πλ are tempered for µ-almost every parameter λ.

Proof. Indeed, π is weakly contained in the direct sum representation
⊕

λ πλ, and con-
versely πλ is weakly contained in π for µ-almost every λ.

These statements follow for instance from the following fact ([2, Theorem F.4.4] or
[10, Section 18]): For two unitary representations ρ and ρ′ ofG, one has the equivalence:

ρ is weakly contained in ρ′ ⇔ ‖ρ(f )‖ ≤ ‖ρ′(f )‖ for all f in L1(G),

where ρ(f ) =
∫
G
f (g)ρ(g) dg. Note that this condition has only to be checked for a

countable dense set of functions f in L1(G), and that ‖π(f )‖ = ess supλ ‖πλ(f )‖ (see
[9, Section II.2.3]). ut

2.3. Uniform decay of coefficients

Let G be a linear semisimple connected Lie group and let 4 be the Harish-Chandra
spherical function on G (see [7]). A short definition for 4 is as the coefficient of the
normalized K-invariant vector of the spherical representation of the unitary principal se-
ries πo = IndGP (1P ) where P is a minimal parabolic subgroup ofG. In this paper we will
not need the precise formula for 4 but just the fact that 4 ∈ L2+ε(G) for all ε > 0 and
the following proposition.

Proposition 2.7 (Cowling, Haagerup and Howe [7, Corollary, p. 108]). Let p be an even
integer. A unitary representation π of G is almost Lp if and only if, for any K-finite
vectors v, w in Hπ , and every g in G, one has

|〈π(g)v,w〉| ≤ 4(g)2/p‖v‖ ‖w‖(dim〈Kv〉)1/2(dim〈Kw〉)1/2.

This proposition tells us that once an almost Lp-norm condition is checked for the coef-
ficients of a dense set of vectors of Hπ , one gets a UNIFORM estimate for the coefficients
of ALL the K-finite vectors of Hπ .

In this proposition, the assumption that the real number p ≥ 2 is an even integer can
probably be dropped. If this is the case, the same assumption can also be dropped in our
Theorems 3.2 and 4.1.

The set of p for which π is almost Lp is an interval [pπ ,∞[with pπ ≥ 2 or pπ = ∞.
Even though we will not use them, we recall the following two important properties of
the constant pπ .

If G is quasisimple of higher rank and Hπ does not contain G-invariant vectors, then
pπ is bounded by a constant pG <∞ (see [19]).

According to Harish-Chandra, if G is semisimple and π is irreducible with finite
kernel, then pπ is finite (see [12, Theorem 8.48]).
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2.4. Representations in L2(X)

Let X be a locally compact space endowed with a continuous action of G preserving a
Radon measure vol on X. One has a natural representation π of G in L2(X) given by
(π(g)ϕ)(x) = ϕ(g−1x) for g in G, ϕ in L2(X) and x in X.

Lemma 2.8. LetG be a semisimple linear connected Lie group, p a positive even integer,
and X a locally compact space endowed with a continuous action of G preserving a
Radon measure vol. The representation ofG in L2(X) is almost Lp if and only if, for any
compact subset C of X and any ε > 0, vol(gC ∩ C) ∈ Lp+ε(G).

Proof. If the representation of G in L2(X) is almost Lp then, according to Proposi-
tion 2.7, for every K-invariant compact set B of X, the function

g 7→ vol(gB ∩ B) = 〈π(g)1B , 1B〉

belongs to Lp+ε(G). Since any compact subset C of X is included in such a B, the
function g 7→ vol(gC ∩ C) also belongs to Lp+ε(G).

Conversely, letD ⊂ L2(X) be the dense subspace of continuous compactly supported
functions on X. For any two continuous functions ϕ1, ϕ2 ∈ D, the coefficient

〈π(g)ϕ1, ϕ2〉 is bounded by ‖ϕ1‖∞‖ϕ2‖∞ vol(gC ∩ C)

where C := supp(ϕ1) ∪ supp(ϕ2), and hence this coefficient belongs to Lp+ε(G). ut

3. Representations in L2(V )

In this section we study the representation of a semisimple Lie group in L2(V ) where V
is a finite-dimensional representation.

3.1. The function ρV

Let H be a reductive algebraic Lie group, and τ : H → SL±(V ) a finite-dimensional al-
gebraic representation over R preserving the Lebesgue measure on V . We write dτ : h→
End(V ) for the differential representation of τ . Let a = ah be a maximal split abelian
subspace in h.

For an element Y in a, we denote by V+ the sum of the eigenspaces of τ(Y ) having
positive eigenvalues, and set

ρV (Y ) := TraceV+(dτ(Y )). (3.1)

Since the function ρV : a → R≥0 will be important in our analysis, we begin by a few
trivial but useful comments. We notice first that, since H is volume preserving, for any
Y ∈ a,

ρV (−Y ) = ρV (Y ), (3.2)
ρV (Y ) = 0 ⇔ dτ(Y ) = 0. (3.3)
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The function ρV is invariant under the finite group WH := NH (a)/ZH (a). This group
is isomorphic to the Weyl group of the restricted root system 6(h, a) if H is connected.
The function ρV is continuous and piecewise linear, i.e. there exist finitely many convex
polyhedral cones which cover a and on each of which ρV is linear.

Example 3.1. For (τ, V ) = (Ad, h), ρh coincides with twice the usual ‘ρ’ on the positive
Weyl chamber a+ with respect to a positive system 6+(h, a),

ρh =
∑

α∈6
+
(h,a)

dim hα α on a+,

where hα ⊂ h is the root subspace associated to α.

For other representations (τ, V ), the maximal convex polyhedral cones on which ρV is
linear are most often much smaller than the Weyl chambers.

3.2. Criterion for temperedness of L2(V )

Since the Lebesgue measure on V isH -invariant, we have a natural unitary representation
of H on L2(V ) as in Section 2.4.

Theorem 3.2. LetH an algebraic semisimple Lie group, τ : H → SL±(V ) an algebraic
representation and p a positive even integer. Then one has the equivalences:

(a) L2(V ) is tempered⇔ ρh(Y ) ≤ 2ρV (Y ) for any Y ∈ a.
(b) L2(V ) is almost Lp ⇔ ρh(Y ) ≤ pρV (Y ) for any Y ∈ a.

Remark 3.3. The inequality ρh ≤ pρV holds on a if and only if it holds on a+.
Since all the maximal split abelian subspaces of h areH -conjugate, it is clear that this

condition does not depend on the choice of a.

Example 3.4. Let H = SL(2,R)d with d ≥ 1. The unitary representation in L2(V ) is
tempered if and only if the kernel of τ is finite.

Example 3.5. Let H = SL(3,R). The unitary representation in L2(V ) is tempered if
and only if dim(V/V H ) > 3 where V H = {v ∈ V : Hv = v}.

For h ∈ H , x ∈ V and a measurable subset C ⊂ V , we write hx for τ(h)x and we set
hC := {hx ∈ V : x ∈ C}. Similarly, for a > 0 we set aC := {ax ∈ V : x ∈ C}. We
write vol(C) for the volume of C with respect to the Lebesgue measure.

Proof of Theorem 3.2. When the kernel of τ is non-compact, both sides of the equiv-
alence are false. Hence we may assume that the kernel of τ is compact. Since H is
semisimple, according to Proposition 2.4 and Lemma 2.8, it is sufficient to prove the
equivalence

ρh(Y ) ≤ pρV (Y )

for any Y ∈ a
⇔

vol(hC∩C) ∈ Lp+ε(H) for any compact
subset C in V and any ε > 0.

This statement is a special case of Proposition 3.6 below. ut
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3.3. Lp-norm of vol(hC ∩ C)

Suppose now that the kernel of τ is compact. According to (3.3), one has ρV (Y ) > 0 as
soon as Y 6= 0. Hence the real number

pV := max
Y∈a\{0}

ρh(Y )

ρV (Y )
(3.4)

is finite.

Proposition 3.6. Let H be an algebraic reductive Lie group, and τ : H → SL±(V ) a
volume preserving algebraic representation with compact kernel. For any real p > 0,
one has the equivalence

p > pV ⇔ vol(hC ∩ C) ∈ Lp(H) for any compact set C in V .

In this section we will show how to deduce Proposition 3.6 from a volume estimate that
we will prove in the next section.

Proof of Proposition 3.6. Let HK be a maximal compact subgroup of H such that H =
HK(exp a)HK is a Cartan decomposition of H .

The Haar measure dh of H is given as∫
H

f (h) dh =

∫
a
f (eY )Dh(Y ) dY (3.5)

for any HK -biinvariant measurable function f on H , where

Dh(Y ) :=
∏

α∈6
+
(h,a)

|sinh 〈α, Y 〉|dimhα for Y ∈ a.

We also introduce a function on a by

D̃h(Y ) :=

∫
‖Z‖≤1

Dh(Y + Z) dZ.

We shall prove successively the following equivalences:

(i) vol(hC ∩ C) ∈ Lp(H) for any compact C ⊂ V

⇔ (ii) vol(eYC ∩ C)pDh(Y ) ∈ L
1(a) for any compact C ⊂ V

⇔ (iii) vol(eYC ∩ C)pD̃h(Y ) ∈ L
1(a) for any compact C ⊂ V

⇔ (iv) vol(eYC ∩ C)peρh(Y ) ∈ L1(a) for any compact C ⊂ V

⇔ (v) eρh(Y )−pρV (Y ) ∈ L1(a)

⇔ (vi) pρV (Y )− ρh(Y ) > 0 for any Y ∈ a \ 0.

(i)⇔(ii). We may choose C to be HK -invariant by expanding C if necessary. We then
apply the integration formula (3.5) to the HK -biinvariant function vol(hC ∩ C).
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(ii)⇔(iii). Replace C by a larger compact C′ := ea(1)C where a(1) is the unit ball
{Z ∈ a : ‖Z‖ ≤ 1}. Since

vol(eY−ZC ∩ C) ≤ vol(eYC′ ∩ C′)

for any Z ∈ a(1), one has, by using the change of variables Y ′ := Y − Z,∫
a

vol(eYC ∩ C)pD̃h(Y ) dY =

∫
a

∫
‖Z‖≤1

vol(eYC ∩ C)pDh(Y + Z) dY dZ

≤ vol(a(1))
∫
a

vol(eYC′ ∩ C′)pDh(Y ) dY,∫
a

vol(eY
′

C ∩ C)pDh(Y
′) dY ′ ≤

∫
a

∫
‖Z‖≤1

vol(eY−ZC′ ∩ C′)pDh(Y ) dY dZ

= vol(a(1))−1
∫
a

vol(eY
′

C′ ∩ C′)pD̃h(Y
′) dY ′.

(iii)⇔(iv). We notice that we can find constants a1, a2 > 0 such that for any Y ∈ a,

a1e
ρh(Y ) ≤ D̃h(Y ) ≤ a2e

ρh(Y ).

(iv)⇔(v). We use Proposition 3.7, to be proved in Section 3.4, which gives, for C large
enough, constants m,M > 0 such that for any Y ∈ a,

me− ρV (Y ) ≤ vol(eYC ∩ C) ≤ Me− ρV (Y ).

(v)⇔(vi). We recall that the function ρh−pρV is continuous and piecewise linear.

This implies Proposition 3.6 once we prove Proposition 3.7 below. ut

3.4. Estimate of vol(eYC ∩ C)

The following asymptotic estimate of vol(eYC∩C) for the linear representation in V will
become a prototype of the volume estimate for the action onG/H which we shall discuss
in Section 4 (Theorem 4.4).

Proposition 3.7. Let H be an algebraic reductive Lie group, and τ : H → SL±(V )
a volume preserving algebraic representation. Let C be a compact neighborhood of 0
in V . Then there exist constants m ≡ mC > 0 and M ≡ MC > 0 such that

me−ρV (Y ) ≤ vol(eYC ∩ C) ≤ Me−ρV (Y ) for any Y ∈ a.

To see this, write 1 ≡ 1(V, a) ⊂ a∗ for the set of weights of the representation
dτ |a : a→ End(V ), and

V =
⊕
λ∈1

Vλ, v =
∑

vλ (3.6)

for the corresponding weight space decomposition.
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Lemma 3.8. For each λ ∈ 1, let Bλ be a convex neighborhood of 0 in Vλ, and let
B :=

∏
λ Bλ. Then

vol(eYB ∩ B) = vol(B)e−ρV (Y ) for any Y ∈ a.

Proof. For any real t , one has Bλ ∩ e−tBλ = e−t
+

Bλ where t+ := max(t, 0). Then

B ∩ e−YB =
∏
λ

(Bλ ∩ e
−λ(Y )Bλ) =

∏
λ

e−λ(Y )
+

Bλ,

vol(eYB ∩ B) = vol(B ∩ e−YB) = e−ρV (Y ) vol(B). ut

Proof of Proposition 3.7. We take {Bλ} and {B ′λ} such that
∏
λ Bλ ⊂ C ⊂

∏
λ B
′
λ and we

apply Lemma 3.8. ut

4. Representations in L2(G/H)

In this section we study the representations of an algebraic semisimple Lie group inL2(X)

where X is a homogeneous space with reductive isotropy.

4.1. Criterion for temperedness of L2(G/H)

Let G be an algebraic reductive Lie group and H an algebraic reductive subgroup of G.
Since the homogeneous space X = G/H carries a G-invariant Radon measure, there is a
natural unitary representation of G on L2(G/H) as in Section 2.4. We want to study the
temperedness of this representation.

Let q be an H -invariant complementary subspace of the Lie algebra h of H in g.
We fix a maximal split abelian subspace a of h and we define ρq : a → R≥0 for the
H -module q as in Section 3.1.

Here is the main result of this section:

Theorem 4.1. Let G be an algebraic semisimple Lie group, H an algebraic reductive
subgroup of G, and p a positive even integer. Then one has the equivalences:

(a) L2(G/H) is tempered⇔ ρh(Y ) ≤ ρq(Y ) for any Y ∈ a.
(b) L2(G/H) is almost Lp ⇔ ρg(Y ) ≤ pρq(Y ) for any Y ∈ a.

Remark 4.2. Since ρg = ρh + ρq, one has the equivalence ρh ≤ ρq ⇔ ρg ≤ 2ρq. The
inequality ρg ≤ pρq holds on a if and only if it holds on a+.

Proof of Theorem 4.1. When the kernel of the action of G on G/H is non-compact, both
sides of the equivalence are false. Hence we may assume that the kernel is compact. But
then, according to Proposition 2.4 and Lemma 2.8, it is sufficient to prove the equivalence

ρg(Y ) ≤ pρq(Y )

for any Y ∈ a
⇔

vol(gC∩C) ∈ Lp+ε(G) for any compact
subset C in G/H and any ε > 0.

This is a special case of Proposition 4.3 below. ut
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4.2. Lp-norm of vol(gC ∩ C)

We assume that the action of G on G/H has compact kernel, or equivalently the action
of H on q has compact kernel. Then, according to (3.3), one has ρq(Y ) > 0 as soon as
Y 6= 0. Hence the real number

pG/H := max
Y∈a\{0}

ρg(Y )

ρq(Y )
(4.1)

is finite.

Proposition 4.3. Let G be an algebraic reductive Lie group and H an algebraic reduc-
tive subgroup of G such that the action of G on G/H has compact kernel. For any real
p ≥ 1, one has the equivalence

p > pG/H ⇔ vol(gC ∩ C) ∈ Lp(G) for any compact set C in G/H .

In this section we will show how to deduce Proposition 4.3 from a volume estimate that
we will prove in the following sections. For that we will use another equivalent definition
of the constant pG/H .

We extend a to a maximal split abelian subspace ag of g and we choose a maximal
compact subgroupK ofG such thatHK := H ∩K is a maximal compact subgroup ofH ,
and

G = K(exp ag)K and H = HK(exp a)HK

are Cartan decompositions.
Let WG be the finite group

WG := NG(ag)/ZG(ag) ' NK(ag)/ZK(ag).

When G is connected, WG is the Weyl group of the restricted root system 6(g, ag).
For Y ∈ a, we define a subset of WG by

W(Y ; a) := {w ∈ WG : wY ∈ a}. (4.2)

We notice that W(Y ; a) 3 e for any Y ∈ a, and W(0; a) = WG. We set

ρmin
q (Y ) := min

w∈W(Y ;a)
ρq(wY ). (4.3)

We can then rewrite (4.1) as

pG/H = max
Y∈a\{0}

ρg(Y )

ρmin
q (Y )

. (4.4)

Proof of Proposition 4.3. The Haar measure dg on G is given by∫
G

f (g) dg =

∫
ag

f (eY )Dg(Y ) dY (4.5)
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for anyK-biinvariant measurable function f onG, whereDg is theWG-invariant function
on ag given by

Dg(Y ) :=
∏

α∈6
+
(g,ag)

|sinh 〈α, Y 〉|dimgα , Y ∈ ag.

and gα ⊂ g are the (restricted) root spaces. We also introduce a function on ag by setting

D̃g(Y ) :=

∫
‖Z‖≤1

Dg(Y + Z) dZ.

We shall prove successively the following equivalences:

(i) vol(gC ∩ C) ∈ Lp(G) for any compact C ⊂ X

⇔ (ii) vol(eYC ∩ C)pDg(Y ) ∈ L
1(ag) for any compact C ⊂ X

⇔ (iii) vol(eYC ∩ C)pD̃g(Y ) ∈ L
1(ag) for any compact C ⊂ X

⇔ (iv) vol(eYC ∩ C)peρg(Y ) ∈ L1(ag) for any compact C ⊂ X

⇔ (v) vol(eYC ∩ C)peρg(Y ) ∈ L1(a) for any compact C ⊂ X

⇔ (vi) eρg(Y )−pρ
min
q (Y )

∈ L1(a)

⇔ (vii) pρmin
q (Y )− ρg(Y ) > 0 for any Y ∈ ar 0.

(i)⇔(ii). We may choose C to be K-invariant. We then apply the integration formula
(4.5) to the K-biinvariant function vol(gC ∩ C).

(ii)⇔(iii). We just replace C by a larger compact set C′ := eag(1)C where ag(1) is the
unit ball {Z ∈ ag : ‖Z‖ ≤ 1}.

(iii)⇔(iv). We notice that we can find constants a1, a2 > 0 such that for any Y ∈ ag,

a1e
ρg(Y ) ≤ D̃g(Y ) ≤ a2 e

ρg(Y ).

(iv)⇔(v). The main point of this equivalence is to replace integration on ag by integration
on a. For that we will bound the support of the function ϕC on ag, where

ϕC(Y ) := vol(eYC ∩ C)peρg(Y ).

We may choose C to beK-invariant, so that ϕC isWG-invariant. We now recall the Cartan
projection

µ : G→ ag/WG, k1e
Y k2 7→ Y mod WG,

with respect to the Cartan decomposition G = K(exp ag)K . It follows from either [3,
Prop. 5.1] or [17, Th. 1.1] that, for any compact subset S ⊂ G, there exists δ > 0 such
that

µ(SHS−1) ⊂ µ(H)+ ag(δ) mod WG, (4.6)
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where ag(δ) stands for the δ-ball {Y ∈ ag : ‖Y‖ ≤ δ}. If we take S ⊂ G such that
C ⊂ SH/H , then Y ∈ ag satisfies eYC ∩C 6= ∅ only if eY ∈ SHS−1, and therefore only
if Y ∈ µ(SHS−1). Hence we get a bound on the support:

suppϕC ⊂
⋃
w∈WG

w(a+ ag(δ)). (4.7)

By WG-invariance of ϕC , we only have to integrate on the δ-neighborhood of a. Hence
assertion (iv) is equivalent to

(iv′) vol(eYC ∩ C)p eρg(Y ) ∈ L1(a+ ag(R)) for any compact C ⊂ X and R > 0.

To see that (iv′) is equivalent to (v), we just have, for both implications, to replace C by a
larger compact set C′ := eag(R)C and to notice that the map

Y 7→ max
Z∈ag(R)

|ρg(Y + Z)− ρg(Y )|

is uniformly bounded on a.

(v)⇔(vi). We use Theorem 4.4, to be proved in the next section, which gives, for C large
enough, constants m,M > 0 such that

me−ρ
min
q (Y )

≤ vol(eYC ∩ C) ≤ M e−ρ
min
q (Y ) for any Y ∈ a.

(vi)⇔(vii). We recall that the function ρg−pρmin
q is continuous and piecewise linear.

This gives Proposition 4.3 once we prove Theorem 4.4 below. ut

4.3. Estimate of vol(eYC ∩ C)

Let C be a compact subset of X. We shall give both lower and upper bounds of the
volume of eYC ∩ C as Y ∈ a goes to infinity. For that we will use the function ρmin

q
defined by (4.3). Let x0 = eH ∈ X = G/H and let WGx0 be the orbit of x0 under the
Weyl group of G.

Theorem 4.4. LetG be an algebraic reductive Lie group, H an algebraic reductive sub-
group, and C a compact neighborhood of Kx0 in X := G/H . Then there exist constants
m ≡ mC > 0 and M ≡ MC > 0 such that

me−ρ
min
q (Y )

≤ vol(eYC ∩ C) ≤ Me−ρ
min
q (Y ) for any Y ∈ a.

The proof of the lower bound will be given in Section 4.4. We will prove the upper bound
in eight steps which will last from Section 4.4 to 4.8. Clearly, the upper bound in Theorem
4.4 is equivalent to the following statement: For any compact setsC1,C2 inX, there exists
M ≡ MC1,C2 > 0 such that

vol(eYC1 ∩ C2) ≤ Me
−ρmin

q (Y ) for any Y ∈ a. (4.8)

The strategy of the proof of (4.8) will be to see G/H as a closed orbit in a represen-
tation of G and to decompose C1 and C2 into smaller compact pieces.
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4.4. Lower bound for vol(eYC ∩ C)

Up to the end of this section we keep the setting above:G is a connected algebraic reduc-
tive Lie group, and H an algebraic reductive subgroup.

By the Chevalley theorem ([5, Th. 5.1] or [6, Section 4.2]), there exists an algebraic
representation τ : G→ GL(V ) such that the homogeneous spaceX = G/H is realized as
a closed orbitX = Gx0 ⊂ V where StabG(x0) = H . We can assume that Ker(dτ) = {0}.
We fix such a representation (τ, V ) once and for all.

Here is the first step towards both the volume upper bound and the volume lower
bound in Theorem 4.4.

Lemma 4.5. There exists a neighborhood Cx0 of x0 in G/H such that for any compact
neighborhood C0 of x0 contained in Cx0 , there exist constants m,M > 0 such that

me−ρq(Y ) ≤ vol(eYC0 ∩ C0) ≤ Me
−ρq(Y ) for any Y ∈ a. (4.9)

Proof. Since G and H are reductive, the representation of H in q is volume preserving.
Hence we can apply Proposition 3.7 to the representation ofH in q. Roughly, the strategy
is then to linearize X near x0. To make this approach precise, we need two similar but
slightly different arguments, for the lower bound and for the upper bound.

Lower bound. We choose a sufficiently small compact neighborhood U0 of 0 in q on
which the map

π− : q→ X, Z 7→ eZx0,

is well-defined, injective with Jacobian bounded away from 0. Since x0 is H -invariant,
the map π− is H -equivariant. For any compact neighborhood C0 = π−(C) of x0 in X
with C ⊂ U0 one has, for every Y ∈ a,

eYC0 ∩ C0 ⊃ π−(e
YC ∩ C).

The lower bound in (4.9) is then a consequence of the lower bound in Proposition 3.7.

Upper bound. Since the linear tangent space Tx0X ⊂ V of X at x0 is canonically H -
isomorphic to q, we will also denote it by q. Since H is reductive, this vector subspace
q ⊂ V admits an H -invariant supplementary subspace s. We set p : V → q for the linear
projector with kernel s. We choose a sufficiently small compact neighborhood Cx0 of x0
in X on which the map

π+ : X→ q, x 7→ p(x)− p(x0),

is injective with Jacobian bounded away from 0. Since x0 is H -invariant, the map π+ is
also H -equivariant.

For any compact subset C0 of Cx0 one has, for every Y ∈ a,

π+(e
YC0 ∩ C0) ⊂ e

YC ∩ C

where C := π+(C0). The upper bound in (4.9) is then a consequence of the upper bound
in Proposition 3.7. ut

As a direct corollary we get the lower bound in Theorem 4.4 .
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Corollary 4.6. For any compact neighborhood C of Kx0 in G/H , there exists m > 0
such that

vol(eYC ∩ C) ≥ me−ρ
min
q (Y ) for any Y ∈ a.

Proof. Shrinking C if necessary, we can assume that C = KC0 where C0 is a compact
neighborhood of x0. According to Lemma 4.5, there exists a constantm > 0 such that the
lower bound in (4.9) is satisfied. For each w ∈ W(Y ; a) (⊂ WG), we take a representative
kw ∈ NK(ag). Then

vol(eYC ∩ C) ≥ vol(eY k−1
w C0 ∩ C0) = vol(ewYC0 ∩ C0) ≥ me

−ρq(wY ).

Hence
vol(eYC ∩ C) ≥ m max

w∈W(Y ;a)
e−ρq(wY ) = me−ρ

min
q (Y ). ut

4.5. Volume near one invariant point

Here is the second step towards the volume upper bound (4.8). It is a subtle variation of
the volume upper bound given in Lemma 4.5.

For any subspace b ⊂ a, we set Xb
:= {x ∈ X : eY x = x for all Y ∈ b}.

Lemma 4.7. For any subspace b ⊂ a and any x ∈ Xb, there exists a neighborhood Cx
of x in X and M > 0 such that

vol(eYCx ∩ Cx) ≤ Me−ρ
min
q (Y ) for any Y ∈ b.

Proof. Let H ′ be the stabilizer of x inG, and h′ its Lie algebra. Since x is in Xb, one has
b ⊂ h′. Hence there exists a maximal split abelian subspace a′ of h′ containing b. Since
all the maximal split abelian subspaces of h are H -conjugate, one can find g ∈ G such
that x = gx0. Then H ′ := gHg−1 and h′ := Ad(g)h. After replacing g by a suitable
element gh with h in H , we also have a′ = Ad(g)a. We set q′ := Ad(g)q and introduce
the function ρq′ : a′→ R≥0 associated to the representation ofH ′ on q′ as in Section 3.1.
By definition, we have

ρq′(Ad(g)Z) = ρq(Z) for any Z ∈ a. (4.10)

Applying Lemma 4.5 to the homogeneous space G/H ′, we see that there exist a
compact neighborhood Cx of x in X and a constant M > 0 such that

vol(eYCx ∩ Cx) ≤ Me−ρq′ (Y ) for any Y ∈ a′. (4.11)

Now, for Y ∈ b, we set Z = Ad(g−1)Y . Then Z also belongs to a. Since the Cartan
subspace ag contains a and since two elements of ag which are G-conjugate are always
WG-conjugate, there exists w ∈ WG such that Z = wY . Using (4.10), we get

ρq′(Y ) = ρq(Z) = ρq(wY ) ≥ ρ
min
q (Y ).

Hence, the conclusion follows from (4.11). ut
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4.6. Volume near two invariant points

Here is the third step towards the volume upper bound (4.8).

Lemma 4.8. For any vector subspace b ⊂ a and any points x1, x2 in Xb, there exist
M > 0 and compact neighborhoods C1 of x1 and C2 of x2 in X such that

vol(eYC1 ∩ C2) ≤ Me
−ρmin

q (Y ) for any Y ∈ b. (4.12)

We set
V b
:= {v ∈ V : bv = 0}, (4.13)

so that Xb
= X ∩ V b, and we set πb

: V → V b to be the b-equivariant projection.

Proof. When x1 = x2, this is Lemma 4.7. When x1 6= x2, we choose C1 and C2 with
πb(C1) ∩ π

b(C2) = ∅ so that, for any Y in b, also eYC1 ∩ C2 = ∅. ut

Here is the fourth step towards the volume upper bound (4.8).

Lemma 4.9. For any vector subspace b ⊂ a and any compact subsets S1, S2 included
in Xb, there exist M > 0 and compact neighborhoods CS1 of S1 and CS2 of S2 in X such
that

vol(eYCS1 ∩ CS2) ≤ Me
−ρmin

q (Y ) for any Y ∈ b. (4.14)

Proof. This is a consequence of Lemma 4.8 by a standard compactness argument. Let
x1 ∈ S1. For any x2 ∈ S2, there exist compact neighborhoods C1(x1, x2) of x1 and
C2(x1, x2) of x2 satisfying (4.12).

First we fix x1 in S1. By compactness ofC2, one can find a finite set F2 ≡ F2(x1) ⊂ S2
for which the union C2(x1, S2) :=

⋃
x2∈F2

C2(x1, x2) is a compact neighborhood of S2.
The intersection

C1(x1, S2) :=
⋂
x2∈F2

C1(x1, x2)

is still a compact neighborhood of x1.
By compactness of C1, one can find a finite set F1 ⊂ S1 for which the union CS1 :=⋃

x1∈F1
C1(x1, S2) is a compact neighborhood of S1. The intersection

CS2 :=

⋂
x1∈F1

C2(x1, S2)

is still a compact neighborhood of S2.
Since only finitely many constantsM are involved in this process, the compact neigh-

borhoods CS1 and CS2 satisfy (4.14) ut

4.7. Facets

In this section, we shall introduce a decomposition of a into convex pieces F called facets
by using the representation dτ |a : a→ End(V ).
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We need to introduce more notation. Let 1 ≡ 1(V, a) be the set of weights of a
in V . For v in V we write v =

∑
λ∈1 vλ according to the weight space decomposition

V =
⊕

λ∈1 Vλ. We fix a norm ‖ ‖ on each weight space Vλ, and define a norm on V by

‖v‖ := max
λ∈1
‖vλ‖. (4.15)

For any subset F ⊂ a, we set

1+F := {λ ∈ 1 : λ(Y ) > 0 for any Y ∈ F },

10
F := {λ ∈ 1 : λ(Y ) = 0 for any Y ∈ F },

1−F := {λ ∈ 1 : λ(Y ) < 0 for any Y ∈ F }.

We say that F is a facet if 1 = 1+F q1
0
F q1

−

F and

F = {Y ∈ a : λ(Y ) > 0 for any λ ∈ 1+F ,

λ(Y ) = 0 for any λ ∈ 10
F ,

λ(Y ) < 0 for any λ ∈ 1−F }.

Let F be the totality of facets. Then

a =
⊔
F∈F

F (disjoint union).

For any facet F we denote by aF its support, i.e. its linear span:

aF := {Y ∈ a : λ(Y ) = 0 for any λ ∈ 10
F }.

We set

V εF :=
⊕
λ∈1εF

Vλ for ε = +, 0,−.

Notice that, using (4.13), we obtain V 0
F = V

aF . We have a direct sum decomposition

V = V +F ⊕ V
0
F ⊕ V

−

F . (4.16)

Here is the fifth step towards the volume upper bound (4.8).

Lemma 4.10. Let F be a facet, S1 be a compact subset of X ∩ (V 0
F ⊕ V

−

F ), and S2 be
a compact subset of X ∩ (V 0

F ⊕ V
+

F ). Then there exist M > 0 and compact neighbor-
hoods CS1 of S1 and CS2 of S2 in X such that

vol(eYCS1 ∩ CS2) ≤ Me
−ρmin

q (Y ) for any Y ∈ aF . (4.17)
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Proof. We recall that πaF is the projection on V 0
F = V

aF . SinceX is closed and invariant
under the group eaF , one has the inclusions

πaF (X ∩ (V 0
F ⊕ V

−

F )) ⊂ X
aF and πaF (X ∩ (V 0

F ⊕ V
+

F )) ⊂ X
aF .

Let T1 := π
aF (S1) and T2 := π

aF (S2). Since

S1 ⊂ X ∩ (V
0
F ⊕ V

−

F ) and S2 ⊂ X ∩ (V
0
F ⊕ V

+

F ), (4.18)

T1 and T2 are compact subsets of XaF . According to Lemma 4.9 with b = aF , there exist
M > 0 and compact neighborhoods CT1 of T1 and CT2 of T2 in X such that

vol(eYCT1 ∩ CT2) ≤ Me
−ρmin

q (Y ) for any Y ∈ aF . (4.19)

Using again (4.18), one can then find an element Y0 ∈ F such that

eY0S1 ⊂ interior of CT1 and e−Y0S2 ⊂ interior of CT2 .

We then choose the neighborhoods

CS1 := e
−Y0CT1 and CS2 := e

Y0CT2

of S1 and S2 respectively. According to (4.19), for any Y ∈ aF ,

vol(eYCS1 ∩ CS2) = vol(eY−2Y0CT1 ∩ CT2) ≤ Me
−ρmin

q (Y−2Y0).

Since the function Y 7→ |ρmin
q (Y−2Y0)−ρ

min
q (Y )| is uniformly bounded on a, this gives

the volume upper bound (4.17). ut

Here is the sixth step towards the volume upper bound (4.8).

Lemma 4.11. Let F be a facet and C1, C2 compact subsets of G/H . Suppose

C1 ∩ (V
0
F ⊕ V

−

F ) = ∅ or C2 ∩ (V
0
F ⊕ V

+

F ) = ∅.

Then there exists Y0 ∈ F such that eYC1 ∩ C2 = ∅ for any Y ∈ Y0 + F .

Proof. For a compact subset C of X and λ ∈ 1, we set

mλ(C) := min
v∈C
‖vλ‖ and Mλ(C) := max

v∈C
‖vλ‖,

and for ε = ±, we set

mεF (C) := max
λ∈1εF

mλ(C) and Mε
F (C) := max

λ∈1εF

Mλ(C).

If C1 ∩ (V
0
F ⊕ V

−

F ) = ∅, one has m+F (C1) > 0 and we choose Y0 ∈ F such that, for all
λ ∈ 1+F ,

eλ(Y0) > M+F (C2)/m
+

F (C1).
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Let Y ∈ Y0+F . By definition ofm+F (C1), one can find λ ∈ 1+F such that, for any v in C1,
one has ‖vλ‖ ≥ m+F (C1). Then

‖(eY v)λ‖ = e
λ(Y )
‖vλ‖ ≥ e

λ(Y0)m+F (C1) > M+F (C2).

Hence eY v does not belong to C2. This proves that eYC1 ∩ C2 = ∅.
Likewise, if C2 ∩ (V

+

F ⊕V
0
F ) = ∅, one has m−F (C2) > 0, and we choose Y0 ∈ F such

that, for all λ ∈ 1−F ,
e−λ(Y0) > M−F (C1)/m

−

F (C2). ut

4.8. Upper bound for vol(eYC ∩ C)

Here is the seventh step towards the volume upper bound (4.8). For any facet F , any
Y0 ∈ F , and any R ≥ 0, we introduce the R-neighborhood of the Y0-translate of F :

F(Y0, R) := Y0 + F + a(R), (4.20)

where a(R) is the ball {Y ∈ a : ‖Y‖ ≤ R}.

Lemma 4.12. Let F be a facet, R ≥ 0, and C1, C2 compact subsets of G/H . Then there
exist YF,R ∈ F and M > 0 such that

vol(eYC1 ∩ C2) ≤ Me
−ρmin

q (Y ) for any Y ∈ F(YF,R, R). (4.21)

Proof. We first assume that R = 0. We will use Lemmas 4.10 and 4.11. Let

S1 := C1 ∩ (V
0
F ⊕ V

−

F ) and S2 := C2 ∩ (V
0
F ⊕ V

+

F ).

According to Lemma 4.10 we can write

C1 := CS1 ∪ C
′

1 and C2 := CS2 ∪ C
′

2

where CS1 and CS2 are respective compact neighborhoods of S1 in C1 and of S2 in C2
satisfying the volume upper bound (4.17) for some constantM > 0, and where C′1 and C′2
are compact subsets of X such that

C′1 ∩ (V
0
F ⊕ V

−

F ) = ∅ and C′2 ∩ (V
0
F ⊕ V

+

F ) = ∅.

Hence according to Lemma 4.11, there exists YF ∈ F such that, for any Y ∈ YF + F ,

eYC′1 ∩ C
′

2 = e
YCS1 ∩ C

′

2 = e
YC′1 ∩ CS2 = ∅.

Therefore, one has the desired volume upper bound: for any Y ∈ YF + F ,

vol(eYC1 ∩ C2) = vol(eYCS1 ∩ CS2) ≤ Me
−ρmin

q (Y ).

When R is not zero, we apply the first case to the compact sets ea(R)C1 and C2 and
notice that the function Y 7→ maxZ∈a(R) |ρmin

q (Y+Z)−ρmin
q (Y )| is uniformly bounded

on a. ut
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Proof of Theorem 4.4. Here is the eighth and last step towards the volume upper bound
(4.8). Fix two compact sets C1, C2 in G/H . According to Lemma 4.12, given any facet
F ∈ F and any R > 0 there exist YF,R ∈ F and M > 0 such that (4.8) holds for any
Y ∈ F(YF,R, R). Lemma 4.13 below tells us that (4.8) holds for any Y in a. This ends the
proof of the volume upper bound (4.8) and of Theorem 4.4. ut

Lemma 4.13. Assume that, for any facet F and any R ≥ 0, we are given an element
YF,R ∈ F . Then one can choose for every facet F a constant RF ≥ 0 such that, using
notation (4.20), one has

a =
⋃
F∈F

F(YF,RF , RF ). (4.22)

Proof. We will choose, inductively on ` = 0, 1, . . . , dim a, the constants RF simultane-
ously for all the facets of codimension ` (see Figure 1).

Fig. 1. Cover of a

We first choose RF = 0 for all the open facets F .
We assume that RF has been chosen for the facets of codimension strictly less than `

and we consider the set
a` =

⋃
F∈F

codimF<`

F(YF,RF , RF ).

We assume, by induction, that there exists a constant δ` > 0 such that the complementary
set a \ a` is included in a δ`-neighborhood of the union of the facets of codimension `.
We choose RF = δ` for all the facets of codimension `. This gives a new set a`+1. The
complementary set a \ a`+1 is then included in a δ`+1-neighborhood of the union of the
facets of codimension `+1, for some constant δ`+1 > 0. And we go on by induction. ut

5. Application

The criterion given in Theorem 4.1 is easy to apply: it is easy to detect for a given ho-
mogeneous spaceG/H whether the unitary representation ofG in L2(G/H) is tempered
or not. We collect in this section a few corollaries of this criterion, omitting the details of
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the computational verifications that will be published elsewhere together with a complete
classification of homogeneous spaces G/H for which L2(G/H) is non-tempered.

5.1. Abelian or amenable generic stabilizer

For general real reductive homogeneous spaces, we deduce the following facts:

Proposition 5.1. Let p ≥ 2 be an even integer. Let G be a semisimple algebraic Lie
group, and H1 ⊃ H2 two unimodular subgroups.

(a) If L2(G/H1) is almost Lp then L2(G/H2) is almost Lp.
(b) The converse is true when H2 is normal in H1 and H1/H2 is amenable (for instance

finite, or compact, or abelian).

Proposition 5.2. Let p ≥ 2 be an even integer. Let G be an algebraic semisimple Lie
group, and H an algebraic reductive subgroup.

(a) If the representation of GC in L2(GC/HC) is almost Lp, then the representation of
G in L2(G/H) is almost Lp.

(b) The converse is true when H is a split group.

Theorem 5.3. Let G be an algebraic semisimple real Lie group, and H an algebraic
reductive subgroup.

(a) If the representation of G in L2(G/H) is tempered, then the set of points in G/H
with amenable stabilizer in H is dense.

(b) If the set of points inG/H with abelian stabilizer in h is dense, then the representation
of G in L2(G/H) is tempered.

The proof of Theorem 5.3 leads us to the list of all the spaces G/H for which the repre-
sentation of G in L2(G/H) is non-tempered.

5.2. Complex homogeneous spaces

We assume in this section thatG andH are complex Lie groups. Since complex amenable
reductive Lie groups are abelian, the following result is a particular case of Theorem 5.3.

Theorem 5.4. Suppose G is a complex algebraic semisimple group and H a complex
reductive subgroup. Then L2(G/H) is tempered if and only if the set of points in G/H
with abelian stabilizer in h is dense.

Example 5.5. L2(SL(n,C)/SO(n,C)) is always tempered.

• L2(SL(2m,C)/Sp(m,C)) is never tempered.
• L2(SO(7,C)/G2) is not tempered.

Example 5.6. Let n = n1 + · · · + nr with n1 ≥ · · · ≥ nr ≥ 1, r ≥ 2.

• L2(SL(n,C)/
∏

SL(ni,C)) is tempered iff 2n1 ≤ n+ 1.
• L2(SO(n,C)/

∏
SO(ni,C)) is tempered iff 2n1 ≤ n+ 2.

• L2(Sp(n,C)/
∏

Sp(ni,C)) is tempered iff r ≥ 3 and 2n1 ≤ n.
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5.3. Real homogeneous spaces

Here are a few examples of application of our criterion.

Example 5.7. Let G1 be a real algebraic semisimple Lie group and K1 a maximal com-
pact subgroup.

• L2(G1 ×G1/1(G1)) is always tempered.
• L2(G1,C/G1) is always tempered.
• L2(G1,C/K1,C) is tempered iff G1 is quasisplit.

Example 5.8. Let G/H be a symmetric space, i.e. G is a real algebraic semisimple Lie
group and H is the set of fixed points of an involution of G. Write g = h + q for the
H -invariant decomposition of g. Let G′ be an algebraic semisimple Lie group with Lie
algebra g′ = h+

√
−1 q. Then L2(G/H) is almost Lp iff L2(G′/H) is almost Lp.

Example 5.9. • L2(SL(p + q,R)/SO(p, q)) is always tempered.
• L2(SL(2m,R)/Sp(m,R)) is never tempered.
• L2(SL(m+ n,R)/SL(m,R)× SL(n,R)) is tempered iff |m− n| ≤ 1.

Example 5.10. Let p1 + · · · + pr ≤ p and q1 + · · · + qr ≤ q.

• L2(SO(p, q)/
∏

SO(pi, qi)) is tempered iff 2 maxpiqi 6=0(pi + qi) ≤ p + q + 2.

The homogeneous spaces in Examples 5.6 and 5.10 are not symmetric spaces when r ≥ 3.
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