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Abstract. An index theorem for the anti-self-dual deformation complex on anti-self-dual orbifolds
with cyclic quotient singularities is proved. We present two applications of this theorem. The first
is to compute the dimension of the deformation space of the Calderbank–Singer scalar-flat Kähler
toric ALE spaces. A corollary of this is that, except for the Eguchi–Hanson metric, all of these
spaces admit non-toric anti-self-dual deformations, thus yielding many new examples of anti-self-
dual ALE spaces. For our second application, we compute the dimension of the deformation space
of the canonical Bochner–Kähler metric on any weighted projective space CP2

(r,q,p)
for relatively

prime integers 1 < r < q < p. A corollary of this is that, while these metrics are rigid as Bochner–
Kähler metrics, infinitely many of them admit non-trivial self-dual deformations, yielding a large
class of new examples of self-dual orbifold metrics on certain weighted projective spaces.
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1. Introduction

If (M4, g) is an oriented four-dimensional Riemannian manifold, the Hodge star operator
∗ : 32

→ 32 satisfies ∗2
= Id, and induces the decomposition of the space of 2-forms

32
= 32

+ ⊕3
2
−, where 32

± are the ±1 eigenspaces of ∗. The Weyl tensor can be viewed
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as an operator Wg : 3
2
→ 32, so this decomposition enables us to decompose the

Weyl tensor as Wg = W+g + W−g , into the self-dual and anti-self-dual Weyl tensors,
respectively. The metric g is called anti-self-dual if W+g = 0, and self-dual if W−g = 0.
Note that, by reversing orientation, a self-dual manifold is converted into an anti-self-
dual manifold, and vice versa. There are now so many known examples of anti-self-dual
metrics on various compact four-manifolds, that it is difficult to give a complete list here,
and we refer the reader to [Via13] for a recent list of references.

The deformation theory of anti-self-dual metrics is roughly analogous to the theory
of deformation of complex structures. If (M, g) is an anti-self-dual four-manifold, the
anti-self-dual deformation complex is given by

0(T ∗M)
Kg
−→ 0(S2

0(T
∗M))

D
−→ 0(S2

0(3
2
+)), (1.1)

where Kg is the conformal Killing operator defined by

(Kg(ω))ij = ∇iωj +∇jωi − 1
2 (δω)gij , (1.2)

with δω = ∇ iωi , S2
0(T
∗M) denotes traceless symmetric tensors, and D = (W+)′g is the

linearized self-dual Weyl curvature operator.
IfM is a compact manifold then there is a formula for the index depending only upon

topological quantities. The analytical index is given by

Ind(M, g) = dim(H 0(M, g))− dim(H 1(M, g))+ dim(H 2(M, g)), (1.3)

where H i(M, g) is the ith cohomology of the complex (1.1), for i = 0, 1, 2. The index is
given in terms of topology via the Atiyah–Singer index theorem

Ind(M, g) = 1
2 (15χ(M)+ 29τ(M)), (1.4)

where χ(M) is the Euler characteristic and τ(M) is the signature of M (see [KK92]).
The cohomology groups of the complex (1.1) yield information about the local struc-

ture of the moduli space of anti-self-dual conformal classes, which we briefly recall
[Ito93, KK92]. There is a map

9 : H 1(M, g)→ H 2(M, g), (1.5)

called the Kuranishi map, which is equivariant with respect to the action of H 0, and
the moduli space of anti-self-dual conformal structures near g is locally isomorphic to
9−1(0)/H 0. Therefore, if H 2

= 0, the moduli space is locally isomorphic to H 1/H 0.
We will be concerned with orbifolds in dimension four with isolated singularities

modeled on R4/0, where 0 is a finite subgroup of SO(4) acting freely on R4
\ {0}. We

will say that (M, g) is a Riemannian orbifold if g is a smooth metric away from the
singular points, and at any singular point, the metric is locally the quotient of a smooth
0-invariant metric on the 4-ball B4 under the orbifold group 0.

An orbifold vector bundle is defined in terms of orbifold charts. Over a neighbor-
hood Ux away from the singular points, an orbifold vector bundle is defined as a vector
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bundle in the usual sense, and over a neighborhood Up = Ũp/0 around the singular
point p, where Ũp is a neighborhood of the origin in R4, it is identified with the quotient
of a smooth 0-equivariant vector bundle over Ũp. On overlaps the obvious compatibility
conditions are satisfied. A smooth section of an orbifold vector bundle is a globally de-
fined section so that on a neighborhood Ux away from the singular points it is smooth in
the ordinary sense, and on a neighborhood Up of a singular point, it is identified with a
smooth 0-equivariant section of the corresponding 0-equivariant bundle over Ũp defining
the orbifold vector bundle in that neighborhood.

Consider a Riemannian orbifold (M, g). The Riemannian orbifold metric g is defined
to be a smooth section of the orbifold bundle S2(T ∗M) that is positive definite every-
where. We denote by R({pi },{0i }) the space of all Riemannian orbifold metrics on M hav-
ing singular points {pi}1≤i≤k with corresponding orbifold groups {0i}1≤i≤k . This space
is invariant under pullbacks by diffeomorphisms and under conformal changes because
the 0i-equivariance of a section over Ũpi is preserved by these operations.

The anti-self-dual condition, W+g = 0, is invariant under the action of Diff+(M), the
group of orientation preserving diffeomorphisms of M , as well as conformally invariant.
Therefore, we want to study the space of equivalence classes of anti-self-dual metrics
under the action of Diff+(M)× C∞(M). Now, we make the following definition:

Definition 1.1. Let M be an orbifold with singular points {pi}1≤i≤k and corresponding
orbifold groups {0i}1≤i≤k . The moduli space of anti-self-dual orbifold conformal struc-
tures is defined to be

M = {g ∈ R({pi },{0i }) :W
+
g = 0}/Diff+(M)× C∞(M), (1.6)

where g1 is equivalent to g2 if there exists a (φ, f ) ∈ Diff+(M) × C∞(M) so that
g1 = e

f φ∗(g2).

In this paper, we study the moduli space of anti-self-dual orbifold conformal structures,
which from now on will be referred to only as the moduli space of anti-self-dual confor-
mal structures.

If (M, g) is an anti-self-dual orbifold, the anti-self-dual deformation complex is the
same as complex (1.1) except that vector bundles and smooth sections now refer to their
orbifold counterparts. The moduli space of anti-self-dual conformal structures is again
given by the zero set of the Kuranishi map 9 : H 1

→ H 2 modulo the action of H 0,
and the proofs in [Ito93, KK92] remain valid in the orbifold context. However, the index
formula (1.4) does not hold without adding a correction term. In [Kaw81], Kawasaki
proved a version of the Atiyah–Singer index theorem for orbifolds, and gave a general
formula for the correction term. Our first result is an explicit formula for this correction
term for the complex (1.1) in the case that 0 is an action of a cyclic group. In order to
state this, we first make some definitions.

For 1 ≤ q < p relatively prime integers, we denote by 0(q,p) the cyclic action(
exp(2πik/p) 0

0 exp(2πikq/p)

)
, 0 ≤ k < p, (1.7)

acting on R4, which we identify with C2 using z1 = x1 + ix2 and z2 = x3 + ix4.
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We will also refer to this action as a (q, p)-action.

Definition 1.2. A group action 01 : G → SO(4) is conjugate to another group action
02 : G → SO(4) if there exists an element O ∈ O(4) such that for any g ∈ G, we
have 01(g) ◦O = O ◦ 02(g). If O ∈ SO(4), then the actions are said to be orientation-
preserving conjugate, while if O /∈ SO(4), the actions are orientation-reversing conju-
gate.

Remark 1.3. We note the important fact that if 0 is an SO(4) representation of a cyclic
group, then 0 is orientation-preserving conjugate to a 0(q,p)-action [McC02]; we there-
fore only need to consider the 0(q,p)-actions. Furthermore, for 1 ≤ q, q ′ < p, if a 0(q,p)-
action is orientation-preserving conjugate to a 0(q ′,p)-action then qq ′ ≡ 1 mod p. We
also note that a 0(q,p)-action is orientation-reversing conjugate to a 0(p−q,p)-action.

We will employ the following modified Euclidean algorithm. For 1 ≤ q < p relatively
prime integers, write

p = e1q − a1,

q = e2a1 − a2,

...

ak−3 = ek−1ak−2 − 1,
ak−2 = ekak−1 = ek,

(1.8)

where ei ≥ 2, and 0 ≤ ai < ai−1, i = 1, . . . , k. This can also be written as the continued
fraction expansion

q

p
=

1

e1 −
1

e2 − · · ·
1
ek

. (1.9)

We refer to the integer k as the length of the modified Euclidean algorithm.
Our main theorem expresses the correction term in the index theorem in terms of

the ei and the length of the modified Euclidean algorithm:

Theorem 1.4. Let (M, g) be a compact anti-self-dual orbifold with a single orbifold
point of type (q, p). The index of the anti-self-dual deformation complex on (M, g) is
given by

Ind(M, g) =


1
2 (15χtop + 29τtop)+

k∑
i=1

4ei − 12k − 2 when q 6= p − 1,

1
2 (15χtop + 29τtop)− 4p + 4 when q = p − 1.

(1.10)

In some other special cases, the correction term may be written directly in terms of p. For
example, if q = 1 and p > 2, we have

k∑
i=1

4ei − 12k − 2 = 4p − 14. (1.11)
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We note that the cases q = 1 and q = p − 1 were proved earlier in [Via13] using a
different method.

Remark 1.5. While Theorem 1.4 is stated in the case of a single orbifold point for sim-
plicity, if a compact anti-self-dual orbifold has several cyclic quotient orbifold points,
then a similar formula holds, with the correction term simply being the sum of the corre-
sponding correction terms for each type of orbifold point.

1.1. Asymptotically locally Euclidean spaces

Many interesting examples of anti-self-dual metrics are complete and non-compact.
Given a compact Riemannian orbifold (X̂, ĝ) with non-negative scalar curvature, letting
Gp denote the Green’s function for the conformal Laplacian associated with any point p,
the non-compact space X = X̂ \ {p} with metric gp = G2

pĝ is a complete scalar-flat
orbifold. Inverted normal coordinates in the metric ĝ in a neighborhood of p give rise to
a coordinate system in a neighborhood of infinity of X, which motivates the following:

Definition 1.6. A non-compact Riemannian orbifold (X4, g) is called asymptotically lo-
cally Euclidean or ALE of order τ if there exists a finite subgroup 0 ⊂ SO(4) acting
freely on R4

\ {0}, and a diffeomorphism φ : X \ K → (R4
\ B(0, R))/0 where K is

a compact subset of X, satisfying (φ∗g)ij = δij +O(r−τ ) and ∂ |k|(φ∗g)ij = O(r−τ−k)
for any partial derivative of order k, as r → ∞, where r is the distance to some fixed
basepoint.

An orbifold compactification of an ALE space (X, g) is a choice of a conformal factor
u : X → R+ such that u = O(r−2) as r → ∞. This type of compactification is very
important in modern geometry: see for example [Sch84, Kro89]. The regularity of the
compactification is an important issue. In general, such a compactification is only a C1,α

orbifold. However, if (X, g) is anti-self-dual then there moreover exists a C∞-orbifold
conformal compactification [TV05, CLW08]. This was generalized to Bach-flat metrics
in [Str10], and to obstruction-flat metrics in [AV12].

Remark 1.7. It is crucial to note that if (X, g) is an anti-self-dual ALE space with a
0-action at infinity, then the conformal compactification (X̂, ĝ) with the anti-self-dual
orientation has a 0̃-action at the orbifold point where 0̃ is orientation-reversing conjugate
to 0. In the case of a cyclic group, if the action at infinity of the anti-self-dual ALE space
(X, g) is of type (q, p), then the action at the orbifold point of the compactification (X̂, ĝ)
with the anti-self-dual orientation is of type (p − q, p).

Many examples of anti-self-dual ALE spaces with non-trivial group at infinity have been
discovered. The first non-trivial example was due to Eguchi and Hanson [EH79], who
found a Ricci-flat anti-self-dual metric on O(−2) which is ALE with group Z/2Z at
infinity. Gibbons–Hawking [GH78, Hit79] then wrote down a metric ansatz depending
on the choice of n monopole points in R3. This gives a family of anti-self-dual ALE
hyperkähler metrics with cyclic actions at infinity contained in SU(2), which are called
multi-Eguchi–Hanson metrics.
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Using the Joyce construction from [Joy95], Calderbank and Singer [CS04] pro-
duced many examples of toric ALE anti-self-dual metrics, which are moreover scalar-
flat Kähler, and have cyclic groups at infinity contained in U(2). For a (q, p)-action, the
space X is the minimal Hirzebruch–Jung resolution of C2/0(q,p), with exceptional divi-
sor given by the union of 2-spheres S1 ∪ · · · ∪ Sk , with intersection matrix

(Si · Sj ) =


−e1 1 0 · · · 0

1 −e2 1 · · · 0
0 1 −e3 · · · 0
...

...
...

...

0 0 0 · · · −ek

 , (1.12)

where the ei and k are defined above in (1.8) with ei ≥ 2. The Kähler scalar-flat metric
on X is then written down explicitly using the Joyce ansatz from [Joy95]. We do not
require the details of the construction here, but only note the following: For q > 1 the
identity component of the isometry group of these metrics is a real 2-torus, and for q = 1,
it is U(2).

When q = p−1, these metrics are the toric Gibbons–Hawking multi-Eguchi–Hanson
metrics (when all monopole points are on a common line). In this case k = p − 1 and
ei = 2 for 1 ≤ i ≤ k. The moduli space of toric metrics in this case is of dimension p−2.
But the moduli space of all multi-Eguchi–Hanson metrics is of dimension 3(p − 2). So
it is well known that these metrics admit non-toric anti-self-dual deformations. When
q = 1, these metrics agree with the LeBrun [LeB88] negative mass metrics on O(−p).
In this case k = 1 and e1 = p. For p > 2, it was recently shown [Hon13, Via13] that
these spaces also admit non-toric anti-self-dual deformations. Theorem 1.9 will give a
vast generalization of this phenomenon to the general case 1 < q < p − 1. The proof of
Theorem 1.9 relies on the following explicit formula for the index of the complex (1.1)
on the conformal compactification of these metrics:

Theorem 1.8. Let (X̂, ĝ) be the orbifold conformal compactification of a Calderbank–
Singer space (X, g) with a (q, p)-action at infinity. Then the index of the anti-self-dual
deformation complex is given by

Ind(X̂, ĝ) =

5k + 5−
k∑
i=1

4ei when q 6= 1,

−4p + 12 when q = 1,

(1.13)

where k and ei , 1 ≤ i ≤ k, are the integers occurring in the modified Euclidean algorithm
defined in (1.8).

In some other special cases we can write the index formula (1.13) directly in terms of p.
For example, if 1 < q = p − 1 the index simplifies to −3p + 8.

By a result of LeBrun–Maskit [LM08, Theorem 4.2], H 2(X̂, ĝ) = 0 for these met-
rics, so the actual moduli space is locally isomorphic to H 1/H 0. Therefore, a direct con-
sequence of Theorem 1.8 is that the Calderbank–Singer spaces admit large families of
non-toric anti-self-dual deformations, yielding many new examples:
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Theorem 1.9. Let (X, g) be a Calderbank–Singer space with a (q, p)-action at infinity,
and (X̂, ĝ) be the orbifold conformal compactification. Then there exists a neighborhood,
Uĝ , of ĝ in the moduli space of anti-self-dual conformal structures on X̂ such that:

• If q = 1 and p = 2, then ĝ is rigid, that is, dim(Uĝ) = 0.
• If q = 1 and p = 3, then dim(Uĝ) = 1.
• If q = 1 and p > 3, then dim(Uĝ) = 4p − 12.
• If q = p − 1, then dim(Uĝ) = 3p − 7.
• If 1 < q < p − 1, then dim(Uĝ) ≥ dim(H 1)− 2 = −5k − 5+

∑k
i=1 4ei .

Consequently, if p > 2, these spaces admit non-toric anti-self-dual deformations.

Remark 1.10. Theorem 1.8 could be equivalently stated in terms of the ALE metrics
rather than the compactified metrics. However, the definition of the index on an ALE
space involves defining certain weighted spaces; see [Via13, Proposition 3.1] for the pre-
cise formula which relates the index on the ALE space to the index on the compacti-
fication; for our purposes here, we only require the statement on the compactification.
Similarly, Theorem 1.9 could be equivalently stated in terms of anti-self-dual ALE defor-
mations of the ALE model.

Since the moduli space is locally given by H 1/H 0, it is necessary to know something
about the action of H 0. This action is well known in the toric multi-Eguchi–Hanson case
q = p − 1; in this case for p ≥ 3, dim(H 1) = 3p − 6, and the dimension of the moduli
space is equal to dim(H 1) − 1 = 3p − 7. In the LeBrun negative mass case q = 1, this
action was recently completely determined by Nobuhiro Honda [Hon13] using arguments
from twistor theory. For 1 < q < p − 1, further arguments are needed to determine this
action explicitly; this is an interesting problem.

1.2. Weighted projective spaces

We first recall the definition of weighted projective spaces in real dimension four:

Definition 1.11. For relatively prime integers 1 ≤ r ≤ q ≤ p, the weighted projective
space CP2

(r,q,p) is S5/S1, where S1 acts by

(z0, z1, z2) 7→ (eirθz0, e
iqθz1, e

ipθz2) (1.14)

for 0 ≤ θ < 2π .

The space CP2
(r,q,p) has the structure of a compact complex orbifold. Bryant [Bry01]

proved that every weighted projective space admits a Bochner–Kähler metric. Subse-
quently, David and Gauduchon [DG06] gave a simple and direct construction of these
metrics. Using an argument due to Apostolov, they also showed that this metric is
the unique Bochner–Kähler metric on a given weighted projective space [DG06, Ap-
pendix D], and thus we will call this metric the canonical Bochner–Kähler metric. In
complex dimension two, the Bochner tensor is the same as the anti-self-dual part of the
Weyl tensor, so Bochner–Kähler metrics are the same as self-dual Kähler metrics.
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The work of Derdziński [Der83] showed that a self-dual Kähler metric g is conformal
to a self-dual Hermitian Einstein metric on M∗ := {p ∈ M : R(p) 6= 0}, given by
g̃ = R−2g, where R is the scalar curvature. This conformal metric is not Kähler unless
R is constant. Conversely, Apostolov and Gauduchon [AG02] showed that any self-dual
Hermitian Einstein metric that is not conformally flat is of the form g̃ for a unique self-
dual Kähler metric g with R 6= 0.

For a weighted projective space CP2
(r,q,p), there are the following three cases:

• When p < r + q the canonical Bochner–Kähler metric has R > 0 everywhere, so it is
conformal to a Hermitian Einstein metric with positive Einstein constant.
• When p = r + q the canonical Bochner–Kähler metric has R > 0 except at one point,

so it is conformal to a complete Hermitian Einstein metric with vanishing Einstein
constant outside this point.
• When p > r + q the canonical Bochner–Kähler metric has R vanishing along a hy-

persurface and the complement is composed of two open sets on which the metric is
conformal to a Hermitian Einstein metric with negative Einstein constant.

For x ∈ R, bxc denotes the integer part of x, and {x} = x − bxc denotes the fractional
part of x. For relatively prime integers q and r , q−1;r denotes the inverse of q modulo r .
We also define the integer ε by

ε =


0 if p 6≡ q mod r and p 6≡ r mod q,
1 if p ≡ q mod r or p ≡ r mod q, but not both,
2 if p ≡ q mod r and p ≡ r mod q.

(1.15)

Our main result for the index on weighted projective spaces is the following, with the
answer depending upon certain number-theoretic properties of the triple (r, q, p):

Theorem 1.12. Let g be the canonical Bochner–Kähler metric with reversed orientation
on CP2

(r,q,p). Assume that 1 < r < q < p. If r + q ≥ p then

Ind(CP2
(r,q,p), g) = 2. (1.16)

If r + q < p, then

Ind(CP2
(r,q,p), g) =

2+ 2ε − 4
⌊ p
qr

⌋
when

{ p
qr

}
<
{ q−1;rp

r

}
,

−2+ 2ε − 4
⌊ p
qr

⌋
when

{ p
qr

}
>
{ q−1;rp

r

}
.

(1.17)

We note that in the case
{ p
qr

}
<
{ q−1;rp

r

}
, the integer ε can only be 0 or 1; the integer 2

does not actually occur in this case. Thus there are exactly five cases, which do in fact all
occur (see Section 7).

Theorem 1.12 implies the following result regarding the moduli space of anti-self-dual
metrics on CP2

(r,q,p):
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Theorem 1.13. Let g be the canonical Bochner–Kähler metric with reversed orientation
on CP2

(r,q,p). Assume that 1 < r < q < p. Then

• If p ≤ q + r then [g] is isolated as an anti-self-dual conformal class.
• If p > q + r , then there exists a neighborhood, Ug , of g in the moduli space of anti-

self-dual conformal structures with

dim(Ug) ≥

4
⌊ p
qr

⌋
− 2− 2ε when

{ p
qr

}
<
{ q−1;rp

r

}
,

4
⌊ p
qr

⌋
+ 2− 2ε when

{ p
qr

}
>
{ q−1;rp

r

}
.

(1.18)

Remark 1.14. Since the case p < q + r is conformal to an Einstein metric, it is perhaps
not surprising (although not obvious) that these metrics are also isolated as self-dual met-
rics. But the non-trivial anti-self-dual deformations we have found in the case p > q + r

are quite surprising, since these metrics are rigid as Bochner–Kähler metrics.

The proof of Theorem 1.13 also relies on the fact that H 2(M, g) = 0 for these metrics
(see Corollary 7.10 below). Then as pointed out above, the actual moduli space is locally
isomorphic toH 1/H 0, so the moduli space could be of dimension dim(H 1), dim(H 1)−1,
or dim(H 1) − 2. As in the case of the Calderbank–Singer spaces, we do not determine
this action explicitly here; this is another very interesting problem.

1.3. Outline of paper

We begin in Section 2 by recalling Kawasaki’s orbifold index theorem, and apply it to
the complex (1.1). Then in Section 3, we analyze the correction terms for cyclic group
actions, culminating in the following formula for the index in terms of trigonometric sums
when 1 < q < p − 1:

Ind0(M̂) =
1
2
(15χtop + 29τtop)− 6+

14
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)

−
2
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)
cos
(

2π
p
j

)
cos
(

2π
p
qj

)
. (1.19)

We note that the quantity

s(q, p) =
1

4p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)
(1.20)

is the well-known Dedekind sum [RG72]. This has a closed form expression in sev-
eral special cases, but not in general. It is not surprising that this term appears, since
Dedekind sums arise naturally in the index theorem for the signature complex [HZ74,
Kat87, Zag72]. However, for the anti-self-dual deformation complex, the interaction of
the Dedekind sum term with the final term in (1.19) makes a huge difference. In particular,
formula (1.19) says that the sum of these terms must always be an integer!
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For x ∈ R \ Z, we define the sawtooth function ((x)) = {x} − 1/2. In Section 4, we
show that when 1 < q < p − 1, the non-topological terms in (1.19) can be rewritten as a
Dedekind sum plus terms involving the sawtooth function:

N(q, p) = −6+
12
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)
− 4

((
q−1;p

p

))
− 4

((
q

p

))
, (1.21)

where we recall that q−1;p denotes the inverse of q modulo p. In Section 5 we use this,
together with classical reciprocity for Dedekind sums, to prove Theorem 1.4. The results
dealing with the Calderbank–Singer spaces, Theorems 1.8 and 1.9, are proved in Sec-
tion 6. Finally, in Section 7, we present a complete analysis of the index for the canonical
Bochner–Kähler metric on a weighted projective space, and prove Theorem 1.13. Inter-
estingly, an important ingredient is Rademacher’s triple reciprocity formula for Dedekind
sums [Rad54]. We conclude the paper with some remarks on the number-theoretic condi-
tion on the triple (r, q, p) which occurs in Theorem 1.12.

2. The orbifold 0-index

For an orbifold (M, g), the 0-index is given analytically by

Ind0(M, g) = dim(H 0(M, g))− dim(H 1(M, g))+ dim(H 2(M, g)). (2.1)

From Kawasaki’s orbifold index theorem [Kaw81], it follows that we have a 0-index
formula of the form

Ind0(M) =
1
2
(15χorb(M)+ 29τorb(M))+

1
|0|

∑
γ 6=Id

chγ (i∗σ)
chγ (λ−1NC)

. (2.2)

where χorb(M) is the orbifold Euler characteristic defined by

χorb(M) =
1

8π2

∫
M

(
|W |2 − 1

2 |Ric|2 + 1
6R

2) dVg, (2.3)

the quantity τorb(M) is the orbifold signature defined by

τorb(M) =
1

12π2

∫
M

(|W+|2 − |W−|2) dVg, (2.4)

and the quantity chγ (i∗σ)/chγ (λ−1NC) is a correction term depending upon the action
of γ on certain bundles, which we will describe in what follows.

In the next subsection, we compute the trace of the action of γ , an element in the
orbifold group 0, on the bundles [NC], [S2

0(NC)] and [S2
0(3

2
+)] over the fixed point set,

which we then use to compute a general formula for the chγ (i∗σ)/chγ (λ−1NC) term.
Then we give the orbifold Euler characteristic and orbifold signature in terms of the topo-
logical Euler characteristic and topological signature and correction terms also depending
upon the γ -action respectively. Finally, we combine this information into a formula for
the orbifold 0-index.
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2.1. Group action on bundles

In order to compute the 0-index, we first need to find the trace of the γ -action, for every
γ in 0, on the pullback of the complexified principal symbol, i∗σ , where

i : p→ M (2.5)

is the inclusion map from the fixed point p into the orbifold M . In this case

i∗σ = [NC] − [S
2
0(NC)] + [S

2
03

2
+]. (2.6)

For a general γ of the form

γ =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 cos θ2 − sin θ2
0 0 sin θ2 cos θ2

 , (2.7)

fixing the point p, the normal bundle is trivial, so NC := N ⊗ C = C4, and we have the
following proposition.

Proposition 2.1. The trace of the γ -action on the components of i∗σ is as follows:

(1) tr(γ |NC) = 2 cos(θ1)+ 2 cos(θ2),
(2) tr(γ |S2

0 (NC)
) = 1+ 2 cos(θ1+ θ2)+ 2 cos(−θ1+ θ2)+ 4 cos(θ1+ θ2) cos(−θ1+ θ2),

(3) tr(γ |S2
0 (3

2
+)
) = 2 cos(θ1 + θ2)+ 4 cos2(θ1 + θ2)− 1.

Proof. The normal bundle can be written as N = x1⊕ · · · ⊕ x4 in real coordinates. After
complexifying the normal bundle we can diagonalize γ to write

γ |NC =


eiθ1 0 0 0
0 e−iθ1 0 0
0 0 eiθ2 0
0 0 0 e−iθ2

 , (2.8)

with respect to the complex basis {λ1 ⊕ λ2 ⊕ λ3 ⊕ λ4} = C4, where

{2x1, 2x2, 2x3, 2x4} = {λ1 − iλ2, iλ1 − λ2, λ3 − iλ4, iλ3 − λ4}. (2.9)

Formula (1) follows immediately.
Next, to see how γ acts on S2

0(Ng) = 3
2
+ ⊗3

2
− we first examine how γ acts on 32

+

and 32
− independently. We use the following basis for 32

+:

ω+1 =
1
2 [dλ2 ∧ dλ1 + dλ4 ∧ dλ3],

ω+2 =
1
2 [dλ1 ∧ dλ3 + dλ4 ∧ dλ2],

ω+3 =
1
2 [idλ1 ∧ dλ3 + idλ2 ∧ dλ4],

(2.10)
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and the following basis for 32
−:

ω−1 =
1
2 [dλ2 ∧ dλ1 − dλ4 ∧ dλ3],

ω−2 =
1
2 [idλ3 ∧ dλ2 + idλ4 ∧ dλ1],

ω−3 =
1
2 [dλ2 ∧ dλ3 + dλ4 ∧ dλ1].

(2.11)

So we see that γ acts on 32
+ by

γ (ω+1 ) = ω
+

1 ,

γ (ω+2 ) =
1
2 [e

i(θ1+θ2)(ω+2 − iω
+

3 )+ e
−i(θ1+θ2)(ω+2 + iω

+

3 )],

γ (ω+3 ) =
1
2 [e

i(θ1+θ2)(ω+3 + iω
+

2 )+ e
−i(θ1+θ2)(ω+3 − iω

+

2 )],

(2.12)

and γ acts on 32
− by

γ (ω−1 ) = ω
−

1 ,

γ (ω−2 ) =
1
2 [e

i(−θ1+θ2)(ω−2 − iω
−

3 )+ e
i(θ1−θ2)(ω−2 + iω

−

3 )],

γ (ω+3 ) =
1
2 [e

i(−θ1+θ2)(ω−3 + iω
−

2 )+ e
i(θ1−θ2)(ω−3 − iω

−

2 )].

(2.13)

Therefore, we can write

γ |32
+
=

1 0 0
0 cos(θ1 + θ2) − sin(θ1 + θ2)

0 sin(θ1 + θ2) cos(θ1 + θ2)

 , (2.14)

γ |32
−
=

1 0 0
0 cos(−θ1 + θ2) − sin(−θ1 + θ2)

0 sin(−θ1 + θ2) cos(−θ1 + θ2)

 . (2.15)

To derive (2), we compute

tr(γ |S2
0NC

) = tr(γ |32
+⊗3

2
−
) = tr(γ |32

+
) · tr(γ |32

−
)

= (1+ 2 cos(θ1 + θ2)) · (1+ 2 cos(−θ1 + θ2))

= 1+ 2 cos(θ1 + θ2)+ 2 cos(−θ1 + θ2)+ 4 cos(θ1 + θ2) cos(−θ1 + θ2). (2.16)

Next, to see how γ acts on S2
0(3

2
+), decompose

S2
03

2
+ = [C⊗ (ω

+

2 ⊕ ω
+

3 )] ⊕ S
2
0(ω
+

2 ⊕ ω
+

3 )⊕ tr, (2.17)

where tr = 2ω+1 − (ω
+

2 + ω
+

3 ) denotes the trace component, and write the basis of
S2

0(ω
+

2 ⊕ ω
+

3 ) as

{ω+2 ⊗ ω
+

2 − ω
+

3 ⊗ ω
+

3 , ω
+

2 ⊗ ω
+

3 + ω
+

3 ⊗ ω
+

2 }. (2.18)

We see that

γ |ω+1 ⊗(ω
+

2 ⊕ω
+

3 )
=

(
cos(θ1 + θ2) − sin(θ1 + θ2)

sin(θ1 + θ2) cos(θ1 + θ2)

)
, (2.19)
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γ |S2
0 (ω
+

2 ⊕ω
2
3)
=

(
cos2(θ1+θ2)−sin2(θ1+θ2) −2 sin(θ1+θ2) cos(θ1+θ2)

2 sin(θ1+θ2) cos(θ1+θ2) cos2(θ1+θ2)−sin2(θ1+θ2)

)
, (2.20)

γ |tr∈S2
03

2
+
= 1. (2.21)

Using these, we derive (3) by computing

tr(γ |S2
03

2
+
) = [2 cos(θ1 + θ2)] + [4 cos2(θ1 + θ2)− 2] + [1]

= 2 cos(θ1 + θ2)+ 4 cos2(θ1 + θ2)− 1. (2.22)

ut

2.2. Equivariant Chern character

We next compute the term chγ (i∗σ)/chγ (λ−1NC). The numerator of this term is the
γ -equivariant Chern character of the pullback of the principal symbol, i∗σ , described in
(2.5) and (2.6). The denominator is the γ -equivariant Chern character of the K-theoretic
Thom class of the complexified normal bundle. Since the normal bundle is trivial over the
fixed point, this is

λ−1NC = [3
0(C4)] − [31(C4)] + [32(C4)] − [33(C4)] + [34(C4)]. (2.23)

Since the γ -equivariant Chern character is just the γ -action times the Chern character of
each eigenspace, using Proposition 2.1, we compute

chγ (i∗σ) = tr(γ |NC)− tr(γ |S2
0NC

)+ tr(γ |S2
03

2
+
)

= [2 cos θ1 + 2 cos θ2]

− [1+ 2 cos(θ1 + θ2)+ 2 cos(−θ1 + θ2)+ 4 cos(θ1 + θ2) cos(−θ1 + θ2)]

+ [2 cos(θ1 + θ2)+ 4 cos2(θ1 + θ2)− 1]
= [2 cos θ1 + 2 cos θ2 − 2− 2 cos(θ1) cos(θ2)]

+ [−2 sin(θ1) sin(θ2)− 8 cos(θ1) cos(θ2) sin(θ1) sin(θ2)+ 8 sin2(θ1) sin2(θ2)]

= [−2(cos θ1 − 1)(cos θ2 − 1)] + [8(1− cos2 θ1)(1− cos2 θ2)]

+ [−2 sin(θ1) sin(θ2)− 8 cos(θ1) cos(θ2) sin(θ1) sin(θ2)]. (2.24)

Similarly, we compute

chγ (λ−1NC) = tr(γ |[30(C4)])− tr(γ |[31(C4)])+ tr(γ |[32(C4)])

− tr(γ |[33(C4)])+ tr(γ |[34(C4)]) = 4(cos θ1 − 1)(cos θ2 − 1). (2.25)

Therefore

chγ (i∗σ)
chγ (λ−1NC)

=

[
−

1
2
+ 2(1+ cos θ1)(1+ cos θ2)

]
−

[
2 sin(θ1) sin(θ2)+ 8 cos(θ1) cos(θ2) sin(θ1) sin(θ2)

4(cos θ1 − 1)(cos θ2 − 1)

]
. (2.26)
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Since sin(θ1) sin(θ2)
(cos θ1−1)(cos θ2−1) = cot

(
θ1
2

)
cot
(
θ2
2

)
, we see that

chγ (i∗σ)
chγ (λ−1NC)

= −
1
2
+ 2(1+ cos θ1)(1+ cos θ2)−

1
2

cot
(
θ1

2

)
cot
(
θ2

2

)
− 2 cot

(
θ1

2

)
cot
(
θ2

2

)
cos(θ1) cos(θ2). (2.27)

2.3. The 0-index

For an orbifold with a single isolated singularity, we have a formula for the Euler charac-
teristic,

χtop(M) = χorb(M)+
|0| − 1
|0|

, (2.28)

and a formula for the signature,

τtop(M) = τorb(M)− η(S
3/0), (2.29)

where 0 ⊂ SO(4) is the orbifold group around the fixed point and η(S3/0) is the eta-
invariant, which in our case is given by

η(S3/0) =
1
|0|

∑
γ 6=Id

cot
(
θ1

2
j

)
cot
(
θ2

2
j

)
. (2.30)

See [Hit97] for a useful discussion of the formulas (2.28) and (2.29).
Combining (2.28) and (2.29) with the formula for the 0-index given in (2.2), we have

Ind0 =
1
2
(15χtop + 29τtop)−

15
2

(
|0| − 1
|0|

)
+

29
2
η(S3/0)+

1
|0|

∑
γ 6=Id

chγ (i∗σ)
chγ (λ−1NC)

,

(2.31)

where the last term is given by formula (2.27).

3. 0-index for cyclic group actions

We consider an orbifold with an isolated singularity having the group action 0(q,p) gen-
erated by

γ =


cos
( 2π
p

)
− sin

( 2π
p

)
0 0

sin
( 2π
p

)
cos
( 2π
p

)
0 0

0 0 cos
( 2π
p
q
)
− sin

( 2π
p
q
)

0 0 sin
( 2π
p
q
)

cos
( 2π
p
q
)

 , (3.1)

where p and q are relatively prime. The cases when q = 1 and q = p − 1 have already
been resolved in [Via13], and although we are specifically interested in 1 < q < p − 1,
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we will make use of the sum ∑
γ 6=Id

chγ (i∗σ)
chγ (λ−1NC)

(3.2)

in all cases, and make our computations accordingly. We begin this section by simplifying
our formula for this sum in general:∑
γ 6=Id

chγ (i∗σ)
chγ (λ−1NC)

=

p−1∑
j=1

[
−

1
2
+ 2

(
1+ cos

(
2π
p
j

))(
1+ cos

(
2π
p
qj

))
−

1
2

cot
(
π

p
j

)
cot
(
π

p
qj

)]

−

p−1∑
j=1

2 cot
(
π

p
j

)
cot
(
π

p
qj

)
cos
(

2π
p
j

)
cos
(

2π
p
qj

)

=

p−1∑
j=1

[
3
2
+ 2 cos

(
2π
p
j

)
+ 2 cos

(
2π
p
qj

)
+ cos

(
2π
p
(q + 1)j

)]

+

p−1∑
j=1

[
cos
(

2π
p
(q − 1)j

)
−

1
2

cot
(
π

p
j

)
cot
(
π

p
qj

)]

+

p−1∑
j=1

[
−2 cot

(
π

p
j

)
cot
(
π

p
qj

)
cos
(

2π
p
j

)
cos
(

2π
p
qj

)]
. (3.3)

Now, to further simplify our formula for the 0-index, it is necessary to separate into the
following cases:

3.1. 0-index when 1 < q < p − 1

Using (3.3), we see that in this case

∑
γ 6=Id

chγ (i∗σ)
chγ (λ−1NC)

=

[
3
2
p −

15
2

]
−

1
2

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)

− 2
p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)
cos
(

2π
p
j

)
cos
(

2π
p
qj

)
. (3.4)

Therefore, by combining this with formula (2.31) for the 0-index, we have

Ind0(M) =
1
2
(15χtop + 29τtop)− 6+

14
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)

−
2
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)
cos
(

2π
p
j

)
cos
(

2π
p
qj

)
. (3.5)
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3.2. 0-index when q = 1 and p = 2

Using (3.3), we see that in this case∑
γ 6=Id

chγ (i∗σ)
chγ (λ−1NC)

= −
1
2
. (3.6)

Therefore, by combining this with (2.31), we have

Ind0(M) = 1
2 (15χtop + 29τtop)− 4. (3.7)

3.3. 0-index when q = 1 and p > 2

Using (3.3), we see that in this case∑
γ 6=Id

chγ (i∗σ)
chγ (λ−1NC)

=
5
2
p −

15
2
−

p−1∑
j=1

[
1
2

cot2
(
π

p
j

)
+ 2 cot2

(
π

p
j

)
cos2

(
2π
p
j

)]
.

(3.8)
Therefore, by combining this with (2.31), and the following well known formula for the
Dedekind sum (see [RG72]):

1
4p

p−1∑
j=1

cot2
(
π

p
j

)
=

1
12p

(p − 1)(p − 2), (3.9)

we have

Ind0(M) =
1
2
(15χtop+29τtop)−5+

14
p

p−1∑
j=1

cot2
(
π

p
j

)
−

2
p

p−1∑
j=1

cot2
(
π

p
j

)
cos2

(
2π
p
j

)

=
1
2
(15χtop+29τtop)−5+

12
p

p−1∑
j=1

cot2
(
π

p
j

)
+

8
p

p−1∑
j=1

cos4
(
π

p
j

)

=
1
2
(15χtop+29τtop)−2−

8
p
+

12
p

p−1∑
j=1

cot2
(
π

p
j

)
=

1
2
(15χtop+29τtop)−2−

8
p
+

4
p
(p2
−3p+2)

=
1
2
(15χtop+29τtop)+4p−14. (3.10)

3.4. 0-index when q = p − 1 and p > 2

Using (3.3), we see that in this case∑
γ 6=Id

chγ (i∗σ)
chg(λ−1NC)

=
5
2
p −

15
2
+

p−1∑
j=1

[
1
2

cot2
(
π

p
j

)
+ 2 cot2

(
π

p
j

)
cos2

(
2π
p
j

)]
.

(3.11)
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Therefore, by combining this with (2.31), we have

Ind0(M) =
1
2
(15χtop+29τtop)−5−

14
p

p−1∑
j=1

cot2
(
π

p
j

)
+

2
p

p−1∑
j=1

cot2
(
π

p
j

)
cos2

(
2π
p
j

)

=
1
2
(15χtop+29τtop)−8+

8
p
−

12
p

p−1∑
j=1

cot2
(
π

p
j

)
=

1
2
(15χtop+29τtop)−8+

8
p
−

4
p
(p2
−3p+2)

=
1
2
(15χtop+29τtop)−4p+4. (3.12)

4. Non-topological terms in the 0-index

We denote the terms in the 0-index not involving the topological Euler characteristic or
topological signature by N(q, p). Also we change our notation of the 0-index from Ind0
to Ind(q,p) to reflect the particular group action. With this new notation we can write the
index as

Ind(q,p) = 1
2 (15χtop + 29τtop)+N(q, p). (4.1)

In this section we will simplify our formulas for N(q, p). Also, for the remainder of
the paper we will use the following notation. For two relatively prime positive integers
α < β, denote α’s inverse modulo β by α−1;β , and β’s inverse modulo α by β−1;α , i.e.

αα−1;β
≡ 1 mod β and ββ−1;α

≡ 1 mod α. (4.2)

In the cases that N(q, p) is easy to compute we see that

N(q, p) =

{
4p − 14 when 1 = q < p − 1
−4p + 4 when q = p − 1.

(4.3)

Note that the case when q = ±1 and p = 2 can be actually included in the q = p − 1
case. It will be convenient later if we also have these formulas written in terms of sawtooth
functions, a cotangent sum and a constant where the sawtooth function is defined to be

((x)) =

{
x − bxc − 1/2 when x /∈ Z,
0 when x ∈ Z.

(4.4)

We will include the formulas from (4.3), written in this way, below in Theorem 4.2.
To compute N(q, p) in all other cases we will employ the following proposition:

Proposition 4.1.

−
1

2p

p−1∑
j=1

sin
(

2π
p
qj

)
cot
(
π

p
j

)
=

((
q

p

))
, (4.5)

which is the sawtooth function defined in (4.4).
Proof. This is due to Eisenstein; see [Apo90]. ut
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Theorem 4.2. When q 6≡ (p − 1) mod p we have the formula

N(q, p) = −6+
12
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)
− 4

((
q−1;p

p

))
− 4

((
q

p

))
, (4.6)

and when q ≡ (p − 1) mod p we have

N(q, p) = N(p − 1, p) = −4−
12
p

p−1∑
j=1

cot2
(
π

p
j

)
+ 8

((
1
p

))
. (4.7)

Proof. For the q = p − 1 case, by examining the formulas in (3.10) and (3.12), one can
easily see that we can also write N(p − 1, p) = −4p + 4 in this way. Now, consider the
1 ≤ q < p case. From (3.5), we begin by computing

N(q, p) = −6+
14
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)

−
2
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)
cos
(

2π
p
j

)
cos
(

2π
p
qj

)

= −6+
2
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)[
7− cos

(
2π
p
j

)
cos
(

2π
p
qj

)]
, (4.8)

and using the identity cos(2x) = 1− 2 sin2(x), we expand this to

−6+
2
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)[
7−

(
1− 2 sin2

(
π

p
j

))(
1− 2 sin2

(
π

p
qj

))]

= −6+
2
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)[
6+ 2 sin2

(
π

p
j

)
+ 2 sin2

(
π

p
qj

)]

+
2
p

p−1∑
j=1

cot
(
π

p
j

)
cot
(
π

p
qj

)[
−4 sin2

(
π

p
j

)
sin2

(
π

p
qj

)]
, (4.9)

which simplifies to

N(q, p) = −6+
1
p

p−1∑
j=1

12 cot
(
π

p
j

)
cot
(
π

p
qj

)
+

1
p

p−1∑
j=1

2 sin
(

2π
p
j

)
cot
(
π

p
qj

)

+
1
p

p−1∑
j=1

4 sin
(
π

p
qj

)
cos
(
π

p
qj

)
cot
(
π

p
j

)

−
1
p

p−1∑
j=1

8 sin
(
π

p
j

)
cos
(
π

p
j

)
sin
(
π

p
qj

)
cos
(
π

p
qj

)
. (4.10)
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The fifth term on the right hand side of (4.10) sums to zero because

−8
p

p−1∑
j=1

sin
(
π

p
j

)
cos
(
π

p
j

)
sin
(
π

p
qj

)
cos
(
π

p
qj

)
=
−4
p

p−1∑
j=1

sin
(

2π
p
j

)
sin
(

2π
p
qj

)

=
−2
p

p−1∑
j=1

[
cos
(

2π
p
(1− q)j

)
− cos

(
2π
p
(1+ q)j

)]
= 0. (4.11)

By Proposition 4.1, the fourth term on the right hand side of (4.10) is

4
p

p−1∑
j=1

sin
(
π

p
qj

)
cos
(
π

p
qj

)
cot
(
π

p
j

)
=

2
p

p−1∑
j=1

sin
(

2
π

p
qj

)
cot
(
π

p
j

)
= −4

((
q

p

))
,

and the third term on the right hand side of (4.10) is

2
p

p−1∑
j=1

sin
(

2π
p
j

)
cot
(
π

p
qj

)
=

2
p

p−1∑
j=1

sin
(

2π
p
qq−1;pj

)
cot
(
π

p
qj

)

=
2
p

p−1∑
r=1

sin
(

2π
p
q−1;pr

)
cot
(
π

p
r

)
= −4

((
q−1;p

p

))
,

where r = jq−1;p; this finishes the proof. ut

Since the formulas for N(q, p) given in Theorem 4.2 are the same in all cases except
when q = p − 1, we make the following definition:

Definition 4.3. A singularity is said to be exceptional if it results from a (p−1, p)-action.
Otherwise, it is called non-exceptional.

5. Explicit formula for N(q, p)

We begin this section by proving reciprocity formulas for the individual summands
of N(q, p). Then, we use these relations to prove reciprocity formulas for N(q, p),
which will later be used to compute N(q, p) explicitly. Since we have already computed
N(1, p), for the simplicity of presentation, we will assume that q > 1 for the following.
To simplify notation we let A(q, p) = 48s(q, p), where s(q, p) is the Dedekind sum
defined in (1.20).

Proposition 5.1. Writing p = eq − a, we have the following reciprocity relations:

(1) A(q, p)+ A(p, q) = −12+ 4e − 4
a

q
+ 4

q

p
+ 4

1
pq

,

(2) −4
((
q−1;p

p

))
− 4

((
p−1;q

q

))
= −

4
pq

,

(3) −4
((
q

p

))
− 4

((
p

q

))
= −4

q

p
+ 4

a

q
.
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Proof. By the reciprocity formula for Dedekind sums [RG72], we have

A(q, p)+ A(p, q) = −12+ 4
(
p

q
+
q

p
+

1
pq

)
= −12+ 4

(
e −

a

q
+
q

p
+

1
pq

)
= −12+ 4e − 4

a

q
+ 4

q

p
+ 4

1
pq
. (5.1)

Next,

−4
((
q−1;p

p

))
− 4

((
p−1;q

q

))
=

(
−4
q−1;p

p
+ 2

)
+

(
4
a−1;q

q
− 2

)
= −4

q−1;p

p
+ 4

a−1;q

q
= 4
−qq−1;p

+ a−1;qp

pq
. (5.2)

Then, using the equality q−1;pq = 1+ a−1;qp (see Proposition 7.1), we obtain

−4
((
q−1;p

p

))
− 4

((
p−1;q

q

))
= 4
−qq−1;p

+ a−1;qp

pq

= 4
−(1+ αp)+ a−1;qp

pq
= −

4
pq
. (5.3)

Finally,

−4
((
q

p

))
− 4

((
p

q

))
=

(
−4

q

p
+ 2

)
+

(
4
a

q
− 2

)
= −4

q

p
+ 4

a

q
. (5.4)

ut

Next, we will prove useful reciprocity formulas for N(q, p). Denote

R+(q, p) = N(q, p)+N(p, q),

R−(q, p) = N(−q, p)+N(−p, q).
(5.5)

Proposition 5.2. Writing p = eq − a with 0 < a < q, we have the following formulas:

R+(q, p) =



−4 when q = 1 and p = 2,
−14 when 1 < q = p − 1,
4p − 14 when 1 = q < p − 1,
4e − 22 when p = eq − 1,
4e − 24 when 2 ≤ a ≤ q − 1,

(5.6)

R−(q, p) =



−4 when q = 1 and p = 2,
−6 when 1 < q = p − 1,
−4p + 4 when 1 = q < p − 1,
−4e + 2 when p = eq − (q − 1) and 1 < q < p − 1,
−4e when 1 ≤ a ≤ q − 2 and 2 < q.

(5.7)
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Proof. The first three formulas for both R+(q, p) and R−(q, p) are easily computable
from the cases where N(q, p) is easy to compute. Denote by C(α,β) the constant term in
N(α, β), so

C(α,β) =

{
−6 for a non-exceptional singularity,
−4 for an exceptional singularity.

(5.8)

When p = eq − a, where 1 ≤ a < q − 1, we have

R+(q, p) = N(q, p)+N(p, q) =

[
C(q,p) + A(q, p)− 4

((
q−1;p

p

))
− 4

((
q

p

))]
+

[
C(p,q) + A(p, q)− 4

((
p−1;q

q

))
− 4

((
p

q

))]
.

Then, by Proposition 5.1, we see that

R+(q, p) = C(q,p) + C(p,q) +

[
−12+ 4e − 4

a

q
+ 4

q

p
+

4
pq

]
+

[
−

4
pq
− 4

q

p
+ 4

a

q

]
= 4e + C(q,p) + C(p,q) − 12,

which proves the reciprocity formulas in each respective case. The proof for R−(q, p) is
similar and is omitted. ut

We next use the above reciprocity relations to recursively compute an explicit formula for
N(q, p):

Theorem 5.3. For q and p and relatively prime, we have

N(q, p) =


k∑
i=1

4ei − 12k − 2 when q 6≡ (p − 1) mod p,

k∑
i=1

4ei − 12k = −4p + 4 when q ≡ (p − 1) mod p,

(5.9)

where k and ei , 1 ≤ i ≤ k, were defined above in the modified Euclidean algorithm (1.8).

Proof. We have already proved the second case in (4.3), and we will now prove the first
case, so we need only consider q 6≡ (p−1) mod p. Since our formulas only depend upon
q mod p, we can assume that 1 ≤ q < p − 1. We begin by using Proposition 5.2 to
compute N(q, p) as follows:

N(q, p) = R+(q, p)−N(p, q) = R+(q, p)−N(e1q − a1, q)

= R+(q, p)−N(−a1, q)

= R+(q, p)−N(−a1, q)−N(−q, a1)+N(−q, a1)

= R+(q, p)− R−(a1, q)+N(a2, a1)+N(a1, a2)−N(a1, a2)

= R+(q, p)− R−(a1, q)+ R
+(a2, a1)−N(−a3, a2).
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Continuing this iteratively, we arrive at the formula

N(q, p) =

r+1∑
i=1

4ei − 24
⌈
r + 1

2

⌉
+
[
(−1)r+1R(−1)r+1

(ar+1, ar)+ (−1)r+2N((−1)r+2ar+2, ar+1)
]
,

where ar = er+2ar+1− 1 or ar = er+2ar+1− (ar+1− 1). It is only necessary to consider
the following four cases:

(1) When r + 2 is even and ar+2 = 1,

N(q, p) =

r+3∑
i=1

4ei − 12(r + 2)− 14.

(2) When r + 2 is odd and ar+2 = 1,

N(q, p) =

r+3∑
i=1

4ei − 12(r + 1)− 26.

(3) When r + 2 is even and ar+2 = ar+1 − 1,

N(q, p) =

r+2∑
i=1

4ei − 4ar+1 − 12(r + 2)+ 2.

(4) When r + 2 is odd and ar+2 = ar+1 − 1,

N(q, p) =

r+2∑
i=1

4ei − 4ar+1 − 12(r + 1)− 10.

The formulas for N(q, p) in each case are a direct consequence of (4.3) and Proposition
5.2. In cases (1) and (2), k = r + 3. So in terms of k we have

N(q, p) =

k∑
i=1

4ei − 12k − 2, (5.10)

for both cases. Now, in case (3), k = (ar+1 − 1) + (r + 2) and ei = 2 for i ≥ r + 3.
Therefore we can check that

k∑
i=1

4ei − 12k − 2 =
[r+2∑
i=1

4ei − 12(r + 2)
]
+

[ k∑
i=r+3

4ei − 12(ar+1 − 1)− 2
]

=

r+2∑
i=1

4ei − 12(r + 2)− 4ar+1 + 2 = N(q, p). (5.11)

Finally, in case (4), k = (ar+1 − 1) + (r + 2) and ei = 2 for i ≥ r + 3, and the result
holds similarly. ut

Theorem 1.4 is then a trivial consequence of Theorem 5.3 and (4.1).
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Remark 5.4. Ashikaga and Ishizaka [AI08, Theorem 1.1] prove a recursive formula for
the Dedekind sum, which is equivalent to Theorem 5.3. However, our proof is more ele-
mentary and relies only on the reciprocity law for Dedekind sums. We will also need to
use Proposition 5.2 below in Section 7.

6. Index on Calderbank–Singer spaces

In this section, we prove the results regarding the Calderbank–Singer metrics. Let k and k′

be the lengths of the modified Euclidean algorithm for (q, p) and (p−q, p) respectively.

Proof of Theorem 1.8. It follows from (1.12) that the compactified Calderbank–Singer
space (X̂, ĝ) satisfies τtop(X̂) = −k and χtop(X̂) = k + 2, so for a (p − q, p)-action
when q 6= 1, the index is

Ind(X̂, ĝ) = 1
2 (15χtop + 29τtop)+N(q, p) = [−7k + 15] +

[ k′∑
i=1

4e′i − 12k′ − 2
]
.

We next use a 4-dimensional (q, p)-football, denoted by S4
(q,p), to relate k and k′. This is

defined using the 0(p,q) action, acting as rotations around the x5-axis:

S4
(q,p) = S

4/0(q,p). (6.1)

This quotient is an orbifold with two singular points, one of (q, p)-type, and the other of
(−q, p)-type. Since χtop(S

4
(q,p)) = 2 and τtop(S

4
(q,p)) = 0, the index of (1.1) on S4

(q,p)

with the round metric gS is

Ind(S4
(q,p), gS) = 3 for 1 < q < p − 1. (6.2)

This is immediate from examining formula (3.5) for the index because the trigonometric
sums coming from the (q, p)-type singularity cancel those coming from the (−q, p)-type
singularity. Alternatively, this index can be computed directly, since it is well known that
H 1
= 0 and H 2

= 0, and the dimension of the conformal automorphsim group of S4/0

is 3 (for 1 < q < p − 1), which follows from [McC02]. Using the formula

Ind(S4
(q,p), gS) =

1
2 (15χtop + 29τtop)+N(q, p)+N(−q, p), (6.3)

and Theorem 5.3, we have

−12 = N(q, p)+N(−q, p) = N(q, p)+N(p − q, p)

=

[ k∑
i=1

4ei − 12k − 2
]
+

[ k′∑
i=1

4e′i − 12k′ − 2
]
, (6.4)

which yields the formula

k′ =
1

12

(
8+

k∑
i=1

4ei +
k′∑
i=1

4e′i − 12k
)
. (6.5)
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Then, substituting this for k in Ind(X̂, ĝ) gives

Ind(X̂, ĝ) = [−7k + 15] +
[ k′∑
i=1

4e′i −
(

8+
k∑
i=1

4ei +
k′∑
i=1

4e′i − 12k
)
− 2

]
= 5k + 5−

k∑
i=1

4ei . (6.6)

Next, when q = 1, we have k = 1, so the index is

Ind(X̂, ĝ) = [−7k + 15] + [−4p + 4] = −4p + 12. (6.7)

ut

Proof of Theorem 1.9. Calderbank–Singer showed that their toric metrics come in fam-
ilies of dimension k − 1. It was proved by Dominic Wright [Wri11, Corollary 1.1] that
the moduli space of toric anti-self-dual metrics on the orbifolds is of dimension exactly
k − 1. So as long as we show the moduli space has dimension strictly larger than k − 1,
there must be non-toric deformations.

The (1, 2) case is the Eguchi–Hanson metric which has no deformations. For q = 1
and p > 2, the (1, p)-type Calderbank–Singer spaces are exactly the LeBrun negative
mass metrics on O(−p) found in [LeB88]. For p = 3, it was shown in [Hon13] that the
moduli space of these metrics is of dimension 1, so the result is true since 1 > 0 = k− 1.
For p ≥ 4, by [Via13, Theorem 1.9], the moduli space has dimension at least 4p−12 > 0
(in fact the dimension is exactly 4p− 12, see [Hon13, Theorem 1.1]). So the result holds
for q = 1 and p ≥ 3. We also mention that [Hon13, Theorem 1.1] determines exactly the
identity component of the automorphism groups of the deformations.

Next, assume that q = p−1. In this case, the metrics are hyperkähler, and correspond
to toric multi-Eguchi–Hanson metrics. In this case, the moduli space of all hyperkähler
metrics is known to be exactly of dimension 3(k − 1).

Next, we assume that 1 < q < p−1. As mentioned in the Introduction, from [LM08,
Theorem 4.2], we know that dim(H 2(X̂, ĝ)) = 0. Also, dim(H 0) = 2, since the metrics
are toric and q > 1. Therefore

dim(H 1) = − Ind(X̂, ĝ)+ dim(H 0) = − Ind(X̂, ĝ)+ 2. (6.8)

When q 6= 1, we have

−Ind = −5k − 5+
k∑
i=1

4ei . (6.9)

Since ei ≥ 2 for all i and since q < p − 1, we have ej ≥ 3 for some j , 1 ≤ j ≤ k.
Therefore

dim(H 1) ≥ 3k + 1. (6.10)

The actual moduli space is locally isomorphic to H 1/H 0, so it has dimension at least
3k − 1 > 3(k − 1). ut
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7. Index on weighted projective spaces

In this section we will study the index of the complex (1.1) at the Bochner–Kähler metrics
of Bryant with reversed orientation to make them anti-self-dual. This reversal of orienta-
tion makes the orbifold points have orientation-reversing conjugate actions as follows:

(1) Around [1, 0, 0] there is a (−q−1;rp, r)-action.
(2) Around [0, 1, 0] there is a (−p−1;qr, q)-action.
(3) Around [0, 0, 1] there is a (−r−1;pq, p)-action.

In the next subsection, we will present some elementary number-theoretic propositions
that we will use throughout our computations. After that, we will prove crucial reciprocity
laws for sawtooth functions relating r, q and p and then employ these to prove our main
formula for the index. Finally, we use this formula to prove Theorem 1.13.

7.1. Elementary number-theoretic preliminaries

Recall that for two relatively prime positive integers 1 < α < β, we denote α’s inverse
modulo β by α−1;β , and β’s inverse modulo α by β−1;α . Since α < β we can write

β = eα − a, (7.1)

where e and a are positive integers with a < α. Then we have the following proposition:

Proposition 7.1. We have the following identities:

(1) β−1;α
= α − a−1;α ,

(2) αα−1;β
= 1+ a−1;αβ.

Proof. To prove the first identity, recall that β = eα − a, so

β(α − a−1;α) = (eα − a)(α − a−1;α) = eα2
− eαa−1;α

− aα + aa−1;α
≡ 1 mod α.

This proves the first identity because α − a−1;α < α and the multiplicative inverses are
unique.

To prove the second identity we first write

αα−1;β
= 1+Xβ. (7.2)

Since α > 1 we know X must be a positive integer. We can then solve for

β =
αα−1;β

− 1
X

. (7.3)

Therefore β = αα−1;β
−1

X
= eα − a, so

αα−1;β
− 1 = eαX − aX, (7.4)

from which we see that

aX = α(eX − α−1;β)+ 1, (7.5)

so aX ≡ 1 mod α. This proves the second identity because X = αα−1;β
−1

β
< α and

multiplicative inverses are unique. ut
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Recall that the fractional part of x is defined by

{x} = x − bxc. (7.6)

We will use the following proposition extensively in the next section, the proof is elemen-
tary:

Proposition 7.2. For any real α and β, both non-integral,

((α + β)) =


((α))+ ((β))+ 1/2 when {α} + {β} < 1,
((α))+ ((β))− 1/2 when {α} + {β} > 1,
0 when {α} + {β} = 1.

(7.7)

7.2. Reciprocity formulas for sawtooth functions

Let r < q < p and write
p = eprr − apr ,

p = epqq − apq ,

q = eqrr − aqr .

(7.8)

We have the following identities from Proposition 7.1(1):

p−1;r
= r − a−1;r

pr ,

p−1;q
= q − a

−1;q
pq ,

q−1;r
= r − a−1;r

qr

(7.9)

and from Proposition 7.1(2):

rr−1;p
= 1+ a−1;r

pr p,

rr−1;q
= 1+ a−1;r

qr q,

qq−1;p
= 1+ a−1;q

pq p.

(7.10)

We now use these identities to prove reciprocity laws for the sawtooth function. These
reciprocity laws will be broken up into two theorems where the first is independent of
r + q in relation to p and the second is dependent.

Theorem 7.3. We have the following reciprocity relations:

(1)
((
qp−1;r

r

))
+

((
qr−1;p

p

))
=

q

pr
,

(2)
((
rp−1;q

q

))
+

((
rq−1;p

p

))
=

r

pq
.
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Proof. Consider the first reciprocity relation. We have((
qp−1;r

r

))
+

((
qr−1;p

p

))
=

((
q(r − a

−1;r
pr )

r

))
+

((
rr−1;pq

pr

))
=

((
q −

qa
−1;r
pr

r

))
+

((
q

pr
+
qa
−1;r
pr

r

))
= −

((
qa
−1;r
pr

r

))
+

((
q

pr
+
qa
−1;r
pr

r

))
. (7.11)

Now, we can write qa−1;r
pr /r = X + C/r where X > 0 and 0 < C < r are positive

integers so that

−

((
qa
−1;r
pr

r

))
+

((
q

pr
+
qa
−1;r
pr

r

))
= −

((
C

r

))
+

((
q

pr
+
C

r

))
. (7.12)

Since 0 < C < r we know that

q

pr
+
C

r
≤

q

pr
+
r − 1
r
=

q

pr
+
pr − p

pr
< 1, (7.13)

because q < p, which implies that{
q

pr

}
+

{
C

r

}
< 1. (7.14)

Therefore, by Proposition 7.2, we can separate the second sawtooth function to get((
q

pr
+
C

r

))
=

((
q

pr

))
+

((
C

r

))
+

1
2
. (7.15)

Putting this back into (7.12) we see that((
qp−1;r

r

))
+

((
qr−1;p

p

))
= −

((
C

r

))
+

((
q

pr
+
C

r

))
= −

((
C

r

))
+

((
q

pr

))
+

((
C

r

))
+

1
2
=

((
q

pr

))
+

1
2

=
q

pr
−

⌊
q

pr

⌋
=

q

pr
. (7.16)

The proof of the second reciprocity relation exactly follows the proof of the first. ut

The next theorem gives a similar reciprocity relation, but it is dependent upon r + q in
relation to p.
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Theorem 7.4. For 1 < r < q < p we have the following reciprocity relation:

((
q−1;rp

r

))
+

((
r−1;qp

q

))
=



p
qr

when r + q > p,
p
qr
− 1 when r + q = p,

p
qr
−
⌊ p
qr

⌋
when r + q < p

and
{ p
qr

}
<
{ q−1;rp

r

}
,

p
qr
−
⌊ p
qr

⌋
− 1 when r + q < p

and
{ p
qr

}
>
{ q−1;rp

r

}
.

(7.17)

Proof. We begin in a similar way to the proof of Theorem 7.3:((
q−1;rp

r

))
+

((
r−1;qp

q

))
=

((
p(r − a

−1;r
qr )

r

))
+

((
(1+ a−1;r

qr q)p

qr

))
= −

((
a
−1;r
qr p

r

))
+

((
p

qr
+
a
−1;r
qr p

r

))
. (7.18)

Now, we can write a−1;r
qr p/r = X + C/r where X > 0 and 0 < C < r are positive

integers so that

−

((
a
−1;r
qr p

r

))
+

((
p

qr
+
a
−1;r
qr p

r

))
= −

((
C

r

))
+

((
p

qr
+
C

r

))
. (7.19)

The same argument that we used in the previous proof to split up the second sawtooth
function will no longer work because p > q, which could allow p/(qr)+ C/r > 1. Let
us consider the first case of this reciprocity relation when r+q > p. In this case we know
that p < rq so p < 2q since 1 < r < q. Now, we will show that C ≤ r − 2 and use this
to prove the first case. Write p as

p = kprr +mpr , (7.20)

where kpr = epr − 1 andmpr = r− apr are positive integers. We know that C/r is going
to be the fractional part of pa−1;r

qr /r which equals the fractional part of mpra
−1;r
qr /r . If

this equals (r − 1)/r then mpra
−1;r
pr ≡ −1 mod r and therefore mpr = r − aqr , because

multiplicative inverses are unique, which implies that apr = aqr (denote this value by A).
So we have

eprr − A = p < q + r = (eqrr − A)+ r, (7.21)

which is a contradiction because epr ≥ eqr + 1. Therefore C/r ≤ (r − 2)/r , so

p

qr
+
C

r
≤
p

qr
+
r − 2
r
=
p

qr
+
qr − 2q
qr

< 1, (7.22)
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which implies that {
p

qr

}
+

{
C

r

}
< 1. (7.23)

Therefore, by Proposition 7.2, we can separate the second sawtooth function to get

−

((
C

r

))
+

((
p

qr
+
C

r

))
= −

((
C

r

))
+

((
p

qr

))
+

((
C

r

))
+

1
2

=

((
p

qr

))
+

1
2
=
p

qr
−

⌊
p

qr

⌋
=
p

qr
, (7.24)

which proves the first case.
Now, consider the second case when r + q = p. In this case we see that((

p

qr
+
pa
−1;r
qr

r

))
=

((
p

qr
+
(r + q)a

−1;r
qr

r

))
=

((
p

qr
−
aqra

−1;r
qr

r

))
=

((
p

qr
−

1
r

))
=

(
p

qr
−

1
r

)
−

⌊
p

qr
−

1
r

⌋
−

1
2
=

1
q
−

1
2
. (7.25)

Then, we compare this to((
p

qr

))
+

((
pa
−1;r
qr

r

))
+

1
2
=

((
p

qr

))
+

((
(r + q)a

−1;r
qr

r

))
+

1
2

=

((
p

qr

))
+

((
−aqra

−1;r
qr

r

))
+

1
2
=

((
p

qr

))
−

((
1
r

))
+

1
2

=

(
p

qr
−

⌊
p

qr

⌋
−

1
2

)
−

(
1
r
−

⌊
1
r

⌋
−

1
2

)
+

1
2

=
p

qr
−

1
r
+

1
2
=

1
q
+

1
2
=

((
p

qr
+
pa
−1;r
qr

r

))
+ 1. (7.26)

Therefore we see that

−

((
a
−1;r
qr p

r

))
+

((
p

qr
+
a
−1;r
qr p

r

))
= −

((
a
−1;r
qr p

r

))
+

((
p

qr

))
+

((
pa
−1;r
qr

r

))
−

1
2

=

((
p

qr

))
−

1
2
=
p

qr
−

⌊
p

qr

⌋
− 1 =

p

qr
− 1, (7.27)

which proves the second case.
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To prove the third and fourth cases we begin once again by using((
q−1;rp

r

))
+

((
r−1;qp

q

))
=

((
q−1;rp

r

))
+

((
p

qr
−
q−1;rp

r

))
. (7.28)

Notice that {
p

qr

}
+

{
−q−1;rp

r

}
=

{
p

qr

}
+ 1−

{
q−1;rp

r

}
, (7.29)

which is never equal to one because r , q and p are relatively prime. Now, the rest of the
proof of the third and fourth cases follows directly from Proposition 7.2. ut

7.3. 0-index for weighted projective spaces

First, recall Definition 4.3: singularities resulting from a (p − 1, p)-action are said to
be exceptional and otherwise they are called non-exceptional. Consider the case when
1 < r < q < p so that there are three singularities. Before giving theorems concerning
the index, we will first examine what type singularities, non-exceptional or exceptional,
are admitted around each orbifold point in the cases when r + q > p, r + q = p and
r + q < p.

Proposition 7.5. When r+q > p all three singularities are non-exceptional. If r+q = p
then:

(1) The singularity at [1, 0, 0] is always exceptional.
(2) The singularity at [0, 1, 0] is always exceptional.
(3) The singularity at [0, 0, 1] is non-exceptional and comes from a (1, p)-action.

If r + q < p then:

(1) The singularity at [1, 0, 0] is exceptional if and only if p ≡ q mod r .
(2) The singularity at [0, 1, 0] is exceptional if and only if p ≡ r mod q.
(3) The singularity at [0, 0, 1] is always non-exceptional.

Proof. At [1, 0, 0] the (−q−1;rp, r)-action is equivalent to a (−a−1;r
qr apr , r)-action, and

this is equivalent to an (r − 1, r)-action if and only if apr = aqr . If r + q > p, suppose
that apr = aqr ; then

p = eprr − aqr and q = eqrr − aqr , (7.30)

so p < q + r = (eqr + 1)r − aqr , which is a contradiction because epr ≥ eqr + 1. If
r + q = p we have

p = q + r = (eqr + 1)r − aqr , (7.31)

so apr = aqr since aqr < r . If r + q < p, then this happens if and only if p ≡ q mod r .
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At [0, 1, 0], by Remark 1.3, the (−p−1;qr, q)-action is equivalent to a (−r−1;qp, q)-
action. This is equivalent to an (r−1;qapq , q)-action, which is equivalent to a (q − 1, q)-
action if and only if apqr−1;q

≡ −1 mod q, which would imply that apq = q − r . If
r + q > p, suppose that apq = q − r; then

p = 2q − apq = 2q − (q − r) = q + r, (7.32)

which is a contradiction because r + q > p. If r + q = p, we have

p = 2q − (q − r), (7.33)

so apq = q − r . If r + q < p then this happens if and only if p ≡ r mod q.
At [0, 0, 1] the (−r−1;pq, p)-action is equivalent to a (p − 1, p)-action if and only

if r−1;pq ≡ 1 mod p. If r + q > p, this condition would imply that q = r , which is
a contradiction. If r + q = p then the (−r−1;pq, p)-action is obviously equivalent to a
(1, p)-action since q = p− r . If r + q < p then r−1;pq ≡ 1 mod p occurs if and only if
q = r , but q > r so this can never happen. ut

In the case r + q < p, we can add the following:

Proposition 7.6. When r + q < p and the singularities at [1, 0, 0] and [0, 1, 0] are both
exceptional, we have p = Xqr + r + q for some integer X, and{

p

qr

}
>

{
q−1;rp

r

}
. (7.34)

Proof. Since the singularities around [1, 0, 0] and [0, 1, 0] are both exceptional, from
Proposition 7.5 we know that

p ≡ q mod r p ≡ r mod q. (7.35)

Therefore, we can write
p = Y1q + r = Y2r + q, (7.36)

and solve for
r =

Y1 − 1
Y2 − 1

q, (7.37)

which implies that qX = Y2−1 for someX in Z, since q and r are relatively prime. Then
solving for Y2 = qX + 1 we see that

p = (qX + 1)r + q = Xqr + r + q. (7.38)

Now, since p = Xqr + r + q we see that apr = aqr . Therefore{
p

qr

}
−

{
a
−1;r
qr apr

r

}
=

{
Xqr + r + q

qr

}
−

{
a
−1;r
qr aqr

r

}
=

{
1
q
+

1
r

}
−

{
1
r

}
=

1
q
> 0. (7.39)

ut

The following is the main result of this section, which is the same as Theorem 1.12 upon
identifying the integer ε with the number of exceptional singularities:
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Theorem 7.7. Let g be the canonical Bochner–Kähler metric with reversed orientation
on CP2

(r,q,p), and assume that 1 < r < q < p. If r + q ≥ p then

Ind(CP2
(r,q,p), g) = 2. (7.40)

If r + q < p then

Ind(CP2
(r,q,p), g) =

2+ 2ε − 4
⌊ p
qr

⌋
when

{ p
qr

}
<
{ q−1;rp

r

}
,

−2+ 2ε − 4
⌊ p
qr

⌋
when

{ p
qr

}
>
{ q−1;rp

r

}
,

(7.41)

where ε is the number of exceptional singularities, either 0, 1, or 2.

Note that from Proposition 7.6 the only instance when two exceptional singularities can
occur is in the second case, thus there are really only five distinct cases. All of these cases
do in fact occur: see Table 7.1.

Table 7.1. Cases in Theorem 7.7

(r, q, p) ε
{ p
qr

}
−
{ q−1;rp

r

}
(3, 7, 11) 0 < 0

(3, 7, 41) 0 > 0

(3, 7, 25) 1 < 0

(3, 7, 13) 1 > 0

(3, 7, 31) 2 > 0

Proof of Theorem 7.7. Since 1 < r < q < p, there are three singularities. Furthermore,
χtop = 3 and τtop = −1 (see [Dim92, Appendix B]), so the 0-index is

Ind = 8+N(−q−1;rp, r)+N(−p−1;qr, q)+N(−r−1;pq, p)

= 8+
[
C(−q−1;rp,r)+A(−q

−1;rp, r)−4
((
−q−1;rp

r

))
−4

((
−p−1;rq

r

))]
+

[
C(−r−1;qp,q)+A(−p

−1;qr, q)−4
((
−r−1;qp

q

))
−4

((
−p−1;qr

q

))]
+

[
C(−r−1;pq,p)+A(−r

−1;pq, p)−4
((
−r−1;pq

p

))
−4

((
−q−1;pr

p

))]
, (7.42)

recalling that C(α,β) was defined above in (5.8). Then, using Rademacher’s triple reci-
procity for Dedekind sums [Rad54]

s(q−1;rp, r)+ s(p−1;qr, q)+ s(r−1;pq, p) = −
1
4
+

1
12

(
r

pq
+
q

pr
+
p

qr

)
, (7.43)
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we see that

Ind = 8+ [C(−q−1;rp,r) + C(−r−1;qp,q) + C(−r−1;pq,p)]

+ 48
[

1
4
−

1
12

(
r

pq
+
q

pr
+
p

qr

)]
+ 4

[((
q−1;rp

r

))
+

((
p−1;rq

r

))
+

((
r−1;qp

q

))]
+ 4

[((
p−1;qr

q

))
+

((
r−1;pq

p

))
+

((
q−1;pr

p

))]
. (7.44)

Now, using our reciprocity laws for sawtooth functions, Theorems 7.3 and 7.4, and the
restrictions on the types of singularities admitted, Proposition 7.5, we complete the proof
for each case.

When r + q > p,

Ind = 8+ [−18] + 48
[

1
4
−

1
12

(
r

pq
+
q

pr
+
p

qr

)]
+ 4

[
r

pq
+
q

pr
+
p

qr

]
= 2.

When r + q = p,

Ind = 8+ [−14] + 48
[

1
4
−

1
12

(
r

pq
+
q

pr
+
p

qr

)]
+ 4

[
r

pq
+
q

pr
+
p

qr
− 1

]
= 2.

When r + q < p and
{ p
qr

}
<
{ q−1;rp

r

}
,

Ind = 8+ [C(−q−1;rp,r) + C(−r−1;qp,q) + C(−r−1;pq,p)]

+ 48
[

1
4
−

1
12

(
r

pq
+
q

pr
+
p

qr

)]
+ 4

[
r

pq
+
q

pr
+
p

qr
−

⌊
p

qr

⌋]
= 20+ [C(−q−1;rp,r) + C(−r−1;qp,q) + C(−r−1;pq,p)] − 4

⌊
p

qr

⌋
= 2+ 2ε − 4

⌊
p

qr

⌋
.

When r + q < p and
{ p
qr

}
>
{ q−1;rp

r

}
,

Ind = 8+ [C(−q−1;rp,r) + C(−r−1;qp,q) + C(−r−1;pq,p)]

+ 48
[

1
4
−

1
12

(
r

pq
+
q

pr
+
p

qr

)]
+ 4

[
r

pq
+
q

pr
+
p

qr
− 1−

⌊
p

qr

⌋]
= 16+ [C(−q−1;rp,r) + C(−r−1;qp,q) + C(−r−1;pq,p)] − 4

⌊
p

qr

⌋
= −2+ 2ε − 4

⌊
p

qr

⌋
.

This completes the proof. ut
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We also state the following theorem, which gives the index in the cases when there are
strictly less than three singularities.

Theorem 7.8. Let g be the canonical Bochner–Kähler metric with reversed orientation
on CP2

(r,q,p). When 1 = r < q < p there are two singularities and

Ind(CP2
(1,q,p), g) =


2 when q = p − 1,
−4
⌊p
q

⌋
+ 6 when p = eq − (q − 1) and q 6= p − 1,

−4
⌊p
q

⌋
+ 4 when 1 ≤ apq ≤ q − 2 and q > 2.

(7.45)

When 1 = r = q < p there is one singularity and

Ind(CP2
(1,1,p), g) = −4p + 12. (7.46)

Proof. We have
1
2 (15χtop + 20τtop) = 8, (7.47)

Since 1 = r < q < p we know that p > 2. The first case follows from the reciprocity
formula for R−(q, p) in Proposition 5.2. The second case follows from N(−1, p) =
−4p + 4 in (4.3). ut

7.4. Proof of Theorem 1.13

We first present a general result about H 2(M, g) on certain self-dual Kähler orbifolds:

Proposition 7.9. Let (M, g) be a compact self-dual Kähler orbifold and assume that the
set M>0

= {p ∈ M : R(p) > 0} is non-empty. With the reversed orientation to make g
anti-self-dual, we have H 2(M, g) = 0.

Proof. As mentioned in the Introduction, the metric g̃ = R−2g is an Einstein metric,
which is complete on components of M∗. If Z ∈ S2

0(3
2
+(T

∗M)) satisfies D∗gZ = 0,
where D∗g is the adjoint of Dg , then from conformal invariance D∗

g̃
Z = 0 when Z is

viewed as a (1, 3) tensor. We compute

|Z|2g̃ = g̃
ipg̃jqZ

l
ijk Z

k
pql = R

4gipgjqZ
l

ijk Z
k

pql = R
4
|Z|2g, (7.48)

so we have
|Z|g̃ = R

2
|Z|g. (7.49)

Let M∗1 denote any non-trivial component of M∗. Since the metric g̃ is Einstein on M∗1 ,
from [Ito95, Proposition 5.1], we have

Dg̃D∗g̃Z =
1
24 (3∇

∗

g̃∇g̃ + 2Rg̃)(2∇∗g̃∇g̃ + Rg̃)Z, (7.50)

where Rg̃ is the (constant) scalar curvature of the Einstein metric g̃ onM∗1 . IfM>0
= M ,

then the maximum principle immediately implies that Z = 0. Otherwise, there is a non-
trivial open component of M∗, which we again call M∗1 . The metric g̃ is a complete
Einstein metric on M∗1 , and (7.49) shows that |Z|g̃(x) = o(1) as r → 0, where r is the
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distance to the zero set of the scalar curvature. Viewed on the complete manifold (M∗1 , g̃),
Z is then a decaying solution at infinity of (7.50). Since Rg̃ is a constant, a standard
separation of variables argument (see for example [Don89]) implies that Z must decay
faster than the inverse of any polynomial in the g̃ metric (it moreover has exponential
decay). Equivalently, |Z|g = O(rk) as r → 0 for any k > 0. This implies that Z has a
zero of infinite order along the zero set of the scalar curvature. The unique continuation
principle for elliptic operators (see [Aro57]) then implies that Z is identically zero. ut

Corollary 7.10. If g is the canonical Bochner–Kähler metric with reversed orientation
on CP2

(r,q,p), then H 2(M, g) = 0.

Proof. From [DG06, equation (2.32)], the set M>0 is non-empty. So this follows imme-
diately from Proposition 7.9. ut

Proof of Theorem 1.13. From Corollary 7.10, H 2(M, g) = 0, so the actual moduli space
is locally isomorphic to H 1/H 0. Depending upon the action of H 0, the moduli space
could therefore be of dimension dim(H 1), dim(H 1)− 1, or dim(H 1)− 2. The result then
follows immediately from the determination of H 1(M, g) in Theorem 7.7. ut

7.5. Final remarks

We end with a non-rigorous remark on the number-theoretic condition appearing in The-
orem 7.7. Figure 7.1 contains a plot of the function

H(r, q, p(j)) =

{
p

qr

}
−

{
q−1;rp

r

}
(7.51)

for r = 3 and q = 7, where the horizontal axis indexes the j th prime. The plot begins at
the fifth prime, 11, and ends with the 100th prime 541. This, along with other empirical
examples, indicates that the cases H > 0 and H < 0 occur with approximately the same
frequency.

20 40 60 80 100

-0.4

-0.2

0.2

0.4

Fig. 7.1. H(3, 7, p(j))
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