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Abstract. We study the codimension two locusH in Ag consisting of principally polarized abelian
varieties whose theta divisor has a singularity that is not an ordinary double point. We compute the
class [H ] ∈ CH2(Ag) for every g. For g = 4, this turns out to be the locus of Jacobians with a
vanishing theta-null. For g = 5, via the Prym map we show that H ⊂ A5 has two components,
both unirational, which we describe completely. We then determine the slope of the effective cone
of A5 and show that the component N ′0 of the Andreotti–Mayer divisor has minimal slope and the
Iitaka dimension κ(A5, N

′
0) is equal to zero.

Keywords. Theta divisor, moduli space of principally polarized abelian varieties, effective cone,
Prym variety

Introduction

The theta divisor 2 of a generic principally polarized abelian variety (ppav) is smooth.
The ppav (A,2) with a singular theta divisor form the Andreotti-Mayer divisor N0 in
the moduli space Ag (see [AM67] and [Bea77]). The divisor N0 has two irreducible
components (see [Mum83] and [Deb92]), denoted θnull and N ′0; here θnull denotes the
locus of ppav for which the theta divisor has a singularity at a two-torsion point, and N ′0
is the closure of the locus of ppav for which the theta divisor has a singularity not at a two-
torsion point. The theta divisor 2 of a generic ppav (A,2) ∈ θnull has a unique singular
point, which is a double point. Similarly, the theta divisor of a generic element of N ′0 has
two distinct double singular points x and −x. Using this fact, one can naturally assign
multiplicities to both components of N0 such the following equality of cycles holds (see
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[Mum83], [Deb92]):
N0 = θnull + 2N ′0. (1)

As could be expected, generically for both components the double point is an ordinary
double point (that is, the quadratic tangent cone to the theta divisor at such a point has
maximal rank g—equivalently, the Hessian matrix of the theta function at such a point
is non-degenerate). Motivated by a conjecture of H. Farkas [HF06], in [GSM08] two of
the present authors considered the locus in θnull in genus 4 where the double point is not
ordinary. In [GSM07] this study was extended to arbitrary g, considering the sublocus
θ
g−1
null ⊂ θnull parameterizing ppav (A,2) with a singularity at a two-torsion point that is

not an ordinary double point of 2. In particular it has been proved that

θ
g−1
null ⊂ θnull ∩N

′

0. (2)

In fact the approach yielded a more precise statement: Let φ : Xg → Ag be the universal
family of ppav over the orbifold Ag and S ⊂ Xg be the locus of singular points of theta
divisors. Note that S can be viewed as a subscheme of Xg given by the vanishing of the
theta functions and all its partial derivatives (see Section 1 below). Then S decomposes
into three equidimensional components [Deb92]: Snull, projecting to θnull, S ′, projecting
toN ′0, and Sdec, projecting (with (g−2)-dimensional fibers) onto A1×Ag−1. It is proved
in [GSM07] that set-theoretically, θg−1

null is the image in Ag of the intersection Snull∩S ′. An
alternative proof of these results has been found by Smith and Varley [SV12a], [SV12b].

It is natural to investigate the non-ordinary double points on the other component
N ′0 of the Andreotti–Mayer divisor. Similarly to θg−1

null , we define N ′g−1
0 , or, to simplify

notation, H , to be the closure in N ′0 of the locus of ppav whose theta divisor has a non-
ordinary double point singularity. Note thatH is the pushforward under φ of a subscheme
H of Xg given by a Hessian condition on theta functions. In particular H can be viewed
as a codimension 2 cycle (with multiplicities) on Ag . Since an explicit modular form
defining N ′0 and the singular point is not known, we consider the cycle

N
g−1
0 := θ

g−1
null + 2N ′g−1

0 = θ
g−1
null + 2H. (3)

We first note that θg−1
null is a subset of H . Then, after recalling that the Andreotti–

Mayer loci Ni are defined as consisting of ppav (A,2) ∈ Ag with dim Sing(2) ≥ i, we
establish the set-theoretical inclusion Ni ⊂ H for i ≥ 1. From this we deduce:

Proposition 0.1. For g ≥ 5 we have θg−1
null ( H .

To further understand the situation, especially in low genus, we compute the class:

Theorem 0.2. The class of the cycle H inside Ag is equal to

[H ] =

(
g!

16
(g3
+ 7g2

+ 18g + 24)− (g + 4)2g−4(2g + 1)
)
λ2

1 ∈ CH2(Ag).

As usual, λ1 := c1(E) denotes the first Chern class of the Hodge bundle and CHi de-
notes the Q-vector space parameterizing algebraic cycles of codimension i with rational
coefficients modulo rational equivalence. Comparing classes and considering the cycle-
theoretic inclusion 3θ3

null ⊂ H , we get the following result (see Section 4 for details):
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Theorem 0.3. In genus 4 we have the set-theoretic equality θ3
null = H .

We then turn to genus 5 with the aim of obtaining a geometric description ofH ⊂ A5 via
the dominant Prym map P : R6 → A5. A key role in the study of the Prym map is played
by its branch divisor, which in this case equals N ′0 ⊂ A5, and its ramification divisor
Q ⊂ R6. We introduce the antiramification divisor U ⊂ R6 defined cycle-theoretically
by the equality

P ∗(N ′0) = 2Q+ U .
Using the geometry of the Prym map, we describe both Q and U explicitly in terms of
Prym–Brill–Noether theory. For a Prym curve (C, η) ∈ Rg and an integer r ≥ −1, we
recall that Vr(C, η) denotes the Prym–Brill–Noether locus (see Section 5 for a precise
definition). It is known [Wel85] that Vr(C, η) is a Lagrangian determinantal variety of
expected dimension g − 1−

(
r+1

2

)
. We denote by π : Rg →Mg the forgetful map. Our

result is the following:

Theorem 0.4. The ramification divisor Q of the Prym map P : R6 → A5 equals the
Prym–Brill–Noether divisor in R6, that is,

Q = {(C, η) ∈ R6 : V3(C, η) 6= 0}.

The antiramification divisor is the pullback of the Gieseker–Petri divisor from M6, that
is, U = π∗(GP1

6,4). Both Q and U are irreducible and reduced.

As the referee pointed out to us, the irreducibility of Q also follows from Donagi’s results
[Don92] on the monodromy of the Prym map P : R6 → A5. Apart from the Brill–
Noether characterization provided by Theorem 0.4, the divisor Q has yet a third (respec-
tively a fourth!) geometric incarnation as the closure of the locus of points (C, η) ∈ R6
with a linear series L ∈ W 2

6 (C), such that the sextic model ϕL(C) ⊂ P2 has a totally tan-
gent conic (see Theorem 8.1, respectively as the locus of section (C, η) ∈ R6 of Nikulin
surfaces [FV11]). The rich geometry of Q enables us to (i) compute the classes of the clo-
sures Q and U inside the Deligne–Mumford compactification R6, and then (ii) determine
explicit codimension two cycles in R6 that dominate the irreducible components of H .
In this way we find a complete geometric characterization of 5-dimensional ppav whose
theta divisor has a non-ordinary double point. First we characterize θ4

null as the image
under P of a certain component of the intersection Q ∩ P ∗(θnull):

Theorem 0.5. A ppav (A,2) ∈ A5 belongs to θ4
null if and only if it lies in the closure of

the locus of Prym varieties P(C, η), where (C, η) ∈ R6 is a curve with two vanishing
theta characteristics θ1 and θ2 such that

η = θ1 ⊗ θ
∨

2 .

Furthermore, θ4
null is unirational and [θ4

null] = 27 · 44λ2
1 ∈ CH2(A5).

Denoting by Q5 ⊂ R6 the locus of Prym curves (C, η = θ1 ⊗ θ
∨

2 ) as above, we prove
that Q5 (and hence θ4

null which is the closure of P(Q5) in A5) is unirational, by realizing
its general element as a nodal curve

C ∈ |I2
R1·R2/P1×P1(5, 5)|,
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where R1 ∈ |OP1×P1(3, 1)| and R2 ∈ |OP1×P1(1, 3)|, with the vanishing theta-nulls θ1
and θ2 being induced by the projections on the two factors.

Observing that [H ] 6= [θ4
null] in CH2(A5), the locus H must have extra irreducible

components corresponding to ppav with a non-ordinary singularity that occurs generically
not at a two-torsion point. We denote by H1 ⊂ A5 the union of these components, so that
at the level of cycles

H = θ4
null +H1,

where [H1] = 27 · 49λ2
1. We have the following characterization of H1:

Theorem 0.6. The locus H1 is unirational and its general point corresponds to a Prym
variety P(C, η), where (C, η) ∈ R6 is a Prym curve such that η ∈ W4(C)−W

1
4 (C) and

KC ⊗ η is very ample.

As an application of this circle of ideas, we determine the slope of A5. Let Ag be the
perfect cone (first Voronoi) compactification of Ag—this is the toroidal compactifica-
tion of Ag constructed using the first Voronoi (perfect) fan decomposition of the cone
of semi-positive definite quadratic forms with rational nullspace (see e.g. [Vor1908] for
the origins, and [SB06] for recent progress). The Picard group of Ag with rational coeffi-
cients has rank 2 (for g ≥ 2), and it is generated by the first Chern class λ1 of the Hodge
bundle and the class of the irreducible boundary divisor D := Ag −Ag . The slope of an
effective divisor E ∈ Eff(Ag) is defined as the quantity

s(E) := inf{a/b : a, b > 0, aλ1 − b[D] − [E] = c[D], c > 0}.

If E is an effective divisor on Ag with no component supported on the boundary and
[E] = aλ1−bD, then s(E) := a/b ≥ 0. One then defines the slope (of the effective cone)
of the moduli space as s(Ag) := inf

E∈Eff(Ag)
s(E). This important invariant governs

to a large extent the birational geometry of Ag; for instance Ag is of general type if
s(Ag) < g + 1, and Ag is uniruled when s(Ag) > g + 1. Any effective divisor class
calculation on Ag provides an upper bound for s(Ag). It is known [SM92] that s(A4) = 8
(and the minimal slope is computed by the divisor J 4 of Jacobians). In the next case
g = 5, the class of the closure of the Andreotti–Mayer divisor is [N ′0] = 108λ1 − 14D,
giving the upper bound s(A5) ≤ 54/7.

Theorem 0.7. The slope of A5 is computed by N ′0, that is, s(A5) = 54/7. Furthermore,
κ(A5, N

′

0) = 0, that is, the only effective divisors on A5 having minimal slope are the
multiples of N ′0.

To prove this result, we define a partial compactification R̃6 of R6 and via the (rational)
Prym map P : R̃6 99K A5 we investigate the pullback

P ∗(N ′0) = 2Q̃+ Ũ + 20δ′′0 ,

where Q̃ and Ũ denote the closures of Q and U respectively in R̃6, and δ′′0 is the divisor of
degenerate Wirtinger double covers (see Section 6 for precise definitions). Since each of
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the divisors appearing in this linear system admits a uniruled parameterization in terms of
plane sextics having a totally tangent conic, we are ultimately able to establish the rigidity
of any multiple of N ′0.

A final application concerns the divisor in A5 of Pryms obtained from branched cov-
ers. The Prym variety associated to a double cover f : C̃ → C branched over two points
is still a ppav. When g(C) = 5 (and only in this case), the Prym varieties constructed in
this way form an irreducible divisor Dram

:= P∗(1
ram
0 ) inside the moduli space. We have

the following formula for the class of the closure of Dram in A5:

Theorem 0.8. [Dram] = 4(153λ1 − 19D) ∈ CH1(A5).

Since the classes [P ∗(Dram)] and δram
0 are not proportional, one deduces that the general

Prym variety (A,2) ∈ Dram obtained from a ramified cover C̃ → C (with g(C) = 5 and
g(C̃) = 10) is also the Prym variety induced by an étale cover C̃1 → C1 (with g(C1) = 6
and g(C̃1) = 11).

We summarize the structure of the paper. The cycle structure of H and θg−1
null is de-

scribed in Section 2, whereas the classes [θg−1
null ], [H ] ∈ CH2(Ag) are computed in Sec-

tion 3. The particular case g = 4 is treated in Section 4. After some background on
singularities of Prym theta divisors (Section 5), the different geometric realizations of the
ramification and antiramification divisors of the Prym map P : R6 → A5, as well as
the corresponding class calculations on R̃6 are presented in Sections 6 and 7. A proof of
Theorem 0.7, thus determining the slope of A5 is given in Section 8. The final sections of
the paper are devoted to a complete geometric description in terms of Pryms of the two
components of the cycle H in genus 5 (see Theorems 0.5 and 0.6).

1. Theta divisors and their singularities

In this section we recall notation, definitions, as well as some results from [GSM08]. We
denote by Hg the Siegel upper half-space, i.e. the set of symmetric complex g×g matrices
τ with positive definite imaginary part. If σ =

(
a b
c d

)
∈ Sp(2g,Z) is a symplectic matrix

in g×g block form, then its action on τ ∈ Hg is defined by σ ·τ := (aτ+b)(cτ+d)−1, and
the moduli space of complex principally polarized abelian variety (ppav for short) is the
quotient Ag = Hg/Sp(2g,Z), parameterizing pairs (Aτ , 2τ ) with Aτ = Cg/Zgτ +Zg,
an abelian variety and 2τ the (symmetric) polarization bundle. We denote by Aτ [2] the
group of two-torsion points of Aτ . Let ε, δ ∈ (Z/2Z)g , thought of as vectors of zeros and
ones; then x = τε/2+ δ/2 ∈ Aτ [2], and the shifted bundle t∗x2 is still a symmetric line
bundle. Up to a multiplicative constant the unique section of the above bundle is given by
the theta function with characteristic [ε, δ] defined by

θ

[
ε

δ

]
(τ, z) :=

∑
m∈Zg

expπi[t (m+ ε/2)τ (m+ ε/2)+ 2 t (m+ ε/2)(z+ δ/2)].

We shall write θ(τ, z) for the theta function with characteristic [0, 0]. The zero scheme of
θ(τ, z), as a function of z ∈ Aτ , defines the principal polarization 2τ on Aτ .



1822 G. Farkas et al.

Theta functions satisfy the heat equation

∂2θ
[
ε
δ

]
(τ, z)

∂zj∂zk
= 2πi(1+ δj,k)

∂θ
[
ε
δ

]
(τ, z)

∂τjk

(where δj,k is Kronecker’s symbol).
The characteristic [ε, δ] is called even or odd corresponding to whether the scalar

product tεδ ∈ Z/2Z is zero or one. Consequently, depending on the characteristic,
θ
[
ε
δ

]
(τ, z) is even or odd as a function of z. A theta constant is the evaluation at z = 0 of

a theta function. All odd theta constants of course vanish identically in τ .
A holomorphic function f : Hg → C is called a modular form of weight k with

respect to a finite index subgroup 0 ⊂ Sp(2g,Z) if

f (σ · τ) = det(cτ + d)kf (τ) ∀τ ∈ Hg, ∀σ ∈ 0,

and if additionally f is holomorphic at all cusps of Hg/0. Theta constants with character-
istics are modular forms of weight 1/2 with respect to a subgroup 0g(4, 8) ⊂ Sp(2g,Z)
of finite index. We refer to [Igu72] for a detailed study of theta functions.

We denote by

φ : Xg = Hg × Cg/(Sp(2g,Z)o Z)2g → Ag = Hg/Sp(2g,Z)

the universal family of ppav, and let 2g ⊂ Xg be the universal theta divisor—the zero
locus of θ(τ, z). Following Mumford [Mum83], we denote by S := Singvert2g the locus
of singular points of theta divisors of ppav:

S =
⋃
τ∈Ag

Sing2τ =
{
(τ, z) ∈ Hg×Cg : θ(τ, z) =

∂θ

∂zi
(τ, z) = 0, i = 1, . . . , g

}
(4)

(computationally, by an abuse of notation, we will often work locally on S, thinking of it
as a locus inside the cover Hg×Cg of Xg). It is known that S ⊂ Xg is of pure codimension
g + 1, and has three irreducible components [CvdG00], denoted Snull, Sdec, and S ′. Here
Snull denotes the locus of even two-torsion points that lie on the theta divisor, given locally
by g + 1 equations

Snull := {(τ, z) ∈ Xg : θ(τ, z) = 0, z = (τε+δ)/2 for some [ε, δ] ∈ (Z/2Z)2geven}. (5)

To define Sdec, recall that a ppav is called decomposable if it is isomorphic to a product
of lower-dimensional ppav. We then denote

Sdec := S ∩ φ−1(A1 ×Ag−1). (6)

Since the theta divisor of a product (A1,21)×(A2,22) is given by (21×A2)∪(A1×22),
its singular locus contains 21 ×22 and is of codimension 2 (see the work [EL97] of Ein
and Lazarsfeld for a proof of a conjecture [ADC84] of Arbarello and De Concini that
Ng−2 is in fact equal to the decomposable locus). Thus the fibers of Sdec → A1,g−1 are
all of dimension g − 2, and the codimension of Sdec ⊂ Xg is equal to g + 1. (We note
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that any other locus of products Ah × Ag−h has codimension h(g − h), and contributes
no irreducible component of S.)

Finally, S ′ is the closure of the locus of singular points of theta divisors of indecom-
posable ppav that are not two-torsion points. Observe that Snull, S ′, and Sdec all come
equipped with an induced structure as determinantal subschemes of Hg × Cg .

The Andreotti–Mayer divisor is then defined (as a cycle) by

N0 := φ∗(S) = {τ ∈ Ag : Sing2τ 6= ∅}.

It can be shown that N0 is a divisor in Ag , which has at most two irreducible components
(see [Deb92], [Mum83]).

The theta-null divisor θnull ⊂ Ag is the zero locus of the modular form

Fg(τ ) :=
∏
m even

θ

[
ε

δ

]
(τ, 0).

Geometrically, it is the locus of ppav for which an even two-torsion point lies on the
theta divisor, and it can be shown that θnull = φ∗(Snull), viewed as an equality of cycles.
Similarly for the other component we have N ′0 =

1
2φ∗(S

′) (the one-half appears because
a generic ppav in N ′0 has two singular points ±x on the theta divisor).

Remark 1.1. The two components of N0 are zero loci of modular forms (with some
character χ in genus 1 and 2): θnull is the zero locus of the modular form Fg of weight
2g−2(2g + 1), while N ′0 must be the zero locus of some modular form Ig of weight
g!(g + 3)/4 − 2g−3(2g + 1) (the class, and thus the weight, was computed by Mum-
ford [Mum83]). Unlike the explicit formula for Fg , the modular form Ig is only known
explicitly for g = 4, in which case it is the so called Schottky form [Igu81a], [Igu81b].
Various approaches to constructing Ig explicitly were developed in [Yos99], [KSM02].

2. Double points on theta divisors that are not ordinary double points

We shall now concentrate on studying the local structure of a theta divisor near its singular
point. For this, we look at the tangent space to S and the map between the tangent spaces.

Proposition 2.1. Let x0 = (τ0, z0) be a smooth point of S. Then the map (dφ)x0 :

Tx0(S)→ Tτ0(N0) is injective if and only if the Hessian matrix

H(x0) :=


∂2θ
∂z1∂z1

(x0) . . . ∂2θ
∂z1∂zg

(x0)

...
. . .

...
∂2θ
∂zg∂z1

(x0) . . . ∂2θ
∂zg∂zg

(x0)


has rank g.

Proof. Since the subvariety S ⊂ Xg is defined by the g + 1 equations (4), the point x0 is
smooth if and only if the (g(g + 1)/2+ g)× (g + 1) matrix
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M(τ0, z0) :=


∂θ
∂τ11

. . . ∂θ
∂τgg

∂θ
∂z1

. . . ∂θ
∂zg

∂2θ
∂z1∂τ11

. . . ∂2θ
∂z1∂τgg

∂2θ
∂z1∂z1

. . . ∂2θ
∂z1∂zg

...
. . .

...
...

. . .
...

∂2θ
∂z1∂τ11

. . . ∂2θ
∂z1∂τgg

∂2θ
∂zg∂z1

. . . ∂2θ
∂zg∂zg


evaluated at x0 = (τ0, z0) has rank g + 1. We compute

M(τ0, z0) =


∂θ
∂τ11

(x0) . . . ∂θ
∂τgg

(x0) 0 . . . 0

∂2θ
∂z1∂τ11

(x0) . . . ∂2θ
∂z1∂τgg

(x0)
∂2θ
∂z1∂z1

(x0) . . . ∂2θ
∂z1∂zg

(x0)

...
. . .

...
...

. . .
...

∂2θ
∂z1∂τ11

(x0) . . . ∂2θ
∂z1∂τgg

(x0)
∂2θ
∂zg∂z1

(x0) . . . ∂2θ
∂zg∂zg

(x0)

 .

Since the map φ is the projection on the first g(g + 1)/2 coordinates, the proposition
follows. ut

Remark 2.2. From the heat equation for the theta function it follows that if the Hessian
matrix H(x0) has rank g, then x0 is a smooth point of S.

We also note that from the product rule for differentiation and the heat equation it
follows that the second derivative

∂2θ
[
ε
δ

]
(τ, z)

∂zj∂zk

∣∣∣∣
z=0

restricted to the locus θ
[
ε
δ

]
(τ, 0) = 0 is also a modular form for 0g(4, 8).

Since we have different, easier to handle, local defining equations (5) for Snull, we can
obtain better results in this case.

Proposition 2.3. A point x0 ∈ Snull is a smooth point of Snull unless ∂θ
∂τij
(x0) = 0 for all

1 ≤ i, j ≤ g. The map (dφ)x0 is injective if and only if the Hessian matrix H(x0) has
rank g.

Remark 2.4. If x0 = (τ0, z0) is a smooth point of Snull, while τ0 is singular in θnull, this
implies that at least two different theta constants vanish at τ0.

Using the above framework, we get a complete description of the intersection Snull ∩ S ′,
obtaining thus an easier proof of one of the main results of [GSM07].

Proposition 2.5. For x0 ∈ Snull, the point x0 lies in S ′ if and only if the rank of H(x0) is
less than g.

Proof. If x0 ∈ S ′ ∩ Snull, then it is a singular point in S, hence the rank of H(x0) is less
than g by the above proposition. To obtain a proof in the other direction, since z0 is a
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two-torsion point, the matrix M(τ0, z0) appearing in the proof of the proposition above
has the form

M(x0) =


∂θ
∂τ11

(x0) . . . ∂θ
∂τgg

(x0) 0 . . . 0

0 . . . 0 ∂2θ
∂z1∂z1

(x0) . . . ∂2θ
∂z1∂zg

(x0)

...
. . .

...
...

. . .
...

0 . . . 0 ∂2θ
∂zg∂z1

(x0) . . . ∂2θ
∂zg∂zg

(x0)


Hence if the rank of H(x0) is less than g, then x0 is a singular point of S; thus either
it is a singular point of Snull, or it lies in Snull ∩ S ′. The first case cannot happen for
dimensional reasons (the singular locus of Snull has codimension at least 2 within Snull,
see also [CvdG00]), and thus we must have x0 ∈ Snull ∩ S ′. ut

Corollary 2.6. Set-theoretically we have

φ(Snull ∩ S ′) = θg−1
null .

Remark 2.7. From the previous proof it also follows that SingSnull ⊂ Snull ∩ S ′.
Our further investigation will consider the subvariety

H := S ′g−1
:= {x0 = (τ0, z0) ∈ S ′ : rkH(x0) < g} ⊂ Xg

(notice that since the derivative of a section of a line bundle is a section of the same bundle
when restricted to the zero locus of the section, this is an algebraic subvariety of Xg). Note
that H, being defined by explicit equations in the (derivatives of) theta functions, comes
equipped with a scheme structure. Then we define the pushforward cycle

2H := 2N ′g−1
0 := φ∗(H) ⊂ Ag

Unlike the case of the theta-null, H 6⊂ SingS. Indeed, if z0 is not a two-torsion point,
the condition rkH(x0) < g does not imply that rkM(τ0, z0) < g + 1, as the matrix M
at z0 does not have as many zero entries as in the theta-null case. Still, we have the set-
theoretic inclusions

Snull ∩ S ′ ⊂ H and θ
g−1
null ⊂ H.

The locus H is given locally by g + 2 equations (the g + 1 equations for S ′ together
with the vanishing of the Hessian determinant), and thus each irreducible component
of H has codimension at most g + 2 in Xg . However, we note that Sdec ⊂ H ⊂ S is
an irreducible component of codimension g + 1. We now check that all other irreducible
components of H are indeed of expected codimension g + 2. Indeed, we first note that
by the results of Ciliberto and van der Geer [CvdG08] the Andreotti–Mayer locus Nk
(parameterizing ppav whose theta divisor has singular locus of dimension at least k) with
1 ≤ k ≤ g − 3 has codimension at least k + 2 in Ag , and thus its preimage in S cannot
be an irreducible component of S for dimension reasons. Now for both S ′ and Snull it
is known that generically the singular points of the theta divisors are ordinary double
points, and thus H cannot be equal to either of these loci. Finally, by the results of Ein
and Lazarsfeld [EL97] the locus Ng−2 is equal to the locus of indecomposable ppav, and
each component Ah ×Ag−h of it has codimension too high, except for h = 1.
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The above discussion leads to the following result:

Proposition 2.8. The Andreotti–Mayer locus N1 is contained in H .

Proof. Indeed, for τ0 ∈ N1 we let z(t) ⊂ Sing2τ be a curve of singular points such that
z(0) = z0 is a smooth point of the curve. Differentiating (4) with respect to t , we get g
non-zero equations (the derivative of the first one will vanish)

g∑
j=1

∂2θ(τ0, z(t))

∂zi∂zj

∂zj (t)

∂t
= 0.

Denoting

v :=

(
∂z1

∂t
, . . . ,

∂zg

∂t

)∣∣∣∣
t=0

this means that H(x0) · v = 0, and since by our assumption z0 is a smooth point of the
curve and thus v 6= 0, the matrix H(x0) has a kernel, and in particular is not of maximal
rank. ut

Corollary 2.9. For g ≥ 5 the locus of Jacobians Jg is contained in H . Hence for g ≥ 5
set-theoretically θg−1

null ( H .

Proof. Indeed, we have Jg ⊂ N1 ⊂ H for g ≥ 5. However, since for all g the divisor

θnull does not contain Jg , we must have Jg ⊂ H \ θg−1
null . ut

3. Class computations in cohomology

In this section we compute the class of the components of the expected dimension of the
loci H andH in Chow and cohomology rings (our computation works in both, as we only
use Chern classes of vector bundles) of Xg and Ag , respectively.

Recall that Mumford [Mum83] computed the class of N ′0 in the Picard group of the
partial toroidal compactification of the moduli space Ag (the class of θnull is easier, and
was computed previously by Freitag [Fre83]). We shall compute the classes of the codi-
mension 2 cycles H and θg−1

null on Ag . As a consequence we will obtain a complete de-
scription of H in genus 4, rederive some result of [GSM08], and reprove that for g ≥ 5
the locus H has other components besides θg−1

null . Debarre [Deb92, Section 4] computed
the class of the intersection θnull ∩ N

′

0 and used this to show that this intersection is not
irreducible. In spirit our computation is similar, though much more involved.

For the universal family φ : Xg → Ag we denote by �Xg/Ag
the relative cotangent

bundle, by E := φ∗�Xg/Ag
its pushforward, a rank g vector bundle that is called the

Hodge bundle. Then the Hodge class λ1 := c1(E) is the Chern class of the line bundle of
modular forms of weight one on Ag .

The basic tool for our computation of pushforwards is the following:
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Lemma 3.1. The pushforward under φ of powers of the universal theta divisor 2 ⊂ Xg
can be computed as follows:

φ∗([2
k
]) =



0 if k < g,

g! if k = g,
(g + 1)!

2
λ1 if k = g + 1,

(g + 2)!
8

λ2
1 if k = g + 2.

Proof. The first three cases are consequences of the computation in [Mum83, p. 373].
The last case is the next step of the same computation, recalling that c2(E) = λ2

1/2. In
full generality the pushforwards of the universal theta divisor were computed and studied
in [vdG99] (note that the universal theta divisor trivialized along the zero section, that is,
the class [2] − λ1/2, is used there, and it is shown that φ∗(([2] − λ1/2)k) = 0 unless
k = g). ut

Note that the locus S is given as the scheme of zeros of theta function and its derivatives,
i.e. given by zeros of a section of �Xg/Ag

(2)⊗OXg (2) (see [Mum83]). Hence

[N0] = φ∗
(
cg(�Xg/Ag

(2)⊗OXg O2)
)
.

Recall now that Sg−1
⊂ S is defined by the equation detH(x0) = 0. On S, each second

derivative of the theta function is a section of2, and the determinant of the Hessian matrix
is known (see [GSM07], [dJ10]) to be a section of

OXg (g2)⊗ φ
∗(detE)⊗2

⊗OS .

Using the above formula for the class of S, to get H we will need to compute the push-
forward

φ∗
(
cg(�Xg/Ag

(2)|2) · (g2+ 2φ∗λ1)
)
.

The computation becomes rather delicate since Sg−1 is not equidimensional. We set

Sindec := S \ Sdec = S ′ ∪ Snull,

which is then purely of codimension g + 2 in Xg , and thus we have

[Sg−1
indec] = [Sindec] · (g[2] + 2λ1) ∈ CHg+2(Xg).

However, for dimension reasons it turns out that we often do not need to deal with the
class of Sdec:

Proposition 3.2. For g ≥ 4 we have the equality of codimension 2 classes on Ag:

[N
g−1
0 ] = [N

g−1
0, indec] := [φ∗(S

g−1
indec)].

Moreover this class can be computed as

[N
g−1
0 ] =

g!

8
(g3
+ 7g2

+ 18g + 24)λ2
1 ∈ CH2(Ag).
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Proof. The first statement is a consequence of the fact that the map φ has (g − 2)-
dimensional fiber along Sdec, and generically 0-dimensional fibers over Sindec. (Note that
this is the place in the argument where we are using the assumption g ≥ 4 to ensure that
Sg−1

indec is in fact non-empty, and that the codimension of its image under φ is lower than
the codimension of A1 ×Ag−1.) We now compute

[N
g−1
0 ] = φ∗

(
cg(�Xg/Ag

(2) ·2) · (g2+ 2φ∗λ1)
)

= φ∗
(
(2g +2g−1φ∗λ1 +2

g−2φ∗λ2 + · · · ) · (g2
2
+ 22φ∗λ1)

)
= φ∗

(
g

(
2g+2

+2g+1φ∗λ1 +2
g φ
∗λ2

1
2

)
+ (22g+1φ∗λ1 + 22gφ∗λ2

1)

)
=

(
g(g + 2)!

8
+
g(g + 1)!

2
+
g(g)!

2
+ (g + 1)! + 2g!

)
λ2

1

=
g!

8
(g3
+ 7g2

+ 18g + 24)λ2
1. ut

We now compute the class of the locus θg−1
null : recall that a theta constant is a modular form

of weight 1/2, and the determinant of the Hessian matrix of θ
[
ε
δ

]
(τ, z) evaluated at z = 0

is a modular form of weight (g + 4)/2 along the zero locus of θ
[
ε
δ

]
(τ ) (see [GSM08],

[dJ10]). We thus get:

Proposition 3.3. For g ≥ 2 we have

[θ
g−1
null ] = (g + 4)2g−3(2g + 1)λ2

1.

Proof. Indeed, we have

θ
g−1
null =

{
τ ∈ Hg : ∃[ε, δ] even, θ

[
ε

δ

]
(τ ) = det

(
∂2θ

[
ε
δ

]
(τ, z)

∂zj∂zk

)∣∣∣∣
z=0
= 0

}
,

Since there are 2g−1(2g + 1) even characteristics, for each of them we get a contribution
of λ1/2 (for the zero locus of the corresponding theta constant) times (g + 4)λ1/2 (for
the Hessian). ut

The proof of Theorem 0.2 comes by subtraction using the class formulas established in
Propositions 3.2 and 3.3, while taking into account the relation given in formula (3).

4. The case g = 4

In this section we will work out the situation for genus 4 in detail, eventually proving
Theorem 0.3. By the above formulas for g = 4 we have

[θ3
null] = 272λ2

1, [N3
0 ] = 3 · 272λ2

1.
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Moreover, going back from N
g−1
0 to H = N

′g−1
0 , we recall that for arbitrary genus by

definition we have Ng−1
0 = θ

g−1
null + 2H , and since at the intersection of the two compo-

nents θnull and N ′0 the singular points lie on both, we also have set-theoretically

θ
g−1
null ⊂ H.

As an immediate consequence we obtain:

Proposition 4.1. The following identity holds at the level of codimension two cycles
on A4:

N3
0 = 3θ3

null.

Proof. From the formulas above we see that the cycle 2θ3
null appears inside 2N ′30 , and thus

3θ3
null is a subcycle of N3

0 . Since the Chern classes are equal and θ3
null is equidimensional,

we need to rule out the possibility of N3
0 having an extra lower-dimensional component.

However, for genus 4 we know geometrically that N ′0 is the locus of Jacobians. Using
Riemann’s Singularity Theorem for genus 4 curves we then see that the period matrix of
a Jacobian is in N ′30 if and only if its theta divisor is singular at a two-torsion point, i.e. if
this Jacobian lies in θ3

null (notice that this reproves a result of [GSM08]). ut

The proof of Theorem 0.3 is an immediate consequence of the above facts. We can prove
something more: Let I4 be the Schottky modular form of weight 8 defining the Jacobian
locus. Let then

detD(I4) := det


∂I4
∂τ11

1
2
∂I4
∂τ12

. . . 1
2
∂I4
∂τ14

1
2
∂I4
∂τ21

∂I4
∂τ22

. . . 1
2
∂I4
∂τ24

. . . . . . . . . . . .
1
2
∂I4
∂τ41

. . . . . .
∂I4
∂τ44

 .
The restriction of this determinant to the zero locus of I4 is a modular form of weight
34 = 8 · 4+ 2. By Proposition 2.1 we know that for a point in N ′0 \H the matrix D(I4) is
proportional to the Hessian matrix H(x0), hence it vanishes exactly along θ3

null. The class
of the cycle

{I4 = detD(I4) = 0}

is 8 · 34 λ2
1 = 272λ2

1. Thus we obtain

Proposition 4.2. The locus θ3
null ⊂ A4 is a complete intersection given by

I4 = detD(I4) = 0.

We observe that, by Riemann’s Theta Singularity theorem, this is the locus of Jacobians
with theta divisor singular at a two-torsion point. Moreover, the form

√
F4 (recall that Fg

is the product of all even theta constants) is well defined along the Jacobian locus and
it has the same weight, hence we get a different proof of the following result recently
obtained by Matone and Volpato [MV12]:
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Corollary 4.3. On J4 we have the equality
√
F4 = c detD(I4) for some constant c. The

locus θ3
null can also be given by the equations

I4 =
√
F4 = 0.

In contrast to the situation in genus 4, for higher genera we know that we have other
components (see Corollary 2.9). This fact can also be deduced from our class computation
as follows.

Proof of Proposition 0.1. Recall that the statement we are proving is that at the level of
effective cycles, θg−1

null ( H for any g ≥ 5. We first note that the above discussion for
the genus 4 case shows that the cycle-theoretic inclusion holds. Secondly, since we have
computed both classes, we see that for g ≥ 5 the class of Ng−1

0 is not equal to 3 times the
class of θg−1

null . In fact the growth orders of the degrees of these two classes are respectively

deg θg−1
null ∼ 4g−4 deg θ3

null, degNg−1
0 ∼

g!

4!
degN3

0 ,

and one would thus expect many additional components. ut

The rest of the paper is devoted to studying the geometry for g = 5 in detail; in this case
we will be able to describe all components explicitly, and will also obtain many results
describing the classical Prym geometry of the situation.

5. Prym theta divisors and their singularities

While for higher g the geometry of the locus H ⊂ Ag appears quite intricate, for g = 5
one can use the Prym map P : R6 → A5. We begin by setting the notation and reviewing
the basic facts about Prym varieties and their moduli, which will be used throughout the
rest of the paper.

Let Rg be the moduli space of pairs (C, η) with [C] ∈ Mg , and η a non-zero two-
torsion point of the Jacobian Pic0(C). We denote by f : C̃ → C the étale double cover
induced by η (so the genus of C̃ is equal to 2g − 1), by i : C̃ → C̃ the involution
exchanging the sheets of f , and by ϕKC⊗η : C → PH 0(C,KC⊗η)

∨ the Prym-canonical
map. The map ϕKC⊗η is an embedding if and only if η /∈ C2 − C2 (where we denote
Ck := Symk(C)).

We recall the definition of the Prym map P : Rg → Ag−1. Consider the norm map
Nmf : Pic2g−2(C̃)→ Pic2g−2(C) induced by the double cover f . The even component
of the preimage

Nm−1
f (KC)

+
:= {L ∈ Pic2g−2(C̃) : Nmf (L) = KC, h0(C̃, L) ≡ 0 mod 2}

is then an abelian variety of dimension g−1. Denoting by2
C̃
⊂ Pic2g−2(C̃) the Riemann

theta divisor, scheme-theoretically we have the equality 2
C̃
|Nm−1

f (KC )
+ = 24, where 4

is a principal polarization. The Prym variety is defined to be the ppav

P(C, η) := (Nm−1
f (KC)

+, 4) ∈ Ag−1.
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The polarization divisor can be described explicitly following [Mum74]:

4(C, η) := {L ∈ Nm−1
f (KC)

+
: h0(C̃, L) > 0}.

A key role in what follows is played by the Prym–Petri map

µ−L :
∧2

H 0(C̃, L)→ H 0(C,KC ⊗ η), u ∧ v 7→ u · i∗(v)− v · i∗(u),

where one makes the usual identificationH 0(C,KC⊗η) = H
0(C̃,K

C̃
)− with the (−1)-

eigenspace under the involution i. Following [Wel85], for (C, η) ∈ Rg and r ≥ −1, we
define the determinantal locus

Vr(C, η) := {L ∈ Nm−1
f (KC) : h

0(L) ≥ r + 1, h0(L) ≡ r + 1 mod 2}.

For a general Prym curve (C, η) ∈ Rg , the mapµ−L is injective for everyL ∈ Nm−1
f (KC),

and dimVr(C, η) = g − 1−
(
r+1

2

)
(see [Wel85]).

For a point L ∈ 4, we recall the description of the tangent cone T CL(4). Suppose
h0(C̃, L) = 2m ≥ 2 and we fix a basis {s1 . . . , s2m} of H 0(C̃, L). Consider the skew-
symmetric matrix

ML := (µ
−

L (sk ∧ sj ))1≤k,j≤2m

and the pfaffian Pf(L) :=
√

det(ML) ∈ SymmH 0(C,KC ⊗ η). Via the identification
TL(P (C, η)) = H

0(C,KC ⊗ η)
∨ we have the following result of [Mum74]:

Theorem 5.1. If h0(C̃, L) = 2 then Pf(L) = 0 is the equation of the projectivized tan-
gent space PTL(4). If m ≥ 2 then L ∈ Sing(4) and either Pf(L) ≡ 0, in which case
multL(4) ≥ m+ 1, or else Pf(L) = 0 is the equation of the tangent cone PT CL(4).

Note that one can have L ∈ Sing(4) even when m = 1 and Pf(L) is identically zero, so
that the Prym theta divisor 4 can have two types of singularities, as follows:

Definition 5.2. For a point L ∈ Sing(4), one says that

(1) L is a stable singularity if h0(C̃, L) = 2m ≥ 4,
(2) L is an exceptional singularity if L = f ∗(M)⊗O

C̃
(B), where M ∈ Pic(C) is a line

bundle with h0(C,M) ≥ 2 and B is an effective divisor on C.

Let Singst
f (4) = V3(C, η) be the locus of stable singularities and Singex

f (4) the lo-
cus of exceptional singularities. Clearly Sing(4) = Singst

f (4) ∪ Singex
f (4). Both these

notions depend on the étale double cover f : C̃ → C and are not intrinsic to 4. Fur-
thermore, there can be singularities that are simultaneously stable and exceptional. Every
singularity of a 4-dimensional theta divisor 4 can in fact be realized as both a stable and
an exceptional singularity in different incarnations of (A,4) ∈ A5 as a Prym variety.

For a decomposable vector 0 6= u ∧ v ∈
∧2

H 0(C̃, L), we set

div(u) := Du + B, div(v) := Dv + B,

where Du,Dv have no common components and B ≥ 0 is an effective divisor on C. The
next lemma is well known (see [ACGH85, Appendix C]):
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Lemma 5.3. For 0 6= u ∧ v ∈
∧2

H 0(C̃, L) the following are equivalent:

(1) µ−L (u ∧ v) = 0.
(2) Du,Dv ∈ |f ∗M| where M ∈ Pic(C) with h0(C,M) ≥ 2.

In such a case we write L = f ∗(M)⊗O
C̃
(B), hence KC = M⊗2

⊗OC(f∗(B)), in par-
ticular h0(C,KC ⊗M

⊗(−2)) ≥ 1, and the Petri map µ0(M) is not injective. In particular,
Singex

f (4) = ∅ if C satisfies the Petri theorem.

Suppose L ∈ V3(C, η) is a quadratic stable singularity, hence h0(C̃, L) = 4 and
Pf(L) 6= 0. Setting P5

:= P(
∧2

H 0(L)∨) and Pg−2
:= P(H 0(KC ⊗ η)

∨), we consider
the projectivized dual of the Prym–Petri map

δ := P((µ−L )
∨) : Pg−2

→ P5.

The Plücker embedding of the Grassmannian G∗ := G(2, H 0(L)∨) ⊂ P5 is a rank 6
quadric whose preimage QL := δ

−1(G∗) is defined precisely by the Pfaffian Pf(L). Note
also that rk(QL) ≤ rk(µ−L ). On the other hand let G := G(2, H 0(L)) ⊂ P(

∧2
H 0(L))

be the dual Grassmannian. It is again a standard exercise in linear algebra to show the
equivalence

rk(QL) ≤ 4 ⇔ G ∩ P(Ker(µ−L )) 6= ∅.

For a point L ∈ Singst
f (4) one has multL(4) = 2 if and only if h0(C,M) ≤ 2 for any

line bundle M on C such that h0(C̃, L ⊗ f ∗M∨) ≥ 1 (see [SV04]). We summarize this
discussion as follows:

Proposition 5.4. For a quadratic singularity L ∈ Singst
f (4) the following conditions are

equivalent:

(1) rk(QL) ≤ 4.
(2) G ∩ P(Ker(µ−L )) 6= ∅.
(3) L ∈ Singst

f (4) ∩ Singex
f (4).

6. Petri divisors and the Prym map in genus 6

This section is devoted to the study of singularities of Prym theta divisors of dimension 4
via the Prym map P : R6 → A5.

We now review a few facts about the Deligne–Mumford compactification Rg of Rg ,
and refer to [Don92] and [FL10] for details. The space Rg is the coarse moduli space
associated to a Deligne–Mumford stack Rg of stable Prym curves of genus g. The geo-
metric points of Rg correspond to triples (X, η, β), where X is a quasi-stable curve with
pa(X) = g, η ∈ Pic(X) is a line bundle of total degree 0 on X such that ηE = OE(1)
for each smooth rational component E ⊂ X with |E ∩ X − E| = 2 (such a component
is called exceptional), and β : η⊗2

→ OX is a sheaf homomorphism whose restriction
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to any non-exceptional component is an isomorphism. Denoting by π : Rg →Mg the
forgetful map, one has the formula [FL10, Example 1.4]

π∗(δ0) = δ
′

0 + δ
′′

0 + 2δram
0 ∈ CH1(Rg), (7)

where δ′0 := [1
′

0], δ
′′

0 := [1
′′

0], and δram
0 := [1ram

0 ] are boundary divisor classes on
Rg whose meaning we recall. Let us fix a general point [Cxy] ∈ 10 corresponding to a
smooth 2-pointed curve (C, x, y) of genus g−1 and the normalization map ν : C → Cxy ,
where ν(x) = ν(y). A general point of 1′0 (respectively of 1′′0) corresponds to a stable
Prym curve [Cxy, η], where η ∈ Pic0(Cxy)[2] and ν∗(η) ∈ Pic0(C) is non-trivial (re-
spectively, ν∗(η) = OC). A general point of 1ram

0 is of the form (X, η), where X :=
C ∪{x,y} P1 is a quasi-stable curve with pa(X) = g, whereas η ∈ Pic0(X) is a line bundle
characterized by ηP1 = OP1(1) and η⊗2

C = OC(−x − y).
For 1 ≤ i ≤ [g/2] we have a splitting of the pullback of the boundary

π∗(δi) = δi + δg−i + δi:g−i ∈ CH1(Rg), (8)

where the boundary classes δi := [1i], δg−i := [1g−i] and δi:g−i := [1i:g−i] correspond
to the possibilities of choosing a pair of two-torsion line bundles on a smooth curve of
genus i and one of genus g − i, such that the first one, the second one, or neither of the
corresponding bundles is trivial, respectively (see [FL10]).

Often we content ourselves with working on the partial compactification R̃g :=

π−1(Mg ∪ 10) of Rg . When there is no danger of confusion, we still denote by δ′′0 , δ
′′

0
and δram

0 the restrictions of the corresponding boundary classes to the moduli space R̃g .
Note that CH1(R̃g) = Q〈λ, δ′0, δ

′′

0 , δ
ram
0 〉.

The extension of the (rational) Prym map P : Rg 99K Ag−1 over the general point
of each of the boundary divisors of Rg is well understood (see e.g. [Don92]). The Prym
map contracts1′′0 and all boundary divisors π∗(1i) for 1 ≤ i ≤ bg/2c. The Prym variety
corresponding to a general point [Cxy, η] ∈ 1′′0 as above is the Jacobian Jac(C) of the
normalization. Thus P(1′′0) = Jg−1. The pullback map P ∗ on divisors has recently been
described in [GSM11]: one has

P ∗(λ1) = λ− δ
ram
0 /4, P ∗(D) = δ′0. (9)

Remark 6.1. We sketch an alternative way of deriving the first formula in (9). For each
(C, η) ∈Rg , there is a canonical identification T ∨P(C,η) =H

0(C,KC ⊗ η) ⊗ OP(C,η) of
vector bundles. The pullback P ∗(E) of the Hodge bundle can be identified with the vector
bundle N1 on Rg with fiber N1(C, η) = H

0(C, ωC⊗η) over each point (C, η) ∈ Rg (we
skip details showing that this description carries over to the boundary as well). Therefore
P ∗(λ1) = c1(N1) = λ−

1
4δ

ram
0 , where we refer to [FL10] for the last formula.

We have seen that for [C̃
f
→ C] ∈ Rg with Singex

f (4) 6= ∅, the curve C fails the Petri
theorem. Let GP1

g,k ⊂Mg denote the Gieseker–Petri locus whose general element is a
curve C carrying a globally generated pencil M ∈ W 1

k (C) with h0(C,M) = 2 such that
the multiplication map

µ0(M) : H
0(C,M)⊗H 0(C,KC ⊗M

∨)→ H 0(C,KC)
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is not injective. It is proved in [Far05] that for (g + 2)/2 ≤ k ≤ g − 1, the locus GP1
g,k

has a divisorial component. As usual, we denote by Mr
g,d the locus of curves [C] ∈Mg

such that W r
d (C) 6= ∅.

In the case of M6 there are two Gieseker–Petri loci, both irreducible of pure codi-
mension 1, described as follows:

• The locus GP1
6,4 of curves [C] ∈ M6 having a pencil M ∈ W 1

4 (C) such that
h0(C,KC ⊗M

⊗(−2)) ≥ 1. We have the following formula for the class of its closure
in M6 (see [EH87]):

[GP1
6,4] = 94λ− 12δ0 − 50δ1 − 78δ2 − 88δ3 ∈ CH1(M6).

• The locus GP1
6,5 of curves with a vanishing theta characteristic; then

[GP1
6,5] = 8(65λ− 8δ0 − 31δ1 − 45δ2 − 49δ3) ∈ CH1(M6).

The Prym map P : R6 → A5 is dominant of degree 27 and its Galois group equals
the Weyl group of E6 (see [DS81], [Don92]). The differential of the Prym map at the
level of stacks,

(dP )(C,η) : H
0(C,K⊗2

C )∨→ (Sym2H 0(C,KC ⊗ η))
∨,

is the dual of the multiplication map at the level of global sections for the Prym-canonical
map ϕKC⊗η. Thus the ramification divisor of P is a Cartier divisor on R6 supported on
the locus

Q := {(C, η) ∈ R6 : Sym2H 0(C,KC ⊗ η)
�
−→ H 0(C,K⊗2

C )}.

The closure of P(Q) inside A5 is the branch divisor of P . At a general point (A,2) of
P(Q) the fiber of P has the structure of the set of lines on a one-nodal cubic surface,
that is, P−1(A,2) ∩Q consists of six ramification points corresponding to the six lines
through the node. The remaining 15 points of P−1(A,2) are in correspondence with the
15 lines on the one-nodal cubic surface not passing through the node. Since the degree
of the Prym map P is equal to = 27 it follows that P has simple ramification and Q
is reduced. Donagi [Don92, p. 93] established that Q is irreducible by showing that the
monodromy acts transitively on a general fiber of P|Q. We sketch a different proof which
uses the irreducibility of the moduli space of polarized Nikulin surfaces. We summarize
these results as follows:

Proposition 6.2. Set-theoretically, the branch divisor of the map P is equal to the closure
N ′0 of P(Q) in A5. At the level of cycles, P∗[Q] = 6[N ′0].

We turn our attention to the geometry of Q. First we compute the class of its closure in
R̃6, then we link it to Prym–Brill–Noether theory:

Theorem 6.3. The ramification divisor Q ⊂ R6 is irreducible. The class of its closure Q̃
in R̃6 equals

[Q̃] = 7λ− δ′0 −
3
2δ

ram
0 − cδ′′0

δ′′0 ∈ CH1(R̃6),

where we have the estimate cδ′′0 ≥ 4.
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Proof. The irreducibility of Q follows from [FV11, Theorem 0.5], where it is proved
that Q can be realized as the image of a projective bundle over the irreducible moduli
space FN

6 of polarized Nikulin K3 surfaces of genus 6.
To estimate the class of the closure Q̃ of Q in R̃6, we set up two tautological vector

bundles N1 and N2 over R̃6 having fibers

N1(X, η) := H
0(X, ωX ⊗ η) and N2(X, η) := H

0(X, ω⊗2
X ⊗ η

⊗2)

over a point (X, η) ∈ R̃6. There is a morphism φ : Sym2(N1) → N2 between vector
bundles of the same rank given by multiplication of Prym-canonical forms, and we denote
by Z the degeneracy locus of φ. Using [FL10, Proposition 1.7] we have the following
formulas in CH1(R̃6):

c1(N1) = λ−
1
4δ

ram
0 and c1(N2) = 13λ− δ′0 − δ

′′

0 − 3δram
0 ,

thus [Z] = c1(N2) − 6c1(N1) = 7λ − δ′0 − δ
′′

0 −
3
2δ

ram
0 . By definition, Q = Z ∩ R6.

Furthermore, φ is non-degenerate at a general point of1′0 and1ram
0 , hence the difference

Z − Q̃ is an effective divisor supported only on 1′′0 .
Assume now that (X, η) ∈ 1′′0 is a generic point corresponding to a normal-

ization map ν : C → X, where [C, x, y] ∈ M5,2 and x, y ∈ C are distinct
points such that ν(x) = ν(y). Since ν∗(η) = OC , we obtain an identification
H 0(X, ωX⊗η) = H

0(C,KC)whereasH 0(X, ω⊗2
X ⊗η

⊗2) is a codimension one subspace
ofH 0(C,K⊗2

C (2x+2y)) described by a residue condition at x and y. It is straightforward
to check that the kernel

Kerφ(X, η) = Ker{Sym2H 0(C,KC)→ H 0(C,K⊗2
C )}

has dimension 3. Thus [Z] − [Q̃] − 3δ′′0 is effective supported on 1′′0 , which implies that
cδ′′0
≥ 4. ut

Remark 6.4. We shall prove later that in fact cδ′′0 = 4.

Even though the locus Q is defined in terms of syzygies of Prym-canonical curves, its
points have a characterization in terms of stable singularities of Prym theta divisors.

Theorem 6.5. The theta divisor of a Prym variety P(C, η) ∈ A5 has a stable singularity
if and only if P ramifies at the point (C, η), that is,

Q = {(C, η) ∈ R6 : Singst
(C,η)(4) 6= ∅}.

Proof. Let us denote by W := {(C, η) ∈ R6 : V3(C, η) 6= ∅} the Prym–Brill–Noether
locus corresponding to stable singularities of Prym theta divisors. Our aim is to show that
W = Q; we begin by establishing the inclusion W ⊂ Q. First note that if [C] ∈M6 is
trigonal, for any two-torsion point η ∈ Pic0(C)[2]−{OC}we can writeKC⊗η = A⊗A′,
where A ∈ W 1

3 (C) and A′ ∈ W 1
7 (C). This implies that (C, η) ∈ Q.

Fix now (C, η) ∈ R6 and a line bundle L ∈ V3(C, η). If h0(C̃, L) ≥ 6, then C̃
(and hence C as well) must be hyperelliptic, so (C, η) ∈ Q by the previous remark.



1836 G. Farkas et al.

We may thus assume that h0(C̃, L) = 4 and consider the associated Pfaffian quadric
QL ∈ Sym2H 0(C,KC ⊗ η). If QL 6= 0, then it contains the Prym-canonical model
ϕKC⊗η(C), in particular (C, η) ∈ Q. If QL ≡ 0, then there exists M ∈ Pic(C) with
h0(C,M) ≥ 3 and an effective divisor D on C̃ such that L = f ∗(M) ⊗ O

C̃
(B). If

deg(M) ≤ 4 then C is hyperelliptic, hence (C, η) ∈ Q. If deg(M) = 5, then B = 0 and
C is a smooth plane quintic such that h0(C,M⊗η) = 1. It is known (see [Don92, Section
4.3]) that in this case P(C, η) is the intermediate Jacobian of a cubic threefold and the
differential (dP )(C,η) has corank 2, thus once more (C, η) ∈ Q.

Therefore W ⊂ Q. We claim that W has at least a divisorial component, which
follows by exhibiting a point (C, η) ∈ R6 and a line bundle L ∈ V3(C, η) such that µ−L
is surjective. Assuming this for a moment, we conclude that W = Q by invoking the
irreducibility of Q.

To finish the proof we use a realization of Prym curves (C, η)∈R6 with V3(C, η) 6=∅

resembling [FV11, Section 2]. For a line bundle L ∈ V3(C, η) with h0(C̃, L) = 4, if
µ+L : Sym2H 0(C̃, L)→ H 0(C,KC) denotes the i∗-invariant part of the Petri map, one
has the following commutative diagram:

C̃
(L,i∗L) //

f

��

P3
× P3

q

��

,,
P15
= P(H 0(L)∨ ⊗H 0(L)∨)

rr
C

µ+L //P9
= P(Sym2H 0(L)∨)

In this diagram q : P3
×P3
→ P9 is the map a⊗b 7→ a⊗b+b⊗a into the projective

space of symmetric tensors. Reversing this construction, if ι ∈ Aut(P3
× P3) denotes the

involution interchanging the two factors, the complete intersection of P3
× P3 with four

general ι∗-invariant hyperplanes in H 0(IP3×P3(1, 1))+ and one general ι∗-anti-invariant
hyperplane in H 0(IP3×P3(1, 1))− is a smooth curve C̃ ⊂ P3

× P3; the automorphism
ι|C induces a double cover f : C̃ → C such that Ker(µ−L ) has 1-dimensional kernel
corresponding to the unique element in H 0(IP3×P3(1, 1))−. For more details on this type
of argument, we refer to [FV11]. ut

7. The antiramification divisor of the Prym map

In this section we describe geometrically the antiramification divisor U of the Prym map
P : R6 → A5, defined via the equality of divisors

P ∗(N ′0) = 2Q+ U . (10)

For a general curve [C] ∈ GP1
6,4, if M ∈ W 1

4 (C) denotes the pencil such that µ0(M)

is not injective, we let x + y ∈ C2 be the support of the unique section of KC ⊗M⊗(−2).
We consider the four line bundles

Lu,v := f
∗M ⊗O

C̃
(xu + yv) ∈ Nm−1

f (KC),
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where 1 ≤ u, v ≤ 2 and f (xu) = x, f (yv) = y. By the parity flipping lemma of
[Mum74], exactly two of the quantities h0(C̃, Lu,v) are equal to 2, the other being equal
to 3, that is, Singex

f (4) contains at least two points. Hence π∗(GP1
6,4) ⊂ U . Using Theo-

rem 6.3, equality (10), and the formula for [GP1
6,4] ∈ CH1(M6), we compute

[U] = P ∗([N ′0])− 2[Q] = 108λ− 14λ = π∗([GP1
6,4]) ∈ CH1(R6).

Since the λ-coefficient of any non-trivial effective divisor class on R6 must be strictly
positive, we obtain the following result:

Proposition 7.1. We have the following equality of divisors on R6:

U = π∗(GP1
6,4).

We now determine the pullback ofN ′0 under the map P : R̃6 99K A5. As usual, Ũ denotes
the closure of U inside R̃6.

Theorem 7.2. We have the following equality of divisors on R̃6:

P ∗(N ′0) = 2Q̃+ Ũ + 201′′0.

Proof. We use the formula [N ′0] = 108λ1 − 14D, as well as Theorem 6.3 and formula
(9) in order to note that the effective class P ∗(N ′0)− 2Q− π∗(GP1

6,4) is supported only
on the boundary divisor 1′′0 .

We now prove that the multiplicity of 1′′0 in P ∗(N ′0) equals 20, or equivalently
mult1′′0 (P

∗(N0)) = 40, since P(1′′0) = J5 * θnull. Let Ã5 := BlJ5(A5) be the blowup

of A5 along the Jacobian locus and denote by E ⊂ Ã5 the exceptional divisor. Then E is a
P2-bundle over J5 with the fiber over a point (Jac(C),2C) ∈ J5 being identified with the
space P(I2(KC)

∨) of pencils of quadrics containing the canonical curve C ⊂ P4. One can
lift the Prym map to a map P̃ : R̃6 99K Ã5 by setting, for a general point (Cxy, η) ∈ 1′′0 ,

P̃ (Cxy, η) := ((Jac(C),2C), qxy) ∈ Ã5,

where qxy ∈ P(I2(KC)
∨) is the pencil of quadrics containing the union C ∪ 〈x, y〉 ⊂ P4.

Furthermore, P̃ ∗(E) = 1ram
0 , showing that

mult1′′0 P
∗(N0) = multJ5(N0).

To estimate the latter multiplicity we consider a general one-parameter family
j : U → A5 from a disc U 3 0 such that j (0) = (Jac(C),2C), with [C] ∈ M5
being a general curve. Let 2U := U ×A5 2 → U be the relative theta divisor
over U . The image of the differential (dj)0(T0(U)) can be viewed as a hyperplane
h ⊂ P(Sym2H 0(KC)). The variety 2U has ordinary double points at those points
(0, L) ∈ 2U where L ∈ Sing(2C) = W 1

4 (C) is a singularity such that its tangent cone
QL ∈ PI2(KC) belongs to h. Since the assignment W 1

4 (L) 3 L 7→ QL ∈ PI2(KC) is
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an unramified double cover over a smooth plane quintic, we find that 2U has 10 nodes.
Using the theory of Milnor numbers for theta divisors as explained in [SV85] we obtain

multJ5(N0) = χ(θgen)− χ(W4(C))+ 10,

where χ(θgen) = 5! = 120 is the topological Euler characteristic of a general (smooth)
theta divisor of genus 5.

We finally determine χ(W4(C)), using the resolution C4 → W4(C). From the
Macdonald formula (see [ACGH85]), χ(C4) = (−1)g−1(2g−2

g−1

)
|g=5

= 70, whereas

χ(W 1
4 (C)) = −20, because g(W 1

4 (C)) = 11. Therefore χ(C1
4) = 2χ(W 1

4 (C)) = −40.
We find that χ(W4(C)) = χ(C4) − χ(C

1
4) + χ(W

1
4 (C)) = 90, and consequently

multJ5(N0) = 120− 90+ 10 = 40. ut

Corollary 7.3. We have the following formula in CH1(R̃6):

[Q̃] = 7λ− δ′0 − 4δ′′0 −
3
2δ

ram
0 .

We exploit the geometry of the ramification and antiramification divisors of the Prym map
and determine the pushforward of divisor classes on R6:
Theorem 7.4. The pushforwards of tautological divisor classes via the rational Prym
map P : R6 99K A5 are as follows:

P∗(λ) = 18 · 27λ1 − 57D, P∗(δ
ram
0 ) = 4(17 · 27λ1 − 57D),

P∗(δ
′

0) = 27D, P∗(δ
′′

0 ) = P∗(δi) = P∗(δi:g−i) = 0 for 1 ≤ i ≤ g − 1.

We point out that even though P is not a regular map, it can be extended in codimen-
sion 1 so that P is the morphism induced at the level of coarse moduli spaces by a proper
morphism of stacks (see e.g. [Don92, pp. 63–64]). Furthermore P−1 contracts no divi-
sors, in particular, we can push forward divisors under P and use the push-pull formula.
Perhaps the most novel aspect of Theorem 7.4 is the calculation of the class of the divisor
P∗(1

ram
0 ) consisting of Prym varieties corresponding to ramified double covers C̃ → C

of genus 5 curves with two branch points.
Proof of Theorem 7.4. We write the following formulas in CH1(A5):

27λ1 = P∗P
∗λ1 = P∗(λ)−

1
4P∗(δ

ram
0 ),

6 · (108λ1 − 14D) = 6[N ′0] = P∗([Q]) = 7P∗(λ)− 3
2P∗(δ

ram
0 )− 27P∗(δ′0).

From [GSM11] it follows that P∗(δ′0) = 27D, whereas obviously P∗(δ′′0 ) = 0, which
suffices to solve the system of equations for coefficients. ut

8. The slope of A5

Using the techniques developed in previous sections, we determine the slope of the per-
fect cone compactification A5 of A5 (note also that by the appendix by K. Hulek to
[GSM11] this slope is the same for all toroidal compactifications). We begin with some
preliminaries. Let D be a Q-divisor on a normal Q-factorial variety X. We say that D is
rigid if |mD| = {mD} for all sufficiently large and divisible integers m. Equivalently, the
Kodaira–Iitaka dimension κ(X,D) equals zero.
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We denote by B(D) :=
⋂
m Bs(|mD|) the stable base locus of D. We say that D is

movable if codim B(D) ≥ 2.
Recall that one defines the slope of Ag as s(Ag) := inf

E∈Eff(Ag)
s(E). In a similar

fashion one defines the moving slope of Ag as the slope of the cone of moving divisors
on Ag , that is,

s′(Ag) := inf{s(E) : E ∈ Eff(Ag), E is movable}.

Thus s′(Ag) measures the minimal slope of a divisor responsible for a non-trivial map
from Ag to a projective variety. It is known that s(A4) = 8 [SM92], and as an immediate
consequence of the result about the slope of M4 we have s′(A4) = s(θnull) = 17/2.
In the next case, that of dimension g = 5, the formula [N ′0] = 108λ1 − 14D yields the
upper bound s(A5) ≤ 54/7. A lower bound for the slope s(A5) was recently obtained in
[GSM11].

We shall now prove Theorem 0.7 and establish that

κ(A5, N
′

0) = 0,

in particular showing that s(A5) = 54/7. To prove Theorem 0.7 we translate the prob-
lem into a question on the linear series |P ∗(N ′0)| on R6. One can show that each of the
components of P ∗(N ′0) is an extremal divisor on R6; however, their sum could well have
positive Kodaira dimension. Of crucial importance is a uniruled parameterization of Q
using sextics with a totally tangent conic.

We fix general points q1, . . . , q4 ∈ P2, then define S := Bl
{qi }

4
i=1
(P2) → P2 and

denote by {Eqi }
4
i=1 the corresponding exceptional divisors. We make the identification

P15
:= |OS(6)(−2

∑4
i=1 Eqi )|, then consider the space of 4-nodal sextics having a totally

tangent conic

X := {(0,Q) ∈ P15
× |OS(2)| : 0 ·Q = 2d, where d ∈ (0reg)6}.

A parameter count shows that X is pure of dimension 14. We define the rational map
v : X 99K R6 by

v(0,Q) :=
(
C, η := ν∗(O0(1)(−d))

)
∈ R6,

where ν : C → 0 is the normalization map. The image v(X ) is expected to be a di-
visor on R6, and we show that this is indeed the case—this construction yields another
geometric characterization of points in Q.

Theorem 8.1. The closure of v(X ) inside R6 is equal to Q, that is, a general Prym curve
(C, η) ∈ Q possesses a totally tangent conic.
Proof. We carry out a class calculation on R6 and the result will be a consequence of the
extremality properties of the class [Q] ∈ Eff(R6). We work on a partial compactification
R′6 of R6 that is even smaller than R̃6.

Let R′6 := R0
6∪π

−1(1∗0) be the open subvariety of R6, where R0
6 consists of smooth

Prym curves (C, η) for which dimW 2
6 (C) = 0 and h0(C,L ⊗ η) = 1 for every L

in W 2
6 (C), whereas 1∗0 ⊂ 10 is the locus of curves [Cxy], where [C] ∈ M5 −M1

5,3
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and x, y ∈ C. Observe that codim(R̃6 − R′6, R̃6) = 2, in particular we can identify
CH1(R′6) and CH1(R̃6). Over the Deligne–Mumford stack R′6 of Prym curves coarsely
represented by the scheme R′6 (observe that R′6 is an open substack of R6), we consider
the finite cover

σ : G2
6 → R′6,

where G2
6 is the Deligne–Mumford stack that classifies triples (C, η, L)with (C, η) ∈ R′6

and L ∈ W 2
6 (C). Note that a curve [Cxy] ∈ 1′0 carries no non-locally free sheaves

F ∈ Pic6(Cxy)with h0(Cxy, F ) ≥ 5, for F would correspond to a g2
5 on the normalization

C of Cxy , a contradiction. The universal curve p : C → G2
6 is equipped both with a

universal Prym bundle P ∈ Pic(C) and a universal Poincaré line bundle L ∈ Pic(C) such
that L|p−1(C,η,L) = L for any (C, η, L) ∈ G2

6. We form the codimension 1 tautological
classes

a := p∗(c1(L)2), b := p∗(c1(L) · c1(ωp)) ∈ CH1(G2
6), (11)

and the sheaves Vi := p∗(L⊗i), where i = 1, 2. Both V1 and V2 are locally free. The
dependence of a and b on the choice of L is discussed in [FL10]. Using the isomorphism
CH1(R′6) = CH1(R′6), one can write the following formulas in CH1(R′6) (see [FL10,
p. 776]):

σ∗(a) = −48λ+7π∗(δ0), σ∗(b) = 36λ−3π∗(δ0), σ∗(c1(V)) = −22λ+3π∗(δ0). (12)

We also introduce the sheaf E := p∗(P⊗L). SinceR1p∗(P⊗L) = 0 (this is the point
where we use H 1(C,L ⊗ η) = 0 for each (C, η, L) ∈ R′6), applying Grauert’s theorem
we deduce that E is locally free and via Grothendieck–Riemann–Roch we compute its
Chern classes. Taking into account that p∗(c1(P)2) = δram

0 /2 and p∗(c1(L) · c1(P)) = 0
(see [FL10, Proposition 1.6]), one computes

c1(E) = λ− δram
0 /4+ a/2− b/2 ∈ CH1(G2

6). (13)

Similarly, by GRR we find that c1(V2) = λ− b+ 2a.
After this preparation we return to the problem of describing the closure ṽ(X ) of v(X )

in R′6. For a point (C, η, L) ∈ G2
6, the two-torsion point η is induced by a conic totally

tangent to the image of ν : C
|L|
−→ 0 ⊂ P2 if and only if the map given by multiplication

followed by projection

χ(C, η, L) : H 0(C,L⊗ η)⊗H 0(C,L⊗ η)→ H 0(C,L⊗2)/Sym2H 0(C,L)

is not an isomorphism. Working over the stack we obtain a morphism of vector bundles
over G2

6,
χ : E⊗2

→ V2/Sym2(V1),

such that the class of ṽ(X ) is (up to multiplicity) equal to

σ∗c1

(
V2

Sym2(V1)
− E⊗2

)
= 35λ− 5(δ′0 + δ

′′

0 )+
5
2δ

ram
0 = 5[Z],
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where we have used both (12) and (13). We recall that the cycle Z was defined in the proof
of Theorem 6.3 as a subvariety of the larger space R̃6 with Z ∩R′6 = Q ∩R′6. Thus the
class [ṽ(X )] ∈ CH1(R′6) is proportional (up to the divisor class δ′′0 ) to the class [Q̃].
It is proved in [FV11, Proposition 3.6] that if D is an effective divisor on R6 such that
[D] = α[Q] + βδ′′0 , then one has the set-theoretic equality D = Q. Thus we conclude
that the closure of v(X ) in R6 is precisely Q. ut

Theorem 8.2. Through a general point of the ramification divisor Q there passes a ra-
tional curve R ⊂ R6 with the following numerical features:

R · λ = 6, R · δ′0 = 35, R · δ′′0 = 0, R · δram
0 = 6, R · δi = R · δi:5−i = 0,

for i = 1, . . . , 4. In particular R ·Q < 0 and R · U = 0.

Assuming for the moment Theorem 8.2, we explain how it implies Theorem 0.7. Assume
that E ∈ Eff(A5) with s(E) ≤ s(N ′0). First note that one can assume that N ′0 * supp(E),
for otherwise we can replace E by an effective divisor of the form E′ := E − αN ′0
with α > 0 and still s(E′) ≤ s(N ′0). After rescaling by a positive factor, we can write
E ≡ N ′0− ελ1 ∈ Eff(A5), where ε ≥ 0. Clearly we have P ∗(E) ∈ Eff(R6); observe that
since N ′0 is not a component of E, the ramification divisor Q cannot be a component of
P ∗(E) either. Thus R · P ∗(E) ≥ 0, that is,

0 ≤ R · P ∗(E) = R · (2Q+ U + 20δ′′0 )− εR · (λ− δ
ram
0 /4) = −4− 9ε/2,

which is a contradiction. Thus s(E) = s(N ′0) and E must be equal to a multiple of N ′0.

Proof of Theorem 8.2. We retain the notation from Theorem 8.1 and fix a general element
(C, η) ∈ Q corresponding to a sextic curve 0 ⊂ P2 having nodes at q1, . . . , q4. From
Theorem 8.1 we may assume that there exists a conic Q ⊂ P2 with the property that
Q ·0 = 2(p1+ · · ·+p6), where p1, . . . , p6 ∈ 0reg. Since the points q1, . . . , q4 ∈ P2 are
distinct and no three are collinear, it follows that [C] /∈ GP1

6,4, and this holds even when
C has nodal singularities.

To construct the pencil R ⊂ R6, we reverse this construction and start with a conic
Q ⊂ P2 and six general points p1, . . . , p6 ∈ Q on it. On the blowup S′ of P2 at the 10
points p1, . . . , p6, q1, . . . , q4, we denote by {Epi }

6
i=1 and {Eqj }

4
j=1 the respective excep-

tional divisors. For 1 ≤ i ≤ 6, let li ∈ Epi be the point corresponding to the tangent line
Tpi (Q). If S̃ is the blowup of S′ at l1, . . . , l6, by slight abuse of notation we denote by
Epi , Eli and Eqj the exceptional divisors on S̃ (respectively the proper transforms of ex-
ceptional divisors on S′). Then dim |O

S̃
(6)(−2

∑4
j=1 Eqj −

∑6
i=1(Epi +Eli ))| = 3, and

we choose a general pencil in this linear system. This pencil induces a curve R ⊂ R6.
Note that the pencil contains one distinguished element, consisting of the union of Q
and two conics Q1 and Q2 passing through q1, . . . , q4. Considering the pushforward
π∗(R) ⊂M6, after a routine calculation we find

R ·λ = 6, R · (δ′0+ δ
′′

0 + 2δram
0 ) = π∗(R) · δ0 = 47, π∗(R) · δi = 0 for i = 1, 2, 3.
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In particular, R ·U = 0 as expected. The points in R ∩1ram
0 correspond to the case when

the underlying level 2 structure is not locally free, which happens precisely when one of
the points pi becomes singular. For each 1 ≤ i ≤ 6, there is one such curve in R, hence
R · δram

0 = 6, thus R · δ′0 = 35 and therefore using Corollary 7.3 we find

R ·Q = 7R · λ− R · δ′0 −
3
2R · δ

ram
0 = 42− 35− 9 = −2. ut

Since the divisor N ′0 is rigid, we obtain s′(A5) > s(N ′0). Concerning the value of the
moving slope s′(A5), we make the following prediction:

Conjecture 8.3. s′(A5) = 70/9.

The inequality s′(A5) ≥ 70/9 follows from the first part of the proof of Theorem 8.2. Let
E be as before, in particular N ′0 * supp(E). After rescaling by a positive factor, we can
write [E] = [N ′0] + ελ1 ∈ Eff(A5), where ε ≥ 0. Since R · P ∗(E) ≥ 0, we find that

0 ≤ R · P ∗(E) = R · (2Q+ U + 20δ′′0 )+ εR · (λ− δ
ram
0 /4) = −4+ 9ε/2.

Hence ε ≥ 8/9 and this gives s′(A5) ≥ 70/9. Thus Conjecture 8.3 boils down to con-
structing a movable effective divisor on A5 having slope 70/9.

Remark 8.4. Theorem 0.7 implies that the divisor N ′0 can be contracted via a birational
map having A5 as its source. Especially from the point of view of the Minimal Model
Program for A5, it would be interesting to find a new compactification of the moduli
space of ppav A∗5, and a birational map f : A5 99K A∗5 such that f contracts N ′0.

9. The Prym realization of the components of H

For each irreducible component ofH = N ′40 in A5, we describe an explicit codimension 2
subvariety of R6 which dominates it via the Prym map. As a consequence, we prove that
H consists of two irreducible components, both unirational and of dimension 13. We
define two subvarieties of R6 corresponding to Prym curves (C, η) such that ϕKC⊗η lies
on a quadric of rank at most 4, cutting a (Petri special) pencil on C. Depending on the
degree of this pencil, we denote these loci by Q4 and Q5 respectively.

Definition 9.1. We denote by Q5 the closure in R6 of the locus of curves (C, η) ∈ R6
such that C carries two vanishing theta characteristics θ1, θ2 ∈ W

1
5 (C) with η = θ1⊗ θ

∨

2 .

Equivalently, KC ⊗ η = θ1 ⊗ θ2, which implies that the Prym-canonical model of C
lies on a quadric Q ⊂ P4 of rank 4, whose rulings induce θ1 and θ2 respectively.

Definition 9.2. We denote by Q4 the closure in R6 of the locus of curves (C, η) ∈ R6
such that η ∈ W 1

4 (C)−W4(C) and KC ⊗ η is very ample.
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Equivalently, KC ⊗ η = A ⊗ A′, where A ∈ W 1
4 (C) and A′ ∈ W 1

6 (C), and then the
image ϕKC⊗η(C) lies on a quadric Q ⊂ P4 of rank at most 4, whose rulings cut out A
and A′ respectively.

Remark 9.3. Along the same lines, one can consider the locus Q3 of curves (C, η)
in R6 such that KC ⊗ η = A ⊗ A′, where A ∈ W 1

3 (C) and A′ ∈ W 1
7 (C). Observe

that Q3 = π−1(M1
6,3), where M1

6,3 is the trigonal locus inside M6. In particular,
codim(Q3,R6) = 2. However from the trigonal construction [Don92, Section 2.4], it
follows that P(Q3) = J5, that is, P blows down Q3 and thus Q3 plays no further role in
describing the components of H in A5.

First we show that Q4 lies both in the ramification and the antiramification divisor of
the Prym map:

Proposition 9.4. Q4 ⊆ Q ∩ U .

Proof. We choose a point (C, η) ∈ Q4 general in a component of Q4 and write η =
M ⊗OC(−D), whereM ∈ W 1

4 (C) andD ∈ C4 is an effective divisor. Then we compute

h0(C,KC ⊗ η(−D)) = h
0(KC ⊗M

∨) = 3,

that is, ` := 〈D〉 is a 4-secant line to the Prym canonical model ϕKC⊗η(C). Moreover
` is contained in the rank 4 quadric Q whose rulings cut out on C the pencils M and
KC ⊗ η ⊗M

∨ respectively. The line ` is not contained in a plane of Q belonging to the
ruling 3 that cuts out on C the pencil M , for otherwise it would follow that η = 0. Then
` is unisecant to the planes in 3 and if dM ∈ |M| is a general element, then 〈D + dM 〉 is
a hyperplane in P4. Thus

KC ⊗ η = OC(dM +D + x + y),

where x, y ∈ C, that is, H 0(C,KC ⊗M
⊗(−2)) 6= 0, and [C] ∈ GP1

6,4. ut

Proposition 9.5. The locus Q4 is unirational and of dimension 13.

Proof. Since Q4 ⊂ Q ∩ U , we use the fact that every curve [C] ∈ GP1
6,4 is a quadratic

section of a nodal quintic del Pezzo surface. In the course of proving Theorem 8.2 we
observed that a general Prym curve (C, η) ∈ U is characterized by the existence of a
totally tangent conic. We show that a similar description carries over to the case of 1-nodal
del Pezzo surfaces.

We fix collinear points q1, q2, q3 ∈ P2 and a general point q4 ∈ P2, define
` := 〈q1, q2, q3〉 ⊂ P2, and denote by S′ := Bl

{qi }
4
i=1
(P2) → P2 the surface whose

image under the linear system |OS′(2)(−
∑4
i=1 Eqi )| is a 1-nodal del Pezzo quintic.

Set P3
S′
:= |OS′(3)(−

∑3
i=1 Eqi − 2Eq4)|. Note that Aut(S′) = C∗. We consider the

10-dimensional rational variety

V := {(Q, p1, . . . , p5) : Q ∈ |OP2(2)|, p1, . . . , p5 ∈ Q}
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and the rational map p : V 99K P2 given by p((Q, p1, . . . , p5)) := p6, where p6 is the
residual point of intersection of Q with the unique cubic E ∈ |OP2(3)| passing through
q1, . . . , q4, p1, . . . , p5. We consider the linear system

P(Q,p1,...,p5) :=

{
0 ∈

∣∣∣OS′(6)
(
−2

4∑
i=1

Eqi

)∣∣∣ : 0 ·Q = 2(p1 + · · · + p6)
}
.

Claim. For a general (Q, p1, . . . , p5) ∈ V , we have dim P(Q,p1,...,p5) = 4, that is, the
points q1, . . . , q4, p1, . . . , p6 fail to impose one independent condition on 4-nodal sextic
curves.

Since ` + Q + P3
S′
⊂ P(Q,p1,...,p5), to conclude that dim P(Q,p1,...,p5) ≥ 4, it suffices

to find one curve 0 ∈ P(Q,p1,...,p5) that does not have ` as a component. We choose
(Q, p1, . . . , p5) ∈ V general enough that the corresponding cubic E is smooth. Then
2E ∈ P(Q,p1,...,p5) and obviously ` * 2E. To finish the proof of the claim, we exhibit
a point (Q, p1, . . . , p5) ∈ V such that dim(P(Q,p1,...,p5)) = 4. We specialize to the case
p1 ∈ ` and letQ2 be the conic determined by p2, . . . , p5 and q4. The cubic E must equal
` + Q2 and p6 ∈ ` ∩ Q, so that E · Q = p1 + · · · + p6. Then P(Q,p1,...,p5) = ` + P′,
where

P′ :=
{
Y ∈

∣∣∣OS′(5)
(
−

3∑
i=1

Eqi − 2Eq4

)∣∣∣ : Y ·Q2 = p1 + p6 + 2(p2 + p3 + p4 + p5)
}
.

Because p2, . . . , p5 ∈ P2 are general, dim(P′) = 20−3−3−2−8 = 4, which completes
the proof of the claim.

We now consider the P4-bundle P := {(Q, p1, . . . , p5, 0) : 0 ∈ P(Q,p1,...,p5)} to-
gether with the map u : P 99K R6 given by

u((Q, p1, . . . , p5, 0)) :=
(
C, η := OC(1)(−p1 − · · · − p6)

)
,

where C ⊂ S′ is the normalization of 0. Then M := OC(2)(−
∑4
i=1 Eqi ) ∈ W

1
4 (C) is

Petri special and |M ⊗ η| ∼= |OS′(3)(−
∑4
i=1 Eqi −

∑6
j=1 pj )| 6= ∅, hence u(P) ⊂ Q4.

Therefore there is an induced map ū : P//Aut(S′) 99K Q4 between 13-dimensional
varieties. Since every curve (C, η) ∈ Q4 has a totally tangent conic and can be embedded
in S′, it follows that anyM ∈ W 1

4 (C)with h0(C,M⊗η) ≥ 1 appears in the way described
above, which finishes the proof. ut

Another distinguished codimension 2 cycle in R6 is the locus

Q′4 := {(C, η) ∈ R6 : η ∈ W2(C)−W2(C)}

of Prym curves (C, η) for which ϕKC⊗η fails to be very ample. Writing the 2-torsion
point η as OC(a+b−p−q) with a, b, p, q ∈ C, we haveM := OC(2a+2b) ∈ W 1

4 (C)

and the 2-nodal image curve ϕKC⊗η(C) lies on a pencil of quadrics in P4, thus also on a
singular quadric of type (4, 6). We show, however, that this quadric is not the projectivized
tangent cone of a quadratic singularity L ∈ Singst

(C,η)(4), hence points in Q′4 do not
constitute a component of P−1(H).
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Proposition 9.6. We have Q′4 * U . In particular, all singularities of the Prym theta
divisor corresponding to a general point of Q′4 are ordinary double points, that is,

P(Q′4) * H.

Proof. Note that Q′4 is not contained in U , then use Proposition 5.4. ut

Proposition 9.7. The locus Q4 dominates the locus H1 via the Prym map, that is,

P(Q4) ⊃ H1.

Proof. We start with a point x0 = (τ0, z0) ∈ S ′ corresponding to a singular point
z0 ∈ 2τ0 such that rkH(x0) ≤ 4 and x0 is a general point of a component of H − θnull.
In particular (Aτ0 ,2τ0) can be chosen outside any subvariety of A5 having codimension
at least 3. Since each component of S ′ maps generically finite onto N ′0, we find a defor-
mation {xt = (τt , zt )}t∈T ⊂ S ′ parameterized by an integral curve T 3 0 such that for
all t ∈ T − {0}, the corresponding theta divisor 2t has only a pair of singular points,
that is, Sing(2t ) = {±zt }. Since P(Q) is dense in N ′0, after possibly shrinking T , we can
find a family {(Ct , ηt , Lt )}t∈T of triples such that (Ct , ηt ) ∈ Q for all t ∈ T , while for
t 6= 0 the line bundle Lt ∈ V3(Ct , ηt ) corresponds to the singularity zt ∈ Sing(4t ). If we
set (C,L, η) := (C0, L0, η0), by semicontinuity we obtain h0(C,L) ≥ 4. Since we have
rkH(L) = rkQL ≤ 4, Proposition 5.4 shows that L ∈ Singst

(C,η)(4) ∩ Singex
(C,η)(4),

which implies that the Prym-canonical line bundle can be expressed as a sum of two
pencils. Since L is not a theta characteristic and P(C, η) /∈ J5, we deduce that the
Prym-canonical bundle can be expressed as KC ⊗ η = A ⊗ A′, where A ∈ W 1

4 (C).
From Proposition 9.6 it follows that KC ⊗ η can be assumed to be very ample, that is,
(C, η) ∈ Q4. ut

Corollary 9.8. P(Q4) is a unirational component of H , different from θ4
null.

9.1. A parameterization of θ4
null

Our aim is to find an explicit unirational parameterization of θ4
null.

Proposition 9.9. P(Q5) = θ
4
null, where the closure is taken inside A5.

Proof. This proof resembles that of Proposition 9.7. If φ : X5 → A5 denotes the univer-
sal abelian variety, recall that we have showed that φ∗(Snull ∩ S ′) = θ4

null. Thus a point
(τ, z) ∈ Snull ∩ S ′ corresponding to a general point (Aτ ,2τ ) of a component of θ4

null is
a Prym variety P(C, η), where (C, η) ∈ Q ∩ U is a Prym curve such that z ∈ Sing(2τ )
corresponds to a singularity L ∈ Singst

(C,η)(4) ∩ Singex
(C,η)(4). Then L = f ∗(θ1), where

θ1 ∈ Pic5(C) is a vanishing theta-null. Since h0(C̃, L) = h0(C, θ1)+ h
0(C, θ1⊗ η) ≥ 4,

we find that θ2 := θ1 ⊗ η is another theta characteristic, that is, (C, η) ∈ Q5. Therefore
θ4

null ⊆ P(Q5). The reverse inclusion is obvious. ut

We can now complete the proof of Theorem 0.5. We consider the smooth quadric Q :=
P1
× P1 and the linear systems of rational curves

P7
1 := |OP1×P1(3, 1)| and P7

2 := |OP1×P1(1, 3)|.
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Over P7
1 × P7

2 we define the P5-bundle

U := {(R1, R2, 0) : Ri ∈ P7
i for i = 1, 2, 0 ∈ |I2

R1·R2/Q
(5, 5)|}.

There is an induced rational map ψ : U 99K Q5 given by

ψ(R1, R2, 0) := (C, p
∗

1O(1)⊗ p
∗

2O(−1)) ∈ R6,

where ν : C → 0 is the normalization map and p1, p2 : C → P1 are the compositions
of ν with the two projections.

A general pair (R1, R2) ∈ P7
1 × P7

2 corresponds to smooth rational curves such that
the intersection cycle R1 · R2 = o1 + · · · + o10 consists of distinct points. For any curve
0 ∈ |I2

R1·R2
(5, 5)| we have R1 · 0 = R2 · 0 = 2(o1 + · · · + o10). As the pull-back map

ν∗ : |IR1·R2(3, 3)| → |KC | is an isomorphism, it follows that both p∗1O(1) and p∗2O(1)
are vanishing theta-nulls, hence ψ(U) ⊂ Q5.

Theorem 9.10. The rational map ψ : U 99K Q5 is generically finite and dominant. In
particular Q5 (and thus θ4

null = P(Q5)) is unirational.

Proof. We start with a point (C, θ1, θ2) ∈ Q5 moving in a 13-dimensional family. In
particular, the image 0 of the induced map ϕ(θ1,θ2) : C → P1

× P1 is nodal and we set
Sing(0) = {o1, . . . , o10}.

We choose divisors D,D′ ∈ |θ1| corresponding to lines `, `′ ∈ |OQ(1, 0)| such that
ν∗(0 ·`) = D and ν∗(0 ·`′) = D′ respectively. ThenD+D′ ∈ |KC |, and since the linear
system |Io1+···+o10(3, 3)| cuts out the canonical system on C, it follows that there exists
a cubic curve E ∈ |OQ(3, 3)| such that

E · 0 = D +D′ + 2
10∑
i=1

oi .

By Bézout’s Theorem, both ` and `′ must be components of E, that is, we can write
E = `+ `′ +R1, where R1 ∈ |OQ(1, 3)| is such that R1 · 0 = 2

∑10
i=1 oi . Switching the

roles of θ1 and θ2, there exists R2 ∈ |OQ(3, 1)| such that R2 · 0 = 2
∑10
i=1 oi . It follows

that (R1, R2, 0) ∈ ψ
−1((C, θ1 ⊗ θ

∨

2 )). The variety U being a P5-bundle over P7
1 × P7

2 is
unirational, hence Q5 is unirational as well, thus finishing the proof. ut
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composantes. Ann. Sci. École Norm. Sup. (4) 25, 687–707 (1992) Zbl 0781.14031
MR 1198094

[Don92] Donagi, R.: The fibers of the Prym map. In: Curves, Jacobians, and Abelian Varieties
(Amherst, MA, 1990), Contemp. Math. 136, Amer. Math. Soc., Providence, RI, 55–
125 (1992) Zbl 0783.14025 MR 1188194

[DS81] Donagi, R., Smith, R.: The structure of the Prym map. Acta Math. 146, 25–102 (1981)
Zbl 0538.14019 MR 0594627

[EL97] Ein, L., Lazarsfeld, R.: Singularities of theta divisors and the birational geometry
of irregular varieties. J. Amer. Math. Soc. 10, 243–258 (1997) Zbl 0901.14028
MR 1396893

[EH87] Eisenbud, D., Harris, J.: The Kodaira dimension of the moduli space of curves of genus
≥ 23. Invent. Math. 90, 359–387 (1987) Zbl 0631.14023 MR 0910206

[Far05] Farkas, G.: Gaussian maps, Gieseker–Petri loci and large theta-characteristics. J. Reine
Angew. Math. 581, 151–173 (2005) Zbl 1076.14035 MR 2132674

[FL10] Farkas, G., Ludwig, K.: The Kodaira dimension of the moduli space of Prym varieties.
J. Eur. Math. Soc. 12, 755–795 (2010) Zbl 1193.14043 MR 2639318

[FV11] Farkas, G., Verra, A.: Moduli of theta-characteristics via Nikulin surfaces. Math. Ann.
354, 465–496 (2012) Zbl 1259.14033 MR 2965251

[HF06] Farkas, H.: Vanishing thetanulls and Jacobians. In: The Geometry of Riemann Surfaces
and Abelian Varieties, Contemp. Math. 397, Amer. Math. Soc., Providence, RI, 37–53
(2006) Zbl 1099.14020 MR 2217996

[Fre83] Freitag, E.: Siegelsche Modulfunktionen. Grundlehren Math. Wiss. 397, Springer,
Berlin (1983) Zbl 0498.10016 MR 0871067

[vdG99] van der Geer, G.: Cycles on the moduli space of abelian varieties. In: Moduli of Curves
and Abelian Varieties, Aspects Math. E33, Vieweg, Braunschweig, 65–89 (1999)
Zbl 0974.14031 MR 1722539

[GSM07] Grushevsky, S., Salvati Manni, R.: Singularities of the theta divisor at points of order
two. Int. Math. Res. Notices 2007, no. 15, art. ID rnm045, 15 pp. Zbl 1132.14026
MR 2348405

[GSM08] Grushevsky, S., Salvati Manni, R.: Jacobians with a vanishing theta-null in genus 4.
Israel J. Math. 164, 303–315 (2008) Zbl 1148.14014 MR 2391151

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0222.14024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0220740
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0559.14017&format=complete
http://www.ams.org/mathscinet-getitem?mr=0770932
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0551.14016&format=complete
http://www.ams.org/mathscinet-getitem?mr=0750718
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0333.14013&format=complete
http://www.ams.org/mathscinet-getitem?mr=0572974
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1091.14012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1919422
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1164.14008&format=complete
http://www.ams.org/mathscinet-getitem?mr=2520473
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0781.14031&format=complete
http://www.ams.org/mathscinet-getitem?mr=1198094
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0783.14025&format=complete
http://www.ams.org/mathscinet-getitem?mr=1188194
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0538.14019&format=complete
http://www.ams.org/mathscinet-getitem?mr=0594627
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0901.14028&format=complete
http://www.ams.org/mathscinet-getitem?mr=1396893
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0631.14023&format=complete
http://www.ams.org/mathscinet-getitem?mr=0910206
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1076.14035&format=complete
http://www.ams.org/mathscinet-getitem?mr=2132674
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1193.14043&format=complete
http://www.ams.org/mathscinet-getitem?mr=2639318
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1259.14033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2965251
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1099.14020&format=complete
http://www.ams.org/mathscinet-getitem?mr=2217996
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0498.10016&format=complete
http://www.ams.org/mathscinet-getitem?mr=0871067
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0974.14031&format=complete
http://www.ams.org/mathscinet-getitem?mr=1722539
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1132.14026&format=complete
http://www.ams.org/mathscinet-getitem?mr=2348405
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1148.14014&format=complete
http://www.ams.org/mathscinet-getitem?mr=2391151


1848 G. Farkas et al.

[GSM11] Grushevsky, S., Salvati Manni, R.: The Prym map on divisors, and the slope of A5
(with an appendix by K. Hulek). arXiv:1107.3094 (2011)

[Igu72] Igusa, J.-I.: Theta Functions. Grundlehren Math. Wiss. 194, Springer, New York (1972)
Zbl 0251.14016 MR 0325625

[Igu81a] Igusa, J.-I.: On the irreducibility of Schottky’s divisor. J. Fac. Sci. Univ. Tokyo Sect.
IA Math. 28, 531–545 (1981) Zbl 0501.14026 MR 0656035

[Igu81b] Igusa, J.-I.: Schottky’s invariant and quadratic forms. In: E. B. Christoffel
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