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Abstract. We study continuous Anderson Hamiltonians with non-degenerate single site probabil-
ity distribution of bounded support, without any regularity condition on the single site probability
distribution. We prove the existence of a strong form of localization at the bottom of the spectrum,
which includes Anderson localization (pure point spectrum with exponentially decaying eigenfunc-
tions) with finite multiplicity of eigenvalues, dynamical localization (no spreading of wave packets
under the time evolution), decay of eigenfunctions correlations, and decay of the Fermi projec-
tions. We also prove log-Hölder continuity of the integrated density of states at the bottom of the
spectrum.
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Introduction

Anderson Hamiltonians are alloy-type random Schrödinger operators on L2(Rd) that
model the motion of an electron moving in a randomly disordered crystal. They are the
continuous analogue of the Anderson model, a random Schrödinger operator on `2(Zd).

In this paper we prove a strong form of localization at the bottom of the spectrum for
Anderson Hamiltonians with a non-degenerate single site probability distribution with
compact support, without any regularity condition on the single site probability distribu-
tion. This strong form of localization includes Anderson localization (pure point spectrum
with exponentially decaying eigenfunctions) with finite multiplicity of eigenvalues, dy-
namical localization (no spreading of wave packets under the time evolution), decay of
eigenfunctions correlations, and decay of the Fermi projections. We also prove log-Hölder
continuity of the integrated density of states at the bottom of the spectrum.

Localization for random Schrödinger operators was first established in the celebrated
paper by Gol’dsheid, Molchanov and Pastur [GoMP] for a certain one-dimensional con-
tinuous random Schrödinger operator. Localization is by now well established for one and
quasi-one random Schrödinger operators [KuS, L, KlMP, CKM, KlLS, Sto, DSS].

In the multi-dimensional case there is a wealth of results concerning localization for
the (discrete) Anderson model and the (continuous) Anderson Hamiltonian as long as the
single site probability distribution has enough regularity (absolutely continuous with a
bounded density, Hölder continuous, log-Hölder continuous). In this case Anderson and
dynamical localizations are well established: see, e.g., [FrS, MS1, FrMSS, DelLS, SiW,
SVW, Dr, DrK1, Sp, DrK2, AM, Kl1, FK1, A, ASFH, W2, Klo4, HolM, CoH1, Klo2,
GDB, FK2, KiSS1, KiSS2, DS, GK1, GK3, GK4, AENSS, Kl2]. Localization is also
known in a random displacement model where the displacement probability distribution
has a bounded density [Klo1, GhK, KloLNS], for a class of Gaussian random potentials
[FiLM, U, LeMW], and for Poisson models where the single-site potentials are multiplied
by random variables with bounded densities [MS2, CoH1]. What all these results have
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in common is the availability of random variables with sufficiently regular probability
distributions, which can be exploited, in an averaging procedure, to produce an a priori
Wegner estimate at all scales (an estimate on the probability of energy resonances in finite
volumes); see, e.g., [We, FrS, HolM, CKM, CoH1, Klo2, CoHM, Ki, FiLM, St, CoHN,
CoHKN, CoHK1, CoHK2].

In contrast, for the most natural random Schrödinger operators on the continuum (cf.
[LiGP, Subsection 1.1]), the Bernoulli–Anderson Hamiltonian (simplest disordered sub-
stitutional alloy) and the Poisson Hamiltonian (simplest disordered amorphous medium),
localization results in two or more dimensions were much harder to obtain. The Bernoulli
–Anderson Hamiltonian is an Anderson Hamiltonian where the single site probability dis-
tribution is the distribution of a Bernoulli random variable, and the Poisson Hamiltonian
is a random Schrödinger operator corresponding to identical impurities placed at loca-
tions given by a homogeneous Poisson point process on Rd . In both cases the random
variables with regular probability distributions are not available, so there is no a priori
Wegner estimate.

Bourgain and Kenig [BoK] proved Anderson localization at the bottom of the spec-
trum for the Bernoulli–Anderson Hamiltonian. In their remarkable paper the Wegner esti-
mate is established by a multiscale analysis using “free sites” and a new quantitative ver-
sion of the unique continuation principle which gives a lower bound on eigenfunctions.
Since this Wegner estimate has weak probability estimates and the underlying random
variables are discrete, they also introduced a new method to prove Anderson localization
from estimates on the finite-volume resolvents given by a single energy multiscale anal-
ysis. The new method does not use spectral averaging as in [DelLS, SiW, CoH1], which
requires random variables with bounded densities. It is also not an energy-interval mul-
tiscale analysis as in [FrMSS, DrK1, FK2, GK1, Kl2], which requires better probability
estimates.

Germinet, Hislop and Klein [GHK1, GHK2, GHK3] established Anderson localiza-
tion at the bottom of the spectrum for the Poisson Hamiltonian, using a multiscale analysis
that exploits the probabilistic properties of Poisson point processes to control the random-
ness of the configurations, and at the same time allows the use of the new ideas introduced
by Bourgain and Kenig.

Aizenman, Germinet, Klein, and Warzel [AGKW] used a Bernoulli decomposition for
random variables to show that spectral localization (pure point spectrum with probability
one) for Anderson Hamiltonians follows from an extension of the Bourgain–Kenig results
to nonhomogeneous Bernoulli–Anderson Hamiltonians, which incorporate an additional
background potential and allow the variances of the Bernoulli terms not to be identical but
only uniformly positive. Such random Schrödinger operators are generalized Anderson
Hamiltonians as in Definition 2.2, for which we prove Anderson and dynamical local-
ization in this paper, thus providing a proof of the required extension stated in [AGKW,
Theorem 1.4].

In this article we provide a comprehensive proof of localization for Anderson Hamil-
tonians, drawing on the methods of [FrS, FrMSS, DrK1, CoH1, FK2, GK1, GK6, Kl2]
and incorporating the new ideas of [BoK]. We make no assumptions on the single site
probability distribution except for compact support. (The proof can be extended to dis-
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tributions of unbounded support with appropriate assumptions on the tails of the distri-
bution.) We perform a multiscale analysis to obtain probabilistic statements about re-
strictions of the Anderson Hamiltonian to finite volumes. From the conclusions of the
multiscale analysis we extract an infinite volume characterization of localization: a prob-
abilistic statement concerning the generalized eigenfunctions of the (infinite volume) An-
derson Hamiltonian, from which we derive both Anderson and dynamical localization, as
well as other consequences of localization, such as decay of eigenfunctions correlations
(e.g., SULE, SUDEC) and decay of the Fermi projections.

This new infinite volume description of localization (given in Theorem 1.2(B)) yields
all the manifestations of localization that have been previously derived from the en-
ergy interval multiscale analysis for sufficiently regular single site probability distribution
[FrMSS, DrK1, GDB, DS, GK1, GK6, Kl2]. This description may also be derived from
the energy interval multiscale analysis (see Remark 1.7); it is implicit in [GK6]. One of
the main achievements of this paper is the extraction of such a clean and simple statement
of localization for Bernoulli and other singular single site probability distributions.

We give a detailed account of this single energy multiscale analysis, which uses ‘free
sites’ and the quantitative unique continuation principle as in [BoK] to obtain control of
finite volume resonances. We also explain in detail how all forms of localization can be
extracted from this single energy multiscale analysis. To put this extraction in perspective,
Fröhlich and Spencer, in their seminal paper [FrS], obtained a single energy multiscale
analysis for the discrete Anderson model with good probability estimates, but were not
able to derive Anderson localization from their result. The desired localization was later
obtained from a multiscale analysis by two different methods. Spectral averaging gets
Anderson localization from a single energy multiscale analysis as in [FrS], but requires
absolutely continuous single site probability distributions with a bounded density [DelLS,
SiW, CoH1]. Anderson localization, and later dynamical localization, can be proven from
an energy interval multiscale analysis using generalized eigenfunctions [FrMSS, DrK1,
DS, GK1, Kl2]. None of these methods were available in Bourgain and Kenig’s setting.
Spectral averaging is not feasible for Bernoulli random variables, and the energy inter-
val multiscale analysis requires better probability estimates than are possible using the
quantitative unique continuation principle. In response, Bourgain and Kenig developed a
new method for obtaining Anderson localization from a single energy multiscale analysis,
using Peierl’s argument, generalized eigenfunctions, and two energy reductions [BouK,
Section 7]. (Their method is simpler in the setting of [FrS], where the second energy re-
duction is not needed—see Remarks 6.13 and 6.14.) In this paper we combine the ideas of
[BouK, Section 7] with methods we developed in [GK1, GK6] to extract all forms of lo-
calization from a single energy multiscale analysis, giving a detailed account of all steps.

We also derive log-Hölder continuity of the integrated density of states from the con-
clusions of the multiscale analysis. The multiscale analysis requires the probabilistic con-
trol of finite volume resonances subexponentially close to the given energy (and no more,
as noted in [DrK1]). In [BoK] and in this article, this control is obtained as part of the
multiscale analysis. We show that, in the presence of a multiscale analysis, log-Hölder
continuity of the integrated density of states is the infinite volume trace of this probabilis-
tic control (the ‘Wegner estimate’).
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The integrated density of states of the discrete Anderson model is always log-Hölder
continuous [CrS]. If the single site probability distribution is continuous (i.e., it has no
atoms), then the integrated density of states for both discrete Anderson models and con-
tinuous Anderson Hamiltonians has at least as much regularity as the concentration func-
tion of this probability distribution [CoHK2]. Although for the discrete Anderson model
there is an easy proof of continuity of the integrated density of states for arbitrary sin-
gle site probability distribution [DelS], for the continuous Anderson Hamiltonian it is
not even known if the integrated density of states is always a continuous function if this
probability distribution has an atom.

Neither Anderson localization nor dynamical localization carry information about the
regularity of the integrated density of states. Roughly speaking, dynamical localization
and regularity of the integrated density of states carry complementary types of informa-
tion. This is made more precise in [GK5], where we showed that for Anderson Hamilto-
nians with an a priori Wegner estimate, dynamical localization is necessary and sufficient
to perform a multiscale analysis. The multiscale analysis contains more information than
just localization properties: it also encodes regularity of the integrated density of states.
This fact has been overlooked, since, prior to the multiscale analysis in [BoK], all mul-
tiscale analyses for Anderson models were performed with an a priori Wegner estimate
which readily implied regularity of the integrated density of states, even without local-
ization. In view of our results in [GK5], we may argue that, by proving both localization
and log-Hölder continuity of the integrated density of states, we have extracted from the
multiscale analysis all the encoded information. This ‘philosophical’ remark would be-
come a mathematical statement if we could prove that localization combined with the
log-Hölder continuity of the integrated density of states is enough to start a multiscale
analysis, extending the results of [GK5] to the setting of this article.

The strong localization results, including Anderson localization and dynamical lo-
calization, and the log-Hölder continuity of the integrated density of states, presented
in this paper for Anderson Hamiltonians, are also valid for Poisson Hamiltonians using
the probabilistic properties of Poisson point processes to control the randomness of the
configurations as in [GHK2].

It remains a challenge to prove localization for other random Schrödinger operators
with no assumptions on the single site probability distribution except for compact sup-
port (e.g., for a Bernoulli distribution). In particular, there is no proof of localization for
the multidimensional discrete Bernoulli–Anderson model, for which everything in [BoK]
and this paper is valid except for the quantitative unique continuation principle; there is no
unique continuation principle for discrete Schrödinger operators, where non-zero eigen-
functions may vanish on arbitrarily large sets [J, Theorem 2]. The same applies to random
Landau Hamiltonians [CoH2, W1, GKS1, GKS2, GKM], where, although the unique
continuation principle holds, an appropriate quantitative unique continuation principle is
missing. (There is a quantitative unique continuation principle for Landau Hamiltonians,
but it comes with the exponent 2 instead of 4/3 [Da]. The multiscale analysis requires an
exponent < (1+

√
3)/2, as discused in Remark 4.8. Note that 4/3 < (1+

√
3)/2 < 2.)

The same is also true for a continuous alloy-type random Schrödinger operators with
single site potentials of indefinite sign [Klo2, KloN, HK], where, although we have the
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quantitative unique continuation principle, it cannot be used to control the finite volume
resonances.

This article is organized as follows:

1. Main results: In Section 1 we define Anderson Hamiltonians and state our main re-
sults, Theorem 1.2 and Corollary 1.4.

2. Anderson Hamiltonians: In Section 2 we introduce (normalized) generalized Ander-
son Hamiltonians, finite volume operators, and prove some basic deterministic prop-
erties. We always work with generalized Anderson Hamiltonians in the following sec-
tions.

3. Preamble to the multiscale analysis: In Section 3 we introduce the machinery for
the multiscale analysis. We define ‘good boxes’, ‘free sites’, ‘suitable coverings’ of
boxes and annuli, and prove some basic lemmas.

4. The multiscale analysis with a Wegner estimate: Section 4 is devoted to the multi-
scale analysis; Theorem 4.1 states the full result at the bottom of the spectrum. Propo-
sition 4.3 gives a priori finite volume estimates at the bottom of the spectrum that yield
the starting condition for the multiscale analysis. The single energy multiscale analysis
with a Wegner estimate is performed in Proposition 4.6 on any energy interval where
we have a priori finite volume estimates.

5. Preamble to localization: In Section 5 we introduce tools for extracting localization
from the multiscale analysis. We discuss generalized eigenfunctions and the general-
ized eigenfunction expansion, and show that generalized eigenfunctions are small in
good boxes (e.g., Lemma 5.3).

6. From the multiscale analysis to localization: In Section 6 we extract localization
from the multiscale analysis. We assume that the conclusions of the multiscale anal-
ysis (i.e., of Proposition 4.6) hold for all energies in a bounded open interval (not
necessarily at the bottom of the spectrum), and derive localization in that interval.
Theorem 6.1 encapsulates all forms of localization.

7. Localization: In Section 7 we extract the usual forms of localization from Theo-
rem 6.1. Anderson localization and finite multiplicity of eigenvalues are proven in
Theorem 7.1. Eigenfunctions correlations (e.g., SUDEC, SULE) are obtained with
probability one in Theorem 7.2 and in expectation in Theorem 7.4. Dynamical local-
ization and decay of Fermi projections are proved with probability one in Corollary 7.3
and in expectation in Corollary 7.7.

8. Log-Hölder continuity of the integrated density of states: In Section 8 we derive
log-Hölder continuity of the integrated density of states from the multiscale analysis
with a Wegner estimate; see Theorem 8.1.

A. A quantitative unique continuation principle for Schrödinger operators: In Ap-
pendix A we rewrite Bourgain and Kenig’s quantitative unique continuation principle
for Schrödinger operators, i.e., [BoK, Lemma 3.10], in a form convenient for our pur-
poses; see Theorem A.1 and Corollary A.2. We also give an application of this quan-
titative unique continuation principle to periodic Schrödinger operators, providing an
alternative proof to Combes, Hislop and Klopp’s lower bound estimate concerning
periodic potentials and spectral projections [CoHK1, Theorem 4.1].
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1. Main results

We start by defining Anderson Hamiltonians.

Definition 1.1. An Anderson Hamiltonian is a random Schrödinger operator on L2(Rd)
of the form

Hω := −1+ Vper + Vω, (1.1)

where

(i) 1 is the d-dimensional Laplacian operator,
(ii) Vper is a bounded periodic potential with period q ∈ N,

(iii) Vω is an alloy-type random potential,

Vω(x) :=
∑
ζ∈Zd

ωζ u(x − ζ ), (1.2)

where

(a) the single site potential u is a non-negative bounded measurable function on Rd
with compact support, uniformly bounded away from zero in a neighborhood of
the origin,

(b) ω = {ωζ }ζ∈Zd is a family of independent identically distributed random vari-
ables whose common probability distribution µ is non-degenerate with bounded
support.

Given an Anderson Hamiltonian Hω, we set Pω(B) := χB(Hω) for a Borel set
B ⊂ Rd , Pω(E) := Pω({E}) and P (E)ω := Pω(]−∞, E]) for E ∈ R.

An Anderson Hamiltonian Hω is a qZd -ergodic family of random self-adjoint opera-
tors (q = 1 if Vper = 0). It follows (see [KiM1, CL, PF]) that there exist fixed subsets 6,
6pp,6ac and6sc of R such that the spectrum σ(Hω) ofHω, as well as its pure point, abso-
lutely continuous, and singular continuous components, are equal to these fixed sets with
probability one. We let Einf = inf6 > −∞, the bottom of the non-random spectrum;
note that there exists E1 > Einf such that [Einf, E1] ⊂ 6 [KiM2].

We will use the following notation:

• Given x = (x1, . . . , xd) ∈ Rd , we set

‖x‖ := max{|x1|, . . . , |xd |} and 〈x〉 := (1+ ‖x‖2)1/2. (1.3)

• Given ν > 0 and y ∈ Rd , we let Tν,y be the operator on L2(Rd) given by multiplication
by the function Tν,y(x) := 〈x − y〉ν . We set 〈X − y〉 := T1,y and Tν := Tν,0 = 〈X〉ν .
• We let

3L(x) := {y ∈ Rd; ‖y − x‖ < L/2} = x + ]−L/2, L/2[d (1.4)

denote the (open) box of side L centered at x ∈ Rd . By a box 3L we will mean a
box 3L(x) for some x ∈ Rd . We write 3L = 3L for the closed box. Given scales
L1 < L2, we consider the (open) annulus

3L2,L1(x) := 3L2(x) \3L1(x) = {y ∈ Rd; L1/2 < ‖y − x‖ < L2/2}, (1.5)

and let 3L2,L1(x) := 3L2,L1(x) be the closed annulus.
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• Given a set B, we write χB for its characteristic function.
• χx will denote the characteristic function of the unit box centered at x ∈ Rd , i.e.,
χx := χ31(x).
• The cardinality of a set A will be denoted by #A.
• Given a Borel set 4 ⊂ Rd , we will denote its Lebesgue measure by |4|.
• We will use the notation t for disjoint unions: given sets A and B, writing C = A t B

means that C = A ∪ B and A ∩ B = ∅.
• We let Bb denote the collection of bounded complex-valued Borel functions on R, and

set Bb,1 := {f ∈ Bb; supt∈R|f (t)| ≤ 1}.
• Given an open set 4 ⊂ Rd and n ∈ N ∪ {∞}, Cn(4) will denote the collection

of n-times continuously differentiable complex-valued functions on 4, with Cnc (4)
denoting the subset of functions with compact support.
• By a constant we will always mean a finite constant. We will use Ca,b,..., C′a,b,...,
C(a, b, . . .), etc., to denote a constant depending only on the parameters a, b, . . . .

We prove a probabilistic statement about the generalized eigenfunctions of an Ander-
son Hamiltonian, from which we will derive all the usual statements about localization.
Generalized eigenfunctions, originally used by Martinelli and Scoppola [MS1] to extract
absence of absolutely continuous from the multiscale analysis, have been an indispens-
able tool in all proofs of localization that do not use spectral averaging [FrMSS, DrK1,
GK1, Kl2, BoK].

Let Hω be an Anderson Hamiltonian on L2(Rd) and fix ν > 0. A generalized eigen-
function for a realization Hω (i.e., we fix the values of the random variables ω) with gen-
eralized eigenvalue E ∈ R is a measurable function ψ on Rd , with 0 < ‖T −1

ν ψ‖ < ∞,
satisfying the eigenvalue equation for E in the weak sense, i.e.,

〈Hωϕ,ψ〉 = E〈ϕ,ψ〉 for all ϕ ∈ C∞c (R
d). (1.6)

We will denote by2(ν)ω (E) the collection of generalized eigenfunctions for Hω with gen-
eralized eigenvalue E.

To detect localization for a realization Hω, we introduce quantities that measure the
concentration of the generalized eigenfunctions with generalized eigenvalue E in certain
subsets of Rd . Given x ∈ Rd , we will measure this concentration at x by

W (ν)
ω,x(E) :=


sup

ψ∈2
(ν)
ω (E)

‖χxψ‖

‖T −1
ν,xψ‖

if 2(ν)ω (E) 6= ∅,

0 otherwise,
(1.7)

and at an annulus around x at scale L ≥ 1 by

W
(ν)
ω,x,L(E) :=


sup

ψ∈2
(ν)
ω (E)

‖χx,Lψ‖

‖T −1
ν,xψ‖

if 2(ν)ω (E) 6= ∅,

0 otherwise,
(1.8)

where χx,L := χ32L+1,L−1(x). (For technical reasons we will need an annulus slightly
bigger than χ32L,L(x).) We always have 0 ≤ W

(ν)
ω,x(E) ≤ (5/4)ν/2 < 2ν/2 and 0 ≤
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W
(ν)
ω,x,L(E) ≤ 2ν/2Lν . We will work with a fixed ν > d/2, but note that W (ν)

ω,x(E) and

W
(ν)
ω,x,L(E) are increasing in ν.

We also prove log-Hölder continuity of the integrated density of states. The inte-
grated density of states N(E) for an Anderson Hamiltonian Hω, usually defined through
the infinite volume limit of the normalized eigenvalue counting functions of appropriate
restrictions to finite volumes (e.g., [CL, PF]), equals (e.g., [DoIM])

N(E) =
1
qd

E{tr(χ3q (0)P
(E)
ω
χ3q (0))} for E ∈ R. (1.9)

The following theorem contains our main results; item (B) encapsulates localization
for Anderson Hamiltonians.

Theorem 1.2. Let Hω be an Anderson Hamiltonian on L2(Rd). For each p ∈ ]1/3, 3/8[
there exists an energy E0 > Einf such that the following holds for all p̃ ∈ ]0, p[:

(A) The integrated density of states N(E) is locally log-Hölder continuous of order p̃d
in the interval [Einf, E0[, i.e., for all p̃ ∈ ]0, p[ and compact intervals I ⊂ [Einf, E0[

with length |I | ≤ 1/2 we have

|N(E2)−N(E1)| ≤
Cp̃,I∣∣log|E2 − E1|

∣∣p̃d for all E1, E2 ∈ I. (1.10)

(B) Let ϑ = 1
2ρ

n1 for some ρ ∈ ]1/(1+ p), 1[ and n1 ∈ N with (n1 + 1)ρn1 < p − p̃.
There exists a constant M > 0 such that, for every fixed ν > d/2, there is a finite
scale L0 such that for all L ≥ L0 and x0 ∈ Rd there exists an event UL,x0 with the
following properties:
(i) UL,x0 depends only on the random variables {ωζ }ζ∈3 1001L

500
(x0), and

P{UL,x0} ≥ 1− L−p̃d . (1.11)

(ii) If ω ∈ UL,x0 , for all E ∈ [Einf, E0[ we have

either W (ν)
ω,x0

(E) ≤ e−ML
ϑ

or W
(ν)
ω,x0,L

(E) ≤ e−ML. (1.12)

In particular, for all ω ∈ UL,x0 we have

W (ν)
ω,x0

(E)W
(ν)
ω,x0,L

(E) ≤ e−
1
2ML

ϑ

for E ∈ [Einf, E0[. (1.13)

Remark 1.3. The conclusions of Theorem 1.2 hold on any bounded open interval I in
which we verify the starting condition (i.e., hypotheses) for the multiscale analysis of
Proposition 4.6. Theorem 1.2 is stated for an interval at the bottom of the spectrum, where
the starting condition for the multiscale analysis is derived from Lifshitz tail estimates in
Proposition 4.3. This starting condition, and hence the analogue of Theorem 1.2, can also
be proved in intervals at the edge of spectral gaps, similarly to Proposition 4.3, using the
internal Lifshitz tails estimates given in [Klo3]. This starting condition is also derived in
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Proposition 4.5 for a fixed interval at the bottom of the spectrum at high disorder, provided
µ({inf suppµ}) = 0, and the conclusions of Theorem 1.2 hold in this fixed interval at high
disorder if µ([inf suppµ, inf suppµ + t]) ≤ Ctγ , with γ > 0 appropriately large. Note
that Theorem 1.2 also holds if the single site potential u in Definition 1.1 is assumed to
be non-positive instead of non-negative, since in this case replacing u by −u and µ by
µ̃, where µ̃(B) = µ(−B), rewrites the random Schrödinger operator as an Anderson
Hamiltonian as in Definition 1.1.

Theorem 1.2(A) says that in the interval [Einf, E0[ (more generally, in the interval
where we have a multiscale analysis) the integrated density of states N(E) is log-Hölder
continuous regardless of the (lack of) regularity of µ. If the single site probability distri-
bution µ is continuous (i.e., µ has no atoms), then it is known that the integrated density
of states has at least as much regularity as the concentration function Sµ of µ [CoHK2]:
for all compact intervals I ⊂ R we have

|N(E2)−N(E1)| ≤ CISµ(|E2 − E1|) for all E1, E2 ∈ I, (1.14)

where Sµ(s) := supt∈R µ([t, t + s]) for s ≥ 0. If µ has an atom, (1.14) is still true but
useless, since infs>0 Sµ(s) > 0. For the continuous Anderson Hamiltonian it is not even
known if N(E) is a continuous function on R if µ has an atom.

Theorem 1.2(B) is a probabilistic statement about the infinite volume Anderson
Hamiltonian; there is no mention of finite volume operators. It captures all the usual forms
of localization. Anderson localization with finite multiplicity of eigenvalues will follow
from (1.11) and (1.12) by a simple application of the Borel–Cantelli Lemma. Dynamical
localization, decay of eigenfunctions correlations (e.g., SULE, SUDEC), and decay of
the Fermi projections will be consequences of (1.11) and (1.13). These and other famil-
iar localization properties are stated in Corollary 1.4. (Theorem 1.2(A) is not needed for
Corollary 1.4.)

Corollary 1.4. Let Hω be an Anderson Hamiltonian on L2(Rd). Fix p ∈ ]1/3, 3/8[, and
let E0 > Einf, p̃ ∈ ]0, p[, ϑ > 0 and M > 0 be as in Theorem 1.2. Then Hω exhibits
strong localization in the energy interval [Einf, E0[ in the following sense:

(i) The following holds with probability one:
(a) Hω has pure point spectrum in the interval [Einf, E0[.
(b) For all E ∈ [Einf, E0[, ψ ∈ RanPω(E), and ν > d/2, we have

‖χxψ‖ ≤ Cω,E,ν‖T
−1
ν ψ‖ e−M‖x‖ for all x ∈ Rd . (1.15)

In particular, each eigenfunction ψ of Hω with eigenvalue E ∈ [Einf, E0[ is
exponentially localized with the non-random rate of decay M > 0.

(c) The eigenvalues of Hω in [Einf, E0[ have finite multiplicity:

trPω(E) <∞ for all E ∈ [Einf, E0[. (1.16)

(ii) The following holds with probability one for all ε > 0 on all compact intervals
I ⊂ [Einf, E0[ :
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(a) For all E ∈ I , x, y ∈ Rd , and ν > d/2, we have

‖χxφ‖ ‖χyψ‖ ≤ Cω,I,ν,ε‖T
−1
ν φ‖ ‖T −1

ν ψ‖e‖x‖
(1+ε)ϑ/p̃

e−
1
4M‖x−y‖

ϑ

(1.17)

for all φ,ψ ∈ RanPω(E), and

‖χxPω(E)‖2‖χyPω(E)‖2 ≤ Cω,I,ν,ε‖T
−1
ν Pω(E)‖

2
2e‖x‖

(1+ε)ϑ/p̃
e−

1
4M‖x−y‖

ϑ

.

(1.18)
(b) For all E ∈ I , there exists a “center of localization” yω,E ∈ Rd for all eigen-

functions with eigenvalue E, in the sense that for all x ∈ Rd and ν > d/2 we
have

‖χxφ‖ ≤ Cω,I,ν,ε‖T
−1
ν φ‖e‖yω,E‖

(1+ε)ϑ/p̃
e−

1
4M‖x−yω,E‖

ϑ

(1.19)

for all φ ∈ RanPω(E), and

‖χxPω(E)‖2 ≤ Cω,I,ν,ε‖T
−1
ν Pω(E)‖2e‖yω,E‖

(1+ε)ϑ/p̃
e−

1
4M‖x−yω,E‖

ϑ

. (1.20)

Moreover,

Nω,I (L) :=
∑
E∈I

‖yω,E‖≤L

trPω(E) ≤ Cω,I,ε L(1+ε)d/p̃ for L ≥ 1. (1.21)

(c) For all x, y ∈ Rd we have

sup
f∈Bb,1

‖χyf (Hω)Pω(I )χx‖1 ≤ Cω,I,εe‖x‖
(1+ε)ϑ/p̃

e−
1
4M‖x−y‖

ϑ

. (1.22)

(d) For all E ∈ I and x, y ∈ Rd we have

‖χyP
(E)
ω
χx‖1 ≤ Cω,I,εe‖x‖

(1+ε)ϑ/p̃
e−

1
4M‖x−y‖

ϑ

. (1.23)

(iii) Given b > 0, for all s ∈]0, p/(b + 1/2)[, x0 ∈ Rd , and compact intervals I ⊂
[Einf, E0[, we have

E
{

sup
f∈Bb,1

‖〈X〉bdf (Hω)Pω(I )χx0‖
s
1

}
<∞, (1.24)

E
{

sup
t∈R
‖〈X〉bde−itHωPω(I )χx0‖

s
1

}
<∞, (1.25)

E
{

sup
E∈I

‖〈X〉bdP (E)ω
χx0‖

s
1

}
<∞. (1.26)

Remark 1.5. If Theorem 1.2(B) holds on a given bounded open interval I (instead of
the interval [Einf, E0[ at the bottom of the spectrum, as discussed in Remark 1.3), then
Corollary 1.4 also holds as stated in the interval I.

Remark 1.6. Theorem 1.2 and Corollary 1.4 also hold for Poisson Hamiltonians, with
minor modifications. Their proofs can be modified for Poisson Hamiltonians using the
methods of [GHK2, GHK3], both for positive and attractive Poisson potentials.
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Remark 1.7. It is instructive to compare Theorem 1.2 and Corollary 1.4 to the known
results for the case when the single site probability distribution µ is absolutely continuous
with a bounded density (or Hölder continuous), for which slightly stronger versions of
these results have been derived from an energy-interval multiscale analysis as in [FrMSS,
DrK1, FK2, GK1, GK6, Kl2]. In this case the probability estimate (1.11) is much stronger,
one gets subexponential decay e−L

ξ
for any ξ ∈ ]0, 1[ for the bad probabilities [GK1], and

even exponential decay when the fractional moment method applies [AENSS]. The ‘either
or’ statement in (1.12) is stronger: eitherW (ν)

ω,x0(E) ≤ e−ML orW (ν)
ω,x0,L

(E) ≤ e−ML. We
also have exponential decay in (1.13) and in Corollary 1.4(ii), that is, they hold with
ϑ = 1. Corollary 1.4(iii) holds for all b > 0 with s = 1. The SUDEC estimate (1.17)
and the SULE estimate (1.19) hold with exponential decay and milder than exponential
growth in x or y; moreover they are equivalent, one can be derived from the other (see
[GK1, GK6]). But in the general case (1.17) and (1.19) are not equivalent; (1.17) implies
(1.19) but the converse is not true.

Theorem 1.2 and Corollary 1.4 will be proved in the context of generalized Anderson
Hamiltonians. Theorem 1.2(A) is proven in Theorem 8.1, and Theorem 1.2(B) is con-
tained in Theorem 6.1. Corollary 1.4(i) is proven in Theorem 7.1, Corollary 1.4(ii) in
Theorem 7.2 and Corollary 7.3, and Corollary 1.4(iii) follows from Corollary 7.7.

2. Anderson Hamiltonians

2.1. Normalized Anderson Hamiltonians

Given an Anderson Hamiltonian Hω, it follows from Definition 1.1 that the common
probability distribution µ of the random variables ω = {ωζ }ζ∈Zd satisfies

{M−,M+} ⊂ suppµ ⊂ [M−,M+] for some −∞ < M− < M+ <∞. (2.1)

Letting

V̂per = Ṽper − inf σ(−1+ Ṽper) with Ṽper(x) = Vper(x)+M−
∑
ζ∈Zd

u(x − ζ ),

V̂ω̂(x) =
∑
ζ∈Zd

ω̂ζ û(x − ζ ) with û = (M+ −M−)u and ω̂ζ =
ωζ −M−

M+ −M−
, (2.2)

Ĥω̂ = −1+ V̂per + V̂ω̂,

we have
Hω = Ĥω̂ + inf σ(−1+ Ṽper). (2.3)

Since Ĥω̂ is a normalized Anderson Hamiltonian as in Definition 2.1 below, we con-
clude that every Anderson Hamiltonian equals a normalized Anderson Hamiltonian plus
a constant. Thus, without loss of generality, it suffices to study normalized Anderson
Hamiltonians as in Definition 2.1, which makes the relevant parameters explicit.
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Definition 2.1. A normalized Anderson Hamiltonian is an Anderson Hamiltonian Hω
such that:

(i) the periodic potential Vper satisfies

inf σ(−1+ Vper) = 0, (2.4)

(ii) the single site potential u is a measurable function on Rd with

u−χ3δ− (0) ≤ u ≤ u+
χ3δ+ (0) for some constants u±, δ± ∈ ]0,∞[, (2.5)

(iii) ω = {ωζ }ζ∈Zd is a family of independent, identically distributed random variables
with a common probability distribution µ satisfying

{0, 1} ⊂ suppµ ⊂ [0, 1]. (2.6)

The condition (2.4) implies that [0, E1] ⊂ σ(H0) for some E1 > 0. It follows that the
non-random spectrum6 of a normalized Anderson HamitonianHω satisfies (see [KiM2])

σ(H0) ⊂ 6 ⊂ [0,∞[, (2.7)
so

inf6 = 0 and [0, E1] ⊂ 6 for some E1 = E1(Vper) > 0. (2.8)
In particular, we have

6 = σ(−1) = [0,∞[ if Vper = 0. (2.9)

2.2. Generalized Anderson Hamiltonians

We will conduct our analysis of normalized Anderson Hamiltonians in a more gen-
eral context which incorporates an additional background potential, bounded and non-
negative, but otherwise arbitrary, and allows variability in the single site potentials as
long as they satisfy uniform bounds.

Definition 2.2. A generalized (normalized) Anderson Hamiltonian is a random Schrö-
dinger operator on L2(Rd) of the form

Hω = H0 + Vω with H0 = −1+ Vper + U, (2.10)

where Vper is a bounded periodic potential with period q ∈ N such that

inf σ(−1+ Vper) = 0, (2.11)

U is a measurable function on Rd satisfying

0 ≤ U(x) ≤ U+ for all x ∈ Rd for some constant U+ ∈ [0,∞[, (2.12)

and Vω is the random potential

Vω(x) :=
∑
ζ∈Zd

ωζuζ (x), (2.13)
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where the family ω = {ωζ }ζ∈Zd of random variables is as in Definition 2.1, and u =
{uζ }ζ∈Zd is a family of measurable functions on Rd such that there are constants u±, δ± ∈
]0,∞[ for which

u−χ3δ− (ζ ) ≤ uζ ≤ u+
χ3δ+ (ζ ) for all ζ ∈ Zd . (2.14)

Without loss of generality, we realize the random variables {ωζ }ζ∈Zd as the coordinate

functions on the probability space (�,F ,P), where � = [0, 1]Z
d
, F denotes the σ -

algebra generated by the coordinate functions, and P = µZd , the product measure of Zd
copies of the common probability distribution µ of the random variables {ωζ }ζ∈Zd . In

other words, (�,F,P) = ([0, 1],B[0,1], µ)Z
d
, the product measure space of Zd copies

of the measure space ([0, 1],B[0,1], µ), where B[0,1] is the Borel σ -algebra on [0, 1]. The
expectation with respect to P will be denoted by E. Note that � is a compact Hausdorff
space with the product topology and F is the corresponding Borel σ -algebra. A set U ∈ F
will be called an event.

A generalized Anderson Hamiltonian Hω is a measurable map from the probabil-
ity space (�,F ,P) to self-adjoint operators on the Hilbert space L2(Rd). Measurability
of Hω means that the maps ω 7→ f (Hω) are weakly (and hence strongly) measurable for
all bounded Borel measurable functions f on R.

A generalized Anderson Hamiltonian Hω is not, in general, a qZd -ergodic family
of random self-adjoint operators for any q ∈ N, so the spectrum of Hω, as well as its
pure point, absolutely continuous, and singular continuous components, need not be non-
random (i.e., equal to some fixed set with probability one). But we always have σ(Hω) ⊂
[0,∞) for all ω ∈ �.

2.3. Finite volume Anderson Hamiltonians

Given a set 4 ⊂ Rd , we set 4̃ := 4 ∩ Zd and consider the product measure space
(�4,F4,P4) = ([0, 1],B[0,1], µ)4̃; in particular, �4 = [0, 1]4̃. We identify F4 with
the sub-σ -algebra of subsets of � generated by the coordinate functions ω4 = {ωζ }ζ∈4̃,
in which case P4 is the restriction of P to F4.

Given a generalized Anderson Hamiltonian Hω, we set

Vω4(x) :=
∑
ζ∈4̃

ωζuζ (x) for ω ∈ � and 4 ⊂ Rd , (2.15)

and define the corresponding finite volume (generalized) Anderson Hamiltonian on a box
3 = 3L(x) in Rd as follows:

Hω,3 := H0,3 + Vω,3 on L2(3), (2.16)

with
H0,3 := −13 + Vper,3 + U3, (2.17)

where13 is the Laplacian on3 with a Dirichlet boundary condition, and Vper,3, U3 and
Vω,3 are the restrictions of Vper,U and Vω3 to3. Since we are using a Dirichlet boundary
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condition, we always have inf σ(H0,3) ≥ 0 (easy to see using quadratic forms), and hence
inf σ(Hω,3) ≥ 0. The finite volume resolvent, defined for z /∈ σ(Hω,3) by

Rω,3(z) := (Hω,3 − z)
−1 on L2(3), (2.18)

is a compact operator. Note that13 = ∇3 ·∇3, where ∇3 is the gradient with a Dirichlet
boundary condition.

We will identify L2(3) with χ3L2(Rd) when convenient, and, if necessary, we will
use subscripts 3 and Rd to distinguish between the norms and inner products of L2(3)

and L2(Rd). In particular, we use the identification Vper,3 = χ3Vper, U3 = χ3U , and
Vω,3 = χ3Vω3 . If 3 ⊂ 3′, we will also extend operators on L2(3), such as Rω,3(z), to
operators on L2(3′) by making them the zero operator on L2(3′ \3). If η ∈ L∞(3), we
will also use η to denote the operator given by multiplication by η on L2(3).

If 4 ⊂ Rd , 4 will denote its closure, 40 its interior, and ∂4 := 4 \40 its boundary.
If 4 ⊂ 4′ ⊂ Rd , ∂4

′

4 := ∂4 \ ∂4′ will denote the boundary of 4 in 4′. (∂4
′

4 is the
boundary of 4 with respect to the relative topology on 4′.)

Given a box 3 ⊂ 3′, where 3′ is either a box or Rd , and δ > 0, we set (the distance
is given by the norm in (1.3))

33
′,δ
:= {x ∈ 3; 32δ(x) ∩3

′
⊂ 3} = {x ∈ 3; dist(x, ∂3

′

3) ≥ δ},

∂3
′,δ3 := 3 \33

′,δ.
(2.19)

If 3′ = Rd we generally omit it from the notation.
In general Vω,3 6= χ3Vω,3′ for 3 ⊂ 3′, but we always have

χ
33
′,δ+/2Vω,3 = χ33′,δ+/2Vω,3′ . (2.20)

In this paper we will always assume that the finite volumes 3 = 3L where we define
Hω,3 have L ≥ 100(δ+ + 1).

2.4. Generalized eigenfunctions

Let Hω be a generalized Anderson Hamiltonian, fix ω ∈ �, and let 3 be either Rd or a
box 3L. Recall that D(Hω,3) = D(13).

Definition 2.3. A generalized eigenfunction forHω,3 with generalized eigenvalue E∈R
is a measurable function ψ on 3 with

0 < ‖T −1
ν ψ‖3 <∞ for some ν > 0, (2.21)

such that

〈Hω,3ϕ,ψ〉 = E〈ϕ,ψ〉 for all ϕ ∈ C∞c (3). (2.22)
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It follows (e.g., [KlKS]) that if ψ is a generalized eigenfunction for Hω,3 with gen-
eralized eigenvalue E ∈ R, then for all φ ∈ C2

c (3) we have φψ ∈ D(13) ⊂ D(∇3)
and

(Hω,3 − E)φψ = W3(φ)ψ, (2.23)

where W3(φ) is the closed densely defined operator on L2(3) given by

W3(φ) = −2(∇φ) · ∇3 −1φ. (2.24)

(More precisely, W3(φ)ψ := W3(φ)φ̃ψ for all φ̃ ∈ C2
c (3) such that φ̃ ≡ 1 on suppφ.)

Eigenfunctions are always generalized eigenfunctions.

2.5. Properties of finite volume operators

We will now derive some deterministic properties of the finite volume operators corre-
sponding to a generalized Anderson Hamiltonian Hω.

Given 3, either a finite box or Rd , and x, y ∈ 3, ‖χyRω,3(z)χx‖ ∈ [0,∞[ is
well defined for z /∈ σ(Hω,3). We will abuse the notation and make the extension to
z ∈ σ(Hω,3) by

‖χyRω,3(z)χx‖ := lim sup
ε→0

‖χyRω,3(z+ iε)χx‖ ∈ [0,∞]. (2.25)

We will consider boxes3 ⊂ 3′ without requiring the interior box3 to be at a certain
distance from the boundary of3′. For this reason we work with ∂3

′

3 (the boundary of3
in 3′) instead of ∂3.

Lemma 2.4. Consider a box 3 = 3` ⊂ 3′, where 3′ is either a finite box or Rd , and
let z /∈ σ(Hω,3). Then, given x ∈ 3 with 3δ++3(x) ∩ 3

′
⊂ 3 and y ∈ 3′, we can find

x′ ∈ ϒ3
′

3 , where

ϒ3
′

3 := {x ∈ 3; dist(x, ∂3
′

3) = (δ+ + 1)/2}, (2.26)

such that

‖χyRω,3′(z)χx‖

≤ ‖χyχ3(3′,1/2)Rω,3(z)χx‖ + γz`
d−1
‖χyRω,3′(z)χx′‖ ‖χx′Rω,3(z)χx‖, (2.27)

with
γz = γz,d,Vper = Cd(1+max{0,<z− ess infVper})

1/2. (2.28)

In particular,

(i) if y ∈ 3′ \3, we have

‖χyRω,3′(z)χx‖ ≤ γz`
d−1
‖χyRω,3′(z)χx′‖ ‖χx′Rω,3(z)χx‖, (2.29)
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(ii) if y ∈ 3, we have

‖χyRω,3′(z)χx‖

≤ ‖χyRω,3(z)χx‖ + γz`
d−1
‖χyRω,3′(z)χx′‖ ‖χx′Rω,3(z)χx‖. (2.30)

Proof. Given boxes 3 ⊂ 3′, we let ϒ3
′

3 be as in (2.26) and set

ϒ̂ = ϒ̂3
′

3 := {x ∈ 3; dist(x,ϒ3
′

3 ) < 1/4} =
{ ⋃
y′∈ϒ3

′

3

31/2(y
′)
}
∩3. (2.31)

There exists a constant Cd , independent of 3 and 3′, for which we can find a function
φ = φ3

′

3 ∈ C
2(3′), with 0 ≤ φ ≤ 1, such that

φ ≡ 1 on 33
′,(δ++1)/2+1/4, (2.32)

φ ≡ 0 on 3′ \33
′,(δ++1)/2−1/4, (2.33)

|∇φ|, |1φ| ≤ Cd . (2.34)

Note that

suppφ ⊂ 3(1) := 33
′,(δ++1)/2−(1/4) and supp∇φ ⊂ ϒ̂ = ϒ̂3

′

3 . (2.35)

In particular, we have φD(13) ⊂ D(13) and φD(13′) ⊂ D(13′).
Suppose first that z /∈ σ(Hω,3)∪σ(Hω,3′). In this case we use the geometric resolvent

identity (cf. [CoH1, FK2, BoK]). In view of (2.20), if z /∈ σ(Hω,3) ∪ σ(Hω,3′) we get

Rω,3′(z)φ = φRω,3(z)+ Rω,3′(z)W3(φ)Rω,3(z), (2.36)

as operators from L2(3) to L2(3′), where W3(φ) is as in (2.24). Given x ∈ 3 with
3δ++3(x) ∩3

′
⊂ 3, i.e., x ∈ 33

′,(δ++1)/2+1, we have

χx = φχx, χy′χx = 0 for y′ ∈ ϒ3
′

3 . (2.37)

It follows that for y ∈ 3′ we have

χyRω,3′(z)χx = χyRω,3′(z)φχx

= χyφRω,3(z)χx + χyRω,3′(z)W3(φ)Rω,3(z)χx

= χyφRω,3(z)χx + χyRω,3′(z)χ ϒ̂W3(φ)Rω,3(z)χx . (2.38)

Let ` be the length of the side of the box 3, i.e., 3 = 3`. Then we can pick
y1, . . . , yJ ∈ ϒ

3′

3 , where C′d`
d−1
≤ J ≤ C′′d `

d−1, and y′1, . . . , y
′

J ′
∈ ϒ3

′

3 \ ϒ
3′

3 , with

0 ≤ J ′ ≤ C′′′d `
d−2 (note J ′ = 0 if ∂3

′

3 = ∂3, in which case ϒ3′3 = ϒ3
′

3 ), such that
31(yj ) ⊂ 3 for j = 1, . . . , J ,

ϒ̂3
′

3 =

{ J⋃
j=1

31/2(yj )
}
∪

{ J ′⋃
j ′=1

31/2(y
′

j ′) ∩3
}
, (2.39)
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and y1, . . . , yJ , y
′

1, . . . , y
′

J ′
form a minimal set with respect to these properties. It follows

that we can select disjoint open sets Oj ⊂ 31/2(yj ) and O′
j ′
⊂ 31/2(y

′

j ′
) ∩ 3, where

j = 1, . . . , J and j ′ = 1, . . . , J ′, such that

ϒ̂3
′

3 =

{ J⋃
j=1

Oj
}
∪

{ J ′⋃
j ′=1

O′
j ′

}
. (2.40)

It follows that

‖χyRω,3′(z)χ ϒ̂W3(φ)Rω,3(z)χx‖

≤

J∑
j=1

‖χyRω,3′(z)χOjW3(φ)Rω,3(z)χx‖ +

J ′∑
j ′=1

‖χyRω,3′(z)χO′
j ′
W3(φ)Rω,3(z)χx‖

≤

J∑
j=1

{‖χyRω,3′(z)χ31/2(yj )‖ ‖
χ31/2(yj )W3(φ)Rω,3(z)χx‖}

+

J ′∑
j ′=1

{‖χyRω,3′(z)χ31/2(y
′

j ′
)∩3‖ ‖χ31/2(y

′

j ′
)∩3W3(φ)Rω,3(z)χx‖}. (2.41)

Let 3] be either 31/2(yj ) = 31/2(yj ) ∩ 3 or 31/2(y
′

j ′
) ∩ 3 for some j or j ′. We

write 3′] for the corresponding 31(yj ) ∩ 3 or 31(y
′

j ′
) ∩ 3. Using (2.24) and (2.34) we

get

‖χ3]W3(φ)Rω,3(z)χx‖ ≤ 2Cd‖χ3]∇3Rω,3(z)χx‖ + Cd‖χ3]Rω,3(z)χx‖. (2.42)

We now use the following interior estimate (e.g., [GK5, Lemma A.2]): Let η ∈ C1(O)
with ‖η‖∞ ≤ 1, where O ⊂ Rd is an open set. Given a finite box 3 such that 3 ⊂ O,
we set η3 = ηχ3. Then, for all ω ∈ [0, 1]Z

d
, z ∈ C, and ψ ∈ D(13), we have

‖η3∇3ψ‖
2
≤ ‖χ supp η3(Hω,3 − z)ψ‖

2

+ (1+max{0,<z− ess infVper} + 4‖∇η3‖2∞)‖χ supp η3ψ‖
2. (2.43)

(Although [GK5, Lemma A.2] is stated with somewhat different conditions on η, the
proof applies with η as above. The important observation is that with the Dirichlet bound-
ary condition we have ηψ = η3ψ ∈ D(13) for all ψ ∈ D(13).)

Given a box 31/2(x
′), we fix a function η ∈ C1(Rd) with 0 ≤ η ≤ 1 such that η ≡ 1

on 31/2(x
′), supp η ⊂ 31(x

′), and ‖∇η‖∞ ≤ C′′′d . We have, using (2.43) and ηχx = 0
(see (2.37)),

‖χ3]∇3Rω,3(z)χx‖ ≤ ‖η3∇3Rω,3(z)χx‖ ≤ γ
′

<z,d,Vper
‖χ3′]

Rω,3(z)χx‖, (2.44)

with
γ ′
<z,d,Vper

:= C′′′d (1+max{0,<z− ess infVper})
1/2. (2.45)
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If 3] = 31/2(yj ), we have χ3] ≤ χ3′]
= χyj . If 3] = 31/2(y

′

j ′
) ∩ 3, we have

χ3] ≤ χ3′]
≤ χy′′

j ′
for some y′′

j ′
∈ ϒ3

′

3 . Thus, it follows from (2.41) and (2.44) that

‖χyRω,3′(z)χ ϒ̂W3(φ)Rω,3(z)χx‖

≤ cd(1+ γ ′<z,d,Vper
)`d−1

‖χyRω,3′(z)χx′‖ ‖χx′Rω,3(z)χx‖ (2.46)

for some x′ ∈ ϒ3
′

3 .
Combining (2.38) and (2.46) we conclude that

‖χyRω,3′(z)χx‖ ≤ ‖χyφRω,3(z)χx‖

+ γz`
d−1
‖χyRω,3′(z)χx′‖ ‖χx′Rω,3(z)χx‖ (2.47)

for some x′ ∈ ϒ3
′

3 , where γz is as in (2.28), which yields (2.27). If y ∈ 3′ \ 3, then
χyφ = 0, and we get (2.29). If y ∈ 3, using 0 ≤ φ ≤ 1 we get (2.30).

If z ∈ σ(Hω,3′)\σ(Hω,3), for all have ε 6= 0 we have z+ iε /∈ σ(Hω,3)∪σ(Hω,3′),
and the lemma holds for z+ iε. The lemma then follows for z in view of (2.25). ut

Lemma 2.5. Consider a box 3 = 3` ⊂ 3′, where 3′ is either a finite box or Rd . Let ψ
be a generalized eigenfunction of Hω,3′ with generalized eigenvalue E ∈ R \ σ(Hω,3).
Then for every x ∈ 3 with 3δ++3(x) ∩3

′
⊂ 3, we can find x′ ∈ ϒ3

′

3 such that

‖χxψ‖ ≤ γE`
d−1
‖χx′Rω,3(E)χx‖‖χx′ψ‖. (2.48)

Proof. Let φ = φ3
′

3 be the function in the proof of the previous lemma (cf. (2.32)–(2.34)).
It follows from (2.23) that

φψ = Rω,3(E)W3(φ)ψ. (2.49)

Thus, given x ∈ 3 with 3δ++3(x) ∩3
′
⊂ 3, we have

‖χxψ‖ = ‖χxφψ‖ = ‖χxRω,3(E)W3(φ)ψ‖. (2.50)

Proceeding as in (2.41)–(2.46) we get (2.48). ut

3. Preamble to the multiscale analysis

We fix a generalized Anderson Hamiltonian Hω.

3.1. Good boxes and free sites

A finite box will be called ‘good’ at an energy E when the finite volume resolvent is not
too big and exhibits exponential decay. As in [Bo, BoK, GHK2], we will also require
‘free sites’.

Given a box 3, a subset S ⊂ 3̃, and tS = {tζ }ζ∈S ∈ [0, 1]S , we set

Hω,tS ,3 := H0,3 + Vω,tS ,3 on L2(3), (3.1)
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where Vω,tS ,3 = χ3Vω3,tS with

Vω3,tS (x) := Vω3\S (x)+ VtS (x) =
∑
ζ∈3̃\S

ωζ uζ (x)+
∑
ζ∈S

tζ uζ (x). (3.2)

Rω,tS ,3(z) will denote the corresponding finite volume resolvent.

Definition 3.1. Consider a configurationω ∈ �, an energyE ∈ C, a rate of decaym > 0,
0 < ς < 1, and S ⊂ 3̃L. A box 3L is said to be (ω, E,m, ς, S)-good if the following
holds for all tS ∈ [0, 1]S :

‖Rω,tS ,3L(E)‖ ≤ eL
1−ς

(3.3)

and
‖χxRω,tS ,3L(E)χy‖ ≤ e−m‖x−y‖ for all x, y ∈ 3L with ‖x − y‖ ≥ L/100. (3.4)

In this case S consists of (ω, E,m, ς)-free sites for the box 3L. If no free sites are spec-
ified, i.e., S = ∅, then 3L is said to be (ω, E,m, ς)-good.

Remark 3.2. Condition (3.4) is stronger than the usual condition in the definition of a
good box (cf. [DrK1, CoH1, GK1, Kl2]), where decay is postulated only from the center
of the box to its boundary. We introduce the exponential decay in ‖x − y‖ for arbitrary
x, y in the box, not too close to each other, in order to prove Lemma 3.10, where we will
need to consider locations x and y that may be anywhere in a box 3′. In particular, we
will need to consider the case when both x and y are close to the boundary of 3′. Thus,
we will need to apply Lemma 2.4 for boxes 3 ⊂ 3′ that touch the boundary of 3′ (i.e.,
∂3∩ ∂3′ 6= ∅). For this reason we defined ϒ3

′

3 in (2.26) in terms of ∂3
′

3, the boundary
of 3 in 3′.

Remark 3.3. It follows from (2.15) and (2.16) that for all E ∈ C we have

{3L is (E,m, ς, S)-good} := {ω ∈ �; 3L is (ω, E,m, ς, S)-good} ∈ F3L . (3.5)

Moreover, the set

{(E,ω3L) ∈ R×�3L; 3L is (ω, E,m, ς, S)-good} (3.6)

is closed in R×�3L , and hence jointly measurable in (E,ω3L).

Definition 3.4. Consider an energy E∈R, a rate of decay m>0, and numbers 0<ς <1
and p > 0. A scale L > 0 is called (E,m, ς, p)-good if for every x ∈ Rd we have

P{3L(x) is (E,m, ς)-good} ≥ 1− L−pd . (3.7)

If a box 3L is (ω, E,m, ς)-good, then it is just as good for energies E′ such that
|E′−E| ≤ e−cL, the precise statement being given in the following definition and lemma.
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Definition 3.5. Consider a configurationω ∈ �, an energyE ∈ C, a rate of decaym > 0,
and 0 < ς < 1. A box 3L is said to be (ω, E,m, ς)-jgood (just as good) if

‖Rω,3L(E)‖ ≤ 2eL
1−ς

(3.8)

and
‖χxRω,3L(E)χy‖ ≤ 2e−m‖x−y‖ for all x, y ∈ 3L with ‖x − y‖ ≥ L/100. (3.9)

Lemma 3.6. Let ω ∈ �, E ∈ C, 0 < τ < ς < 1. Suppose the box 3L is (ω, E,m, ς)-
good with a rate of decaym ≥ L−τ . Then, if L ≥ L̃ς,τ , the box3L is (ω, E′, m, ς)-jgood
for all energies E′ ∈ C such that |E′ − E| ≤ e−2mL.

Proof. By the resolvent identity,

Rω,3L(E
′) = Rω,3L(E)− (E

′
− E)Rω,3L(E)Rω,3L(E

′). (3.10)

Thus, for |E′ − E| ≤ e−2mL, we get

‖Rω,3L(E
′)‖ ≤ eL

1−ς
+ e−2mLeL

1−ς
‖Rω,3L(E

′)‖ (3.11)

Since 0 < τ < ς < 1, (3.8) follows.
Similarly, using also (3.8), given x, y ∈ 3L with ‖x − y‖ ≥ L/100, we have

‖χxRω,3L(E
′)χy‖ ≤ e−m‖x−y‖ + 2e−2mLe2L1−ς

, (3.12)

and (3.9) follows. ut

We also need the following variant of Lemma 3.6; the proof is almost identical.

Lemma 3.7. Let ω ∈ �, E ∈ C, 0 < ς < 1, and 0 < m̃ < m. Suppose the box 3L
is (ω, E,m, ς)-good. Then, if L ≥ L̃ς,m̃, given E′ ∈ C with |E′ − E| ≤ e−m1L, where
m1 ∈ [m̃,m], the box 3L is (ω, E′, m2, ς)-jgood with

m2 = m1(1− Cm̃−1L−ς ). (3.13)

The following definition will be needed only for real energies.

Definition 3.8. Consider an energy E ∈ R, a rate of decay m > 0, and numbers 0 <
ς, ς ′ < 1 and p > 0.

(i) Given a box 3L, a subset S ⊂ 3̃L is called ς ′-abundant if

#(S ∩3L/5) ≥ L(1−ς
′)d for all boxes 3L/5 ⊂ 3L. (3.14)

(ii) Given a box 3L, an event C is said to be (3L, E,m, ς, ς ′)-adapted if there exists
a ς ′-abundant subset SC ⊂ 3̃L such that C ∈ F3L\SC and 3L is (ω, E,m, ς, SC)-
good for all ω ∈ C. In this case C will also be called (3L, E,m, ς, ς ′, SC)-adapted.
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(iii) Given a box3L, an event E is called (3L, E,m, ς, ς ′)-extra good if it is the disjoint
union of a finite number of (3L, E,m, ς, ς ′)-adapted events, i.e., there exist disjoint
(3L, E,m, ς, ς

′)-adapted events {Ci}i=1,...,I such that

E =
I⊔
i=1

Ci . (3.15)

(iv) A scale L > 0 is called (E,m, ς, ς ′, p)-extra good if for every x ∈ Rd there exists
a (3L(x), E,m, ς, ς ′)-extra good event EL,x such that

P{EL,x} ≥ 1− L−pd . (3.16)

If a scale L is (E,m, ς, ς ′, p)-extra good, it is clearly also (E,m, ς, p)-good.

3.2. Tools for the multiscale analysis

We now combine Lemmas 2.4 and 2.5 with good boxes to obtain crucial tools for the
multiscale analysis. In Lemmas 3.9 and 3.10 we will not know a priori that E /∈ σ(Hω,3),
and we will apply Lemma 2.4 with the notation given in (2.25).

Lemma 3.9. Fix a configuration ω ∈ � and an energy E ∈ C. Let 3 be either Rd or a
box 3L. Consider a scale `, with ` < L/6 if 3 = 3L, numbers 0 < τ < ς < 1, and
m ≥ `−τ . Let 2 ⊂ 3 be such that for all x ∈ 3 \ 2 there exists an (ω, E,m, ς)-good
box, denoted by 3(x)` , such that 3(x)` ⊂ 3 with 3`/5(x) ∩3 ⊂ 3

(x)
` . Then there exists a

constant C = Cd,Vper,E , locally bounded in E, such that setting

m′ = m(1− C(log `)`τ−1), (3.17)

the following holds:

(i) For all x, y ∈ 3 with x /∈ 2 we have

‖χyRω,3(E)χx‖ ≤ ‖χyχ3(x,3,1/2)`

R
ω,3

(x)
`

(E)χx‖ + e−m
′
‖x−x1‖‖χyRω,3(E)χx1‖,

(3.18)
for some x1 ∈ ϒ

3

3
(x)
`

, so in particular

`/11 ≤ ‖x − x1‖ ≤ `. (3.19)

(ii) Let x, y ∈ 3 with x /∈ 2 and ‖x − y‖ ≥ `. Then

‖χyRω,3(E)χx‖ ≤ e−m
′
‖x−x′‖

‖χyRω,3(E)χx′‖ (3.20)

for some x′ ∈ 3 such that either x′ ∈ 2 or ‖x′ − y‖ < `, i.e.,

x′ ∈ 2 ∪32`(y). (3.21)
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(iii) Suppose E ∈ R and ψ is a generalized eigenfunction of Hω,3 with generalized
eigenvalue E′ ∈ [E − e−2m`, E + e−2m`

]. Then for all x ∈ 3 \2 we have

‖χxψ‖ ≤ e−m
′
‖x−x′‖

‖χx′ψ‖ ≤ e−
m′

11 `‖χx′ψ‖ for some x′ ∈ ϒ3
3
(x)
`

, (3.22)

and also

‖χxψ‖ ≤ e−m
′
‖x−x′′‖

‖χx′′ψ‖ ≤ e−m
′ dist{x,2}

‖χx′′ψ‖ for some x′′ ∈ 2. (3.23)

If E′ = E, then (3.22) and (3.23) hold with m substituted for m′.

Proof. (i) Since x /∈ 2, we use the existence of the good box3(x)` and apply (2.27) to get

‖χyRω,3(E)χx‖

≤ ‖χyχ3(x,3,1/2)`

R
ω,3

(x)
`

(E)χx‖ + γE`
d−1e−m‖x−x1‖‖χyRω,3(E)χx1‖ (3.24)

for some x1 ∈ ϒ
3

3
(x)
`

, so `/10− (δ+ + 1)/2 ≤ ‖x − x1‖ ≤ `− (δ+ + 1)/2, hence (3.19)

holds, and we have (3.18) with (3.17).
(ii) Since x /∈ 2 and ‖x − y‖ ≥ `, we apply (3.18) repeatedly to get

‖χyRω,3(E)χx‖ ≤ e−m
′
∑n
i=1‖xi−1−xi‖‖χyRω,3(E)χxn‖ (3.25)

with x0 = x and xi ∈ ϒ3
3
(xi−1)
`

, i = 1, . . . , n, where n ∈ N is such that xi /∈ 2 and

‖xi − y‖ ≥ ` for i = 0, 1, . . . , n − 1, and either xn ∈ 2 or ‖xn − y‖ < `. Since
‖x0 − xn‖ ≤

∑n
i=1‖xi−1 − xi‖, (3.20) follows.

(iii) It follows from Lemma 3.6 that for all x /∈ 2 the box3(x)` is (ω, E′, m, ς)-jgood.
Thus, given x /∈ 2, we apply Lemma 2.5 with the box3(x)` to get (3.22). To prove (3.23),
we proceed similarly to the proof of (3.20), applying Lemma 2.5 repeatedly.

Note that in (iii) the constant C in (3.17) depends on E′. Since |E′ − E| ≤ 1, we can
fix a constant C = CE,d,Vper , locally bounded in E, that works for all the conclusions of
the lemma. ut

The following lemma will play an important role in the multiscale analysis. We use the
notation given in (2.19).

Lemma 3.10. Fix a configuration ω ∈ � and an energy E ∈ C. Consider a box3 = 3L
and let ς, ρ, κ, τ ∈ ]0, 1[, ` = Lρ , m ≥ `−τ , and K,K ′ ∈ N, where

κς > τρ. (3.26)

Suppose there exist 2 =
⊔K
j=12j ⊂ 3 satisfying the following conditions:

(i) There exist disjoint boxes3j = 3Lj (yj ) ⊂ 3 with Lκ ≤ Lj ≤ K ′Lκ , j = 1, . . . , K ,
such that

2j ⊂ 3
(3,Lκ/10)
j , (3.27)

‖Rω,3j (E)‖ ≤ eL
κ(1−ς)

. (3.28)
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(ii) For all x ∈ 3\2 there exists an (ω, E,m, ς)-good box3(x)` ⊂ 3 such that3`/5(x)∩
3 ⊂ 3

(x)
` .

Then the box 3 is (ω, E,M, ς)-good for L ≥ Ld,E,Vper,ς,K,τ,κ , where

M ≥ m(1− C(Lκ−1
+ Lρτ−κζ )) ≥ L−τ (3.29)

and C = CE,d,Vper,K,K ′ is locally bounded in E.

Proof. We start by proving (3.3) for 3. Since Hω,3 has discrete spectrum, there exists
ε > 0 such thatE′ /∈ σ(Hω,3) if 0 < |E′−E| < ε. We take ε ≤ e−2m`, so the boxes3(x)`
given in condition (ii) are (ω, E′, m, ς)-jgood by Lemma 3.6, and small enough such that
it follows from (3.28) that

‖Rω,3j (E
′)‖ ≤ 2eL

κ(1−ς)
for j = 1, . . . , K. (3.30)

We will estimate ‖Rω,3(E′)‖ for 0 < |E′−E| < ε. Suppose either x or y is not in2,
say x /∈ 2. In this case we apply Lemma 3.9(i). It follows from (3.18), appropriately
modified for jgood boxes, Definition 3.5, and (3.19), that

‖χyRω,3(E
′)χx‖ ≤ 2e`

1−ς
+ 2e−m

′`/11
‖Rω,3(E

′)‖ ≤ 2e`
1−ς
+ 2e−

1
15 `

1−τ
‖Rω,3(E

′)‖

≤ 2e`
1−ς
+

1
2L
−2d
‖Rω,3(E

′)‖ (3.31)

for large L. If x ∈ 2 and y /∈ 2 we use ‖χyRω,3(E′)χx‖ = ‖χxRω,3(E′)χy‖ to get
(3.31). Suppose now x, y ∈ 2, say x ∈ 2s . Then we apply (2.27) with the box 3s , and
use (3.30), getting

‖χyRω,3(E
′)χx‖ ≤ 2eL

κ(1−ς)
+ 2γ (K ′Lκ)d−1eL

κ(1−ς)
‖χyRω,3(E

′)χx0‖, (3.32)

where x0 ∈ ϒ33s and γ = γE+1. Note that (3.27) implies dist{x0,2} ≥ Lκ/11; in
particular, ‖x0 − y‖ ≥ Lκ/11 as y ∈ 2. We can now use Lemma 3.9(ii), with m′/2
replacing m′ in (3.20) to compensate for using jgood boxes instead of good ones, to
conclude that

‖χyRω,3(E
′)χx0‖ ≤ e−m

′/2‖x0−x
′
‖
‖χyRω,3(E

′)χx′‖

≤ e−m
′Lκ/30

‖χyRω,3(E
′)χx′‖, (3.33)

where x′ satisfies (3.21), so ‖x0 − x
′
‖ ≥ Lκ/11 − ` > Lκ/15 for large L. From (3.32),

(3.33), and (3.26), we conclude that, for large L, we have

‖χyRω,3(E
′)χx‖ ≤ 2eL

κ(1−ς)
+ 2γ (K ′Lκ)d−1eL

κ(1−ς)
e−

1
60 `
−τLκ
‖Rω,3(E

′)‖

≤ 2eL
κ(1−ς)

+
1
2L
−2d
‖Rω,3(E

′)‖. (3.34)

Combining (3.31) and (3.34) we get

‖Rω,3(E
′)‖ ≤ L2d

{2eL
κ(1−ς)

+
1
2L
−2d
‖Rω,3(E

′)‖}

≤ 2L2deL
κ(1−ς)

+
1
2‖Rω,3(E

′)‖, (3.35)
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and hence, for large L,

‖Rω,3(E
′)‖ ≤ 2L2deL

κ(1−ς)
≤ eL

1−ς
. (3.36)

We now conclude that for large L we have

‖Rω,3(E)‖ = lim
E′→E

‖Rω,3(E
′)‖ ≤ eL

1−ς
. (3.37)

To finish the proof, we need to prove (3.4) for the box 3.

Sublemma 3.11. Given s ∈ {1, 2, . . . , K}, let x, y ∈ 3 with x ∈ 2s and ‖x − y‖ ≥ Ls .
Then there exist x(0) ∈ ϒ33s and x′ ∈ 3, with x′ satisfying (3.21) and

1
11L

κ
≤ ‖x(0) − x‖ ≤ Ls −

1
10L

κ and ‖x(0) − y‖ ≥ 1
10L

κ , (3.38)

such that
‖χyRω,3(E)χx‖ ≤ e−m

′′
‖x(0)−x′‖

‖χyRω,3(E)χx′‖, (3.39)

where

m′′ = m′(1− C`τL−κς ) with C = CE,d,Vper,K ′ locally bounded in E. (3.40)

Proof. Let x, y ∈ 3 with x ∈ 2s and ‖x − y‖ ≥ Ls . We proceed as in (3.32) and (3.33)
(note that we are now working at energy E, so we have (3.28) and condition (ii) holds),
getting

‖χyRω,3(E)χx‖ ≤ γE(K
′Lκ)d−1eL

κ(1−ς)
‖χyRω,3(E)χx(0)‖

≤ γE(K
′Lκ)d−1eL

κ(1−ς)
e−m

′
‖x(0)−x′‖

‖χyRω,3(E)χx′‖

≤ e−m
′′
‖x(0)−x′‖

‖χyRω,3(E)χx′‖,

(3.41)

where x(0) ∈ ϒ33s , so we have (3.38), and x′ ∈ 3 satisfies (3.21), so ‖x(0) − x′‖ ≥
Lκ/11− ` > Lκ/15, and thus m′′ is as in (3.40). ut

Now let x, y ∈ 3 with ‖x − y‖ ≥ L/100 ≥ K ′Lκ . If x /∈ 2, we apply Lemma 3.9(ii),
obtaining x′ satisfying (3.21). If ‖x′ − y‖ < K ′Lκ , we stop. Otherwise we then start
from x′ and apply Sublemma 3.11 repeatedly, until we get

‖χyRω,3(E)χx‖ ≤ e−m
′′
∑n
i=1‖x

(0)
i−1−xi‖‖χyRω,3(E)χxn‖, (3.42)

where x = x0 = x
(0)
0 , x1 = x

′, x(0)i−1 and xi correspond to x(0) and x′ in Sublemma 3.11
for xi−1, y for i = 2, . . . , n, and n ∈ N is such that ‖xi − y‖ ≥ K ′Lκ (and hence
xi ∈ 2) for i = 1, . . . , n − 1, and ‖xn − y‖ < K ′Lκ . If x ∈ 2, we start directly with
Sublemma 3.11 obtaining also (3.42) but with x = x0, and x(0)0 and x1 corresponding
to x(0) and x′ in Sublemma 3.11 for x0 and y.

Now let us choose distinct j0, j1, . . . , jr ∈ {0, 1, . . . , K + 1}, where 0 ≤ r ≤ K + 1,
as follows:
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(a) If x /∈ 2, we set j0 = 0 and 30 = 20 = {x}. If x ∈ 2, j0 is determined by x ∈ 2j0 .
Set also 2K+1 = {xn}.

(b) Pick j1 6= j0 such that for some i1 ∈ {1, . . . , n} we have x(0)i1−1 ∈ 3j0 and xi1 ∈ 2j1 .
(c) Given j0, j1, . . . , js , then if is = n, r = s, so stop. If not, pick js+1 /∈ {j0, j1, . . . , js}

such that that for some is+1 ∈ {1, . . . , n} we have x(0)is+1−1 ∈ 3js and xis+1 ∈ 2js+1 .

It then follows from (3.42) that

‖χyRω,3(E)χx‖ ≤ e−m
′′
∑r
s=1‖x

(0)
is−1−xis ‖‖Rω,3(E)‖. (3.43)

By our construction,
r∑
s=1

‖x
(0)
is−1−xis‖ ≥

r∑
s=1

dist{3s−1,3s} ≥ ‖x−xn‖−KK
′Lκ ≥ ‖x−y‖−(KK ′+1)Lκ .

(3.44)
It follows, using also (3.37), that

‖χyRω,3(E)χx‖ ≤ e−m
′′(‖x−y‖−(KK ′+1)Lκ )eL

1−ς
≤ e−M(‖x−y‖), (3.45)

where
M = m′′(1− C(LκL−1

+ `τL−ς )), (3.46)

with a constant C = CE,d,Vper,K,K ′ locally bounded in E.
The lemma is proved. ut

3.3. Suitable coverings of boxes and annuli

3.3.1. Suitable coverings of boxes

Definition 3.12. Given scales ` < L, a suitable `-covering of a box3L(x) is a collection
of boxes 3` of the form

G(`)3L(x) = {3`(r)}r∈G(`)3L(x)
, (3.47)

where

G(`)3L(x) := {x + α`Z
d
} ∩3L(x) with α ∈

[ 3
5 ,

4
5

]
∩
{
L−`
2`n ; n ∈ N

}
. (3.48)

Lemma 3.13. Let ` ≤ L/6. Then every box 3L(x) has a suitable `-covering, and for
any suitable `-covering G(`)3L(x) of 3L(x) we have

3L(x) =
⋃

r∈G(`)
3L(x)

3`(r), (3.49)

for each y ∈ 3L(x) there is r ∈ G(`)3L(x) with 3`/5(y) ∩3L(x) ⊂ 3`(r), (3.50)

3`/5(r) ∩3`(r
′) = ∅ for all r, r ′ ∈ x + α`Zd , r 6= r ′, (3.51)(

L

`

)d
≤ #G(`)3L(x) =

(
L− `

α`
+ 1

)d
≤

(
2L
`

)d
. (3.52)
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Moreover, given y ∈ x + α`Zd and n ∈ N, it follows that

3(2nα+1)`(y) =
⋃

r∈{x+α`Zd }∩3(2nα+1)`(y)

3`(r), (3.53)

and {3`(r)}r∈{x+α`Zd }∩3(2nα+1)`(y)
is a suitable `-covering of the box 3(2nα+1)`(y). In

particular,

for each y ∈ Zd there is r ∈ x + α`Zd with 3`/5(y) ⊂ 3`(r). (3.54)

Proof. It suffices to note that ` ≤ L/6 ensures [(3)/5, 4/5] ∩ {L− `/2`n; n ∈ N} 6= ∅,
α ≤ 4/5 gives (3.50) and (3.54), and α ≥ 3/5 yields (3.51). ut

To fix ideas we make the following definition.

Definition 3.14. The standard `-covering of a box3L(x) is the unique suitable `-cover-
ing of 3L(x) with

α = αL,` := max
{
[3/5, 4/5] ∩

{
L− `

2`n
; n ∈ N

}}
. (3.55)

We now consider standard coverings by good boxes.

Definition 3.15. Consider a configuration ω ∈ �, an energy E ∈ R, a rate of decay
m > 0, 0 < ς < 1, and η > 0. A box 3L is said to be (ω, E,m, ς, η)-pgood (for
predecessor of good) if, letting ` = L1/(1+η), every box 3` in the standard `-covering of
3L is (ω, E,m, ς)-good.

Lemma 3.16. Suppose the box 3L is (ω, E,m, ς, η)-pgood for some ω ∈ �, E ∈ R,
m > 0, 0 < ς < 1, and η > 0, set ` = L1/(1+η), and let 0 < m̂ ≤ m. Then, ifL ≥ L̂ς,m̃,η,
given m1 ∈ [m̂,m], the box 3L is (ω, E′,M1, ς)-good for all energies E′ ∈ C such that
|E′ − E| ≤ e−m1`, where

M1 = m1(1− Cd,p,m̂L−min{ς,η}/(1+η)). (3.56)

Proof. Let 3` be (ω, E,m, ς)-good and E′ ∈ C with |E′ −E| ≤ e−m1`. It follows from
Lemma 3.7 that 3` is (ω, E′, m2, ς)-jgood if ` ≥ ˜̀ς,m̂, with m2 = m1(1− Cm̂−1`−ς ).

Now suppose 3 = 3L is (ω, E,m, ς, η)-pgood and ` ≥ ˜̀
ς,m̂ . We proceed as in

Lemma 3.10 (but note that 2 = ∅). Proceeding as in (3.31) and (3.35), using the fact
that every box3` in the standard `-covering of3L is (ω, E′, m2, ς)-jgood, we get, for L
sufficently large,

‖Rω,3(E
′)‖ ≤ L2d(2e`

1−ς
+ e−m3`/11

‖Rω,3(E
′)‖)

≤ 2L2de`
1−ς
+

1
2‖Rω,3(E)‖,

(3.57)

where m3 = m2
(
1− Cd,Vper,p,m̂,I

log `
`

)
, and hence

‖Rω,3(E
′)‖ ≤ 4L2de`

1−ς
≤ eL

1−ς
. (3.58)
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Given x, y ∈ 3 = 3L with ‖x − y‖ ≥ L/100, we proceed as in the derivation of (3.45)
(with 2 = ∅) to obtain, using (3.58),

‖χyRω,3(E
′)χx‖ ≤ e−m3(‖x−y‖−`))4L2de`

1−ς
≤ e−M1‖x−y‖, (3.59)

where M1 is as in (3.56). ut

Lemma 3.17. Suppose the scale ` is (E,m, ς, p)-good, where E ∈ R, m > 0, 0 <

ς < 1, and p > 0. Then, if L = `1+η, where 0 < η < p, we have

P{3L(x) is (ω, E,m, ς, η)-pgood} ≥ 1− 2dL−
p−η
1+η d for all x ∈ Rd . (3.60)

Proof. It follows from (3.7) and (3.52) that

P{3L is not E-pgood} < {2L
η

1+η }
dL
−

pd
1+η = 2dL−

p−η
1+η d . (3.61)

ut

3.3.2. Suitable coverings of annuli. Given scalesL1 < L2, we consider the open annulus

3L2,L1(x) := 3L2(x) \3L1(x) = {y ∈ Rd; L1/2 < ‖y − x‖ < L2/2}. (3.62)

We let 3̄L2,L1(x) := 3L2,L1(x) be the closed annulus, and set 3∞,L(x) := Rd \3L(x).

Definition 3.18. Given scales `, L1, L2 with L1 < L2 and ` < (L1 − L2)/2, a suitable
`-covering of an annulus 3L2,L1(x) is a collection of boxes 3` of the form

G(`)3L2,L1 (x)
= {3`(r)}r∈G(`)

3L2,L1
(x)

, (3.63)

where

G(`)3L2,L1 (x)
:= {r ∈ x + UL1,` + α`Z

d
; 3`(r) ⊂ 3L2,L1(x)}, with (3.64)

UL1,` := {0, L1/2,−L1/2, (L1 + `)/2,−(L1 + `)/2}d \ {0, L1/2,−L1/2}d ,
(3.65)

α ∈ [3/5, 4/5] ∩
{
L2 − L1 − 2`

2`n
; n ∈ N

}
. (3.66)

Lemma 3.19. Consider scales `, L1, L2 with L1 < L2 and ` < (L2 − L1)/7. Then
every annulus 3L2,L1(x) has a suitable `-covering, and for any suitable `-covering
G(`)3L2,L1 (x)

of 3L2,L1(x) we have

3L2,L1(x) =
⋃

r∈G(`)
3L2,L1

(x)

3`(r), (3.67)

given y ∈ 3L2,L1(x) there is r ∈ G(`)3L2,L1 (x)
with 3`/5(y) ∩3L2,L1(x) ⊂ 3`(r), (3.68)

#G(`)3L2,L1 (x)
≤ (2L2/`)

d#UL1,` ≤ (10L2/`)
d . (3.69)
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Definition 3.18 is similar to Definition 3.12, and Lemma 3.19 is proven similarly to
Lemma 3.13, but there are some differences. In particular, we do not have the analog
of (3.51).

As in Definition 3.14, the standard `-covering of 3L2,L1(x) corresponds to

α = αL2,L1,` := max
{
[3/5, 4/5] ∩

{
L2 − L1 − `

2`n
; n ∈ N

}}
. (3.70)

4. The multiscale analysis with a Wegner estimate

We will prove the following theorem.

Theorem 4.1. Let Hω be a generalized Anderson Hamiltonian on L2(Rd). Fix p ∈
]1/3, 3/8[ and ς, ς ′ ∈ ]0, 1[. Then there exist an energy E0 > 0, a rate of decay m > 0,
and a scaleL0, all depending only on d, Vper, δ±, u±, U+, µ, p, ς, ς

′, such that all scales
L ≥ L0 are (E,m, ς, ς ′, p)-extra good for all energies E ∈ [0, E0]. In particular, all
scales L ≥ L0 are (E,m, ς, p)-good for all energies E ∈ [0, E0].

To prove the theorem we first obtain an a priori estimate on the probability that a box 3L
is good with an adequate supply of free sites for all energies in an interval at the bottom
of the spectrum (Proposition 4.3). Next, we perform a multiscale analysis to show that
if such a probabilistic estimate holds for a given energy at a sufficiently large scale, then
it holds all large scales (Proposition 4.6). Theorem 4.1 is an immediate consequence of
Propositions 4.3 and 4.6.

Remark 4.2. If 0 is not an atom for the measure µ in (2.6), Proposition 4.5 provides an
alternative to Proposition 4.3, giving an a priori estimate in a fixed interval at the bottom
of the spectrum for sufficiently high disorder. If we also haveµ([0, t]) ≤ Ctγ , with γ > 0
appropriately large, Propositions 4.5 and 4.6 (and their proofs) yield an alternative high
disorder version of Theorem 4.1.

4.1. A priori finite volume estimates

We set q̃ = max{q, 2}, where q ∈ N is the period of the background periodic operator
Vper in (2.10).

Proposition 4.3. Let Hω be a generalized Anderson Hamiltonian on L2(Rd), and fix
p > 0 and 0 < ε ≤ 1. There exists L̃ = L̃(d, Vper, u−, δ−, µ, p, ε) such that for all
scales L ≥ L̃ and all x ∈ Rd we have

P{Hω,tS ,3L(x) ≥ ((p + 1)d log(L+ δ+ + q̃))−(2+ε)/d for all tS ∈ [0, 1]S} ≥ 1− L−pd ,
(4.1)

where S = Sx,L,q = 3̃L(x) \ q̃Zd . In particular, setting

EL =
1
2 ((p + 1)d log(L+ δ+ + q̃))−(2+ε)/d and mL =

1
2

√
EL, (4.2)
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it follows that for all scales L ≥ L̃, x ∈ Rd , tS ∈ [0, 1]S , and energies E ∈ [0, EL], we
have, with probability ≥ 1− L−pd ,

‖Rω,tS ,3L(x)(E)‖ ≤ 1/EL, (4.3)

and, for all y, y′ ∈ 3L with ‖y − y′‖ ≥ 20
√
d,

‖χyRω,tS ,3L(x)(E)χy′‖ ≤ (2/EL)e
−

2
3
√
EL‖y−y

′
‖. (4.4)

In particular, given ς, ς ′ ∈ ]0, 1[, there is ˜̃L = ˜̃L(d, Vper, u−, δ−, µ, p, ς, ς
′, ε) such

that all scales L ≥ ˜̃L are (E,mL, ς, ς ′, p)-extra good for all energies E ∈ [0, EL].

Proof. It suffices to prove (4.1), since given Hω,tS ,3L(x) ≥ 2EL, for all E ∈ [0, EL] we
get immediately (4.3), and (4.4) follows by the Combes–Thomas estimate. (We use the
precise estimate given in [GK2, Eq. (19)], which is also valid for finite volume operators
with Dirichlet boundary condition.) Moreover, in view of (2.12) and (2.14), it suffices to
prove (4.1) for the case when U = 0, and uζ = u−χ3δ− (ζ ) for all ζ ∈ q̃Zd , uζ = 0
otherwise.

So let

H
(q)
ω = H0 + V

(q)
ω with V

(q)
ω (x) :=

∑
ζ∈q̃Zd

ωζ u(x − ζ ), (4.5)

where u = u−χ3δ− (0). Note that H (q)
ω is an Anderson Hamiltonian as in Definition 2.1,

except that Zd was replaced by q̃Zd and the periodic potential has period q̃, and hence
its integrated density of states N (q)(E) is well defined with the usual properties (cf. [CL,
PF]). Given a box 3, we define the corresponding finite volume operator H (q)

ω,3 as in
(2.16). For scales L ∈ q̃N we set

N
(q)
ω,3L

(E) := trχ ]−∞,E](H̃
(q)
ω,3L

), (4.6)

where
H̃
(q)
ω,3L
:= H0,3 + Ṽ

(q)
ω,3 on L2(3), (4.7)

where H0,3 is as in (2.17) and Ṽ (q)ω,3 is the restriction of V (q)ω to 3. In general Ṽ (q)ω,3 6=

V
(q)
ω,3, but we have (2.20).

We recall (e.g., [CL, Eq. (VI.15) on page 311]) that

E(N (q)
ω,3L

(E)) ≤ N (q)(E)|3L| for all L ∈ q̃N. (4.8)

We now use the Lifshitz tails estimate as in [Klo3, Remark 7.1] (note that it applies
with µ as in (2.6)):

lim
E↓0

log|logN (q)(E)|

logE
≤ −

d

2
. (4.9)
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It follows that there is an energy E1 = E1(d, Vper, u−, δ−, µ, ε) > 0 such that

N (q)(E) ≤ e−E
−d/(2+ε)

for all energies E ≤ E1. (4.10)

Combining (4.6)–(4.10), and using Chebyshev’s inequality, we find that for all scales
L ∈ q̃N, x ∈ Rd , and energies E ≤ E1,

P{σ(H̃ (q)

ω,3L(x)
) ∩ [0, E] 6= ∅} ≤ E(N (q)

ω,3L(x)
(E)) ≤ e−E

−d/(2+ε)
Ld , (4.11)

and hence

P
{
H̃
(q)

ω,3L(x)
≥ min{((p + 1)d logL)−(2+ε)/d , E1}

}
≥ 1− L−pd . (4.12)

To get (4.1) from (4.12), given a scale L ≥ 1 we set

Lq := min{L′ ∈ q̃N; L+ δ+ ≤ L′}. (4.13)

It follows from (2.20) that

χ3L(x)Ṽ
(q)

ω,3Lq (x)
= V

(q)

ω,3L(x)
. (4.14)

Since we are using a Dirichlet boundary condition for the Laplacian, we conclude that
inf σ(H (q)

ω,3L(x)
) ≥ inf σ(H̃ (q)

ω,3Lq (x)
). Since L + δ+ ≤ Lq < L + δ+ + q̃, we conclude

that

P
{
H
(q)

ω,3L(x)
≥ min{((p + 1)d log(L+ δ+ + q̃))−(2+ε)/d , E1}

}
≥ 1− L−pd (4.15)

for all L ≥ 1. The desired estimate (4.1) follows for all scales L ≥ L̃, where L̃ =
L̃(d, Vper, u−, δ−, µ, p, ε). ut

Remark 4.4. In the absence of a periodic background potential, i.e., Vper = 0, one
can prove a slightly modified form of Proposition 4.3 using ideas from [BoK] instead
of Lifshitz tails. As in the proof of Proposition 4.3, it suffices to consider the operator
Hω = −1 + Vω, where Vω is as in (4.5). Setting K > 10δ−, 3 = 3L, It follows from
the lower bound in (2.14) that there exists a constant cu−,δ−,d > 0 such that

V ω3(x) :=
1
Kd

∫
3K (0)

Vω3(x − a) da ≥ cu−,δ−,d Yω,3χ3(x), (4.16)

where
Yω,3 := min

ξ∈3̃

1
Kd

∑
ζ∈3̃K/3(ξ)

ωζ . (4.17)

It follows from standard estimates (e.g., [Y, Proposition 3.3.1]) that, with µ̄ and σ the
mean and standard deviation of the probability measure µ, we have

P
{

1
Kd

∑
ζ∈3̃K/3(ξ)

ωζ ≤
µ̄

2

}
≤ e−AK

d

, (4.18)
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where
A = Aµ,d =

µ̄

3d8σ 2(1+ µ̄/2)
> 0, (4.19)

and hence
P{Yω,3 ≤ µ̄/2} ≤ Lde−AK

d

. (4.20)

It follows from (4.16) and (4.20) that with c′u−,δ−,d =
1
2cu−,δ−,d ,

P{V ω3 > c′u−,δ−,d µ̄
χ3} ≥ 1− Lde−AK

d

, (4.21)

so, if V ω3 > c′u−,δ−,d µ̄
χ3, we have

Hω,3 := −13 + χ3V ω3 ≥ c
′

u−,δ−,d
µ̄ on L2(3). (4.22)

Thus, if ϕ ∈ C∞c (3) with ‖ϕ‖ = 1, we have

〈ϕ,Hω,3ϕ〉3 = 〈ϕ,Hω,3ϕ〉3 + 〈ϕ, (Vω3 − V ω3)ϕ〉3

≥ c′u−,δ−,d µ̄+ 〈ϕ, (Vω3 − V ω3)ϕ〉Rd

≥ c′u−,δ−,d µ̄+ 〈ϕ, Vω3ϕ〉Rd −
1
Kd

∫
3K (0)
〈ϕ(· + a), Vω3ϕ(· + a)〉 da

≥ c′u−,δ−,d µ̄−
1
Kd

∫
3K (0)

|〈ϕ, Vω3ϕ〉 − 〈ϕ(· + a), Vω3ϕ(· + a)〉| da

≥ c′u−,δ−,d µ̄− c
′
uK‖∇3ϕ‖3 ≥ c

′

u−,δ−,d
µ̄− c′uK〈ϕ,Hω,3ϕ〉

1/2
3 , (4.23)

where we used

‖ϕ(· + a)− ϕ‖Rd = ‖(e
a·∇
− 1)ϕ‖Rd ≤ |a| ‖∇ϕ‖Rd = |a| ‖∇3ϕ‖3. (4.24)

It follows that there is K̃u,d > 0 such that for K > K̃u,d we have

〈ϕ,Hω,3ϕ〉3 ≥ c
′′

u−,δ−,d

µ̄2

K2 . (4.25)

Since this holds for all ϕ ∈ C∞c (3) with ‖ϕ‖ = 1, we have

Hω,3 ≥ c
′′

u−,δ−,d
µ̄2/K2 on L2(3). (4.26)

From (4.21) and (4.26) we get

P{Hω,3 ≥ c′′u−,δ−,d µ̄
2/K2
} > 1− Lde−AK

d

. (4.27)

Given p > 0, we take K =
( (p+1)d
Aµ,d

logL
)1/d to get

P{Hω,3L ≥ 2Cu−,δ−,µ,d,p (logL)−2/d
} > 1− L−pd (4.28)

for L ≥ L̃u−,δ−,µ,d,p, where Cu−,δ−,µ,d,p > 0 is an appropriate constant.
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We then take n ∈ N and let S = S3 = nZd ∩3. If n� K , we find, as in (4.16), that
for all tS ∈ [0, 1]S we have

V ω3,tS (x) :=
1
Kd

∫
3K (0)

Vω3,tS (x − a) da ≥ cu−,δ−,d Yω,S,3 χ3(x), (4.29)

where
Yω,S,3 := min

ξ∈3̃

1
Kd

∑
ζ∈3̃K/3(ξ)\S

ωζ . (4.30)

Proceeding as above, we conclude that

P{Hω,tS ,3L ≥ 2Cu−,δ−,µ,d,p,q (logL)−2/d for all tS ∈ [0, 1]S} > 1− L−pd (4.31)

for L ≥ L̃u−,δ−,µ,d,p,q , where Cu−,δ−,µ,d,p,q > 0 is an appropriate constant.

If 0 is not an atom for the measure µ in (2.6), i.e., if µ({0}) = 0, we can also obtain a
high disorder a priori finite volume estimate.

Proposition 4.5. Consider the generalized Anderson Hamiltonian Hω,λ = H0 + λVω
on L2(Rd), where H0 and Vω are as in (2.10) and λ > 0. Suppose 0 is not an atom
for the measure µ in (2.6). There exists an energy Ẽ = Ẽ(d, Vper, u−, δ−) > 0, such
that, fixing E0 ∈ ]0, Ẽ[ and p > 0, given L ≥ 100(δ+ + 1) there exists a constant
λ̃(L) = λ̃(d, Vper, u−, δ−, µ, p,E0, L), non-decreasing as a function of E0, such that
for all λ ≥ λ̃(L) we have

P{Hω,tS ,λ,3L(x) ≥ E0 for all tS ∈ [0, 1]S} ≥ 1− L−pd for all x ∈ Rd , (4.32)

where S = Sx,L,q = 3̃L(x) \ q̃Zd . Thus, for all E ∈ [0, E0[, x ∈ Rd , tS ∈ [0, 1]S , and
λ ≥ λ̃(L), it follows, with probability ≥ 1− L−pd , that

‖Rω,tS ,λ,3L(x)(E)‖ ≤ (E0 − E)
−1, (4.33)

and, for y, y′ ∈ 3L, ‖y − y′‖ ≥ 20
√
d ,

‖χyRω,tS ,λ,3L(x)(E)χy′‖ ≤ 2(E0 − E)
−1e−

2
3
√
E0−E‖y−y

′
‖. (4.34)

In particular, given ς, ς ′∈]0, 1[ and 0<E1<E0<Ẽ, there is ˜̃L= ˜̃L(d, ς, ς ′, E0 − E1)

such that for all energies E ∈ [0, E1] a scale L ≥ ˜̃L is (E, 1
2
√
E0 − E1, ς, ς

′, p)-extra
good if λ ≥ λ̃(L).

Proof. Similarly to the proof of Theorem 4.3, in view of (2.14) it suffices to consider
the case when uζ = u−χ3δ− (ζ ) for all ζ ∈ Zd . Given t ≥ 0, we set H(t) = H0 +

V (t), where V (t) = t
∑
ζ∈Zd uζ is a periodic potential with period one. Then E(t) =

inf σ(H(t)) is a strictly increasing continuous function of t ≥ 0 with E(0) = 0 (see
[Klo2, Lemma 3.1 and its proof]); we set E(∞) = limt→∞ E(t) > 0. Given a box
3 = 3L(x) we let Hω,λ,3 and H3(t) be the corresponding finite volume operators to
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Hω,λ and H(t). (H3(t) = Hω,t,3 with ωj = 1 for all j ∈ Zd .) Since we are using a
Dirichlet boundary condition, we have H3(t) ≥ E(t), and hence

Hω,λ,3 ≥ E(t) if λωj ≥ t for all j ∈ 3̃. (4.35)

Given E0 ∈ ]0, E(∞)[, let t0 > 0 be defined by E0 = E(t0). We conclude that

P{Hω,λ,3 ≥ E0} ≥ 1− Ldµ([0, t0/λ[)). (4.36)

Since µ({0}) = 0 by hypothesis, we have limλ→∞ µ([0, t0/λ[)) = 0, and hence there
exists λ̃(L) = λ̃(d, Vper, u−, δ−, µ, p,E0, L) <∞ such that

P{Hω,λ,3 ≥ E0} ≥ 1− L−pd for λ ≥ λ̃(L). (4.37)

To prove a similar estimate with free sites, we set H (q)
ω,λ = H0 + λV

(q)
ω

with V
(q)
ω as in (4.5). Proceeding as above, let H (q)(t) = H0 + V (q)(t), where

V (q)(t) = t
∑
ζ∈q̃Zd u(x − ζ ), set E(q)(t) = inf σ(H (q)(t)), and let E(q)(∞) =

limt→∞ E
(q)(t) > 0. Given E0 ∈ ]0, E(q)(∞)[, let t (q)0 > 0 be defined by E0 =

E(q)(t
(q)

0 ). Given a box 3 = 3L, we set S = 3̃L \ q̃Zd . We conclude that there is
λ̃(L) <∞ such that for all λ ≥ λ̃(L) we have

P{Hω,tS ,λ,3 ≥ E0 for all tS ∈ [0, 1]S} ≥ 1− (L/q)dµ([0, t (q)0 /λ)) ≥ 1−L−pd , (4.38)

which is (4.32). As in Proposition 4.3, if λ ≥ λ̃(L), then for all E ∈ [0, E0[ and tS ∈
[0, 1]S , it follows, with probability ≥ 1− L−pd , that we have (4.33) and (4.34). ut

4.2. The multiscale analysis

We now state our single energy multiscale analysis for generalized Anderson Hamiltoni-
ans.

Proposition 4.6. LetHω be a generalized Anderson Hamiltonian on L2(Rd). FixE0 > 0,
p ∈ ]1/3, 3/8[, and ς, ς ′, τ, ρ1, ρ2 ∈ ]0, 1[ with τ < ς and ρ2 = ρ

n1
1 , n1 ∈ N, such that

1/(1+ p) < ρ1 <
3
4 (1− ς) and p < 1

2ρ1(1− ς ′)− ρ2. (4.39)

There exists a finite scale L̃0 = L̃0(d, Vper, δ±, u±, U+, µ,E0, p, ρ1, ρ2, ς, ς
′, τ ) with

the following property: given an energy E ∈ [0, E0], a scale L0 ≥ L̃0, and a number

m0 ≥ L
−τ
0 , (4.40)

if all scales L ∈ [L0, L
1/ρ1ρ2
0 ] are (E,m0, ς, ς

′, p)-extra good, it follows that every scale
L ≥ L0 is (E,m0/2, ς, ς ′, p)-extra good.

Remark 4.7. To satisfy (4.39) and (4.40), we may pick p = 3
8−, and appropriate ρ1 =

3
4−, ς = 0+, ς ′ = 0+, τ = 0+, ρ2 = 0+.
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Remark 4.8. The restriction p ∈ ]1/3, 3/8[ comes from the use of the quantitative
unique continuation principle, stated in Theorem A.1 and used in the form given in Corol-
lary A.2(i), which gives a lower bound of the form R−CR

4/3
in (A.6). It is instructive to

see what happens if this lower bound was of the form R−CR
γ

for some γ > 0. In the
multiscale analysis, Lemma 4.11 requires 1/(1+ p) < ρ1 in (4.46). The lower bound
of (A.6) is used to prove Lemma 4.14; the important estimate (4.59) is useful only if
γρ1 < 1. Lemma 4.16 uses p < 1

2ρ1 to get the probability estimate (4.113). We conclude
that the multiscale analysis requires

γ < 1+
√

3
2 and γ − 1 < p < 1

2γ , (4.41)
1

1+p < ρ1 <
1
γ
(1− ς) and p < 1

2ρ1(1− ς ′)− ρ2. (4.42)

Since the quantitative unique continuation principle gives γ = 4/3 < (1+
√

3)/2, we
can perform the multiscale analysis with p ∈ ]1/3, 3/8[ and (4.39).

The proof of Pproposition 4.6 will require several lemmas and definitions. We fix an
energy E ∈ [0, E0], and let p, ς, ς ′, ρ1, ρ2, n1, τ be as in Proposition 4.6, satisfying
(4.39).

Definition 4.9. A collection L of scales is called (E, ς, ς ′, p, τ )-extra good if for each
` ∈ L there is a rate of decay m`, with

m` ≥ `
−τ , (4.43)

such that for each box 3` there is a (3`, E,m`, ς, ς ′)-extra good event E3` satisfying
(3.16).

In the following definitions and lemmas, given a scale L, we set `1 = L
ρ1 and `2 =

`
ρ2
1 = L

ρ1ρ2 . We also set Ln = `
ρn1
1 for n = 0, 1, . . . , n1; note L0 = `1 and Ln1 = `2.

We start by defining an event that incorporates [BoK, property (∗)]. Note that by
writing “R = {3`(r)}r∈R is the standard `-covering of 3L” (cf. Definitions 3.12 and
3.14), we will mean that R = G(`)3L as in (3.47) with α as in (3.55); in particular, R = G(`)3L
as in (3.48).

Definition 4.10. Given a box 3`1 , let Rn = {3Ln(r)}r∈Rn be the standard Ln-covering
of 3`1 . Fix a number K2 ∈ N. Then:

(i) A box 3`1 is said to be (ω, E,K2)-notsobad if there is 2 =
⋃
r∈R′n1

33`2(r), where

R′n1
⊂ Rn1 with #R′n1

≤ K2, such that for all x ∈ 3`1 \2 there is an (ω, E,mLn , ς)-
good box 3Ln(r) with r ∈ Rn for some n ∈ {1, . . . , n1} and 3Ln/5(x) ∩ 3`1 ⊂

3Ln(r).
(ii) An event N is (3`1 , E,K2)-notsobad if N ∈ F3`1 and the box 3`1 is (ω, E,K2)-

notsobad for all ω ∈ N .
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Lemma 4.11. Suppose {Ln; n = 1, . . . , n1} is (E, ς, ς ′, p, τ )-extra good. There exists
a constant K̂2 = K̂2(d, p, ρ1, ρ2), and for K2 ∈ N with K2 ≥ K̂2 a constant ̂̀1 =̂̀1(d, p, ρ1, ρ2,K2), such that for any box 3`1 with `1 ≥ ̂̀1 there exists a (3`1 , E,K2)-
notsobad event N3`1

with

P{N3`1
} > 1− `−5d

1 . (4.44)

Proof. Given 3Ln−1(r) ∈ Rn−1, we set

Rn(r) := {3Ln(s) ∈ Rn; 3Ln(s) ∩3Ln−1(r) 6= ∅},

Rn(r) := {s ∈ Rn; 3Ln(s) ∈ Rn(r)}.
(4.45)

We have 3Ln−1(r) ⊂
⋃
s∈Rn(r)

3Ln(s) and, similarly to (3.52), #Rn(r) ≤ (3Ln−1/Ln)
d .

Fix a number K ′, and define the event N3`1
as consisting of ω ∈ � such that, for all

n = 1, . . . , n1 and all r ∈ Rn−1, we have ω ∈ E3Ln (s) for all s ∈ Rn(r), with the
possible exception of at most K ′ disjoint boxes 3Ln(s) with s ∈ Rn(r). We clearly have
N3`1

∈ F3`1 . Since {Ln; n = 1, . . . , n1} is (E, ς, ς ′, p, τ )-extra good, the probability
of its complementary event to N3`1

can be estimated from (3.16):

P{� \N3`1
} ≤

n1∑
n=1

(
2`1

Ln−1

)d(3Ln−1

Ln

)K ′d
L
−K ′pd
n

≤ 2d3K
′dn1`

−ρ
n1−1
1 (K ′(ρ1(pd+d)−d)+d)+d

1

= 2d3K
′dn1`

−d(ρ
n1−1
1 (K ′(ρ1(p+1)−1)+1)−1)

1 ≤ `−5d
1 , (4.46)

where the last inequality holds for all large `1 after choosing K ′ sufficiently large using
(4.39).

Given ω ∈ N3`1
, then for each n = 1, . . . , n1 and r ∈ Rn−1 we can find s1, . . . , sK ′′

∈ Rn(r) with K ′′ ≤ K ′ − 1 such that ω ∈ E3Ln (s) if s ∈ Rn(r) and s /∈
⋃K ′′

j=133Ln(sj ).
(Here we need boxes of side 3Ln because we only ruled out the existence of K ′ disjoint
boxes of side Ln.) Since each box 33Ln(sj ) is contained in the union of at most C′′

boxes in Rn, we conclude that for each ω ∈ N3`1
there are t1, . . . , tK ′′′ ∈ Rn1 with

K ′′′ ≤ K2 = (C
′′(K ′ − 1))n1 such that, setting 2 =

⋃K ′′′

tj=133`2(tj ), for all x ∈ 3`1 \2

we have ω ∈ E3Ln (s) for some n = 1, . . . , n1 and s ∈ Rn with3Ln/5(x)∩3`1 ⊂ 3Ln(s).
ut

Definition 4.12. Fix K1,K2 ∈ N. Then:

(i) An event P is called (3,E,K1,K2)-prepared if, with R = {3`1(r)}r∈R being the
standard `1-covering of 3 = 3L, there exists a disjoint decomposition R = R′ tR′′

with #R′′ ≤ K1 such that

P =
{⋂
r∈R′

C3`1 (r)
}
∩

{ ⋂
r∈R′′

N3`1 (r)

}
, (4.47)
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where C3`1 (r) is a (3`1(r), E,m`1 , ς, ς
′, SC3`1 (r)

)-adapted event for each r ∈ R′,

and N3`1 (r)
is a (3`1(r), E,K2)-notsobad event for each r ∈ R′′. In this case we set

SP := {s ∈ 3̃; s ∈ 3`1(r) ⇒ r ∈ R′ and s ∈ SC3`1 (r)
}

=

⋃
r∈R′

(
SC3`1 (r)

\

⋃
r ′∈R′\{r}

(3`1(r
′) \ SC3`1 (r′)

)
)
\

⋃
r∈R′′

3`1(r). (4.48)

(ii) An event Q is called (3,E,K1,K2)-ready if it is the disjoint union of a finite number
of (3,E,K1,K2)-prepared events, i.e., there exist disjoint (3,E,K1,K2)-prepared
events {Pj }j=1,...,J such that

Q =
J⊔
j=1

Pj . (4.49)

The set SP in (4.48) is the maximal set with the required properties. It follows from
(3.51) that ⊔

r∈R′

{SC3`1 (r)
∩3`1/5(r)} ⊂ SP , (4.50)

and nothing would be lost if we had defined SP by making (4.50) an equality.

Lemma 4.13. Suppose {Ln; n = 0, 1, . . . , n1} is (E, ς, ς ′, p, τ )-extra good. For suffi-
ciently large K1,K2 ∈ N, depending only on d, p, ρ1, ρ2, if L is taken large enough,
depending only on d, p, ρ1, ρ2, ς

′,K1,K2, the following holds:

(i) If P is a (3,E,K1,K2)-prepared event, then SP is a ς ′-abundant subset of 3̃ and
P ∈ F3\SP .

(ii) There exists a (3,E,K1,K2)-ready event Q such that

P{Q} > 1− 2L−2d . (4.51)

Proof. Let P be a (3,E,K1,K2)-prepared event, as in (4.47), and let SP be as in (4.48).
In particular, P ∈ F3\SP . Since #R′′ ≤ K1, it follows from (4.50), using (3.14), that for
all boxes 3L/5 ⊂ 3 we have, with L sufficiently large,

#(SP ∩3L/5) ≥ `
(1−ς ′)d
1

((
5
4
L

5`1
− 2

)d
−K1

)
≥ L(1−ς

′)d , (4.52)

and hence SP is a ς ′-abundant subset of 3̃.
We now use the hypothesis that {Ln; n = 0, 1, . . . , n1} is (E, ς, ς ′, p, τ )-extra good.

For each r ∈ R we pick a (3`1(r), E,m`1 , ς, ς
′)-extra good event E3`1 (r) as in (3.15)

with (3.16). TakingK2 andL sufficiently large so we can use Lemma 4.11, for each r ∈ R
we also pick a (3`1(r), E,K2)-notsobad event N3`1 (r)

with (4.44), and set N ∗3`1 (r) =
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N3`1 (r)
\ E3`1 (r), clearly also a (3`1(r), E,K2)-notsobad event. Given K1 ∈ N, define

the event Q by the disjoint union

Q :=
⊔
R′⊂R

#(R\R′)≤K1

Q(R′), where

Q(R′) =
{⋂
r∈R′

E3`1 (r)
}
∩

{ ⋂
r∈R\R′

N ∗3`1 (r)
}
.

(4.53)

Using the probability estimates in (3.16) and (4.44), and taking K1 sufficiently large (in-
dependently of the scale), we get (4.51). This can be seen as follows. First, using (4.44),
we have

P{E3`1 (r) ∪N
∗

3`1 (r)
} ≥ P{N3`1 (r)

} > 1− L−5ρ1d , (4.54)

and hence

P
{⋂
r∈R

{E3`1 (r) ∪N
∗

3`1 (r)
}

}
> 1−

(
2L
`1

)d
L−5ρ1d

≥ 1− 2dL−(6ρ1−1)d > 1− L−2d (4.55)

for large L, where we used (3.52) and (4.39). On the other hand, lettingK1 = C
′(K ′−1),

it follows from (3.16) and (4.39) that

P{there are K ′ disjoint boxes 3`1(r) ∈ R with ω /∈ E3`1 (r)}

≤ (2L/`1)
dK ′`

−pdK ′

1 ≤ 2dK
′

L−dK
′(ρ1(p+1)−1)

≤ L−2d , (4.56)

ifK1 > 2C′/(ρ1(p + 1)− 1) and L is large enough. We now take C′ = 3d − 1, ensuring
that the complementary event has at mostK1 (not necessarily disjoint) boxes3`1(r) ∈ R
with ω /∈ E3`1 (r). The estimate (4.51) follows from (4.55) and (4.56).

Moreover, it follows from (3.15) and (4.53) that each Q(R′) is a disjoint union of
(non-empty) events of the form

PR′ =
{⋂
r∈R′

C3`1 (r)
}
∩

{ ⋂
r∈R\R′

N ∗3`1 (r)
}
, (4.57)

where C3`1 (r) is a (3`1(r), E,m`1 , ς, ς
′, SC3`1 (r)

)-adapted event for each r ∈ R′. Thus
Q is a (3,E,K1,K2)-ready event. ut

Given a box 3 and a number Y > 0,

W3,Y := {ω ∈ �; ‖Rω,3(E)‖ ≥ Y } (4.58)

is a measurable subset of �, i.e., an event, and moreover W3,Y ∈ F3.
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Lemma 4.14. Given a box 3 = 3L, let P be a (3,E,K1,K2)-prepared event, and
consider a box 3L1 ⊂ 3 with L1 = (2k1α + 1)`1, constructed as in (3.53) from the
standard `1-covering R = {3`1(r)}r∈R of 3, where k1 ∈ N, k1 ≥ 100K1. Then there
exist constants C1 = Cd,Vper,µ,δ±,u±,U+,ρ1,E0,K1,K2 , C2 = Cd,Vper,µ,K1,K2,E0 , and L̂ =
L̂d,µ,δ±,Vper,U+,E0,ρ1,ρ2,ς,ς ′,K1,K2 (the constants are all independent of k1), such that for
all scales L ≥ L̂ we have the conditional probability estimate

P{‖Rω,3L1
(E)‖ ≥ eC1L

4
3 ρ1 logL

| P} ≤ C2L
−
d
2 (ρ1(1−ς ′)−2ρ2). (4.59)

Proof. Let P be a (3,E,K1,K2)-prepared event as in (4.47), and let {3b}b=1,...,B be
an enumeration of the notsobad boxes {3`1(r)}r∈R′′∩3L1

; note B ≤ K1. For each b =
1, . . . , B we let 2b ⊂ 3b be as in Definition 4.10, so |2b| ≤ 3dK2`

d
2 . We set 2 =⋃B

b=12b, and note |2| ≤ 3dK1K2`
d
2 .

It follows from (3.52) and k1 ≥ 100K1 that #(R ∩3L1) ≥ (200K1)
d , so we can pick

distinct {rb}b=1,...,B ⊂ R
′
∩3L1 such that for all b = 1, . . . , B we have

4`1 ≤ dist{rb,3b} ≤ 12K1`1 and dist
{
rb,

B⋃
b′=1

3b′
}
≥ 4`1. (4.60)

Thus, the boxes {3`1/5(rb)}b=1,...,B are disjoint, and it follows from (3.14) that for each
b we have

#(SC3`1 (rb)
∩3`1/5(rb)) ≥ N1 := [`

(1−ς ′)d
1 ]. (4.61)

We now pick distinct free sites {ζb,j }
N1
j=1 ⊂ SC3`1 (rb)

, b = 1, . . . , B, and let S =⋃B
b=1{ζb,j }

N1
j=1, so S ⊂ SP by (4.50) and we have

#S = BN1 ≤ K1`
(1−ς ′)d
1 . (4.62)

Given tS = {tζ }ζ∈S ∈ [0, 1]S , we consider Hω,tS ,3L1
as in (3.1). We fix ω ∈ P ∈

F3\SP ⊂ F3\S and set

H̃tS = H̃ω,tS = Hω,tS ,3L1
on L2(3L1). (4.63)

Since H̃tS ≥ 0 has compact resolvent, it has non-negative discrete spectrum. Using
the min-max principle as in [FK3, Theorem A.1], these eigenvalues (repeated according
to the finite multiplicity) are given by

En(tS) = inf
L⊂D(13L1

); dimL=n

[
sup

ψ∈L: ‖ψ‖=1
〈ψ, H̃tSψ〉

]
for n ∈ N. (4.64)

Thus, 0 ≤ E1(tS) ≤ · · · ≤ En(tS) ≤ En+1(tS) ≤ · · · , and each En(tS) is a continuous
function of tS , increasing in tζ for each ζ ∈ S. In fact, we have

|En(tS)− En(t
′

S)| ≤ ‖VtS − Vt ′S
‖ ≤ |tS − t

′

S |1u+, (4.65)
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a general bound that does not take advantage of our construction. To do so, we note
that for ζ ∈ S, each En(tS) is piecewise differentiable in tζ for fixed tS\{ζ } (cf. [K,
Section VII.3.5]), with

∂

∂tζ
En(tS) = 〈ψn(tS), uζψn(tS)〉, (4.66)

where by ψn(tS) we denote a corresponding normalized eigenfunction:

H̃tSψn(tS) = En(tS)ψn(tS), ψn(tS) ∈ D(13L1
) with ‖ψn(tS)‖ = 1. (4.67)

Combining with (2.14), we get

u−‖χ3δ− (ζ )ψn(tS)‖
2
≤

∂

∂tζ
En(tS) ≤ u+‖χ3δ+ (ζ )ψn(tS)‖

2. (4.68)

We set m1 = m`1 , and consider the intervals

I1 = [E − e−2m1`1 , E + e−2m1`1 ] and I2 = [E − e−4m1`1 , E + e−4m1`1 ]. (4.69)

If En(tS) ∈ I2 for some tS ∈ [0, 1]S , we can use Lemma 3.9(iii), namely (3.23), to
conclude from the upper bound in (4.68), using (4.62), that for all t ′S ∈ [0, 1]S we have

|En(t
′

S)− E| ≤ e−4m1`1 + u+δ
d
+K1`

(1−ς ′)d
1 e−3m′1`1 ≤ e−2m1`1 , (4.70)

and hence En(t ′S) ∈ I1. In particular, if tS = 0S means tζ = 0 for all ζ ∈ S, we have

#{n ∈ N; En(tS) ∈ I2 for some tS ∈ [0, 1]S}

≤ N2 := #{n ∈ N; En(0S) ∈ I1} = tr{χ I1(H̃0S )}. (4.71)

General estimates yield (cf. [GK5, Eq. (A.7)])

N2 ≤ Cd,Vper(E + e−2m1`1)d/2Ld1 ≤ Cd,Vper,E0L
d
1 , (4.72)

which is not good enough for our purposes. To improve the estimate, we apply Lemma
3.9(iii). If En(tS) ∈ I1, it follows from (3.22) and our construction that

x /∈ 2 ⇒ ‖χxψn(tS)‖ ≤ e−
m
11 `2 ≤ e−

1
11 `

1−τ
2 , (4.73)

and hence, for large L,

‖χ3L1\2
ψn(tS)‖ ≤ L

d
1e−

1
11 `

1−τ
2 ≤ e−

1
14 `

1−τ
2 . (4.74)

It follows that
tr{χ3L1\2

χ I1(H̃0S )} ≤ e−
1
7 `

1−τ
2 N2. (4.75)
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Recalling that2 is a union of at mostK1K2 boxes of side 3`2, and using the trace estimate
given in [GK5, Lemma A.4], we obtain

N2 ≤ (1− e−
1
7 `

1−τ
2 )−1 tr{χ2χ I1(H̃0S )}

≤ 2
∑
x∈Zd

tr{χxχ2χ I1(H̃0S )} ≤ Cd,Vper,E0(K1K2)
d`d2 , (4.76)

a huge improvement over (4.72).
In addition, if En(tS) ∈ I1 we conclude from (4.74) that there exists b′ ∈ {1, . . . , B}

such that
‖χ2b′ψn(tS)‖ ≥ B

−1/2(1− e−
1
7 `

1−τ
2 )1/2 ≥ (2K1)

−1/2. (4.77)

In view of (4.60), it now follows from the quantitative unique continuation principle
([BoK, Lemma 3.10], see Theorem A.1), which we use in the form given in Corol-
lary A.2(i), that

‖χ3δ− (ζb′,j )ψn(tS)‖ ≥ e−C3`
4/3
1 (log `1) for all j = 1, . . . , N1, (4.78)

with a constant

C3 = Cd,K1,δ−(1+ ‖Vper‖ + δ
d
+u+ + U+ + E0)

2/3, where Cd,K1,δ− > 0. (4.79)

To exploit (4.78), we set ζj = {ζb,j }b=1,...,B for j = 1, . . . , N1, and let uζj :=∑B
b=1 uζb,j , χ3δ± (ζj ) :=

∑B
b=1 χ3δ± (ζb′,j ). It follows from (4.78) that

‖χ3δ− (ζj )ψn(tS)‖ ≥ e−C3`
4/3
1 (log `1) for all j = 1, . . . , N1. (4.80)

Given J ⊂ {1, . . . , N1} we let SJ =
⋃
j∈J ζj .

We now set tj = {tζb,j }b=1,...,B for j = 1, . . . , N1, and write tS = {tj }
N1
j=1. Given

j ′ = 1, . . . , N1, we also define e(j
′)

j = {e
(j ′)
ζb,j
}b=1,...,B by e(j

′)
ζb,j
= δj ′,j for b = 1, . . . , B,

j = 1, . . . , N1, and let e(j
′)

S = {e
(j ′)
j }

N1
j=1. It follows, as in (4.66) and (4.68), that for

En(tS) ∈ I1 we have

u−‖χ3δ− (ζj )ψn(tS)‖
2
≤ ∂jEn(tS) ≤ u+‖χ3δ+ (ζj )ψn(tS)‖

2, (4.81)

where

∂jEn(tS) = lim
s→0

1
s
(En(tS + s e

(j)
S )− En(tS)), (4.82)

so (4.80) yields

∂jEn(tS) ≥ u−e−2C3`
4/3
1 (log `1). (4.83)

We pick 0 ≤ θ− < θ+ ≤ 1 such that, letting

p− = µ({ω ≤ θ−}) and p+ = µ({ω ≥ θ+}), (4.84)
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we have p± ∈ ]0, 1[. (µ is the probability distribution in (2.6).) Such θ± always exist
since µ is non-degenerate, and we have p− + p+ ≤ 1. We set θµ = θ+ − θ− ∈ ]0, 1].

We now define random variables

ω+j := max
b=1,...,B

ωζb,j and ω−j := min
b=1,...,B

ωζb,j , j = 1, . . . , N1, (4.85)

and consider the events

Y(1)j = {ω
+

j ≤ θ−}, Y(2)j = {ω
−

j ≥ θ+}, Y(0)j = Y(1)j t Y
(1)
j . (4.86)

It follows from (4.84) that

p(1) := P(Y(1)j ) = pB−, p(2) := P(Y(2)j ) = pB+, p(0) := P(Y(0)j ) = p(1) + p(2).

(4.87)
We now introduce Bernoulli random variables η(a)j = χY(a)

j

, a = 0, 1, 2. Then

η(a) = {η
(a)
j }

N1
j=1 are independent, identically distributed Bernoulli random variables with

P{η(a)j = 1} = p(a). Note that η(0)j = η
(1)
j + η

(2)
j , and

η
(0)
j = η

(1)
j + η

(2)
j and P{η(a)j = 1 | η(0)j = 1} = p(a)/p(0), a = 1, 2. (4.88)

We consider the random index set given by Jη(0) = {j ∈ {1, . . . , N1}; η
(0)
j = 1}. Then

#Jη(0) =
∑N1
j=1 η

(0)
j , and standard large deviation estimates [Ho, Theorem 1] give

P{#Jη(0) ≤ 1
2N1p

(0)
} ≤ e−

1
2N1(p

(0))2
= e−

1
2 (p

B
−+p

B
+)

2N1 . (4.89)

Suppose En(ωS), En(ω′S) ∈ I1 are such that for some j we have ωζ = ω′ζ for ζ ∈

S \ ζj , and η(1)j (ωS) = η
(2)
j (ω′S) = 1. It then follows from (4.83) that

En(ω
′

S)− En(ωS) ≥ u−θµe−2C3`
4/3
1 (log `1). (4.90)

We set
I =

[
E − 1

2u−θµe−2C3`
4/3
1 (log `1), E + 1

2u−θµe−2C3`
4/3
1 (log `1)

]
, (4.91)

and we will estimate (we write η = η(0))

PS{En(ωS) ∈ I | η} = ̂̂EJη{P̂Jη {En(ωS) ∈ I }}, (4.92)

where, given J ⊂ {1, . . . , N1}, we write

P̂J { · } := PSJ { · | ηj = 1, j ∈ J }, ̂̂EJ { · } := ES\SJ { · | ηj = 0, j /∈ J }. (4.93)

It follows from (4.88) that, with respect to P̂J , η(2)J = {η
(2)
j }j∈J is a family of independent

identically distributed Bernoulli random variables with

P̂J {η(2)j = 1} =
p(2)

p(0)
=

pB+

pB− + p
B
+

, j ∈ J. (4.94)
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The configuration space of η(2)J , {0, 1}J , is partially ordered by the relation defined by
ε ≺ ε′ ⇔ εj ≤ ε

′

j for all ∈ J . Let us write ωS = (ωS\SJ ,ωSJ ). For a fixed ωS\SJ we set

AωS\SJ
= {η

(2)
J (ωS\SJ ,ωSJ ); En(ωS\SJ ,ωSJ ) ∈ I } ⊂ {0, 1}J . (4.95)

It follows from (4.90) and (4.91) that AωS\SJ
is an anti-chain in {0, 1}J , i.e., if ε, ε′ ∈

AωS\SJ
and ε ≺ ε′, then ε = ε′. Using the probabilistic Sperner Lemma given in [AGKW,

Lemma 3.1] with (4.94), we get

P̂J {En(ωS\SJ ,ωSJ ) ∈ I } = P̂J {η(2)J ∈ AωS\SJ
} ≤

2
√

2(pB− + p
B
+)

(p−p+)B/2
√

#J
. (4.96)

It follows from (4.92) and (4.96) that

PS{En(ωS) ∈ I | η} ≤
2
√

2
(p−p+)K1/2

√
#Jη

. (4.97)

Combining (4.89) and (4.97) we obtain

PS{En(ωS) ∈ I } ≤ e−
1
2 (p

B
−+p

B
+)

2N1 + 4(p−p+)−B/2(pB− + p
B
+)

1/2N
−1/2
1

≤ e−
1
2 (p

K1
− +p

K1
+ )2N1 + 4(p−p+)−K1/2N

−1/2
1

≤ Cµ,K1`
−

1
2 (1−ς

′)d

1 . (4.98)

We now conclude from (4.98), (4.71), and (4.76) that

PS{‖(H̃ωS − E)
−1
‖ ≥ 2(u−θµ)−1e2C3`

4/3
1 (log `1)} = PS{σ(H̃ωS ) ∩ I 6= ∅}

≤ C4`
−

1
2 (1−ς

′)d

1 `d2 , (4.99)

with a constant C4 = Cd,µ,Vper,K1,K2,E0 .
Recalling P ∈ F3\SP ⊂ F3\S , it follows from (4.99) that

P
{
{‖Rω,3L1

(E)‖ ≥ 2(u−θµ)−1e2C3`
4/3
1 (log `1)} ∩ P

}
= P

{
χP (ω)PS{‖Rω,3L1

(E)‖ ≤ 2(u−θµ)−1e2C3`
4/3
1 (log `1)}

}
≤ C4`

−
1
2 (1−ς

′)d

1 `d2 P{P}, (4.100)

which yields (4.59). ut

Lemma 4.15. Given a box 3 = 3L, let P be a (3,E,K1,K2)-prepared event. Then, if
L is large enough, depending only on d, µ, δ±, Vper, U+, p,E0, ρ1, ρ2, ς, ς

′, τ,K1,K2,
there exists an event WP ⊂ P , with

P{WP } ≤ C2K1L
−
d
2 (ρ1(1−ς ′)−2ρ2)P{P}, (4.101)



96 François Germinet, Abel Klein

where the constant C2 is as in (4.59), such that the event P \WP is (3,E,mL, ς, ς ′)-
adapted with

mL = m`1(1− Cd,Vper,E0,K1L
−β) ≥ L−τ , where

β = min
{( 4

3ς(1− ς)
−1
− τ

)
ρ1,

1
2 (1−

4
3 (1− ς)

−1ρ1)
}
> 0.

(4.102)

Proof. Let P be a (3,E,K1,K2)-prepared event as in (4.47). We take

κ = 1
2 (1+

4
3ρ1(1− ς)−1), so 4

3ρ1(1− ς)−1 < κ < 1, (4.103)

where we used (4.39), and we have

κς − τρ1 >
( 4

3ς(1− ς)
−1
− τ

)
ρ1. (4.104)

By geometrical considerations, we can find disjoint boxes {3j }Jj=1, J ≤ #R′′ ≤ K1,
where each 3j = 3Lj ⊂ 3 is constructed as in (3.53) from the standard `1-covering
R = {3`1(r)}r∈R of 3 with Lκ ≤ Lj ≤ K1L

κ , and for every r ∈ R′′ there exists a
(unique) jr ∈ {1, . . . , J } with 3`1(r) ⊂ 3

(3,Lκ/10)
jr

. Since it follows from (4.103) that
(for L large enough)

eC1L
4
3 ρ1 logL

≤ eL
κ(1−ς)

, (4.105)

we conclude from Lemma 4.14 that for all j = 1, . . . , J , letting

Wj = {‖Rω,3j (E)‖ ≥ eL
κ(1−ς)
} ∩ P, (4.106)

we have
P{Wj } ≤ C2L

−
d
2 (ρ1(1−ς ′)−2ρ2)P{P}. (4.107)

We set WP =
⋃J
j=1 Wj ⊂ P , so (4.101) holds.

Since P is a (3,E,K1,K2)-prepared event, the hypotheses of Lemma 3.10 are sat-
isfied for ω ∈ P \ WP , so we conclude that the box 3 is (ω, E,mL, ς)-good for all
ω ∈ P \WP with mL as in (4.102).

Moreover, for all j we have {‖Rω,3j (E)‖ ≥ eL
κ(1−ς)
} ∈ F3j , so it follows from

(4.47) that Wj ∈ F3′j , where 3′j = {x ∈ 3; dist(x,3j ) < `1}. Let 3′ =
⋃J
j=13

′

j .
It follows that SP\WP := SP \ 3′ consists of free sites for P \WP , i.e., the box 3 is
(ω, E,mL, ς, SP\WP )-good for all ω ∈ P \WP .

To conclude that P \ WP is (3,E,mL, ς, ς ′)-adapted we only need to show that
SP\WP is ς ′-abundant. This can be done as in Lemma 3.9(i). Since⊔

r∈R′\3′

SC3`1 (r)
∩3`1/5(r) ⊂ SP\WP , (4.108)

it follows, using (3.14), that for all boxes 3L/5 ⊂ 3 we have (for L sufficiently large)

#(SP\WP ∩3L/5) ≥ `
(1−ς ′)d
1

((
5
4
L

5`1
− 2

)d
−K1

(
5
3
K1L

κ

`1

)d)
≥ L(1−ς

′)d , (4.109)

and hence SP\WP is a ς ′-abundant subset of 3. ut



Localization for continuous Anderson models 97

Lemma 4.16. Suppose {Ln; n = 0, 1, . . . , n1} is (E, ς, ς ′, p, τ )-extra good. Then, if
L is sufficiently large, depending only on d, µ, δ±, Vper, U+, p,E0, ρ1, ρ2, ς, ς

′, τ , the
scale L is (E,mL, ς, ς ′, p)-extra good, and

mL = m`1(1− Cd,Vper,E0,ρ1,ρ2L
−β) ≥ L−τ , (4.110)

where β is given in (4.102).

Proof. Since by hypothesis {Ln; n = 0, 1, . . . , n1} is (E, ς, ς ′, p, τ )-extra good, it fol-
lows from Lemma 4.13 that there existK1,K2 ∈ N such that, given a box3 = 3L, ifL is
sufficiently large there exists a (3,E,K1,K2)-ready event Q satisfying (4.51). We write
Q as in (4.49), and apply Lemma 4.15 to any (3,E,K1,K2)-prepared events Pj , letting
WPj denote the corresponding event. In particular, WPj satisfies (4.101) and Pj \WPj
is a (3,E,mL, ς, ς ′)-adapted event with mL is as in (4.102), which yields (4.110) since
K1,K2 depend only on d, p, ρ1, ρ2. It then follows that

E =
J⊔
j=1

(Pj \WPj ) = Q \
( J⋃
j=1

WPj

)
(4.111)

is a (3L, E,mL, ς, ς ′)-extra good event. Since it follows from (4.49) and (4.101) that

P
{ J⋃
j=1

WPj

}
≤ C2K1L

−
d
2 (ρ1(1−ς ′)−2ρ2)P{Q}, (4.112)

we get, using (4.51) and (4.39),

P{E} ≥ (1− 2L−2d)(1− C2K1L
−
d
2 (ρ1(1−ς ′)−2ρ2)) ≥ 1− L−pd . (4.113)

ut

We can now finish the proof of Proposition 4.6.

Proof of Proposition 4.6. Let E ∈ [0, E0] and suppose that for some scale L0 we know

thatL is (E,m0, ς, ς
′, p)-extra good for allL ∈ [L0, L

ρ−1
1 ρ−1

2
0 ], withm0 satisfying (4.40).

In other words, the interval [L0, L
ρ−1

1 ρ−1
2

0 ] is (E, ς, ς ′, p, τ )-extra good with mL = m0

forL ∈ [L0, L
ρ−1

1 ρ−1
2

0 ]. We also assume thatL0 is large enough so we can use Lemma 4.16
for all L ≥ L0.

Let L0 = [L0, L
ρ−1

1 ρ−1
2

0 ] and Lk = [L
ρ−k1 ρ−1

2
0 , L

ρ
−(k+1)
1 ρ−1

2
0 ] for k = 1, 2, . . . . We set

mk = m0

k∏
k′=1

(1− CE0L
−βρ−k

′

1 ρ−1
2

0 ) ≥ L
−τβρ−k1 ρ−1

2
0 , (4.114)

where CE0 = Cd,Vper,ρ1,ρ2,E0 and β are as in (4.110), the inequality holding for all k by
taking L0 sufficiently large. We consider statements (Sk), given for k = 0, 1, . . . by:

(Sk) The scale interval Lk is (E, ς, ς ′, p, τ )-extra good with mL ≥ mk for all L ∈ Lk .
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We will prove that (Sk) is valid for all k = 0, 1, . . . by induction. Note that the validity
of (S0) is our hypothesis, and (S1) follows immediately from (S0) by Lemma 4.16. If
k = 1, 2, . . . , and (Sk−1) and (Sk) are valid, we can apply Lemma 4.16 for all L ∈ Lk+1,
and conclude that (Sk+1) holds with

mL ≥ mk(1− CE0L
−β) ≥ mk+1 ≥ L

−τβρ
−(k+1)
1 ρ−1

2
0 ≥ L−τ . (4.115)

Since we have (Sk) for all k = 0, 1, . . . , we conclude that the scale interval [L0,∞[

=
⋃
∞

k=0 Lk is (E, ς, ς ′, p, τ )-extra good, and for all L ∈ [L0,∞[ we have

mL ≥ m0

∞∏
k=1

(1− CE0L
−βρ−k1 ρ−1

2
0 ) ≥ m0/2 (4.116)

for sufficiently large L0. In particular, every scale L ≥ L0 is (E,m0/2, ς, ς ′, p)-extra
good, so the theorem is proved. ut

5. Preamble to localization

In this section we introduce tools for extracting localization from the multiscale analysis.
Let ν > d/2. (We will work with a fixed ν that will be generally omitted from the

notation.) Given y ∈ Rd , we recall that Ty = Tν,y denotes the operator on the Hilbert
space H = L2(Rd) given by multiplication by the function Ty(x) = Tν,y(x) := 〈x − y〉ν

for x ∈ Rd with T := T0. Since 〈y1 + y2〉 ≤
√

2〈y1〉〈y2〉, we have

‖Ty1T
−1
y2
‖ ≤ 2ν/2〈y1 − y2〉

ν . (5.1)

The domain of T , D(T ), equipped with the norm ‖φ‖+ = ‖T φ‖, is a Hilbert space,
denoted by H+ = Hν,+ . The Hilbert space H− = Hν,− is defined as the completion
of H in the norm ‖ψ‖− = ‖T −1ψ‖. By construction, H+ ⊂ H ⊂ H− , and the natural
injections ı+ : H+ → H and ı− : H → H− are continuous with dense range. The
operators T+ : H+ → H and T− : H → H−, defined by T+ = T ı+ , and T− = ı−T

on D(T ), are unitary. Note that it follows from (5.1) that

‖T −1
y ψ‖ ≤ 2ν/2〈y〉ν‖T −1ψ‖ for all y ∈ Rd and ψ ∈ H−. (5.2)

5.1. ν-generalized eigenfunctions

LetHω be a generalized Anderson Hamiltonian. For a fixed ω ∈ � we now consider only
generalized eigenfunctions ψ ∈ H− = Hν,−, so we rewrite Definition 2.3 as follows.

Definition 5.1. A ν-generalized eigenfunction for Hω with generalized eigenvalue E is
a function ψ ∈ Hν,− such that ψ 6= 0 and

〈Hωϕ,ψ〉 = E〈ϕ,ψ〉 for all ϕ ∈ C∞c (R
d). (5.3)
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Given E ∈ R we let 2ω(E) = 2ν,ω(E) denote the collection of all ν-generalized eigen-
functions for Hω with generalized eigenvalue E, and set 2̃ω(E) = 2ω(E)∪ {0}. We will
drop ν from the notation: ψ will be called a generalized eigenfunction for Hω with gen-
eralized eigenvalue E if and only if ψ ∈ 2ω(E). We will also call E ∈ R a generalized
eigenvalue for Hω if and only if 2ω(E) 6= ∅.

The generalized eigenvalues and eigenfunctions ofHω are the same as the eigenvalues
and eigenfunctions of the operator Hω,−: a function ψ ∈ H−, ψ 6= 0, is a generalized
eigenfunction of Hω with generalized eigenvalue E if and only if ψ ∈ D(Hω,−) and
Hω,−ψ = Eψ , i.e.,

〈Hωφ,ψ〉 = E〈φ,ψ〉 for all φ ∈ D(Hω) ∩H+ . (5.4)

This follows from the fact that (5.4) is equivalent to (5.3) since C∞c (Rd) is a core for
the Hω.

Eigenvalues and eigenfunctions of Hω are always generalized eigenvalues and eigen-
functions. Conversely, if ψ ∈ 2ω(E) ∩ H, i.e., ψ ∈ H is a generalized eigenfunction
of Hω with generalized eigenvalue E, then ψ is an eigenfunction of Hω with eigen-
value E.

5.2. Generalized eigenfunctions and good boxes

Given ω ∈ �, x ∈ Rd and E ∈ R, we set

Wω,x(E) = W
(ν)
ω,x(E) :=

 sup
ψ∈2ω(E)

‖χxψ‖

‖T −1
x ψ‖

if 2ω(E) 6= ∅,

0 otherwise.
(5.5)

Note that
Wω,x(E) ≤ (5/4)ν/2 < 2ν/2. (5.6)

Remark 5.2. By the unique continuation principle, 2ω(E) 6= ∅ if and only if Wω,x(E)

6= 0 for all x ∈ R.

Lemma 5.3. Let ω ∈ �, I ⊂ R a bounded interval, E ∈ I , 0 < ς < 1, and m > 0.
Suppose the box 3L(x) is (ω, E,m, ς)-jgood. Then, if m ≥ Cd,ν,Vper,I

logL
L

, we have

Wω,y(E) ≤ e−
m
15L for all y ∈ 3L(x) with 3L/5(y) ⊂ 3L(x). (5.7)

Proof. We can assume 2ω(E) 6= ∅. Given ψ ∈ 2ω(E), it follows from Lemma 2.5 that
for all y ∈ 3L(x) with 3L/5(y) ⊂ 3L(x) we have

‖χyψ‖ ≤ 2γELd−1e−
m
11L max

y′∈ϒ3L(x)

‖χy′ψ‖ ≤ 2γELd−1(1+ L2)ν/2e−
m
11L‖T −1

y ψ‖,

(5.8)
so

‖χyψ‖

‖T −1
y ψ‖

≤ e−
m
15L for m ≥ Cd,ν,Vper,I

logL
L

. (5.9)

ut
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5.3. Generalized eigenfunctions and annuli of good boxes

Given ω ∈ �, x ∈ Rd , E ∈ R, and a scale L, we set (cf. (1.8))

Wω,x,L(E) = W
(ν)
ω,x,L(E) :=

 sup
ψ∈2ω(E)

‖χx,Lψ‖

‖T −1
x ψ‖

if 2ω(E) 6= ∅,

0 otherwise.
(5.10)

where χx,L := χ32L+1,L−1(x), and

L− := L−
1
5
L

100
=

499
500

L, L+ := 2L+
1
5
L

100
=

1001
500

L. (5.11)

In particular, we have (L ≥ 2)

Wω,x,L(E) ≤ (1+ (L+ 1/2)2)ν/2 ≤ 2ν/2Lν . (5.12)

Note also that, using (5.1),

Wω,y(E) ≤ 2ν/2〈y − x〉νWω,x,L(E)

≤ 2νLνWω,x,L(E) for y ∈ 32L,L(x). (5.13)

Lemma 5.4. Let ω ∈ �, I ⊂ R a bounded interval, E ∈ I , 0 < ς < 1, 0 < m̃ < m.
Suppose every box 3L/100 in the standard L/100-covering of the annulus 3L+,L−(x) is
(ω, E,m, ς)-jgood. Then, if m ≥ C′d,ν,Vper,I

logL
L

, we have

Wω,x,L(E) ≤ e−
m

2000L. (5.14)

Proof. We can assume2ω(E) 6= ∅. Given y ∈ 32L,L(x) there exists a box3(y)L/100 in the

standard L/100-covering of the annulus3L+,L−(x) with 3L/500(y) ⊂ 3
(y)

L/100. Since the

box 3(y)L/100 is (ω, E,m, ς)-jgood by hypothesis, it follows from Lemma 5.3 that for all

ψ ∈ 2ω(E) we have, with ` = L/100 and m ≥ Cd,ν,Vper,I
log `
`

,

‖χyψ‖ ≤ ‖T
−1
y ψ‖e−

m
15 ` ≤ 2ν/2〈y − x〉ν‖T −1

x ψ‖e−
m
15 `

≤ 2νLν‖T −1
x ψ‖e−

m
15 `. (5.15)

It follows that

‖χx,Lψ‖ ≤ Cd,νL
ν+d
‖T −1
x ψ‖e−

m
15 ` ≤ ‖T −1

x ψ‖e−
m
20 `, (5.16)

which yields (5.14). ut
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5.4. Generalized eigenfunction expansion

A generalized Anderson Hamiltonian Hω has a generalized eigenfunction expansion,
which we will now review. We follow [KlKS, Section 3], to which we refer for all the
details. (Although the results in [KlKS] are stated for classical wave operators, which in-
clude −1, they clearly hold for −1 + V with V a bounded potential; in particular they
hold for generalized Anderson Hamiltonians as in Definition 2.2.)

Let Hω be a generalized Anderson Hamiltonian. For all ω ∈ � we have the estimate
(e.g., [GK5, Lemma A.4])

tr{T −1(Hω + 1+ ‖V −per‖)
−2[[d/4]]T −1

} ≤ Cd,ν,‖V−per‖
<∞, (5.17)

where [[d/4]] = min{n ∈ N; n > d/4} and V −per is the negative part of Vper. We define
the spectral measure

µω(B) := tr{T −1Pω(B)T
−1
} = ‖T −1Pω(B))‖

2
2, B ⊂ R a Borel set. (5.18)

As a consequence of (5.17), for all Borel sets B with supB <∞ we have

µω(B) ≤ Cd,ν,‖V−per‖,supB <∞ for all ω ∈ �. (5.19)

Moreover, since the constants in (5.17) and (5.19) depend on the potential only through
‖V −per‖ (they are independent of the background potential U ≥ 0 and the random potential
Vω ≥ 0), we deduce, similarly to [GK6, Eq. (2.5)], that for all ω ∈ � and Borel sets B
with supB <∞ we have

µω,y(B) := tr{T −1
y Pω(B)T

−1
y } ≤ Cd,ν,‖V−per‖,supB <∞ for all y ∈ Rd , (5.20)

and hence
‖χyPω(B)‖2 ≤ Cd,‖V−per‖,supB <∞ for all y ∈ Rd . (5.21)

Note also that µω and µω,y are absolutely continuous with respect to each other.
Let T1(H+,H−) be the Banach space of bounded linear operators A : H+ → H−

with T −1
− AT −1

+ trace class. Then for all ω ∈ � there exists a µω-locally integrable func-
tion P ω : R→ T1(H+,H−), such that

tr{T −1
− P ω(E)T

−1
+ } = 1 for µω-a.e. E, (5.22)

and, for all Borel sets B with supB <∞,

ı−Pω(B)ı+ =

∫
B

P ω(E) dµω(E), (5.23)

where the integral is the Bochner integral of T1(H+,H−)-valued functions. Note that
P ω(E) is jointly measurable in (ω, E). (This can be seen from [KlKS, Eq. (46)].) More-
over, we have (e.g., [KlKS, Corollary 3.1])

Hω,−P ω(E) = EP ω(E) for µω-a.e. E ∈ R, (5.24)
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where Hω,− is the closure of the operator Hω in the Hilbert space H−. It follows that

P ω(E)H+ ⊂ 2̃ω(E) for µω-a.e. E ∈ R. (5.25)

If for a given Borel set B we have (H = ı−H as sets)

P ω(E)H+ ⊂ H for µω-a.e E ∈ B, (5.26)

it follows from (5.25) that Hω has pure point spectrum in B.
Given ω ∈ �, x ∈ Rd , E ∈ R, and a scale L, we set (cf. [GK6])

Wω,x(E) :=


sup
φ∈H+

Pω(E)φ 6=0

‖χxP ω(E)φ‖

‖T −1
x P ω(E)φ‖

if P ω(E) 6= 0,

0 otherwise,

(5.27)

Wω,x,L(E) :=


sup
φ∈H+

Pω(E)φ 6=0

‖χx,LP ω(E)φ‖

‖T −1
x P ω(E)φ‖

if P ω(E) 6= 0,

0 otherwise.

(5.28)

Wω,x(E) and Wω,x,L(E) are measurable functions of (ω, E) for each x ∈ Rd with

Wω,x(E) ≤ (5/4)ν/2 < 2ν/2, (5.29)

Wω,x,L(E) ≤ (1+ (L+ 1/2)2)ν/2 ≤ 2ν/2Lν, (5.30)

Wω,y(E) ≤ 2νLνWω,x,L for y ∈ 32L,L(x). (5.31)

Moreover, it follows from (5.25) that

Wω,x(E) ≤ Wω,x(E) and Wω,x,L(E) ≤ Wω,x,L(E) for µω-a.e. E ∈ R. (5.32)

Remark 5.5. There is a difference between Wω,x(E) and Wω,x,L(E), defined in (5.27)
and (5.28), and Wω,x(E) and Wω,x,L(E), previously defined in (5.5) and (5.10). The
conclusions of the multiscale analysis of Proposition 4.6 will yield bounds on Wω,x(E)

and Wω,x,L(E) in an energy interval I . In view of (5.32), these bounds will hold for
Wω,x(E) andWω,x,L(E) for µω-a.e.E ∈ I , yielding (5.26) for µω-a.e.E ∈ I , and hence
establishing pure point spectrum in the interval I . Note thatWω,x(E) andWω,x,L(E) are
measurable functions of (ω, E) for each x ∈ Rd , but we do not make such a claim for
Wω,x(E) and Wω,x,L(E).

5.5. Connection with point spectrum

Given E ∈ R, we set

Pω(E) := χ {E}(Hω) and µω(E) := µω({E}) = ‖T
−1Pω(E)‖

2
2. (5.33)

In particular, Pω(E) 6= 0 if and only if µω(E) 6= 0.
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It follows from (5.23) that

ı−Pω(E)ı+ = P ω(E)µω(E). (5.34)

Thus, given x ∈ Rd and a scale L, we have

‖χxPω(E)‖2 ≤ Wω,x(E)‖T
−1
x Pω(E)‖2 = Wω,x(E)

√
µω,x(E), (5.35)

‖χx,LPω(E)‖2 ≤ Wω,x,L(E)‖T
−1
x Pω(E)‖2 = Wω,x,L(E)

√
µω,x(E). (5.36)

If Hω has pure point spectrum in an interval I , it follows from (5.23) and (5.34) that
for all bounded Borel functions f we have

f (Hω)Pω(I ) =

∫
I

f (E)Pω,x(E) dµω,x(E) for all x ∈ Rd , (5.37)

where

Pω,x(E) :=

{
(µω,x(E))

−1Pω(E) if Pω(E) 6= 0,
0 otherwise.

(5.38)

6. From the multiscale analysis to localization

We will now assume that the conclusions of the multiscale analysis (i.e., of Proposi-
tion 4.6) hold for all energies in a bounded open interval I, and prove a theorem that
encapsulates localization in the interval I. All forms of localization will be derived from
this theorem.

We fix ν > d/2, which will be generally omitted from the notation.

Theorem 6.1. Let Hω be a generalized Anderson Hamiltonian on L2(Rd). Consider a
bounded open interval I ⊂ R, m > 0, p > 0, and ς ∈ ]0, 1[, and assume there is a scale
L such that all scales L ≥ L are (E,m, ς, p)-good for all energies E ∈ I. Set

M = M(m,p) := m/30n̂+2 where n̂ = n̂(p) := min{n ∈ N; 21/n
− 1 < p}. (6.1)

Fix p̃ ∈ ]0, p[, and pick ϑ = β/2, where β = ρn1 with ρ > 0 and n1 ∈ N such that

(1+ p)−1 < ρ < 1 and (n1 + 1)β < p − p̃, (6.2)

and set, at scale L,

IL := {E ∈ I; dist(E,R \ I) > e−ML
ϑ

}. (6.3)

Then, given a sufficiently large scale L, for each x0 ∈ Rd there exists an event UL,x0 with
the following properties:

(i) We have
UL,x0 ∈ F3L+ (x0) and P{UL,x0} ≥ 1− L−p̃d . (6.4)
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(ii) If ω ∈ UL,x0 and E ∈ IL, whenever

Wω,x0(E) > e−ML
ϑ

, (6.5)

we conclude that
Wω,x0,L(E) ≤ e−ML. (6.6)

(iii) If ω ∈ UL,x0 , we have

Wω,x0(E)Wω,x0,L(E) ≤ e−
1
2ML

ϑ

for all E ∈ IL. (6.7)

Remark 6.2. If p ∈ ]1/3, 3/8[, as in Theorem 4.1, we have n̂ = 3.

The proof of this theorem will require several propositions. The scale L will always
be assumed to be sufficiently large; in particular we assume m ≥ L−ς/2. We consider
only scales L ≥ L. We use the notation A(I) = A ∩ I for A ⊂ R.

We assume the hypotheses of Theorem 6.1 in the remainder of this section.

6.1. The first spectral reduction

Proposition 6.3. Given b ≥ 1, there exists a constant Kd,p,b ≥ 1 with the following
property: Fix K ≥ Kd,p,b. Then, given a sufficiently large scale L, for each x0 ∈ Rd
there is an event QL,x0 with

QL,x0 ∈ F3L(x0) and P{QL,x0} ≥ 1− L−2bd , (6.8)

such that for ω ∈ QL,x0 , given E ∈ I such that

Wω,x0(E) > e−m̂
√
L/K and dist(E,R \ I) > e−m̂

√
L/K , (6.9)

where m̂ = m̂(m, p) := 30M with M given in (6.1), it follows that

dist(E, σ (I)(Hω,3L(x0))) ≤ e−m̂L. (6.10)

The proof of this proposition will rely on several lemmas.

6.1.1. A site percolation model. Given a box 3L′(x0) and a scale ` � L′, we set L′′ =
L′ + `, let α = αL′′,` be as in (3.55), and consider the graph

G = Gx0,L′,` := x0 + α`Zd with edges {{r, r ′} ⊂ G; ‖r − r ′‖ = α`}. (6.11)

Note that for r, r ′ ∈ G we have

‖r − r ′‖ = α` ⇔ r 6= r ′ and 3`(r) ∩3`(r ′) 6= ∅. (6.12)

The external boundary of 0 ⊂ G is defined as

∂+0 := {r ∈ G \ 0; {r, r ′} is an edge for some r ′ ∈ 0}. (6.13)
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We have #(∂+{r}) = 3d−1 for all r ∈ G, i.e., any site is connected by edges to 3d−1 other
sites. We call y0, y1, . . . , yk ∈ G a path if {yj−1, yj } is an edge of G for j = 1, . . . , k; it
is a self-avoiding path if the y0, y1, . . . , yk are distinct.

Given an energy E ∈ I, we consider the following site percolation model on the
graph G: every site r ∈ G(`)3L′′ (x0)

= G∩3L′′(x0) (cf. (3.48)) is bad with probability one; a

site r ∈ G\G(`)3L′′ (x0)
is good if the box3`(r) is (ω, E,m, ς, p)-good and bad otherwise.

We let AE = AE(ω) = AE,x0,L′,`(ω) denote the cluster of bad sites containing G(`)3L′′ (x0)

(i.e., the connected component of the subgraph of bad sites containing G(`)3L′′ (x0)
).

We now take scales `, L̃ with ` � L′ and 100d` ≤ L̃. Given an energy E ∈ R, we
consider the event

Y(E)
x0,L′,`,L̃

:=

{
{AE ⊂ 3L′+L̃−3`(x0)} if E ∈ I,
� if E /∈ I.

(6.14)

Note that Y(E)
x0,L′,`,L̃

∈ F3L′+L̃,L′ (x0) for all E ∈ R, and it follows from (3.6) that Y(E)
x0,L′,`,L̃

is jointly measurable in (E,ω3L′+L̃,L′ (x0)).

Lemma 6.4. For all E ∈ I we have

P{Y(E)
x0,L′,`,L̃

} ≥ 1− (4L′/`)d−13[L̃/2`]d`−cdpL̃/`. (6.15)

In particular, if L′ = L̃ = L/2 and ` =
√
L, we get

P{Y(E)
x0,L/2,

√
L,L/2
} ≥ 1− L−cd,p

√
L. (6.16)

Proof. Fix E ∈ I, and suppose AE 6⊂ 3L′+L̃−3`(x0). Then there exists a self-avoiding
path y0, y1, . . . , yk in G such that ‖y0 − x0‖ = L′/2, y1, y2, . . . , yk /∈ G(`)3L′′ (x0)

,

‖yk − x0‖ ≥ (L′ + L̃− 3`)/2, and all y0, y1, . . . , yk are bad sites. It follows that
(L′ + L̃− 3`)/2 ≤ L′/2+kα`, so k ≥ (L̃− 3`)/2α` ≥ [L̃/2`]. We thus conclude that if
AE 6⊂ 3L′+L̃−3`(x0)we can find a self-avoiding path y0, y1, . . . , y[L̃/2`] of bad sites with

‖y0 − x0‖ = L
′/2 and y1, y2, . . . , y[L̃/2`] /∈ G(`)3L′′ (x0)

. The number of such self-avoiding

paths is bounded by (4L′/`)d−13[L̃/2`]d . Since sites y, y′ /∈ G(`)3L′′ (x0)
are independent un-

less ‖y− y′‖ ≤ α`, such a self-avoiding path must contain at least [3−d [L̃/2`]] ≥ c′d L̃/`
independent sites, and hence its probability of having only bad sites is ≤ `−c

′
dpdL̃/`. Thus

P{AE 6⊂ 3L′+L̃−3`(x0)} ≤ (4L′/`)d−13[L̃/2`]d`−c
′
dpdL̃/`. (6.17)

ut

Given 0 ⊂ G and 0 ≤ ε1 < ε2, we set

0̂ :=
⋃
x∈0

3`(x), ∂(ε1,ε2)0̂ := {x ∈ Rd; ε1 < dist(x, 0̂) < ε2}. (6.18)

Note that 0̂ is a connected subset of Rd if 0 is a connected subset of G.
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Lemma 6.5. Let E ∈ I and ω ∈ Y(E)
x0,L′,`,L̃

. Then (AE = AE(ω)):

(i) For all r ∈ ∂+AE we have3`(r) ⊂ 3L′+L̃(x0) and the box3`(r) is (ω, E,m, ς, p)-
good.

(ii) There exists a function φ = φω,E ∈ C2
c (Rd), with 0 ≤ φ ≤ 1, such that

φ ≡ 1 on ÂE, (6.19)

φ ≡ 0 on Rd \3L′+L̃−`(x0), (6.20)

supp∇φ ⊂ ∂(4,8)ÂE, (6.21)
|∇φ|, |1φ| ≤ Cd , the constant Cd depending only on d, (6.22)

and for all x ∈ Rd with 31/2(x) ∩ supp∇φ 6= ∅ there exists r(x) ∈ ∂+AE such that
3`/5(x) ⊂ 3`(r(x)).

Proof. Sinceω ∈ Y(E)
x0,L′,`,L̃

, we have ÂE ⊂ 3L′+L̃−2`(x0). (i) follows from the definition

of ÂE . To prove (ii), let ψ be the characteristic function of the set {x ∈ Rd; dist(x, ÂE)
≤ 6}. Pick a non-negative function η ∈ C2(Rd) with compact support in 31(0),∫
Rd η(x) dx = 1, and |∇η|, |1η| ≤ C′d . Then φ = η ∗ ψ has all the desired proper-

ties.
Let x ∈ Rd with 31/2(x) ∩ supp∇φ 6= ∅. Then, in view of (3.54), there exists

r(x) ∈ ∂+AE with 3`/5(x) ⊂ 3`(r(x)). Since x ∈ ∂(3,9)ÂE ∩ 3`(r) for some r ∈ G
implies r ∈ ∂+AE , we conclude that r(x) ∈ ∂+AE . ut

6.1.2. The energy trap

Lemma 6.6. Given a sufficiently large scale L, for each x0 ∈ Rd there exists an event
TL,x0 with

TL,x0 ∈ F3L,L/2(x0) and P{TL,x0} ≥ 1− L−cd,p,m,|I|
√
L (6.23)

such that for ω ∈ TL,x0 we have

Wω,x0(E) dist(E, σ (Hω,3L(x0))) ≤ e−
m
15

√
L for all E ∈ I. (6.24)

In particular, for ω ∈ TL,x0 and E ∈ I,

Wω,x0(E) > e−
m
30

√
L
⇒ dist(E, σ (Hω,3L(x0))) ≤ e−

m
30

√
L. (6.25)

Proof. Fix a scale L and x0 ∈ Rd . Since I is a bounded interval, we can find {Ej }j=1,...,J
⊂ I such that

I ⊂
J⋃
j=1

[Ej − e−2m
√
L, Ej + e−2m

√
L
] and J ≤ e2m

√
L
|I|. (6.26)
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We set

TL,x0 =

J⋂
j=1

Y(Ej )
x0,L/2,

√
L,L/2

. (6.27)

The estimate (6.23) follows immediately from (6.16).
Let ω ∈ TL,x0 and E ∈ I with 2ω(E) 6= ∅. Pick j ∈ {1, . . . , J } such that we

have E ∈ [Ej − e−2m
√
L, Ej + e−2m

√
L
], write AEj = AEj (ω), and let φ = φω,Ej

be the function given in Lemma 6.5. Let ψ ∈ 2ω(E), a generalized eigenfunction. Then
φψ ∈ D(Hω,3) and we have (2.23), where3 = 3L(x0). It follows that, for L sufficiently
large,

‖(Hω,3 − E)φψ‖
2
= ‖W3(φ)ψ‖

2
=

∑
x∈x0+

1
2Z

d

31/2(x)∩supp∇φ 6=∅

‖χ31/2(x)W3(φ)ψ‖
2

≤ Cd,I,Vper

∑
x∈x0+

1
2Z

d

31/2(x)∩supp∇φ 6=∅

‖χxψ‖
2
≤ C2

d,I,Vper
e−

2m′
11

√
L

∑
x∈x0+

1
2Z

d

31/2(x)∩supp∇φ 6=∅

‖ψ‖23√
L
(r(x))

≤ C′d,I,Vper
Lde−

2m′
11

√
L
‖ψ‖23

L, L2
(x0)
≤ e−

2m
15

√
L
‖T −1
x0
ψ‖2, (6.28)

where we used (2.24) and (6.22), applied the interior estimate given in (2.43) as in the
derivation of (2.44), used Lemma 6.5 with ` =

√
L (r(x) ∈ ∂+AEj is given in the

lemma), applied Lemma 3.9(iii), using (3.22) with m′ as in (3.17) taking ` =
√
L, and

then used (3.17) to write the final estimate in terms ofm. Since it follows from (6.19) that
‖φψ‖ ≥ ‖ψ‖3L/2(x0) ≥ ‖

χx0ψ‖, we conclude that

dist(E, σ (Hω,3L(x0))) ≤
‖(Hω,3 − E)φψ‖

‖φψ‖
≤ e−

m
15

√
L
‖T −1
x0
ψ‖

‖χx0ψ‖
. (6.29)

The desired (6.24) now follows using (5.5), and it yields (6.25) . ut

6.1.3. The energy bootstrap. We fix b ≥ 1, let n̂ = n̂(p) be as in (6.1), and set

η = η(p) := 21/̂n
− 1 < p, so η ∈ ]0, 1] and (1+ η)̂n = 2. (6.30)

We now fix a scale L, let `0 =
√
L, and set `k = `

1+η
k−1 for k = 1, . . . , n̂, so `n̂ = L

by (6.30). We take J ∈ N, to be determined later, and let L0 = L, Lk = Lk−1+ 2J`k for
k = 1, . . . , n̂. We have

Ln̂ = L+ 2J
n̂∑
k=1

`k ≤ (1+ 2J n̂)L. (6.31)

Given x0 ∈ Rd and E ∈ I, we consider the events Ỹ(E)x0,Lk−1,`k,2J`k
, k = 1, . . . , n̂,

defined similarly to the event in (6.14), but with a modified site percolation model: a
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site r is now either pgood or pbad according to whether the corresponding box 3`k is
(ω, E,m, ς, η)-pgood or not (see Definition 3.15), and the set ÃE(ω), defined similarly
to AE(ω), is now a cluster of bad sites. Requiring 2J ≥ 100d , Lemma 6.4 still applies,
with p̂ = p̂(p) := p − η/(2(1+ η)) substituted for p in view of Lemma 3.17, yielding
for all k = 1, . . . , n̂ the estimate

P{Ỹ(E)x0,Lk−1,`k,2J`k
} ≥ 1− (4Lk−1/`k)

d−13Jd`−2cd p̂J
k ≥ 1− (4Ln̂/`0)

d−13Jd`−2cd p̂J
0

≥ 1− (4(1+ 2J n̂)L1/2)d−13JdL−cd p̂J ≥ 1− L−6bd , (6.32)

provided J ≥ Cd,p,b. We fix Jd,p,b := [max{Cd,p,b, 100d/2}] + 1 so if J ≥ Jd,p,b the
estimate (6.32) holds for all k = 1, . . . , n̂ .

For each k = 0, 1, . . . , n̂ − 1 the finite volume operator H3Lk (x0),ω, which depends
only on ω3Lk (x0), is a non-negative self-adjoint operator with discrete spectrum. We let

{E
(k)
j (ω3Lk (x0))}j∈N be the enumeration of these eigenvalues given by the min-max prin-

ciple, as in (4.64). Each E(k)j = E
(k)
j (ω3Lk (x0)) is a continuous function of ω3Lk (x0). We

define events

Zk = Z3Lk (x0) :=

⋂
j∈N

Ỹ
(E

(k−1)
j )

x0,Lk−1,`k,2J`k
∈ F3Lk (x0) for k = 1, . . . , n̂. (6.33)

Note that Zk ∈ F3Lk (x0) since the event Ỹ(E)x0,Lk−1,`k,2J`k
is jointly measurable in

(E,ω3Lk,Lk−1 (x0)) and each E(k−1)
j is a measurable function of ω3Lk−1 (x0). Since general

estimates yield (cf. [GK5, Eq. (A.7)])

tr{χI(H3L(x0),ω)} ≤ Cd,Vper,supIL
d for all L ≥ 10, (6.34)

it follows from (6.14) and (6.32) that

P{Zk} ≥ 1− L−4bd for k = 1, . . . , n̂. (6.35)

Lemma 6.7. Given a sufficiently large scale L, for each x0 ∈ Rd there exists an event
ZL,x0 with

ZL,x0 ∈ F3Ln̂ (x0) and P{ZL,x0} ≥ 1− n̂L−4bd
≥ 1− L−3bd (6.36)

such that for all ω ∈ ZL,x0 , if E ∈ I satisfies

dist(E, σ (I)(Hω,3L(x0))) ≤ e−
m
30
√
L
, (6.37)

dist(E,R \ I) > e−m̂
√
L, (6.38)

Wω,x0(E) > e−m̂
√
L, (6.39)

where m̂ := m/30n̂+1
= 30M (see (6.1)), it follows that

dist(E, σ (I)(Hω,3Ln̂ (x0))) ≤ e−m̂Ln̂ . (6.40)
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Proof. Given L and x0, we set

ZL,x0 :=

n̂⋂
k=1

Zk, (6.41)

so (6.36) follows immediately from (6.35).
Let m̃ = m/30. Given ω ∈ ZL,x0 and E ∈ I satisfying (6.37) and Wω,x0(E) > 0,

we pick E′ ∈ σ (I)(Hω,3L(x0)) such that |E − E′| ≤ e−m̃
√
L and ψ ∈ 2ω(E). We have

ω ∈ Ỹ(E
′)

x0,L,`1,2J`1
, so we let φ = φω,E′ be the function given in Lemma 6.5. Note that

Lemma 6.5 applies as stated for the modified site percolation model, the only modification
being that a box 3`1(r) with r ∈ ∂+ÃE′(ω) is now (ω, E′, m, ς, η)-pgood, and hence,
using Lemma 3.16, 3`1(r) is (ω, E, ˜̃m, ς)-good, where˜̃m = m̃(1− Cd,p,m`−min{ς,η}/(1+η)

1 ). (6.42)

Proceeding as in (6.28) and (6.29), we get (for L large)

‖(Hω,3L1 (x0) − E)φψ‖

‖φψ‖
≤ e−

˜̃m
13 `1
‖T −1
x0
ψ‖

‖χx0ψ‖
≤ e−

m̃
15 `1
‖T −1
x0
ψ‖

‖χx0ψ‖
, (6.43)

the generalized eigenfunction ψ being arbitrary, so we conclude that

dist(E, σ (Hω,3L1 (x0))) ≤ e−
m̃
15 `1(Wω,x0(E))

−1. (6.44)

Since it follows from (6.39) that

Wω,x0(E) > e−
m̃
30 `1 , (6.45)

we get, using also (6.38),

dist(E, σ (I)(Hω,3L1 (x0))) ≤ e−
m̃
30 `1 . (6.46)

Repeating the argument n̂− 1 times we get (6.40). ut

6.1.4. Completing the proof of Proposition 6.3. Given a scale L, let L̆ be the unique
scale such that L̆n̂ = L (see (6.31)). We take J ≥ Jd,p,b, so K = 1 + 2J n̂ ≥ Kd,p,b :=
1+ 2Jd,p,bn̂, and hence L̆ ≥ L/K . Recalling Lemmas 6.6 and 6.7, we let

QL,x0 = T
L̆,x0
∩ Z

L̆,x0
∈ F3

L̆,L̆/2(x0) ∩ F3L̆n̂ (x0) ⊂ F3L(x0), (6.47)

so
P{QL,x0} ≥ 1− L̆−cd,p,m,|I|

√
L̆
− L̆−3d

≥ 1− L−2bd . (6.48)
Let ω ∈ QL,x0 and E ∈ I satisfying (6.9). It follows that

Wω,x0(E) > e−
m
30

√
L̆ and dist(E,R \ I) > e−

m
30

√
L̆, (6.49)

so we conclude from Lemma 6.6 that

dist(E, σ (I)(Hω,3
L̆
(x0))) ≤ e−

m
30

√
L̆. (6.50)

Since (6.50) is just (6.37) at scale L̆, and (6.9) implies (6.38) and (6.39) at scale L̆,
Lemma 6.7 now yields (6.40) for the scale L̆, which is the desired (6.10). ut
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6.2. The second spectral reduction

If p ≤ 1 we need a second spectral reduction.
Given a scale L, we set Ln = Lρ

n
for n = 0, 1, . . . , n1 (note L0 = L, Ln1 = L

β ),
where ρ, n1, β are as in Theorem 6.1.

Definition 6.8. The reduced spectrum of the operator Hω in the box 3L(x0), in the en-
ergy interval I, is given by

σ (I,red)(Hω,3L(x0)) := {E ∈ σ
(I)(Hω,3L(x0)); dist(E, σ (I)(Hω,3Ln (x0))) ≤ 2e−m̂Ln ,

n = 1, . . . , n1}, (6.51)

where m̂ is given in (6.1).

Note that the set {(E,ω); E ∈ σ (I,red)(Hω,3L(x0))} is jointly measurable in
(E,ω3L(x0)).

Proposition 6.9. Let b ≥ 1 and fixK ≥ Kd,p,b, whereKd,p,b is the constant of Proposi-
tion 6.3. Given a sufficiently large scale L, for each x0 ∈ Rd there exists an event XL,x0 ,
with

XL,x0 ∈ F3L(x0) and P{XL,x0} ≥ 1− L−bβd , (6.52)

such that for all ω ∈ XL,x0 :

(i) If E ∈ I satisfies

Wω,x0(E) > e−m̂
√
Lβ/K and dist(E,R \ I) > e−m̂

√
Lβ/K , (6.53)

it follows that
dist(E, σ (I,red)(Hω,3L(x0))) ≤ e−m̂L. (6.54)

(ii) We have
#σ (I,red)(Hω,3L(x0)) ≤ Cd,Vper,I,p,ρ,n1L

(n1+1)βd . (6.55)

The proof will use several lemmas.

Lemma 6.10. Given a sufficiently large scale L and x0 ∈ Rd , consider the event

Q̃L,x0 :=

n1⋂
n=0

QLn,x0 ∈ F3L(x0), (6.56)

where QL′,x0 is the event given in Proposition 6.3 at scale L′. Then

P{Q̃L,x0} > 1− (n1 + 1)L−2bβd . (6.57)

Moreover, if ω ∈ Q̃L,x0 , we have (6.54) for any E ∈ I satisfying (6.53).
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Proof. The estimate (6.57) follows immediately from (6.56), (6.8), and (6.2). The second
part of the lemma is an immediate consequence of Proposition 6.3. ut

Given scales L′ < L with Lρ < (L− L′)/7 and x0 ∈ R, we consider the annulus
3L,L′ = 3L,L′(x0). We let Rn = {3Ln(r)}r∈Rn denote the standard Ln-covering of the
annulus 3L,L′ for n = 1, . . . , n1 (see Section 3.3.2). Given K2 ∈ N (to be chosen later),
we set

S3L,L′ :=
{ ⋃
r∈R′n1

33Ln1
(r); R′n1

⊂ Rn1 with #R′n1
≤ K2

}
. (6.58)

Similarly to Definition 4.10, the annulus 3L,L′ is said to be (ω, E,K2)-notsobad if there
exists an (ω, L,L′, E)-singular set 2 ∈ S3L,L′ : for all x ∈ 3L,L′ \ 2 there is an
(ω, E,m, ς)-good box3Ln(r) ∈ Rn, for some n ∈ {1, . . . , n1}, with3Ln/5(x)∩3L,L′ ⊂
3Ln(r). An event N is (3L,L′ , E,K2)-notsobad if N ∈ F3L,L′ and the annulus 3L,L′
is (ω, E,K2)-notsobad for all ω ∈ N . We have the analogue of Lemma 4.11: If K2 ≥

K̂2 = K̂2(d, p, b), and L ≥ L̂ = L̂(d, p, b,K2), then for all E ∈ I there exists a
(3L,L′ , E,K2)-notsobad event N (E)

3L,L′
with

P{N (E)
3L,L′
} > 1− L−5bd . (6.59)

(The proof of Lemma 4.11 applies since ρ > (1+p)−1.) We fixK2 = [K̂2]+1, so (6.59)
holds for L large, and set N (E)

3L,L′
= � if E /∈ I. The event N (E)

3L,L′
is jointly measurable

in (E,ω3L,L′ ), so

N3L,L′
=

⋂
E∈σ(H3

L′
,ω)

N (E)
3L,L′

∈ F3L , (6.60)

and it follows from (6.59) and (6.34) that

P{N3L,L′
} > 1− Cd,Vper,supIL

−4bd . (6.61)

Given a box 3L(x0), we define the multi-spectrum of the operator Hω, in the energy
interval I, by

6
(k)
Hω,L,x0

:=

n1∏
n=k

σ (I)(Hω,3Ln (x0)) for k = 0, 1, . . . , n1. (6.62)

A “multi-eigenvalue” E(k) = {En}
n1
n=k ∈ 6

(k)
Hω,L,x0

will be called linked if

|En − En′ | ≤ 4e−m̂Lmax{n,n′} for all n, n′ ∈ {k, k + 1, . . . , n1}. (6.63)

The reduced multi-spectrum is then defined as

6
(k,red)
Hω,L,x0

:= {E(k) ∈ 6
(k)
Hω,L,x0

; E(k) is linked}, k = 0, 1, . . . , n1. (6.64)
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Lemma 6.11. Given a (sufficiently large) scale L and x0 ∈ Rd , consider the event

NL,x0 := N3L0,L1 (x0) ∩

{n1−1⋂
n=1

{N3Ln,Ln+1 (x0) ∩N32Ln,Ln+1 (x0)}

}
. (6.65)

Then NL,x0 ∈ F3L(x0) and

P{NL,x0} > 1− Cd,Vper,supIn1L
−4bd
n1−1 ≥ 1− Cd,Vper,supIn1L

−4b β
ρ
d
. (6.66)

Moreover, for all ω ∈ NL,x0 we have

#σ (I,red)(Hω,3L(x0)) ≤ #6(0,red)
Hω,L,x0

≤ Cd,Vper,I,p,ρ,n1L
(n1+1)βd . (6.67)

Proof. We have NL,x0 ∈ F3L(x0) by construction. Since β = ρn1 , the estimate (6.66)
follows immediately from (6.61).

The first inequality in (6.67) is obvious, we only need to estimate #6(0,red)
Hω,L,x0

for
ω ∈ NL,x0 . We will write 3L = 3L(x0), 3Ln = 3Ln(x0).

It follows from (6.34) that

#6(n1,red)
Hω,L,x0

= #σ (I)(Hω,3Ln1
) ≤ Cd,Vper,supI(Ln1)

d
= Cd,Vper,supIL

βd . (6.68)

Let k ∈ {1, . . . , n1}. We set L̃k−1 = Lk−1 and L̃n = L̂n = 2Ln for n = k, k+1, . . . , n1−

1, and let 3L̃n,Ln+1
= 3Ln,Ln+1(x0). We take E(k) = {En}

n1
n=k ∈ 6

(k,red)
Hω,L,x0

. Since ω ∈

NL,x0 , we have ω ∈
⋂n1−1
n=k−1 N

(En)
3L̃n,Ln+1

, so let 2ω,En ∈ S3L̃n−1,Ln
be the corresponding

(ω, L̃n−1, Ln, En)-singular set for n = k, k + 1, . . . , n1, and set

2ω,E(k) = 32Ln1
∪

n1⋃
n=k

2ω,En . (6.69)

We have

|2ω,E(k) | ≤ (2Ln1)
d
+K2

n1∑
n=k

(3L̃βn−1)
d
≤ 6d(n1 − k + 2)K2L

βd

k−1. (6.70)

Given k = 1, . . . , n1 and E(k) ∈ 6(k,red)
Hω,L,x0

, we set

6
(k−1)
Hω,L,x0

(E(k)) = {E ∈ σ (I)(Hω,3Lk−1
); (E,E(k)) ∈ 6

(k−1,red)
Hω,L,x0

}, (6.71)

and note that

#6(k−1,red)
Hω,L,x0

≤

(
max

E(k)∈6
(k,red)
Hω ,L,x0

#6(k−1)
Hω,L,x0

(E(k))
)
(#6(k,red)

Hω,L,x0
). (6.72)

We now fix E(k) ∈ 6(k,red)
Hω,L,x0

. Given E ∈ 6(k−1)
Hω,L,x0

(E(k)), let ψE be a normalized
eigenfunction of Hω,3Lk−1

corresponding to the eigenvalue E. If x ∈ 3Lk−1 \ 2ω,E(k) ,
there exist n ∈ {k, k + 1, . . . , n1}, j ∈ {1, . . . , n1}, and an (ω, En, m, ς)-good box
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3`n,j ⊂ 3Lk−1 , where `n,j = (L̃n−1)j ≥ L
ρn+j−1

, such that 3`n,j /5(x) ∩3Lk−1 ⊂ 3`n,j .
(This is ensured by our choice of the L̃n.) Since |E − En| ≤ 4e−m̂Ln , it follows from
Lemma 3.7 that the box 3`n,j is (ω, E, m̂/2, ς)-jgood, and hence we get, proceeding as
in (3.22),

‖χxψE‖ ≤ e−
m̂
25 `n,j ≤ e−

m̂
25L

ρ2n1−1

, (6.73)

so we conclude that

‖χ2
ω,E(k)

ψE‖
2
≥ 1− e−

2m̂
25 L

ρ2n1−1

Lρ
k−1d
≥ 1/2. (6.74)

Thus,

#6(k−1)
Hω,L,x0

(E(k)) ≤ 2 tr{χI(Hω,3Lk−1
)χ2

ω,E(k)
} ≤ 2Cd,Vper,I |2ω,E(k) |

≤ Cd,Vper,I,p,ρ,n1L
βd

k−1, (6.75)

where we used [GK5, Lemma A.4] (as in (4.76)) and (6.70).
In view of (6.68) and (6.72), and recalling ρ < 1, we get

#6(0,red)
Hω,L,x0

≤ (C′d,Vper,I,p,ρ,n1
Lβd)n1+1

≤ C′′d,Vper,I,p,ρ,n1
L(n1+1)βd . (6.76)

ut

We are now ready to prove Proposition 6.9.

Proof of Proposition 6.9. Setting

XL,x0 := Q̃L,x0 ∩NL,x0 , (6.77)

Proposition 6.9 is an immediate consequence of Lemmas 6.10 and 6.11. ut

6.3. Annuli of good boxes

We are now ready to prove Theorem 6.1.

Proposition 6.12. Given a sufficiently large scale L, for each x0 ∈ Rd there exists an
event UL,x0 as in (6.4) such that for all ω ∈ UL,x0 , ifE ∈ IL satisfies (6.5), then every box
3L/100 in the standard L/100-covering of the annulus 3L+,L−(x0) is (ω, E, 70m̂, ς)-
jgood.

Proof. Given E ∈ I, we let M(E)
L,x0

be the event that all the boxes in the standard
L/100-covering of the annulus 3L+,L− = 3L+,L−(x0) are (ω, E,m, ς)-good, and set
M(E)

L,x0
= � if E /∈ I. The event is jointly measurable in (E,ω3L+,L− ), and, using (3.69),

P{M(E)
L,x0
} > 1− (2002)d(100)pdL−pd for E ∈ I. (6.78)

Setting
ML,x0 =

⋂
E∈σ (I,red)(Hω,3L− (x0))

M(E)
L,x0
∈ F3L+ (x0), (6.79)
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it follows from (6.55) and (6.78) that

P{ML,x0} > 1− Cd,Vper,I,p,ρ,n1(2002)d(100)pdL−pdL(n1+1)βd

≥ 1− C′d,Vper,I,p,ρ,n1
L−(p−(n1+1)β)d . (6.80)

We now require that K , fixed in Proposition 6.3 subject only to the condition K ≥
Kd,p,b, is sufficiently large to ensure that, given a scale L, if E ∈ IL satisfies (6.5), then
E satisfies (6.53) at scale L−:

e−ML
β/2
≥ e−m̂

√
L
β
−/K , i.e., K ≥ 900

( 499
500

)β
. (6.81)

We introduce the event

UL,x0 = XL−,x0 ∩ML,x0 ∈ F3L+ (x0), (6.82)

where XL−,x0 is the event given in Proposition 6.9 with b = 1 + 1
β
(p − (n1 + 1)β) . It

follows from (6.52), (6.80) and (6.2) that

P{UL,x0} > 1− L−bβd− − C′d,Vper,I,p,ρ,n1
L−(p−(n1+1)β)d

≥ 1− L−p̃d . (6.83)

Fix ω ∈ UL,x0 , and let E ∈ IL satisfy (6.5), so it follows that (6.53) holds at scale L−.
Proposition 6.9 then gives (6.54) at scale L−:

dist(E, σ (I,red)(Hω,3L− (x0))) ≤ e
−m̂L− = e−

499m̂
5

L
100 . (6.84)

Thus, given a box 3L/100 in the standard L/100-covering of the annulus 3L+,L−(x0),
it follows from (6.79) that the box 3L/100 is (ω, E,m, ς)-good for all energies E ∈
σ (I,red)(Hω,3L− (x0)). We conclude from (6.84) and Lemma 3.7 that the box 3L/100 is
(ω, E, 70m̂, ς)-jgood. ut

Proof of Theorem 6.1. The theorem follows from Proposition 6.12, with UL,x0 the event
given in Proposition 6.12.

We fix ω ∈ UL,x0 and E ∈ IL. Recall ϑ = β/2.
If (6.5) holds, Proposition 6.12 guarantees that every box 3L/100 in the standard

L/100-covering of the annulus 3L+,L−(x0) is (ω, E, 70m̂, ς)-jgood, so it follows from
Lemma 5.4 that

Wω,x,L(E) ≤ e−
70m̂
2000L ≤ e−

m̂
30L = e−ML, (6.85)

proving (6.6).
To prove (6.7), note that either E satisfies (6.5), so we have (6.6), and hence, recalling

(5.6),
Wω,x0(E)Wω,x0,L(E) ≤ 2ν/2e−ML, (6.86)

or we have
Wω,x0(E) ≤ e−ML

ϑ

, (6.87)

so using (5.12) we get

Wω,x0(E)Wω,x0,L(E) ≤ 2ν/2Lνe−ML
ϑ

≤ e−
1
2ML

ϑ

. (6.88)

The desired (6.7) follows. ut
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Remark 6.13. If p > 1, the proof of Theorem 6.1 is much simpler; it does not require
the second energy reduction of Proposition 6.9. The event ML,x0 in (6.79) is replaced by

M̃L,x0 =

⋂
E∈σ (I)(H3L(x0),ω)

M(E)
L,x0
∈ F3L+ (x0), (6.89)

so we have

P{M̃L,x0} > 1− (2002)d(100)pdL−pdCd,Vper,IL
d
≥ 1− C′d,Vper,IL

−(p−1)d . (6.90)

The event UL,x0 in (6.82) is replaced by

ŨL,x0 = QL,x0 ∩ M̃L,x0 ∈ F3L+ (x0), (6.91)

where QL,x0 is the event given in Proposition 6.3. It follows from (6.8) and (6.90) that

P{ŨL,x0} > 1− L−2bd
− C′d,Vper,IL

−(p−1)d > 1− C′′d,Vper,IL
−(p−1)d , (6.92)

choosing b = 1 + (p − 1)/2. The proof of Theorem 6.1 then proceeds as before, with
ϑ = 1 in (6.5) and (6.7).

Remark 6.14. If p > 3, we can prove a modified version of Theorem 6.1 that does
not require either Proposition 6.3 or Proposition 6.9; it suffices to use Lemma 6.6. The
conditions E ∈ IL and (6.5) are replaced by

E ∈ I and Wω,x0(E) > e−
m
30

√
L. (6.93)

We replace the event M(E)
L,x0

by M̂(E)
L,x0

, the event that all the boxes in the standard
√
L-

covering of the annulus3L+,L−(x0) are (ω, E,m, ς)-good, and set M̂(E)
L,x0
= � ifE /∈ I.

We have

P{M̂(E)
L,x0
} > 1− 20dL

1
2 dL−

p
2 d = 1− 20dL−

p−1
2 d for E ∈ I. (6.94)

We set
M̂L,x0 =

⋂
E∈σ (I)(H3L(x0),ω)

M̂(E)
L,x0
∈ F3L+ (x0), (6.95)

so we have

P{M̂L,x0} > 1− 20dL−
p−1

2 dCd,Vper,IL
d
≥ 1− C′′d,Vper,IL

−
p−3

2 d . (6.96)

The event UL,x0 in (6.82) is replaced by

ÛL,x0 = TL,x0 ∩ M̂L,x0 ∈ F3L+ (x0), (6.97)

where TL,x0 is the event in Lemma 6.6. It follows from (6.23) and (6.96) that

P{ÛL,x0} > 1− L−cd,p,m,|I|
√
L
− C′′d,Vper,IL

−
p−3

2 d
≥ 1− L−

p−3
3 d . (6.98)
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The proof of Proposition 6.12 then proceeds as before, except that we use Lemma 6.6 and
boxes of side

√
L instead of L/100. We conclude, using Lemma 3.7, that if E satisfies

(6.93), then all the boxes in the standard
√
L-covering of the annulus 3L+,L−(x0) are

(ω, E,m/60, ς)-jgood. Applying Lemma 5.4, modified for boxes of side
√
L instead of

L/100, we obtain (cf. (6.6))

Wω,x0,L(E) ≤ e−
m

1000

√
L. (6.99)

It follows that we have (cf. (6.7))

Wω,x0(E)Wω,x0,L(E) ≤ e−
m

1000

√
L for all E ∈ I. (6.100)

This simpler result implies pure point spectrum with subexponential decay of eigenfunc-
tions, as well as dynamical localization.

7. Localization

In this section we derive all the usual forms of localization from Theorem 6.1. We will
assume only the conclusions of this theorem. More precisely, we will assume only the
existence of the events UL,0 satisfying the conclusions of Theorem 6.1 for some fixed
p̃, ϑ,M . In particular, we do not assume the conclusions of the multiscale analysis, which
were the hypotheses for Theorem 6.1. We fix ν > d/2, which will be generally omitted
from the notation.

7.1. Anderson localization and finite multiplicity of eigenvalues

A simple Borel–Cantelli Lemma argument based on Theorem 6.1 yields Anderson local-
ization and finite multiplicity of eigenvalues. We only need the events of Theorem 6.1 at
x0 = 0.

Theorem 7.1. Let Hω be a generalized Anderson Hamiltonian on L2(Rd). Let I ⊂ R
be a bounded open interval, for which there is a scale L1 such that for all L ≥ L1 there
exists an event UL,0 as in Theorem 6.1. Then the following holds with probability one:

(i) Hω has pure point spectrum in the interval I.
(ii) If ψ is an eigenfunction of Hω with eigenvalue E ∈ I, then ψ is exponentially

localized with rate of decay M , more precisely,

‖χxψ‖ ≤ Cω,E‖T
−1ψ‖ e−M‖x‖ for all x ∈ Rd . (7.1)

(iii) For all E ∈ I we have

‖χxPω(E)‖2 ≤ C
′

ω,Ee−M‖x‖ for all x ∈ Rd . (7.2)

(iv) The eigenvalues of Hω in I have finite multiplicity:

trPω(E) <∞ for all E ∈ I. (7.3)
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Proof. It suffices to prove the theorem in every closed interval I ⊂ I. We fix I , and pick
a scale L0 ≥ L1 such that I ⊂ IL0 (see (6.3)). We introduce scales Lk+1 = 2Lk for
k = 1, . . . , and set Uk = ULk,0. It follows from the Borel–Cantelli Lemma, using (6.4),
that

P{U∞} = 1, where U∞ = lim inf
k→∞

Uk. (7.4)

Fix ω ∈ U∞; there exists kω ∈ N such that ω ∈ Uk for all k ≥ kω. If E ∈ I is a
generalized eigenvalue of Hω, i.e., 2ω(E) 6= ∅, and hence Wω,0(E) > 0, we set

kω,E = min{k ∈ N; k ≥ kω and (6.5) holds for E and Lk (with x0 = 0)} <∞. (7.5)

Given ψ ∈ 2ω(E), it follows from (6.6) that

‖χ0,Lkψ‖ ≤ ‖T
−1ψ‖e−MLk for all k ≥ kω,E . (7.6)

If x ∈ Rd with ‖x‖ ≥ Lkω,E , we can always find k ≥ kω,E such that x ∈ 3̄Lk+1,Lk (0), so

‖χxψ‖ ≤ ‖χ0,Lkψ‖ ≤ ‖T
−1ψ‖e−MLk ≤ ‖T −1ψ‖e−M‖x‖. (7.7)

It follows that that ψ ∈ H = L2(Rd) and satisfies (7.1). It now follows from (5.25) that
(5.26) holds with B = I . We conclude that Hω has pure point spectrum in I , and if ψ is
an eigenfunction ofHω with eigenvalue E ∈ I it has the exponential decay given in (7.1).

The estimate (7.2) is an immediate consequence of (7.1), and implies (7.3). ut

7.2. Eigenfunctions correlations and dynamical localization

Another Borel–Cantelli Lemma argument based on Theorem 6.1 yields eigenfunctions
correlations. In particular, we obtain pure point spectrum, finite multiplicity of eigenval-
ues, SUDEC (summable uniform decay of eigenfunction correlations; see [GK6]) and
SULE (semi-uniformly localized eigenfunctions; see [DeRJLS, GK1, GK6]), and dy-
namical localization. We will need the events of Theorem 6.1 for all x ∈ Zd . We do not
assume or use Theorem 7.1.

Theorem 7.2. Let Hω be a generalized Anderson Hamiltonian on L2(Rd). Let I ⊂ R
be a bounded open interval for which there is a scale L2 such that for all L ≥ L2 and
x ∈ Zd there exists an event UL,x as in Theorem 6.1. Let ε > 0 and fix an open interval
I ⊂ Ī ⊂ I. The following holds with probability one:

(i) For all E ∈ I we have

Wω,x(E)Wω,y(E) ≤ Cω,I,εe‖x‖
(1+ε)ϑ/p̃

e−
1
3M‖x−y‖

ϑ

for all x, y ∈ Rd . (7.8)

(ii) Hω has pure point spectrum in the interval I . Moreover, the eigenvalues of Hω in I
have finite multiplicity.



118 François Germinet, Abel Klein

(iii) (SUDEC) For all E ∈ I and φ,ψ ∈ RanPω(E) we have

‖χxφ‖ ‖χyψ‖

≤ C′ω,I,ε‖T
−1φ‖ ‖T −1ψ‖e‖x‖

(1+ε)ϑ/p̃
e−

1
4M‖x−y‖

ϑ

for all x, y ∈ Rd . (7.9)

In addition, for all E ∈ I we have

‖χxPω(E)‖2‖χyPω(E)‖2

≤ C′ω,I,ε µω(E)e
‖x‖(1+ε)ϑ/p̃e−

1
4M‖x−y‖

ϑ

for all x, y ∈ Rd . (7.10)

(iv) (SULE) For all E ∈ I there exists a center of localization yω,E ∈ Rd for all eigen-
functions with eigenvalue E, i.e., for all φ ∈ RanPω(E) we have

‖χxφ‖ ≤ C
′′

ω,I,ε‖T
−1φ‖e‖yω,E‖

(1+ε)ϑ/p̃
e−

1
4M‖x−yω,E‖

ϑ

for all x ∈ Rd . (7.11)

In addition, for all E ∈ I we have

‖χxPω(E)‖2

≤ C′′ω,I,ε

√
µω(E)e‖yω,E‖

(1+ε)ϑ/p̃
e−

1
4M‖x−yω,E‖

ϑ

for all x ∈ Rd . (7.12)

(v) We have

Nω,I (L) :=
∑

E∈I ; ‖yω,E‖≤L

trPω(E) ≤ Cω,I,ε L(1+ε)d/p̃ for all L ≥ 1. (7.13)

Proof. Fix ε > 0. Given k ∈ N, we set Lk = 2k , and consider the event

Jk :=
⋂

x∈Zd ; ‖x‖1+ε≤τLp̃k

ULk,x, (7.14)

where UL,x,M, p̃, β are as in Theorem 6.1, and τ > 0 is a constant to be chosen later. It
follows from (6.4) that

P{Jk} ≥ 1− Cd,M,ε,τL
−

ε
1+ε p̃d

k . (7.15)

Applying the Borel–Cantelli Lemma we conclude that

P{J∞} = 1, where J∞ = lim inf
k→∞

Jk. (7.16)

Thus, for ω ∈ J∞ there exists k1(ω) ∈ N such that ω ∈ ULk,x for all k ≥ k1(ω) and
x ∈ Zd with ‖x‖1+ε ≤ τLp̃k .

We now fix ω ∈ J∞ and an open interval I ⊂ Ī ⊂ I. We set

k1(ω, I ) = min{k ∈ N; k ≥ k1(ω), k ≥ 2, I ⊂ ILk }, (7.17)

where IL is defined in (6.3). Given x ∈ Zd , we define k2(x) ∈ N, k2(x) ≥ 2, by

τL
p̃

k2(x)−1 < ‖x‖
1+ε
≤ τL

p̃

k2(x)
, (7.18)
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when possible, and set k2(x) = 1 otherwise. We let k3(ω, I, x) = max{k1(ω, I ), k2(x)};
note that k3(ω, I, x) ≥ 2. It follows from (6.7), using (5.13), that for all E ∈ I and
y ∈ Rd \3Lk3(ω,I,x)(x) we have

Wω,x(E)Wω,y(E) ≤ 2ν‖x − y‖νe−
1
2M‖x−y‖

ϑ

. (7.19)

If y ∈ 3Lk3(ω,I,x)(x), we have

Wω,x(E)Wω,y(E) = Wω,x(E)Wω,y(E)e
1
2M‖x−y‖

ϑ

e−
1
2M‖x−y‖

ϑ

≤ 2νe
1
2M(

1
2Lk3(ω,I,x))

ϑ

e−
1
2M‖x−y‖

ϑ

≤ 2νe
1
2ML

ϑ
k3(ω,I,x)−1e−

1
2M‖x−y‖

ϑ

≤

{
2νe‖x‖

(1+ε)ϑ/p̃
e−

1
2M‖x−y‖

ϑ
if k3(ω, I, x) = k2(x),

2νe
1
2ML

ϑ
k1(ω,I )−1e−

1
2M‖x−y‖

ϑ
if k3(ω, I, x) = k1(ω, I ),

(7.20)

where we used (5.6) and made an appropriate chice of the constant τ . The estimate (7.8)
follows from (7.19) and (7.20).

It follows from (7.8) that for all E ∈ I and all φ,ψ ∈ 2̃ω(E) we have, for all
x, y ∈ Rd ,

‖χxφ‖ ‖χyψ‖ ≤ Cω,I,ε‖T
−1
x φ‖ ‖T −1

y ψ‖e‖x‖
(1+ε)ϑ/p̃

e−
1
3M‖x−y‖

ϑ

≤ 2νCω,I,ε〈x〉ν〈y〉ν‖T −1φ‖ ‖T −1ψ‖e(1+ε)ϑ/p̃e−
1
3M‖x−y‖

ϑ

. (7.21)

Thus 2̃ω(E) ⊂ H for all E ∈ I . It now follows from (5.25) that (5.26) holds with B = I ,
and hence Hω has pure point spectrum in I . The estimate (7.9) follows from (7.21). The
estimate (7.10) is an immediate consequence of (7.9), and implies trPω(E) < ∞ for all
E ∈ I .

Given E ∈ I with Pω(E) 6= 0, we pick ψ ∈ RanPω(E), ψ 6= 0, and pick yω,E ∈ Zd
(not unique) such that

‖χyω,Eψ‖ = max
y∈Zd
‖χyψ‖. (7.22)

It follows that (see [GK6, Eq. (4.22)])

Wω,yω,E (E) ≥
‖χyω,Eψ‖

‖T −1
yω,Eψ‖

≥ Cd > 0. (7.23)

If Pω(E) = 0 we take yω,E ∈ Zd = 0. Then for all E ∈ I and all ψ ∈ RanPω(E), (7.11)
and (7.12) follow from (7.8) (taking y = yω,E) and (7.23).

To prove (7.13), note that it follows from (7.12) that for all E ∈ I and R ≥ 1 we have

‖χRd\32R(yω,E)
Pω(E)‖

2
2 ≤

∑
x∈Zd\32R−1(yω,E)

‖χxPω(E)‖
2
2

≤ Cω,I,ε µω(I )e2‖yω,E‖(1+ε)ϑ/p̃e−
1
2M(R/2)

ϑ

= C′ω,I,εe
2‖yω,E‖(1+ε)ϑ/p̃e−

1
2M(R/2)

ϑ

. (7.24)
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There is a constant Dω,I,ε ≥ 1 such that for all L ≥ 1,

R ≥ Dω,I,εL
(1+ε)/p̃

⇒ C′ω,I,εe
2L(1+ε)ϑ/p̃e−

1
2M(R/2)

ϑ

≤ 1/2. (7.25)

Thus, given L ≥ 1, letting RL := Dω,I,εL(1+ε)/p̃, we have

‖χ32RL (yω,E)
Pω(E)‖

2
2 > 1/2 whenever ‖yω,E‖ ≤ L. (7.26)

It follows, using also (5.21), that

Nω,I (L) ≤ 2
∑
E∈I

‖yω,E‖≤L

‖χ32RL (yω,E)
Pω(E)‖

2
2 ≤ 2

∑
E∈I

‖yω,E‖≤L

‖χ32(L+RL)(0)
Pω(E)‖

2
2

≤ 2‖χ32(L+RL)(0)
Pω(I )‖

2
2 ≤ CI (L+ RL)

d
≤ Cω,I,ε L

(1+ε)d/p̃. (7.27)
ut

We can now prove dynamical localization with probability one.

Corollary 7.3. LetHω be a generalized Anderson Hamiltonian satisfying the hypotheses
of Theorem 7.2 in a bounded open interval I. Let ε > 0 and fix an open interval I ⊂
Ī ⊂ I. The following holds with probability one:

(i) For all E ∈ I we have

‖χyPω(E)χx‖1 ≤ C
′

ω,I,ε µω(E)e
‖x‖(1+ε)ϑ/p̃e−

1
4M‖x−y‖

ϑ

for all x, y ∈ Rd .
(7.28)

(ii) We have

sup
f∈Bb,1

‖χyf (Hω)Pω(I )χx‖1

≤ C′′ω,I,εe
‖x‖(1+ε)ϑ/p̃e−

1
4M‖x−y‖

ϑ

for all x, y ∈ Rd . (7.29)

(iii) For all b > 0 and x0 ∈ Rd we have

sup
f∈Bb,1

‖〈X − x0〉
bdf (Hω)Pω(I )χx0‖1 ≤ Cω,I,ε,be

‖x0‖
(1+ε)ϑ/p̃

, (7.30)

and, in particular,

sup
t∈R
‖〈X − x0〉

bde−itHωPω(I )χx0‖1 ≤ Cω,I,ε,be
‖x0‖

(1+ε)ϑ/p̃
. (7.31)

(iv) For all E ∈ I we have

‖χyP
(E)
ω
χx‖1 ≤ Cω,I,I,εe‖x‖

(1+ε)ϑ/p̃
e−

1
4M‖x−y‖

ϑ

for all x, y ∈ Rd . (7.32)
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Proof. Since
‖χxPω(E)χy‖1 ≤ ‖χxPω(E)‖2‖χyPω(E)‖2, (7.33)

(7.28) follows immediately from (7.10).
Given f ∈ Bb,1, it follows from (5.37) and (7.28) that

‖χyf (Hω)Pω(I )χx‖1 ≤

∫
I

|f (E)| ‖χyPω,0(E)χx‖1 dµω(E)

≤ C′ω,I,ε µω(I )e
‖x‖(1+ε)ϑ/p̃e−

1
4M‖x−y‖

ϑ

, (7.34)

which is (7.29).
Given b > 0 and x0 ∈ Rd , (7.30) and (7.31) follow from (7.29).
To prove (7.32), we proceed as in [GK6, Proof of Theorem 3]. We write I = ]α1, α2[,

let δ = 1
2 dist(I,R \ I) > 0, and consider the open interval I1 = ]α1 − δ/2, α2 + δ/2[ ⊂

I1 ⊂ I. We set ζ = 1/2(1 + β/2) ∈ ]β/2, 1[ and ζ ′ = 1/2(1 + ζ ) ∈ ]ζ, 1[. We pick
an L1-Gevrey function g of class 1/ζ ′ on ]−1,∞[, such that 0 ≤ g ≤ 1, g ≡ 1 on
]−∞, α1−δ/2] and g ≡ 0 on [α2+δ/2,∞[. (See [BGK, Definition 1.1]; such a function
always exists.) For all E ∈ I we have

P (E)ω = g2(Hω)+ fE(Hω), where

fE(t) := χ ]−∞,E](t)− g
2(t) = fE(Hω)Pω(I1) ∈ Bb,1.

(7.35)

Since we proved (7.29), we have

‖χyfE(Hω)χx‖1 ≤ C
′′

ω,I,εe
‖x‖(1+ε)ϑ/p̃e−

1
4M‖x−y‖

ϑ

for all x, y ∈ Rd . (7.36)

The function g was chosen so that we can use [BGK, Theorem 1.4], obtaining

‖χxg(Hω)χy‖ ≤ Cg e−C
′
g‖x−y‖

ζ

for all x, y ∈ Rd . (7.37)

We also have, using (5.21),

‖χxg(Hω)χy‖1 ≤ ‖χx
√
g(Hω)‖2‖χy

√
g(Hω)‖2 ≤ ‖χxP

(α2+δ/2)
ω ‖2‖χyP

(α2+δ/2)
ω ‖2

≤ C2
d,‖V−per‖,α2+δ/2

. (7.38)

It follows that

‖χxg(Hω)χy‖
2
2 ≤ ‖χxg(Hω)χy‖‖χxg(Hω)χy‖1

≤ Cd,‖V−per‖,α2+δ/2,g e−C
′
g‖x−y‖

ζ

. (7.39)

Thus, given x, y ∈ Rd we get

‖χxg
2(Hω)χy‖1 ≤

∑
z∈Zd
‖χxg(Hω)χz‖2‖χzg(Hω)χy‖2

≤ C1
∑
z∈Zd

e−
1
2C
′
g‖x−z‖

ζ

e−
1
2C
′
g‖z−y‖

ζ

≤ C2e−C3‖x−y‖
ζ

, (7.40)

where C1 = Cd,‖V−per‖,α2+δ/2,g and C2, C3 depend only on d, ‖V −per‖, I, I, ζ .
Since ζ > β/2, the estimate (7.32) now follows from (7.35)–(7.40). ut
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7.3. Localization in expectation

We will now derive eigenfunctions correlations estimates in expectation from Theorem
6.1, and use them to get dynamical localization in expectation, as well as pure point
spectrum, finite multiplicity of eigenvalues, etc., as in [GK6]. We do not assume or use
the results of Subections 7.1 and 7.2.

We recall that we pick ν > d/2, and that Wω,x(E) and Wω,x,L(E), defined in (5.27)
and (5.28), are measurable functions of (ω, E) for each x ∈ Rd , and satisfy (5.32).

Theorem 7.4. Let Hω be a generalized Anderson Hamiltonian on L2(Rd). Let I ⊂ R
be a bounded open interval for which there is a scale L3 such that for all L ≥ L3 and
x ∈ Rd there exists an event UL,x as in Theorem 6.1. Then the following holds for all
open intervals I ⊂ Ī ⊂ I:

(i) For all x, y ∈ Rd we have

E{‖Wω,x(E)Wω,y(E)‖L∞(I,dµω(E))} ≤ C〈x − y〉
−p̃d , (7.41)

with a constant C = Cd,p̃,ϑ,M,ν,L3 .
(ii) For all x0 ∈ Rd , L ≥ 1, and s ∈ ]0, p̃d/ν[ we have

E{‖Wω,x0(E)Wω,x0,L(E)‖
s
L∞(I,dµω(E))} ≤ CL

−(p̃d−sν), (7.42)

with a constant C = Cd,p̃,ϑ,M,ν,L3,s .
(iii) For all x0 ∈ Rd , s ∈ ]0, p̃d/ν[ and r ∈ [0, p̃d − sν[ we have, for P-a.e. ω,

‖Wω,x0(E)Wω,x0,2k−1(E)‖L∞(I,dµω(E)) ≤ Cω,I,s,r2
−kr/s for k = 0, 1, . . . .

(7.43)
As a consequence, Hω has pure point spectrum in the interval I .

Remark 7.5. (ii) and (iii) hold for any s ∈ ]0, 2p̃[, since in this case we can choose
ν > d/2 such that p̃d − sν > 0.

We set

χ (k)
x = χx,2k−1 and W (k)

ω,x(E) = Wω,x,2k−1(E) for k ∈ N. (7.44)

We also set χ (0)x = χx and W (0)
ω,x(E) = Wω,x(E) for convenience. Note that

1 ≤
∞∑
k=0

χ (k)
x . (7.45)

Proof of Theorem 7.4. We take L sufficiently large to ensure that I ⊂ IL and we can
apply Theorem 6.1. We will prove (7.42); the correlation estimate (7.41) is proved in a
similar way. In this case, applying (5.32), (6.7), (5.29), (5.30), and (6.4), we have

E{‖Wω,x0(E)Wω,x0,L(E)‖
s
L∞(I,dµω(E))} ≤ e−

s
2ML

ϑ

P{�} + 2sνLsνP{� \ UL,x0}

≤ e−
s
2ML

ϑ

+ 2sνLsνL−p̃d ≤ (1+ 2p̃d)L−(p̃d−sν). (7.46)

Using the bounds (5.29) and (5.30) we get (7.42) for all L ≥ 1.
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Given r ∈ [0, p̃d − sν[, it follows from (7.42) that

E
{∥∥∥ ∞∑

k=0

2kr [Wω,x0(E)W
(k)
ω,x0

(E)]s
∥∥∥

L∞(I,dµω(E))

}
≤ Cd,ν,p,s,r <∞, (7.47)

and (7.43) is an immediate consequence of (7.47) using the Borel–Cantelli Lemma. Given
ω for which (7.43) holds and φ ∈ H+, it follows, using (5.27) and (5.28), that for µω-a.e.
E ∈ I we have

‖χx0P ω(E)φ‖ ‖P ω(E)φ‖ ≤

∞∑
k=0

{‖χx0P ω(E)φ‖ ‖χx0,kP ω(E)φ‖}

≤ Cω,I,s,r(1− 2−r/s)−1
‖T −1
x0
P ω(E)φ‖

2 <∞. (7.48)

If P ω(E)φ 6=0, we have ‖χx0P ω(E)φ‖ 6=0 for some x0 ∈ Rd , and hence ‖P ω(E)φ‖
<∞ by (7.48), so we conclude that P ω(E)φ ∈ H = L2(Rd). Thus we have (5.26) with
B = I , and we conclude that Hω has pure point spectrum in I . ut

Since Hω, as in Theorem 7.4, has pure point spectrum in the interval I with probability
one, we might as well work with eigenfunctions, not generalized eigenfunctions. We use
the notation given in (5.38).

Corollary 7.6. LetHω be a generalized Anderson Hamiltonian satisfying the hypotheses
of Theorem 7.4 in a bounded open interval I. Let I ⊂ Ī ⊂ I be an open interval and
s ∈ ]0, p̃d/ν[. Then

(i) For all x0 ∈ Rd and L ≥ 1 we have

E
{

sup
E∈I

‖χx0,LPω(E)χx0‖
s
1

}
≤ C1E

{
sup
E∈I

‖χx0,LPω,x0(E)χx0‖
s
1

}
≤ C2L

−(p̃d−sν),

(7.49)
with C1 = C1,d,ν,‖V−per‖,I,s

and C2 = C2,d,‖V−per‖,p̃,ϑ,M,ν,L3,I,s
.

(ii) We have
E
{

sup
E∈I

(
‖χx0Pω(E)‖

2
2 trPω(E)

)s/2}
<∞, (7.50)

and hence for P-a.e. ω the eigenvalues of Hω in I are of finite multiplicity.
Proof. Recalling (5.35) and (5.36), we have

‖χx0,LPω(E)χx0‖1 ≤ ‖χx0Pω(E)‖2‖χx0,LPω(E)‖2

≤ µω,x0(E)Wω,x0(E)Wω,x0,L(E), (7.51)

and (7.49) follows from (7.42) and (5.20).
In addition, we have(
‖χx0Pω(E)‖

2
2(trPω(E))

)s/2
≤

∞∑
k=0

{‖χx0Pω(E)‖2‖χ
(k)
x0
Pω(E)‖2}

s

≤

{ ∞∑
k=0

{Wω,x0(E)W
(k)
ω,x0

(E)}s
}
{µω,x0(I )}

s, (7.52)

so (7.50) follows from (7.42) and (5.20).
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Since for P-a.e. ω the operatorHω has pure point spectrum in the interval I , it follows
from (7.50) that for P-a.e. ω we have

‖χx0Pω(E)‖
2
2 trPω(E) <∞ for all E ∈ I, (7.53)

and hence, since χx0Pω(E) 6= 0 for some x0 ∈ Rd if Pω(E) 6= 0, we have trPω(E) <∞
for all E ∈ I . ut

We can now prove dynamical localization in expectation.

Corollary 7.7. LetHω be a generalized Anderson Hamiltonian satisfying the hypotheses
of Theorem 7.4 in a bounded open interval I. The following holds for all x0 ∈ Rd and
open intervals I ⊂ Ī ⊂ I:

(i) For all L ≥ 1 and s ∈ ]0, p̃d/ν[ we have

E
{

sup
f∈Bb,1

‖χx0,Lf (Hω)Pω(I )χx0‖
s
1

}
≤ CL−(p̃d−sν), (7.54)

E
{

sup
E∈I

‖χx0,LP
(E)
ω
χx0‖

s
1

}
≤ CL−(p̃d−sν), (7.55)

with C = Cd,‖V−per‖,p̃,ϑ,M,ν,L3,I,s
.

(ii) Given b > 0, for all s ∈ ]0, p̃/(b + 1/2)[ we have

E
{

sup
f∈Bb,1

‖〈X − x0〉
bdf (Hω)Pω(I )χx0‖

s
1

}
≤ C <∞, (7.56)

E
{

sup
t∈R
‖〈X − x0〉

bde−itHωPω(I )χx0‖
s
1

}
≤ C <∞, (7.57)

E
{

sup
E∈I

‖〈X − x0〉
bdP (E)ω

χx0‖
s
1

}
≤ C <∞, (7.58)

with C = Cd,‖V−per‖,p̃,ϑ,M,ν,L3,I,b,s
.

Proof. Given f ∈ Bb,1, it follows from (5.37) that

‖χx0,Lf (Hω)Pω(I )χx0‖1 ≤

∫
I

|f (E)| ‖χx0,LPω,x0(E)χx0‖1 dµω,x0(E)

≤ sup
E∈I

‖χx0,LPω,x0(E)χx0‖1µω,x0(I ), (7.59)

and hence (7.54) is an immediate consequence of (7.49).
The estimate (7.55) is proven similarly to (7.32). We introduce the decomposition

P
(E)
ω = g2(Hω)+fE(Hω) as in (7.35), and (7.55) follows from (7.35), (7.54), and (7.40).

Given b>0 and s∈]0, p̃/(b + 1/2)[, we pick ν>d/2 such that s∈]0, p̃/(b + ν/d)[.
Since

‖〈X − x0〉
bdf (Hω)Pω(I )χx0‖1 ≤ Cd,b

∞∑
k=0

2kbd‖χ (k)x0
f (Hω)Pω(I )χx0‖1, (7.60)

the estimate (7.56) follows from (7.54); (7.57) is a special case of (7.56). Similarly, (7.58)
follows from (7.55). ut
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8. Log-Hölder continuity of the integrated density of states

We will now assume that the conclusions of the multiscale analysis (i.e., of Proposi-
tion 4.6) hold for all energies in a bounded open interval I, and prove log-Hölder conti-
nuity of the integrated density of states.

Given a generalized Anderson Hamiltonian Hω and x0 ∈ Rd , we set

Nx0(E) = E tr{χx0P
(E)
ω
χx0} for E ∈ R. (8.1)

Theorem 8.1. Let Hω be a generalized Anderson Hamiltonian on L2(Rd). Consider a
bounded open interval I ⊂ R, m > 0, p > 0, and ς ∈ ]0, 1[, and assume there is a
scale L such that all scales L ≥ L are (E,m, ς, p)-good for all energies E ∈ I. Then,
for all 0 < p̂ < p, closed interval I ⊂ I with length |I | ≤ 1/2, and x0 ∈ Rd , we have

|Nx0(E2)−Nx0(E1)| ≤
Cp̂,I∣∣log|E2 − E1|

∣∣p̂d for all E1, E2 ∈ I. (8.2)

The proof of this theorem will use the Helffer–Sjöstrand formula (see [Dav, Section 2.2]
and [HuS, Appendix B] for details). Given g ∈ C∞(R), n ∈ N, and a > 0, we define a
quasi-analytic extension of g of order n by

g̃n,a(z) :=

{ n∑
r=0

1
r!
g(r)(u)(iv)r

}
ξ

(
av

〈u〉

)
, (8.3)

where z = u + iv, 〈u〉 = (1 + |u|2)1/2, and ξ ∈ C∞(R) is such that 0 ≤ ξ ≤ 1,
ξ(u) = 1 if |u| ≤ 1, ξ(u) = 0 if |u| ≥ 2. (We choose and fix ξ .) We set dg̃n,a(z) :=
(2π)−1∂z̄g̃n,a(z) du dv, with ∂z̄ = ∂u + i∂v , and |dg̃n,a(z)| := (2π)−1

|∂ zg̃n,a(z)| du dv.
Proceeding as in the derivation of [HuS, Eq. (B.8)], we get, for all n ∈ N, a > 0, and
s ∈ [0, n],∫

R2
|dg̃n(z)| |=z|−(s+1)

≤ Cn,s{{g}}n,s,a ≤ Cn,s max{as+1, as−n}{{g}}n, (8.4)

with

{{g}}n,s,a :=

n+1∑
r=0

a−(r−s−1)
∫
R

du 〈u〉r−s−1
|g(r)(u)|, {{g}}n = {{g}}n,0,1. (8.5)

In particular, if {{g}}n <∞, then for any self-adjoint operator K and a > 0 we have

g(K) =

∫
R2

dg̃n,a(z) (K − z)−1, (8.6)

where the integral converges absolutely in operator norm.

Remark 8.2. In the usual Helffer–Sjöstrand formula there is no parameter a in the def-
inition of the quasi-analytic extension, i.e., a = 1 in (8.3) (e.g., [Dav, HuS]). The proof
of Theorem 8.1 requires the insertion of the parameter a in (8.3), which is then chosen
according to the scale L—we will need a ≈ eL

1−ς
.
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Proof of Theorem 8.1. Let η ∈ ]0, p[ and I ⊂ I be a closed interval with length |I | ≤
1/2. Without loss of generality we assume η > ς/(1− ς). We consider scales L ≥ L
such that dist(I,R \ I) > 1

2 e−L
1−ς

. Let IL ⊂ I be a closed interval of length |IL| =
e−L

1−ς
, so it can be written as IL = [E − 1

2 e−L
1−ς
, E + 1

2 e−L
1−ς
] with E ∈ I . Set

ĨL = [E − e−L
1−ς
, E + e−L

1−ς
] ⊂ I. We fix hL ∈ C∞(R), 0 ≤ hL ≤ 1, such that

supphL ⊂ ĨL, hLχ IL = χ IL , |h
(j)
L | ≤ CdejL

1−ς
for j = 1, . . . , d + 2, (8.7)

with Cd a constant independent of L.
Given x0 ∈ Rd , we let YL = YL,x0 be the event that the box 3L = 3L(x0) is

(ω, E,m, ς, η)-pgood (cf. Definition 3.15). Since all large scalesL ≥ L are (E,m, ς, p)-
good by hypothesis, we have, using (3.60) and (5.18),

E tr{χx0Pω(IL)χx0} ≤ E tr{χx0hL(Hω)χx0}

≤ E{tr{χx0hL(Hω)χx0; YL}} + CIL
−
p−η
1+η d , (8.8)

with a constant CI = Cd,ν,‖V−per‖,supI .
If ω ∈ YL, 3L is (ω, E,M1, ς)-good by Lemma 3.16 (with M1 given in (3.56)), and

hence hL(Hω,3L) = 0. Thus,

tr{χx0hL(Hω)χx0} = tr{χx0hL(Hω)χx0 −
χx0hL(Hω,3L)χx0} for ω ∈ YL. (8.9)

The right-hand-side of (8.9) may now be estimated by the Helffer–Sjöstrand formula.
We apply the Helffer–Sjöstrand formula to hL(Hω) and hL(Hω,3L), with a ≥ 1 in (8.3)
to be chosen later depending on L. We take φ0 ∈ C

∞
c (R) such that 0 ≤ φ0 ≤ 1, φ0 = 1

on 3L/2(x0), and suppφ0 ⊂ 3L/2+10(x0). We have, with n ∈ N to be chosen later (we
omit n and a from the notation),

T Lω = T
L,x0
ω := χx0hL(Hω)χx0 −

χx0hL(Hω,3L)χx0

=

∫
R2

dh̃L(z) {χx0Rω(z)χx0 −
χx0Rω,3L(z)χx0}

=

∫
R2

dh̃L(z) {χx0Rω(z)φ0χx0 −
χx0φ0Rω,3L(z)χx0}

=

∫
R2

dh̃L(z) {χx0Rω(z)W(φ0)Rω,3L(z)χx0}, (8.10)

where we used the geometric resolvent identity as in (2.36).
We now pick functions φi ∈ C∞c (R), i = 1, . . . , 2k − 1, where k ∈ N will be chosen

later, such that 0 ≤ φi ≤ 1, φi = 1 on supp∇φi−1, and suppφi ⊂ 3L/2+50,L/2−50(x0).
Using the resolvent identity 2k − 1 times, noticing φiχx0 = 0 for i = 1, . . . , 2k − 1, and
writing χ∇φ = χ supp∇φ , we get

χx0Rω(z)W(φ0) = χx0Rω(z)W(φ2k−1)Rω(z)W(φ2k−2) . . . Rω(z)W(φ1)Rω(z)W(φ0)

= {χx0Rω(z)}{W(φ2k−1)Rω(z)W(φ2k−2)}{χ∇φ2k−2Rω}

× {W(φ2k−3)Rω(z)W(φ2k−4)} . . . {χ∇φ2Rω(z)}{W(φ1)Rω(z)W(φ0)}. (8.11)
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Given φ ∈ C∞c (R), it follows from (2.24) that for all ω ∈ �,

‖(Hω+1)−1/2W(φ)‖ = ‖W(φ)(Hω+1)−1/2
‖ ≤ Cφ := C1(‖1φ‖∞+‖∇φ‖∞), (8.12)

where C1 = Cd,‖V−per‖
. Moreover, for all x ∈ Rd we have

‖χx(Hω + 1)−1
‖kd ≤ C2 <∞ with kd = [d/2] + 1, (8.13)

the constant C2 = Cd,‖Vper‖,U+ being independent of x (cf. [KlKS, Eqs. (130)–(136)]).
We have

‖(Hω + 1)Rω(z)‖ ≤ 1+
1+ |z|
|=z|

≤ 2+
1+ |<z|
|=z|

, (8.14)

Using (8.12)–(8.14), we have

‖W(φi)Rω(z)W(φi−1)‖ ≤ CφiCφi−1

(
2+

1+ |<z|
|=z|

)
, (8.15)

and, for all measurable sets 4 ⊂ 3L, we get

‖χ4Rω(z)‖kd ≤ C2

(
2+

1+ |<z|
|=z|

)
Ld . (8.16)

We now take k = kd as in (8.13), and note that we can choose the functions φi
∈ C∞c (R), i = 0, 1, . . . , 2kd − 1, so that Cφi ≤ C3 = Cd,‖V−per‖

, a constant independent
of 3L. From (8.11), (8.15) and (8.16), we get, for all ω ∈ �,

‖χx0Rω(z)W(φ0)Rω,3L(z)χx0‖1

≤ C4L
dkd

(
2+

1+ |<z|
|=z|

)2kd
‖χ∇φ0Rω,3L(z)χx0‖, (8.17)

with a constant C4 = (C2C
2
3)
kd
= Cd,‖Vper‖,U+ .

We can now estimate tr T Lω . First, note that, with I+ = sup I <∞,

supp h̃L ⊂
{
z = u+ iv; u ∈ ĨL, |v| ≤

2
a
〈u〉

}
⊂ ĨL + i

[
−

2
a
〈I+〉,

2
a
〈I+〉

]
, (8.18)

and hence (recall a ≥ 1)

2+
1+ |<z|
|=z|

≤

4
a
〈I+〉 + 1+ I+
|=z|

≤
CI+
|=z|

for all z ∈ supp h̃L, (8.19)
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with CI+ = 5(1 + I+). Combining (8.10), (8.17), (8.19), and (8.4), and using the fact
that {{g}}n in (8.5) is increasing in n, we get

|tr T Lω | ≤
∫
R2
|dh̃L(z)| ‖χx0Rω(z)W(φ0)Rω,3L(z)χx0‖1

≤ C4C
2kd
I+ L

dkd

∫
R2
|dh̃L(z)| |=z|−2kd‖χ∇φ0Rω,3L(z)χx0‖

≤ C4C
2kd
I+ L

dkda2kd {{hL}}2kd−1

{
max

z∈supp h̃L
‖χ∇φ0Rω,3L(z)χx0‖

}
≤ C4CdC

d+2
I+ L

d
2 (d+2)ad+2

{{hL}}d+1

{
max

z∈supp h̃L
‖χ∇φ0Rω,3L(z)χx0‖

}
. (8.20)

In view of (8.7) and (8.5), we have

{{hL}}d+1 ≤ Cd,I+ |ĨL|e
(d+2)L1−ς

= 2Cd,I+e(d+1)L1−ς
for all ω ∈ �. (8.21)

We are now ready to estimate the quantity in (8.9). We choose a = 2〈I+〉eL
1−ς

, so it
follows from (8.18) that

supp
z∈supp h̃L

|z− E| ≤ e−L
1−ς
+

2
a
〈I+〉 ≤ 2e−L

1−ς
. (8.22)

Since η > ς/(1− ς), we may take L large enough to ensure 2e−L
1−ς

< e−mL
1/(1+η)

, so
Lemma 3.16 guarantees that, for large L, for all ω ∈ YL the box 3L is (ω, z,m/2, ς)-
good for all z ∈ supp h̃L. Thus, for large L,

max
z∈supp h̃L

‖χ∇φ0Rω,3L(z)χx0‖ ≤ (L/2+ 11)de−
m
2
L
4 ≤ e−

m
10L. (8.23)

It follows from (8.9), (8.10), (8.20), and (8.23) that for all ω ∈ YL we have, again taking
L large,

tr{χx0hL(Hω)χx0} ≤ C4CdC
d+2
I+ L

d
2 (d+2)(2Cd,I+e(d+1)L1−ς

)(2〈I+〉eL
1−ς
)d+2e−

m
10L

≤ e−
m
20L. (8.24)

Combining (8.8) and (8.24), we get, for large L,

E tr{χx0Pω(IL)χx0} ≤ e−
m
20L + CIL

−
p−η
1+η d ≤ 2CIL

−
p−η
1+η d . (8.25)

In particular, for all intervals J ⊂ I with sufficiently small length |J |, we have

E tr{χx0Pω(J )χx0} ≤ 2CI
∣∣log|J |

∣∣− p−η
(1+η)(1−ς) d . (8.26)

The estimate (8.2) follows. ut

Remark 8.3. The proof of Theorem 8.1 uses the pgood boxes of Definition 3.15 because
we need Lemma 3.16. It does not suffice to use good boxes.
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Appendix. A quantitative unique continuation principle for Schrödinger operators

In this appendix we rewrite Bourgain and Kenig’s quantitative unique continuation prin-
ciple for Schrödinger operators [BoK] in a convenient form for our purposes. We also give
an application of this quantitative unique continuation principle to periodic Schrödinger
operators, giving an alternative proof to Combes, Hislop and Klopp’s lower bound esti-
mate for spectral projections [CoHK1].

We use the norm |x| := (
∑d
j=1|xj |

2)1/2 for x = (x1, . . . , xd) ∈ Rd ; all distances
in Rd will be measured with respect to this norm. Given x ∈ Rd and δ > 0, we set
B(x, δ) := {y ∈ Rd; |y − x| < δ} and B(x, δ)∗ := B((x, δ) \ {x}. Given subsets A and
B of Rd , and a function ϕ on set B, we set ϕA := ϕχA∩B . In particular, given x ∈ Rd
and δ > 0 we write ϕx,δ := ϕB(x,δ/2).

We also set

C1 = e
∫ 1

0
1−e−t
t

dt
; note 2 < e3/4 < C1 < e < 3. (A.1)

A.1. The quantitative unique continuation principle

The following theorem is our version of [BoK, Lemma 3.10].

Theorem A.1. Let G be an open subset of Rd . Let ψ ∈ H2(G) and ζ ∈ L2(G) be
real-valued functions satisfying

−1ψ + Vψ = ζ a.e. on G, (A.2)

where V is a real measurable function on G with ‖V ‖∞ ≤ K < ∞. Fix δ,D0,D such
that 0 < δ/4 ≤ D0 ≤ D. There exists a constant m = m(d, δ,D0) > 0 such that, given
a measurable set 2 ⊂ G with diam2 ≤ D, and x ∈ G such that

R := dist(x,2) ≥ D and B(x, 4C1R + 2D0) ⊂ G, (A.3)

where C1 is the constant in (A.1), we have

(1+K)‖ψx,δ‖22 + ‖ζG‖
2
2 ≥ R

−m(1+K2/3
+log(‖ψG‖2‖ψ2‖

−1
2 ))R4/3

‖ψ2‖
2
2. (A.4)

If the open set G is bounded, the second condition in (A.3) restricts the application of
Theorem A.1 to sites x ∈ G sufficiently far away from the boundary of G. When G is
a box 3, and (A.2) holds on 3 with either a Dirichlet or a periodic boundary condition,
Theorem A.1 can be extended to sites x ∈ 3 near the boundary of 3 as in the following
corollary.

Corollary A.2. Consider the Schrödinger operator H3 := −13 + V on L2(3), where
3 = 3L(x0) = x0 + ]−L/2, L/2[d , the open box of side L > 0 centered at x0 ∈ Rd ,
13 is the Laplacian with either a Dirichlet or a periodic boundary condition on 3, and
V is a bounded potential on 3 with ‖V ‖∞ ≤ K <∞. Let ψ ∈ D(13).
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(i) Fix δ,D such that 0 < δ/4 ≤ D, There exists a constant m̃ = m̃(d, δ,D) > 0 such
that, given a measurable set 2 ⊂ 3 with diam2 ≤ D, and x ∈ 3 such that

B(x, δ/2) ⊂ 3 and R := dist(x,2) ≥ D, (A.5)

we have

(1+K)‖ψx,δ‖22+(29
√
d)d‖(H3ψ)3‖

2
2 ≥ R

−m̃(1+K2/3
+log(‖ψ3‖2‖ψ2‖

−1
2 ))R4/3

‖ψ2‖
2
2.

(A.6)

(ii) Let L ≥ 2 and 0 < δ ≤ L. Then there exists a constant m̂ = m̂(d, δ) > 0 such that
for all x ∈ 3 with B(x, δ/2) ⊂ 3 we have

(1+K)‖ψx,δ‖22 + (41)d‖(H3ψ)3‖22 ≥ L
−m̂(1+K2/3)L4/3

‖ψ3‖
2
2. (A.7)

We will prove Theorem A.1 from Bourgain and Kenig’s Carleman-type inequality
estimate [BoK, Lemma 3.15], which we state in the next lemma.

Lemma A.3. Consider the function w(x) = ϕ(|x|) on Rd , where

ϕ(s) := e−
∫ s

0
1−e−t
t

dt s for s ∈ [0,∞[ (A.8)

is a strictly increasing continuous function on [0,∞[, C∞ on ]0,∞[. In particular,

1
C1
|x| ≤ w(x) ≤ |x| for all x ∈ B(0, 1), (A.9)

where C1 is the constant in (A.1). Then there are positive finite constants C2 and C3,
depending only on d , such that for all α ≥ C2 and all real-valued functions f ∈
C∞c (B(0, 1)∗) we have

α3
∫
Rd
w−1−2αf 2 dx ≤ C3

∫
Rd
w2−2α(1f )2 dx. (A.10)

We refer to [BoK] for the proof. We shall use Lemma A.3 with a function f that is not
necessarily smooth, but f ∈ H2

loc. However in our case f is compactly supported away
from zero, and thus we can use the following extension of Lemma A.3.

Lemma A.4. Let f ∈ H2(B(0, 1)) be real-valued with supp f ⊂ B(0, 1)∗. Then (A.10)
holds for all α ≥ C2.

Proof. This follows from Lemma A.3 by an approximation argument. Let f be as in the
lemma, pick h ∈ C∞c (R) with

∫
h(t) dt = 1, and set hη(t) := η−dh(t/η). Note that for η

small enough we have fη := f ∗ hη ∈ C
∞
c (B(0, 1)∗). Thus, for such η’s, Lemma A.3

applies to fη. Then, as η goes to zero, f η converges to f in L2(Rd) and1fη = (1f )∗hη
to 1f in L2(Rd). Since w−1 is bounded above and below on B(0, R) \ B(0, δ) for any
δ > 0, the lemma follows. ut

We now rewrite these lemmas as follows.
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Lemma A.5. Given % > 0, there exists a function w%(x) = ϕ%(|x|) on Rd , where ϕ% is
a strictly increasing continuous real valued function on [0,∞[, C∞ on ]0,∞[, such that

1
C1%
|x| ≤ w%(x) ≤

1
%
|x| for all x ∈ B(0, %), (A.11)

and for all α ≥ C2 and all real-valued functions f ∈ H2(B(0, %)) with supp f ⊂
B(0, %)∗ we have

α3
∫
Rd
w−1−2α
% f 2 dx ≤ C3%

4
∫
Rd
w2−2α
% (1f )2 dx, (A.12)

where C1, C2, C3 are the constants of Lemma A.3.

Proof. (A.12) follows from (A.10) by a change of variables, with w%(x) = w(x/%). ut

We are ready to prove Theorem A.1 and Corollary A.2.

Proof of Theorem A.1. Without loss of generality we assume

‖ψ2‖2 = 1. (A.13)

Let x0 ∈ G satisfy (A.3) with R := dist(x0,2), and set A := 4C1 > 4. For
convenience we may assume x0 = 0, in which case 2 ⊂ B(0, AR), and take G =
B(0, AR + 2D0).

Let us consider a function η ∈ C∞c (Rd) given by η(x) = ξ(|x|), where ξ is an
even C∞ function on R such that

0 ≤ ξ(s) ≤ 1 for all s ∈ R, (A.14)
ξ(s) = 0 if either |s| ≤ δ/8 or |s| ≥ AR +D0, (A.15)
ξ(s) = 1 if δ/4 ≤ |s| ≤ AR, (A.16)

|ξ (j)(s)| ≤ C4 for all s ∈ R, j = 1, 2, (A.17)

where C4 = C4(d, δ,D0) is a finite constant (independent of A and R). Note that |∇η| ≤
C4
√
d and |1η| ≤ C4d .

We now apply (A.12) to the function ηψ with % = 2AR. Given α ≥ C2 > 1 (without
loss of generality we take C2 > 1), we get

α3

3C3%4

∫
Rd
w−1−2α
% η2ψ2 dx ≤

1
3

∫
Rd
w2−2α
% (1(ηψ))2 dx

≤

∫
Rd
w2−2α
% η2(1ψ)2 dx + 4

∫
supp∇η

w2−2α
% |∇η|2|∇ψ |2 dx

+

∫
supp∇η

w2−2α
% (1η)2ψ2 dx, (A.18)

where supp∇η ⊂ {δ/8 ≤ |x| ≤ δ/4} ∪ {AR ≤ |x| ≤ AR +D0}.
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It follows from (A.2), recalling ‖V ‖∞ ≤ K , and using also the fact that w% ≤ 1 on
supp η, that∫

Rd
w2−2α
% η2(1ψ)2 dx =

∫
Rd
w2−2α
% η2(V ψ − ζ )2 dx

≤ 2K2
∫
Rd
w−1−2α
% η2ψ2 dx + 2

∫
Rd
w2−2α
% η2ζ 2 dx. (A.19)

We take

α = α0ρ
4/3 where α0 ≥ max{(18C3K

2)1/3, C2(8C1D0)
−4/3
}, (A.20)

so we have
α3

3C3%4 =
α3

0
3C3
≥ 6K2. (A.21)

Using (A.11) and (A.13), and recalling that diam2 ≤ D ≤ R, we have∫
Rd
w−1−2α
% η2ψ2 dx ≥

(
%

R + diam2

)1+2α

‖ψ2‖
2
2 ≥ A

1+2α. (A.22)

Combining (A.18), (A.19), (A.21), and (A.22), we conclude that

2α3
0

9C3
A1+2α

≤ 4
∫

supp∇η
w2−2α
% |∇η|2|∇ψ |2 dx

+

∫
supp∇η

w2−2α
% (1η)2ψ2 dx + 2

∫
supp η

w2−2α
% η2ζ 2 dx. (A.23)

We have∫
{AR≤|x|≤AR+D0}

w2−2α
% (4|∇η|2|∇ψ |2 + (1η)2ψ2) dx

≤ C2
4d

2
(
C1%

AR

)2α−2 ∫
{AR≤|x|≤AR+D0}

(4|∇ψ |2 + ψ2) dx

≤ C5

(
C1%

AR

)2α−2 ∫
{AR−D0≤|x|≤AR+2D0}

(ζ 2
+ (1+K)ψ2) dx

≤ C5

(
C1%

AR

)2α−2

(‖ζG‖
2
2 + (1+K)‖ψG‖

2
2)

= C5(2C1)
2α−2(‖ζG‖

2
2 + (1+K)‖ψG‖

2
2), (A.24)

where we used an interior estimate (e.g., [GK5, Lemma A.2]) and C5 = C5(d, δ,D0) is
a constant.
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Similarly,∫
{δ/8≤|x|≤δ/4}

w2−2α
% (4|∇η|2|∇ψ |2 + (1η)2ψ2) dx

≤ C2
4d

2(8δ−1C1%)
2α−2

∫
{δ/8≤|x|≤δ/4}

(4|∇ψ |2 + ψ2) dx

≤ C6(8δ−1C1%)
2α−2

∫
{|x|≤δ/2}

(ζ 2
+ (1+K)ψ2) dx

≤ C6(8δ−1C1%)
2α−2(‖ζG‖

2
2 + (1+K)‖ψ0,δ‖

2
2)

= C6(16δ−1C1AR)
2α−2(‖ζG‖

2
2 + (1+K)‖ψ0,δ‖

2
2)

= C6(64δ−1C2
1R)

2α−2(‖ζG‖
2
2 + (1+K)‖ψ0,δ‖

2
2), (A.25)

where C6 = C6(d, δ,D0) is a constant.
In addition,

2
∫

supp η
w2−2α
% η2ζ 2 dx ≤ 2(8δ−1C1%)

2α−2
‖ζG‖

2
2

= 2(64δ−1C2
1R)

2α−2
‖ζG‖

2
2. (A.26)

Thus, if

C5(1+K)‖ψG‖22(2C1)
2α−2
≤

1
2

2α3
0

9C3
A1+2α

=
α3

0
9C3

(4C1)
1+2α, (A.27)

or, equivalently,
α3

04α ≥ 9
16C5C

−2
1 (1+K)‖ψG‖22, (A.28)

we conclude that

α3
0

9C3
(4C1)

1+2α
≤ C6(64δ−1C2

1R)
2α−2(1+K)‖ψ0,δ‖

2
2

+ ((C6 + 2)(64δ−1C2
1R)

2α−2
+ C5(2C1)

2α−2)‖ζG‖
2
2

≤ C7(β1δ
−1C2

1R)
2α−2((1+K)‖ψ0,δ‖

2
2 + ‖ζG‖

2
2), (A.29)

where we used R ≥ D ≥ D0, set C7 = max{C5, C6 + 2}, and took

β1 = max{64, 2δ(C1D0)
−1
}. (A.30)

It follows that

C8
α3

0
C3
(βR)−2α

≤ (1+K)‖ψ0,δ‖
2
2 + ‖ζG‖

2
2, (A.31)

with a constant C8 = C8(d, δ,D0, C1) > 0 and

β = 1
4β1δ

−1C1 = max{16δ−1C1, (2D0)
−1
}. (A.32)
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Since R ≥ D and we require (A.20), to satisfy (A.28) it suffices to also require

4α0(4C1D0)
4/3
≥

9
16C
−3
2 (8C1D0)

4C5C
−2
1 (1+K)‖ψG‖22, (A.33)

that is,
α0 ≥ (4C1D0)

−4/3(log 4)−1 log(C9(1+K)‖ψG‖22), (A.34)

where C9 = C9(d, δ,D0).
Thus we can satisfy (A.20) and (A.28) by taking

α = α1R
4/3 with α1 = C10(1+K2/3

+ log‖ψG‖2), (A.35)

for some appropriate constant C10 = C10(d, δ,D0).
It now follows from (A.31), (A.32) and (A.35) that we can find a constant m =

m(d, δ,D0) > 0 such that

R−m(1+K
2/3
+log‖ψG‖2)R4/3

≤ (1+K)‖ψ0,δ‖
2
2 + ‖ζG‖

2
2 for all R ≥ D. (A.36)

ut

Proof of Corollary A.2. Without loss of generality we take x0 = 0, i.e., 3 = 3L(0). We
will prove the corollary for the case of a Dirichlet boundary condition, the modifications
for the (easier) case of a periodic boundary condition will be obvious.

Let 13 be the Dirichlet Laplacian on 3, and let V be a bounded potential on 3 with
‖V ‖∞ ≤ K <∞. Given ϕ ∈ L2(3), we extend it to a function ϕ̃ ∈ L2

loc(R
d) by setting

ϕ̃ = ϕ on 3 and ϕ̃ = 0 on ∂3, and requiring that for all x ∈ Rd and j ∈ {1, . . . , d} we
have

ϕ̃(x) = −ϕ̃(x + (L− 2x̂j )ej ), (A.37)

where {ej }j=1,...,d is the canonical orthonormal basis in Rd , and for each t ∈ R we define
t̂ ∈ ]−L/2, L/2] by t = kL+ t̂ with k ∈ Z. Note that if3′ = 3L′(0) = ]−L′/2, L′/2[d ,
we have

‖ϕ̃3′‖
2
2 = (2n+ 1)d‖ϕ3‖22 if L′ = (2n+ 1)L for some n ∈ N. (A.38)

We also extend the potential V to a potential V̂ on Rd by by setting V̂ = V on 3 and
V = 0 on ∂3, and requiring that for all x ∈ Rd and j ∈ {1, . . . , d} we have

V̂ (x) = V̂ (x + (L− 2x̂j )ej ). (A.39)

In particular, ‖V̂ ‖∞ = ‖V ‖∞ ≤ K .
Using the fact that for all eigenfunctions φ of 13 (given explicitly in [RS, Eq. (113)

in Chapter XIII]) we have φ̃ ∈ C∞(Rd), we conclude that ψ ∈ D(13) implies ψ̃ ∈
H2

loc(R
d), satisfying

−1ψ̃ + V̂ ψ̃ = H̃3ψ a.e. in Rd . (A.40)

Now let δ,D,2 be as in Corollary A.2(i), and set D0 = D. In view of (A.5) we may
assume D ≤ R ≤

√
d L without loss of generality. We take 31 = 3L1(0), with

L1 = (2[[(4C1 + 2)
√
d]] + 1)L ≤ 29

√
dL, (A.41)
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where [[t]] denotes the smallest integer greater than or equal to t , and we used (A.1). Fix
x ∈ 3 satisfying (A.5), it follows that x satisfies (A.3) with G = 31. We now apply
Theorem A.1 with G = 31. Given ψ ∈ D(13), ψ̃ satisfies (A.40) on 31, and hence
(A.4) yields

(1+K)‖ψ̃x,δ‖22 + ‖(H̃3ψ)31‖
2
2 ≥ R

−m(1+K2/3
+log(‖ψ̃31‖2‖ψ̃2‖

−1
2 ))R4/3

‖ψ̃2‖
2
2, (A.42)

with a constant m = m(d, δ,D) > 0. Taking into account (A.37), (A.38), and (A.41), we
get (A.6).

To prove Corollary A.2(ii), let L ≥ 2, 0 < δ ≤ L, and x ∈ 3 with B(x, δ/2) ⊂ 3.
We take 32 = 3L2(0) with

L2 = (2[[(6C1 + 3)]] + 1)L ≤ 41L, (A.43)

where we used (A.1). We let 2x = 3 + 2Le(x) ⊂ 32, where e(x) ∈ {±ej }j=1,...,d is
chosen such that R := dist(x,2x) ∈ [L, 3/2L]. It follows that x satisfies (A.3) with
G = 32, so we apply Theorem A.1 with G = 32, D0 = δ/2, D = L, and 2 = 2x .
Given ψ ∈ D(13), ψ̃ satisfies (A.40) on32, we have ‖ψ̃2‖2 = ‖ψ3‖2, and hence (A.4)
yields

(1+K)‖ψ̃x,δ‖22 + ‖(H̃3ψ)32‖
2
2 ≥ (3L/2)

−m′(1+K2/3)(3L/2)4/3
‖ψ3‖2, (A.44)

with a constant m′ = m′(d, δ) > 0. Using (A.37), (A.38), and (A.43), we get (A.7) ut

A.2. Application to Schrödinger operators with periodic potentials

Consider the Schrödinger operatorH = −1+V on L2(Rd), where1 is the d-dimension-
al Laplacian operator and V is a bounded periodic potential with period q > 0, i.e., peri-
odic with respect to the group qZd . Without loss of generality we assume inf σ(H) = 0,
i.e., 0 ∈ σ(H) ⊂ [0,∞[.

Given δ ∈ ]0, q], we set bδ = χB(0,δ/2), and consider the q-periodic bounded opera-
tor Wδ on L2(Rd) given by multiplication by the function

Wδ(x) =
∑
m∈qZd

bδ(x −m). (A.45)

We also consider the corresponding finite volume operators. Given L ∈ qN, we set
HL = −1L+V on L2(3L, dx), where3L = 3L(0).1L is the Laplacian with a periodic
boundary condition on 3L, which we identify with the torus Rd/LZd in the usual way.
We will also write H∞ = H .

Combes, Hislop and Klopp [CoHK1, Section 4] proved that for every compact inter-
val I there exists a constant CI,δ = Cd,V,I,δ > 0, such that for all L ∈ qN∪{∞} we have

χ I (HL)Wδχ I (HL) ≥ CI,δχ I (HL). (A.46)
Their proof relies on the unique continuation principle for Schrödinger operators, and for
this reason does not provide much information on the constant CI,δ > 0. We will show
that the quantitative unique continuation principle can be used to prove a modified form
of their result with control of the constant.
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Theorem A.6. Let H = −1 + V be a periodic Schrödinger operator on L2(Rd) as
above, with period q ≥ 2, and let Wδ be as in (A.45). Given E0 > 0, set K0 = E0 +

‖V ‖∞. There exists a constant m̂ = m̂(d, δ) > 0 such that, defining γ > 0 by

γ 2
=

1
2 (41)−dq−m̂(1+K

2/3
0 )q4/3

, (A.47)

for any closed interval I ⊂ [0, E0] with |I | ≤ 2γ and any scale L ∈ qN ∪ {∞} we have

χ I (HL)Wδχ I (HL) ≥ (41)dγ 2(1+K0)
−1χ I (HL). (A.48)

Proof. We will need to review Floquet Theory (see [RS, Section XIII.6]). We let Q =
3q(0) be the basic period cell, and Q̃ = 32π/q(0) the dual basic cell. We define the
Floquet transform

F : L2(Rd , dx)→
∫
⊕

Q̃

L2(Q, dx) dk ∼= L2(Q̃, dk;L2(Q, dx)) (A.49)

by

(Fψ)(k, x) =
(
q

2π

)d/2 ∑
m∈qZd

e−ik·mψ(x −m), x ∈ Q, k ∈ Q̃, (A.50)

if ψ has compact support; it extends by continuity to a unitary operator.
The q-periodic operatorH is decomposable in this direct integral representation, more

precisely,

FHF∗ =
∫
⊕

Q̃

HQ(k) dk, (A.51)

where for each k ∈ Rd we set HQ(k) = −1Q(k) + V , where 1Q(k) is the Laplacian
on Q with a k-quasi-periodic boundary condition, i.e., defined on functions of the form
ψ(x) = e−ik·xϕ(x) with ϕ a periodic function on Q. Note that HQ(0) = Hq . Moreover,
if p ∈ (2π/q)Zd , then for all k ∈ Rd we have HQ(k + p) = e−ip·xHQ(k)eip·x .

If L ∈ qN, similar considerations apply to the operator HL, which is q-periodic on
the torus 3L ∼= Rd/LZd . The Floquet transform

FL : L2(3L, dx)→
⊕

k∈ 2π
L
Zd∩Q̃

L2(Q, dx) (A.52)

is a unitary operator now defined by

(FLψ)(k, x) = (q/L)d/2
∑

m∈qZd∩3L

e−ik·mψ(x −m), (A.53)

where x ∈ Q, k ∈ 2π
L
Zd ∩ Q̃, ψ ∈ L2(3L, dx), and ψ(x −m) is properly interpreted in

the torus 3L. We also have

FLHLF∗L =
⊕

k∈ 2π
L
Zd∩Q̃

HQ(k). (A.54)
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It follows that for any bounded Borel function f we have

Ff (H)F∗ =
∫
⊕

Q̃

f (HQ(k)) dk, FLf (HL)F∗L =
⊕

k∈ 2π
L
Zd∩Q̃

f (HQ(k)). (A.55)

Let us fix δ ∈ ]0, q] and E0 > 0. We set K0 = ‖V ‖∞ + E0, so ‖V − E‖∞ ≤ K0
for all E ∈ I0. Given k ∈ Q̃, we consider the Schrödinger operator HQ(k) on L2(Q),
and proceed similarly to the proof of Corollary A.2(ii). Since we have a k-quasi-periodic
boundary condition, we extend a function ϕ ∈ L2(Q) to a function ϕ̃ ∈ L2

loc(R
d) by

requiring ϕ̃ = ϕ on Q and ϕ̃(x + m) = e−ik·mϕ̃(x) for all x ∈ Rd and m ∈ qZd . If
ψ ∈ D(1Q(k)), then ψ̃ ∈ H2

loc(R
d) and we have

−1ψ̃ + V ψ̃ = H̃Q(k)ψ a.e. in Rd . (A.56)

We apply Theorem A.1 with G = 3L2(0), where L2 is given in (A.43) (recall L = q).
Proceeding as in the derivation of (A.44) and (A.7), using q ≥ 2, we get

(1+K0)‖(bδψ)Q‖
2
2 + (41)d‖((HQ(k)− E)ψ)Q‖22 ≥ q

−m̂(1+K2/3
0 )q4/3

‖ψQ‖
2
2 (A.57)

for all E ∈ [0, E0], with a constant m̂ = m̂(d, δ) > 0.
We now take I = [E − ε, E + ε] ⊂ [0, E0]. If ψ = χ I (HQ(k))ψ , we have

‖((HQ(k)− E)ψ)Q‖2 ≤ ε‖ψQ‖2, (A.58)

and it follows from (A.57) that

(1+K0)‖(bδψ)Q‖
2
2 + ε

2(41)d‖ψQ‖22 ≥ q
−m̂(1+K2/3

0 )q4/3
‖ψQ‖

2
2. (A.59)

Thus, if ε ≤ γ , where γ is given in (A.47), we get

(1+K0)‖(bδψ)Q‖
2
2 ≥

1
2q
−m̂(1+K2/3

0 )q4/3
‖ψQ‖

2
2 = (41)dγ 2

‖ψQ‖
2
2, (A.60)

that is,
χ I (HQ(k))bδχ I (HQ(k)) ≥ (41)dγ 2(1+K0)

−1χ I (HQ(k)). (A.61)

Given an interval I , we have

F{χ I (H)Wδχ I (H)}F∗ =
∫
⊕

Q̃

{χ I (HQ(k))bδχ I (HQ(k))} dk, (A.62)

and, for L ∈ qN,

FL{χ I (HL)Wδχ I (HL)}F∗L =
⊕

k∈ 2π
L
Zd∩Q̃

{χ I (HQ(k))bδχ I (HQ(k))}. (A.63)

Thus for I = [E − ε, E + ε] ⊂ [0, E0], with ε ≤ γ , it follows from (A.61)–(A.63) that
for all L ∈ qN ∪ {∞} we have

χ I (HL)Wδχ I (HL) ≥ (41)dγ 2(1+K0)
−1χ I (HL), (A.64)

so we proved (A.48). ut
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Remark A.7. Note that (A.48) holds for I = [0, E1] where

E2
1 = 2(41)−dq−m̂(1+(‖V ‖∞+E1)

2/3)q4/3
. (A.65)

Note that this equation has a solution E1 > 0.
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[CrS] Craig, W., Simon, B.: Log Hölder continuity of the integrated density of states for
stochastic Jacobi matrices. Comm. Math. Phys. 90, 207–218 (1983) Zbl 0532.60057
MR 0714434

[DSS] Damanik, D., Sims, R., Stolz, G.: Localization for one dimensional, continuum,
Bernoulli–Anderson models. Duke Math. J. 114, 59–100 (2002) Zbl 1107.82025
MR 1915036

[DS] Damanik, D., Stollmann, P.: Multi-scale analysis implies strong dynamical localiza-
tion. Geom. Funct. Anal. 11, 11–29 (2001) Zbl 0976.60064 MR 1829640

[Da] Davey, B.: PhD thesis. In preparation (private communication by C. Kenig)
[Dav] Davies, E. B.: Spectral Theory and Differential Operators. Cambridge Univ. Press

(1995) MR 1349825
[DeRJLS] Del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous

spectrum IV: Hausdorff dimensions, rank one pertubations and localization. J. Anal.
Math. 69, 153–200 (1996) Zbl 0908.47002 MR 1428099
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Ann. Inst. H. Poincaré 3, 711–737 (2002) Zbl 1016.60095 MR 1933367

[KloLNS] Klopp F., Loss, M., Nakamura, S., Stolz, G.: Localization for the random displace-
ment model. Duke Math. J., 161, No. 4, 587–621 (2012). Zbl pre06024992

[KloN] Klopp F., Nakamura, S.: Lifshitz tails for generalized alloy-type random Schrödinger
operators. Anal. PDE 3, 409–426 (2010) Zbl 1226.35058 MR 2718259

[KuS] Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires.
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