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Abstract. We study symmetry properties of least energy positive or nodal solutions of semilinear
elliptic problems with Dirichlet or Neumann boundary conditions. The proof is based on sym-
metrizations in the spirit of Bartsch, Weth and Willem (J. Anal. Math., 2005) together with a strong
maximum principle for quasi-continuous functions of Ancona and an intermediate value property
for such functions.
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1. Introduction

This work is devoted to the symmetry properties of least energy positive or nodal solutions
of the problem {

−1u+ a(x)u = g(x, u) in �,
u = 0 on ∂�.

(1.1)

The main tools are a general maximum principle and symmetrizations. In Section 2 we
prove that if

−1|u| + a|u| ≥ 0

in the sense of measures, then either u = 0, u > 0 or u < 0 almost everywhere. This
results from a maximum principle of Ancona [1] (see also Brezis–Ponce [5]), and an
intermediate value property for quasi-continuous functions.

In Section 3, we consider the semilinear equation

−1u = f (|x|, u) (1.2)
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on �. The main result is Theorem 3.12 which asserts that, under some regularity and
growth assumptions on f , if u and the polarized functions uH are weak solutions of
(1.2) then u has some symmetry properties. The main tools are the maximum principle of
Section 2 and approximation of symmetrizations by polarizations.

Section 4 is devoted to the symmetry properties of the least energy positive and nodal
solutions of (1.1). In particular we generalize some results of [3, 2, 4, 8, 10, 13]. Our ap-
proach is related to [4], but in contrast to [4] we do not assume that the nonlinearity is
smooth so that the solutions of (1.1) are merely weak solutions.

2. Maximum principle

Consider a function u ∈ C(�), where � ⊂ RN is open and connected. If

−1|u| ≥ 0,

then by the strong maximum principle, either |u| = 0 or |u| > 0. By continuity of u,
either u = 0, u > 0, or u < 0. We extend this conclusion to operators of the form
−1+ a, and to the case where u is weakly differentiable and not necessarily continuous.

Proposition 2.1. Let � ⊂ RN , a ∈ L1
loc(�) and u ∈ W1,1

loc (�). If � is open and con-
nected, a ≥ 0, 1|u| is a Radon measure and

−1|u| + a|u| ≥ 0

in the sense that ∫
E

1|u| ≤

∫
E

a|u| for every Borel set E ⊂ �, (2.1)

then either u = 0, u > 0 or u < 0 almost everywhere.

Remark 2.2. The assumption u ∈ W1,1
loc (�) in the proposition can be weakened to u ∈

L1
loc(�) and u being W1,1-quasi-continuous (see Section 2.1 below). Also note that if1u

is a Radon measure, then u is W1,1-quasi-continuous and 1|u| is a measure [6], so that
the conclusion of Proposition 2.1 holds.

Remark 2.3. If 1|u| ∈ L1
loc(�), then the hypothesis can be stated as

−1|u| + a|u| ≥ 0 almost everywhere.

The proof of Proposition 2.1 relies on the combination of a strong maximum principle,
by which either |u| > 0 outside of a null-capacity set or |u| = 0, and an intermediate value
theorem by which if |u| > 0 outside of a null-capacity set, then u does not change sign.
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2.1. Quasi-continuous functions

The intermediate statements need some basics from capacity theory [11].

Definition 2.4. Let 1 ≤ p <∞,� ⊂ RN be bounded and open, and6 ⊂ � be compact.
The W1,p-capacity of 6 is

capp,�(6) = inf
{∫

�

|∇ϕ|p : ϕ ∈ D(�) and ϕ = 1 on a neighbourhood of 6
}
.

If U ⊂ � is open, let

capp,�(U) = sup
6⊂U

6 is compact

capp,�(6).

For any set A ⊂ �, let
capp,�(A) = inf

A⊂U⊂�
U is open

capp,�(U).

A set A ⊂ � has null W1,p-capacity if capp,�(A) = 0. A property is said to be true
W1,p-quasi-everywhere if the set on which it fails to hold has null W1,p-capacity.

When q ≤ p, by Hölder’s inequality,

capq,�(A) ≤ LN (�)1−q/p capp,�(A)
q/p. (2.2)

Moreover, the capacity is countably subadditive:

capp,�
(⋃
n≥1

An

)
≤

∑
n≥1

capp,�(An).

While in general the capacity depends on �, the notion of vanishing capacity is local
and does not depend on �.

Proposition 2.5. Let � ⊂ RN be bounded and open. If for every x ∈ �, there is an open
set U ⊂ � such that x ∈ U and capp,U (A ∩ U) = 0, then capp,�(A) = 0. Conversely, if
capp,�(A) = 0 and U ⊂ � is open, then capp,U (A ∩ U) = 0.

Proof. Since � ⊂ RN , it has a countable neighbourhood basis; therefore there are open
sets (Un)n≥1 such that � =

⋃
n≥1 Un and capp,�(A ∩ Un) ≤ capp,Un(A ∩ Un) = 0. By

countable subadditivity, one concludes that capp,�(A) = 0.
Conversely, by the first part of the proof, we can assume U = B(x, r) ⊂ �. Let

rn = (1− n−1)r . By Lemma 2.6,

capp,B(x,r)(A ∩ B(x, rn)) ≤ Cp
diam(�)p

(r − rn)p
capp,�(A ∩ B(x, rn)) = 0.

Therefore, by countable subadditivity,

capp,B(x,r)(A ∩ B(x, r)) = 0. ut
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Lemma 2.6. Let 0 < ρ < r . If A ⊂ B(x, ρ) and B(x, r) ⊂ �, then

capp,B(x,r)(A) ≤ Cp
diam(�)p

(r − ρ)p
capp,�(A).

Proof. It is sufficient to prove the inequality whenA is compact. For ε > 0, let ϕ ∈ D(�)
be such that ϕ ≤ 1 in �, ϕ ≡ 1 on a neighbourhood of A and

capp,�(A) ≥
∫
�

|∇ϕ|p − ε.

Consider η ∈ D(B(x, r)) such that η ≤ 1 in B(x, r), η ≡ 1 on B(x, ρ) and ‖∇η‖L∞ ≤
2/(r − ρ). Then ηϕ ∈ D(B(x, r)) and ηϕ ≡ 1 on a neighbourhood of A, so that

capp,B(x,r)(A) ≤
∫
B(x,r)

|∇(ηϕ)|p ≤ 2p−1
(∫

B(x,r)

|∇η|p|ϕ|p +

∫
B(x,r)

|η|p|∇ϕ|p
)

≤ 2p−1
(

2p

(r − ρ)p

∫
�

|ϕ|p +

∫
�

|∇ϕ|p
)
.

By the Poincaré inequality, this implies

capp,B(x,r)(A) ≤ Cp

(
1+

diam(�)p

(r − ρ)p

)∫
�

|∇ϕ|p ≤ 2Cp
diam(�)p

(r − ρ)p
(capp,�(A)+ ε),

because of |r − ρ| ≤ r ≤ diam(�)/2. Since ε > 0 is arbitrary, this concludes the proof.
ut

Definition 2.7. If � ⊂ RN is bounded, a function u : �→ R is W1,p-quasi-continuous
if there is a sequence (ωn)n≥1 of � of open subsets such that u|�\ωn is continuous and
capp,�(ωn)→ 0 as n→∞.

Example 2.8. Every function u ∈W1,p
loc (�) is W1,p-quasi-continuous [11].

Just as null-capacity, quasi-continuity is a local notion:

Proposition 2.9. Let � ⊂ RN be bounded and open and let u : � → R. If for every
x ∈ �, there is an open set U ⊂ � such that x ∈ U and u|U is quasi-continuous, then u
is quasi-continuous. Conversely, if u is quasi-continuous and U ⊂ � is open, then u|U is
quasi-continuous.

Proof. Since � ⊂ RN , it has a countable neighbourhood basis, so there are open sets
(Un)n≥1 such that� =

⋃
n≥1 Un and u|Un is quasi-continuous. Let ε > 0. By definition of

quasi-continuity, for every n ≥ 1, there is an open set ωn ⊂ Un such that capp,Un(ωn) ≤
2−nε and u|Un\ωn is continuous. Let ω =

⋃
n≥1 ωn. The set ω is open. The function u|�\ω

is continuous. By countable subadditivity of the capacity, capp,�(ω) ≤ ε. Since ε > 0 is
arbitrary, u is quasi-continuous.
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Conversely, by the first part of the proof, we can assume U = B(x, r) ⊂ �. Let
ε > 0. By definition of quasi-continuity, there is ωn such that u|�\ωn is continuous and
capp,�(ωn) ≤ ε3

−n. Letting rn = (1− 2−n/p)r , one has

capp,B(x,r)(ωn ∩ B(x, rn))

≤ Cp
diam(�)p

(r − rn)p
capp,�(ωn ∩ B(x, rn)) ≤ Cpε

diam(�)p

rp

2n

3n
.

Let now ω =
⋃
n≥1(ωn ∩ B(x, rn)). The function u|B(x,r)\ω is continuous, and

capp,B(x,r)(ω) ≤ Cp2ε diam(�)p/rp. Since ε > 0 was arbitrary, u|B(x,r) is quasi-
continuous. ut

2.2. Maximum principle

The first ingredient of the proof of Proposition 2.1 is the following strong maximum
principle.

Theorem 2.10 (Ancona [1], Brezis and Ponce [5]). Let � be bounded and connected.
Let u ∈ L1(�) with u ≥ 0 almost everywhere in � be such that 1u is a Radon measure
on �. Then there exists ũ W1,2-quasi-continuous such that u = ũ almost everywhere
in �.

Let a ∈ L1(�) with a ≥ 0 almost everywhere in �. If

−1u+ au ≥ 0 in �

in the sense that ∫
E

1u ≤

∫
E

au for every Borel set E ⊂ �,

and if ũ = 0 on a set of positive W1,2-capacity in �, then u = 0 almost everywhere in �.

2.3. Intermediate value property

The second ingredient is an intermediate value property for W1,1-quasi-continuous func-
tions.

Proposition 2.11. Let � be open, connected and bounded. If u : �→ R is W1,1-quasi-
continuous and u 6= 0 W1,1-quasi-everywhere, then either u > 0 or u < 0 almost
everywhere.

Remark 2.12. Recall that null sets for the W1,1-capacity and for the N − 1-dimensional
Hausdorff measure coincide [11]. Therefore, Proposition 2.11 can be restated as: If u 6= 0
almost everywhere for theN−1-dimensional Hausdorff measure, then u does not change
sign. When u is continuous, this can be proved straightforwardly.
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Remark 2.13. In the same spirit, if� is connected, u ∈W1,1
loc (�) and |u| ≥ ε > 0 almost

everywhere, then either u ≥ ε or u ≤ −ε almost everywhere [9].

The proof of the intermediate value property of Proposition 2.11 relies on the follow-
ing lemma, which is a geometric version of the Poincaré inequality.

Lemma 2.14. Let N ≥ 1. There is C > 0 such that if F+, F− ⊂ B(0, 1) ⊂ RN are
disjoint and closed, then

min(LN (F+),LN (F−))(N−1)/N
≤ C cap1,B(0,1)(B(0, 1) \ (F+ ∪ F−)).

Proof. Let S = B(0, 1) \ (F+ ∪ F−) and choose (2/3)1/N ≤ ρ ≤ 1 such that

LN (F+ ∩ B(0, ρ)) ≥ LN (F+)/2, LN (F− ∩ B(0, ρ)) ≥ LN (F−)/2.

Since the sets F+∩B[0, ρ] and F−∩B[0, ρ] are compact, there are open disjoint subsets
U+ and U− of B(0, 1) such that

F+ ∩ B[0, ρ] ⊂ U+, F− ∩ B[0, ρ] ⊂ U−.

Without loss of generality, assume that LN (U+) ≤ LN (B(0, 1))/2. Let 6 = B[0, ρ] \
(U+ ∪ U−) and note that 6 ⊂ S.

Since 6 ⊂ B(0, 1) is compact, there exists ϕ ∈ D(B(0, 1)) such that ϕ ≤ 1, ϕ = 1
on a neighbourhood of 6 and∫

B(0,1)
|∇ϕ| ≤ 2 cap1,B(0,1)(6) ≤ 2 cap1,B(0,1)(S).

Define ψ : B[0, ρ]→ R by

ψ(x) =

{
ϕ(x) if x ∈ U− ∪6,
1 if x ∈ U+,

for x ∈ B[0, ρ]. By the Poincaré–Sobolev inequality(∫
B(0,ρ)

∣∣∣∣ψ −−∫
B(0,ρ)

ψ

∣∣∣∣N/(N−1))(N−1)/N

≤ dNρ

∫
B(0,ρ)
|∇ψ | ≤ dN cap1,B(0,1)(S),

where dN depends only on N . Moreover,∫
B(0,ρ)

ψ = LN (B(0, ρ) ∩ U+)+
∫
B(0,ρ)\U+

ϕ ≤ LN (U+)+
∫
B(0,1)

ϕ

≤ (3/4)LN (B(0, ρ))+ cN cap1,B(0,1)(S),

where cN comes from the Poincaré inequality in W1,1
0 (B(0, 1)).
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Let now η = 1/(20cN ). If cap1,B(0,1)(S) ≥ η, then one has the trivial bound

LN (F+) ≤ LN (B(0, 1)) ≤ LN (B(0, 1))
(

cap1,B(0,1)(S)

20cN

)N/(N−1)

,

while if cap1,B(0,1)(S) ≤ η, then

−

∫
B(0,ρ)

ψ ≤ 3/4+ 1/20 = 4/5

and

LN (F+)
2

≤ LN (U+) ≤ 5N/(N−1)
∫
B(0,ρ)

∣∣∣∣ψ −−∫
B(0,ρ)

ψ

∣∣∣∣N/(N−1)

≤ (5dN cap1,B(0,1)(S))
N/(N−1). ut

We can now prove Proposition 2.11.

Proof of Proposition 2.11. Assume first that � = B(0, 1). Since u is quasi-continuous
and is nonzero quasi-everywhere, by definition, for every ε > 0, there exists an open set
ω ⊂ B(0, 1) such that u|B(0,1)\ω is continuous and does not vanish, and cap1,B(0,1)(ω)

≤ ε. Define

B+ = {x ∈ B(0, 1) : u(x) ≥ 0} , B− = {x ∈ B(0, 1) : u(x) ≤ 0} ,

and let F+ = B+\ω and F− = B−\ω. Since the sets F+ and F− are closed and disjoint
in B(0, 1), by Lemma 2.6, they satisfy

min(LN (F+),LN (F−)) ≤ CεN/(N−1).

On the other hand, by the Poincaré–Sobolev inequality,

LN (ω) ≤ C′εN/(N−1).

Therefore,

min(LN (B+),LN (B−)) ≤ min(LN (F+),LN (F−))+ LN (ω) ≤ (C + C′)εN/(N−1).

Since ε > 0 is arbitrary, either LN (B+) = 0 or LN (B−) = 0. This extends to � =
B(x, r) by translation and dilation.

In general let

�+ = {x ∈ � : ∃r > 0 such that u(y) > 0 for a.e. y ∈ B(x, r)},

�− = {x ∈ � : ∃r > 0 such that u(y) < 0 for a.e. y ∈ B(x, r)}.

The sets �− and �+ are open and disjoint by definition. By the first part of the proof,
� = �+ ∪�−. Since � is connected, either � = �+ or � = �−. ut
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2.4. Proof of Proposition 2.1

First assume that � is bounded and u ∈ L1(�). By Theorem 2.10, either |u| = 0 almost
everywhere or |u| > 0, W1,2-quasi-everywhere. If |u| > 0, W1,2-quasi-everywhere, then
by (2.2), u 6= 0 W1,1-quasi-everywhere, and then by Proposition 2.11, either u > 0 or
u < 0 almost everywhere.

In general, define

�+ = {x ∈ � : ∃B(x, r) ⊂ � such that u(y) > 0 for a.e. y ∈ B(x, r)},

�0
= {x ∈ � : ∃B(x, r) ⊂ � such that u(y) = 0 for a.e. y ∈ B(x, r)},

�− = {x ∈ � : ∃B(x, r) ⊂ � such that u(y) < 0 for a.e. y ∈ B(x, r)}.

By definition �+, �0 and �− are open and disjoint. Moreover, since the first part of the
proof is applicable to B(x, r) when B(x, r) ⊂ �, one has

� = �+ ∪�0
∪�−.

By the connectedness of �, one of these sets must be �. ut

3. Invariance under symmetrizations

3.1. Symmetrizations and polarizations

Our symmetry results are expressed in terms of symmetrizations and proved in terms of
polarizations.

3.1.1. Symmetrization. Let us first recall the notion of Steiner and cap symmetrizations
of sets and of functions.

Definition 3.1. Let S be a k-dimensional affine subspace of RN , 0 ≤ k ≤ N − 1. The
Steiner symmetrization of a set A ⊂ RN with respect to S is the unique set A∗ such that
for any x ∈ S, ifL is the (N−k)-dimensional hyperplane orthogonal to S that contains x,
then

A∗ ∩ L = B(x, r) ∩ L,

where 0 ≤ r ≤ ∞ is defined by HN−k(B(x, r) ∩ L) = HN−k(A ∩ L).

Definition 3.2. Let S be a k-dimensional closed affine half subspace of RN , 1 ≤ k ≤

N − 1 and let ∂S be the boundary of S inside the affine plane generated by S. The cap
symmetrization of a setA ⊂ RN with respect to S is the unique setA∗ such thatA∗∩∂S =
A∩ ∂S and for each x ∈ ∂S, if L is the (N − k + 1)-dimensional hyperplane orthogonal
to ∂S that contains x and y is the unique point of the intersection ∂B(x, %)∩ S ∩L, then,
for every % > 0,

A∗ ∩ ∂B(x, %) ∩ L = B(y, r) ∩ ∂B(x, %) ∩ L,

where r ≥ 0 is defined by HN−k(B(y, r) ∩ ∂B(x, %) ∩ L) = HN−k(A ∩ ∂B(x, %) ∩ L).
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From now on, S is a fixed affine closed subspace or half subspace so that ∗ denotes a fixed
Steiner or cap symmetrization. The function u : �→ R is admissible with respect to ∗ if

(i) �∗ = �,
(ii) for every c > 0,

LN ({x ∈ � : |u(x)| > c}) <∞

(iii) one of the following conditions is satisfied:
(a) u ≥ 0,
(b) S is a half subspace and (RN \�)∗ = RN \�.

Definition 3.3. Let � ⊂ RN and u : � → R be admissible with respect to ∗. The
symmetrization of u is the unique function u∗ such that for each c ∈ R,

{x ∈ � : u∗(x) > c} = {x ∈ � : u(x) > c}∗.

The symmetrization has many interesting properties that we shall not use in this article
[7, 12, 18, 19].

3.1.2. Polarization. For every closed affine halfspace H , let σH denote the reflection
with respect to the boundary ∂H .

Definition 3.4. LetH ⊂ RN be a closed affine halfspace,� ⊂ RN such that σH (�) = �
and u : � → R. The polarization of u with respect to H is the function uH : RN → R
defined by

uH (x) =

{
max(u(x), u(σH (x))) if x ∈ H ,
min(u(x), u(σH (x))) if x 6∈ H .

The polarization AH of a set A ⊂ RN is defined by

χAH = (χA)
H ,

where χA is the characteristic function of A, whose value is 1 in A and 0 elsewhere.

If j is an isometry such that j (�) = σH (�) = � and u : �→ R, then

(u ◦ j)H = uj
−1(H)

◦ j.

Remark 3.5. The polarization can also be defined as the cap symmetrization with respect
to H [16].

If ∗ is the symmetrization with respect to S, the set of polarizations that generates the
symmetrization ∗ is

H∗ = {H ⊂ RN : H is a closed affine halfspace, ∂S ⊂ ∂H and S ⊂ H }.

First note that if u is admissible for ∗, then

u∗ = u if and only if ∀H ∈ H∗, uH = u. (3.1)

In fact the polarizations of H∗ can be used to approximate ∗:
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Theorem 3.6. There exists (Hn)n≥1 such that for every 1 ≤ p < ∞ and for every
u ∈ Lp(�), if u is admissible for ∗, then

uH1...Hn → u∗ in Lp(�) as n→∞.

Similarly, if u ∈ C(�) is admissible for ∗ and lim|x|→∞ u(x) = 0,

uH1...Hn → u∗ uniformly as n→∞.

Remark 3.7. Theorem 3.6 is proved in [17]. Slightly weaker results were obtained before
[7, 15, 19]. In fact random sequences of polarizations converge almost surely [16].

Definition 3.8. A set � ⊂ RN is totally invariant (with respect to ∗) if �∗ = � and
(RN \�)∗ = RN \�, or equivalently, if σH (�) = � for every H ∈ H∗.

We can extend the notion of u∗ = u to nonadmissible functions by relying on the equiva-
lence (3.1):

Definition 3.9. If � is totally invariant, a function u : � → R is invariant under the
symmetrization ∗ if for every H ∈ H∗,

uH = u.

If −u is also invariant, then u is totally invariant with respect to ∗.

3.1.3. Isometries. Finally, we consider the group of isometries which are compatible
with a symmetrization.

Definition 3.10. Let ∗ be the symmetrization with respect to S. The group G∗ of isome-
tries compatible with ∗ is

G∗ = {i : RN → RN : i is an isometry and ∀A ⊂ RN , i(A)∗ = A∗}.

When ∗ is the Steiner symmetrization with respect toH ,G∗ is generated by the isometries
that leave invariant all the points S and by translations perpendicular to S, while if ∗ is the
cap symmetrization with respect to S, thenG∗ is the group of isometries for which all the
points of ∂S are invariant. In both cases G∗ is generated by {σH : H ∈ H∗}. Therefore:

Proposition 3.11. The set � ⊂ RN is totally invariant if and only if i(�) = � for every
i ∈ G∗.



Symmetry of solutions of semilinear elliptic problems 449

3.2. Invariance under symmetrization

We can now state the main symmetry result.

Theorem 3.12. Let ∗ be the symmetrization with respect to S, � ⊂ RN be open, con-
nected and totally invariant with respect to ∗, and f : � × R → R be a Carathéodory
function. Assume that

(i) there exists g ∈ L1
loc(�) with g ≤ 0 and a measurable locally bounded function

c : �→ R− such that for almost every x ∈ �, for s ≥ t ,

f (x, s)− f (x, t) ≥ (g(x)+ c(x)(|s|p + |t |p))(s − t),

(ii) for every t ∈ R, f (·, t) is invariant under the symmetrization ∗.

Let u ∈ Lploc(�) be admissible for ∗, such that f (x, u) ∈ L1
loc(�), and, in the sense of

distributions,
−1u = f (x, u).

If for every H ∈ H∗, f (x, uH ) ∈ L1
loc(�) and

−1uH = f (x, uH ),

then there exists i ∈ G∗ such that u∗ = u ◦ i.

Remark 3.13. If for all i ∈ G∗, all t ∈ R and almost every x ∈ �,

f (i(x), t) = f (x, t),

then the hypothesis (ii) holds.

Proof of Theorem 3.12. By Proposition 3.14 below, for every H ∈ H∗, there is an isom-
etry j ∈ G∗ such that uH = u ◦ j . Hence, by Proposition 3.15, there exists i ∈ G∗ such
that u∗ = u ◦ i. ut

3.3. Invariance under polarizations

The first step in the proof of Theorem 3.12 is to establish a variant of Theorem 3.12 for
polarizations.

Proposition 3.14. Let H ⊂ RN be a halfspace, and � ⊂ RN be open, connected and
such that σH (�) = �. Let f : �× R→ R be a Carathéodory function. Assume

(i) there is g ∈ L1
loc(�), g ≤ 0 and a measurable locally bounded function c : �→ R−

such that for almost every x ∈ �, for s ≥ t ,

f (x, s)− f (x, t) ≥ (g(x)+ c(x)(|s|p + |t |p))(s − t),
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(ii) for almost every x ∈ � ∩H , for every t ,

f (σH (x), t) ≤ f (x, t).

Let u ∈ Lploc(�) be such that f (x, u) ∈ L1
loc(�) and

−1u = f (x, u).

If f (x, uH ) ∈ L1
loc(�) and

−1uH = f (x, uH )

(in the sense of distributions), then either uH = u or uH = u ◦ σH .

Proof. First note that for every x ∈ � ∩H ,

|u− u ◦ σH |(x) = 2uH (x)− u(x)− u ◦ σH (x).

By the equations that u and uH satisfy and (ii), one has

−1|u− u ◦ σH |(x)=f (x, u
H (x))− f (x, u(x))+ f (x, uH (x))− f (σH (x), u(σH (x)))

≥f (x, uH (x))− f (x, u(x))+ f (x, uH (x))− f (x, u(σH (x))).

Using (i), and remembering that either uH (x)=u(x) or uH (x)=u(σH (x)), we have

−1|u− u ◦ σH |(x)≥(g(x)+ c(x)(|u
H (x)|p + |u(x)|p))(uH (x)− u(x))

+ (g(x)+ c(x)(|uH (x)|p + |u ◦ σH (x)|
p))(uH (x)− u ◦ σH (x))

=(g(x)+ c(x)(|u(x)|p + |u ◦ σH (x)|
p))|u(x)− u ◦ σH (x)|.

Since
g + c(|u|p + |u ◦ σH |

p) ∈ L1
loc(R

N ),

since 1u and 1uH are locally integrable and since � ∩ H is connected, Proposition 2.1
is applicable, and so either u− u ◦ σH > 0, u− u ◦ σH = 0 or u− u ◦ σH < 0 in �∩H .
The conclusion follows. ut

3.4. From polarizations to symmetrizations

We now show how the conclusion of Theorem 3.12 can be deduced from that of Proposi-
tion 3.14.

Proposition 3.15. Let � ⊂ RN be such that �∗ = � and let u : �→ R be admissible
for ∗. If for every H ∈ H∗, there exists j ∈ G∗ such that uH = u ◦ j then there exists
i ∈ G∗ such that u∗ = u ◦ i.
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Proof. The assertion is trivial when u = 0, so assume u 6= 0. Let (Hn)n≥1 be the sequence
of polarizations given by Theorem 3.6. We first claim that for every n ≥ 0, there is
in ∈ G∗ such that

uH1...Hn = u ◦ in.

This is clearly true with i0 = id when n = 0. If it is true for n ≥ 0, then

uH1...Hn+1 = (u ◦ in)
Hn+1 = ui

−1
n (Hn+1) ◦ in = u ◦ jn+1 ◦ in,

with jn+1 given by the hypothesis, so that the assertion is proved with in+1 = jn+1 ◦ in
∈ G∗.

For λ > 1 and t ∈ R, define

hλ(t) =



−λ+ 1/λ if t ≤ −λ,
t + 1/λ if −λ ≤ t ≤ −1/λ,
0 if −1/λ ≤ t ≤ 1/λ,
t − 1/λ if 1/λ ≤ t ≤ λ,
λ− 1/λ if t ≥ λ.

For x ∈ �, define uλ = hλ ◦ u, and note that uλ ∈ L1(�), (uλ)∗ = hλ ◦ u∗ and

(uλ)
H1...Hn = uλ ◦ in.

We now claim that for every bounded set B ⊂ �, the sequence (in|B)n≥1 is bounded.
If u+ 6= 0, then there is λ such that v = u+λ 6= 0. Without loss of generality, assume
B = B∗ and ∫

B

v >
1
2

∫
�

v.

By elementary properties of symmetrizations (the Hardy–Littlewood inequality and the
Cavalieri principle [7, 12, 18, 19]),∫

B

v∗ ≥

∫
B

v >
1
2

∫
�

v =
1
2

∫
�

v∗.

If in(B) ∩ B 6= ∅, then B ∩ i−1
n (B) 6= ∅ and∫

�

|v∗ − v ◦ in| ≥

∫
B∪i−1

n (B)

|v∗ − v ◦ in| ≥

∫
B

v∗ −

∫
in(B)

v +

∫
B

v −

∫
i−1
n (B)

v∗

≥

∫
B

v∗ −

∫
�\B

v +

∫
B

v −

∫
�\B

v∗ > 0.

In view of the convergence v ◦ in→ v∗ in L1(�), this proves that there exists n0 such that
i−1
n (B) ∩ B 6= ∅ for n > n0. The claim is thus proven when u+ 6= 0. In the case where
u+ = 0, a similar reasoning for w = u−λ yields the same conclusion.

Since in is a bounded sequence of isometries, it is relatively compact. Choose i ∈ G∗
and (ink )k≥1 such that ink → i. Therefore, for every λ > 1, uλ ◦ ink → uλ ◦ i in L1(�).
Since uλ ◦ in → u∗λ in L1(�), one has u∗λ = uλ ◦ i. Letting λ→∞, one concludes that
u∗ = u ◦ i. ut
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4. Symmetry of solutions

4.1. Symmetry of minimizers

Let ∗ be the symmetrization associated to S and let � ⊂ RN be an open subset such that
�∗ = � and (RN \�)∗ = RN \�.

We consider the problem{
−1u+ a(x)u = g(x, u) in �,
u = 0 on ∂�. (4.1)

We assume that

(A1) a ∈ L1
loc(�), g = �× R→ R is a Carathéodory function,

(A2) g(x, t) = o(t) as t → 0, uniformly in x ∈ �,
(A3) there exists 2 < p ≤ 2∗ (if N ≥ 3) or 2 < p <∞ (if N = 2) and C ≥ 0 such that,

for any t ∈ R and x ∈ �,

|g(x, t)| ≤ C(1+ |t |p−1)

(A4) for almost every x ∈ �, the function t 7→ g(x, t)/|t | is nondecreasing for t 6= 0
and (strictly) increasing for |t | > 0 small,

(A5) for every t ∈ R, g(·, t) is invariant under the symmetrization ∗,
(A6) there exists c > 0 such that for every u ∈ D(�),∫

�

(|∇u|2 + au2) ≥ c

∫
�

|∇u|2.

Let

‖u‖2 =

∫
�

(|∇u|2 + au2),

and X be the completion of D(�) with respect to the norm ‖ · ‖. Let us define on X,

8(u) =

∫
�

(
|∇u|2

2
+
a(x)u2

2
−G(x, u)

)
, where G(x, t) =

∫ t

0
g(x, s) ds.

The Nehari manifold is defined by

N = {u ∈ X \ {0} : 8′(u)u = 0}.

We also define

N± = {u ∈ N : ±u ≥ 0} , β± = inf {8(u) : u ∈ N±} .

Theorem 4.1. Under the assumptions (A1)–(A6), let u be a minimizer of 8 on N+.
Then u is a positive (resp. negative) solution of (4.1), and there exists i ∈ G∗ such that
u∗ = u ◦ i.
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Proof. Let u ∈ N+ be such that8(u) = β+. Then u is a solution of (4.1) (see [4] or [14]).
Since for every H ∈ H∗, one has uH ∈ N+ and 8(uH ) = β+, the function uH is also a
solution of (4.1). It then suffices to use Theorem 3.12. ut

Theorem 4.2. Under assumptions (A1), (A2), (A3) with p < 2∗, (A4), (A6), if � is
bounded and

(A7) lim
t→∞

G(x, t)

t2
= ∞

uniformly in x, then there exists a minimizer of 8 on N+.

Proof. We omit the proof since it is simpler than the proof of Theorem 4.5 below. ut

4.2. Symmetry of least energy nodal solutions

We define

M =
{
u ∈ X : u± 6= 0, 8′(u+)u+ = 8′(u−)u− = 0

}
,

β = inf {8(u) : u ∈M} .

Theorem 4.3. Under the assumptions (A1)–(A6), if u is a minimizer of 8 on M, then u
is a nodal solution of (4.1) and there exists i ∈ G∗ such that u∗ = u ◦ i.

Remark 4.4. One can also say that u has exactly two nodal domains in the following
sense: u cannot be decomposed as u = u1 + u2 + u3 with ui ∈ W1,1

loc (�) \ {0} and
uiuj = 0 almost everywhere for i 6= j .

Proof. Let u ∈M be such that 8(u) = β. Then u is a solution of (4.1) with exactly two
nodal domains (see [4] or [14]). Since for every H ∈ H∗, uH ∈M and 8(uH ) = β, the
function uH is also a solution of (4.1). It then suffices to use Theorem 3.12. ut

Theorem 4.5. Under the assumptions (A1), (A2), (A3) with p < 2∗, (A4), (A6) and
(A7), if � is bounded, then there exists a minimizer of 8 on M.

Proof. Let (un) ⊂M be such that8(un)→ β. By passing to a subsequence if necessary,
we can assume that

v+n =
u+n

‖u+n ‖
⇀ v+, v−n =

u−n

‖u−n ‖
⇀ v−,

in X. By assumption we have

8(u+n ) = max
t>0

8(tu+n ), 8(u−n ) = max
t>0

8(tu−n ).

Hence, for every s, t > 0,

s2

2
−

∫
�

G(x, sv+n (x)) dx +
t2

2
−

∫
�

G(x, tv−n (x)) dx ≤ 8(un).
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We obtain, for every s, t > 0,

s2

2
−

∫
�

G(x, sv+(x)) dx +
t2

2
−

∫
�

G(x, tv−(x)) dx ≤ β.

Necessarily, v+ 6= 0 6= v−. We then have, for every s, t > 0, by lower semicontinuity,

8(sv+)+8(tv−) ≤ β.

By assumption, there exist s0, t0 > 0 such that

8(s0v
+) = max

s>0
8(sv+), 8(t0v

−) = max
t>0

8(tv−).

Thus β = 8(s0v+)+8(t0v−). ut

4.3. Examples

The results of this section can be applied to the problem{
−1u+ a(x)u = b(x)f (u) in �,
u = 0 on ∂�,

(4.2)

where f ∈ C(R;R+) is such that lims→0 f (s)/s = 0, s 7→ f (s)/s is increasing and
lim sups→∞ f (s)/s

p−1 <∞ for some p < 2∗.
Assume that� is a product of a ball or an annulus of Rk with another bounded domain

in RN−k . The domain� is then totally invariant with respect to some cap symmetrization
of order k. Assume a ∈ L1

loc(�) and b ∈ L∞(�) with b ≥ 0 are also totally invariant,
and that −1+ a satisfies (A6). Then the ground state and the minimal nodal solutions of
(4.2) are invariant under a cap symmetrization of order k, i.e. they depend at most on two
variables in Rk and N − k variables in RN−k .

If � = RN , let ∗ be the Schwarz symmetrization with respect to 0. Assume a ∈
L1

loc(�) and inf a(x) > 0. Let b : �→ R be bounded with inf b(x) > 0. If a∗ = a and
(−b)∗ = −b, let

β = inf
u∈H1(RN )

max
t>0

8(tu).

Any positive solution u of (4.2) such that 8(u) = β is the translate of a radial function.

4.4. Symmetry of eigenvalues

Theorem 3.12 applies to the symmetry of minimizers under many constraints. In this
section we show how to recover well-known symmetry properties of eigenvalues. This
method might be transported to nonlinear settings in which the linear approaches would
fail.
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Assume � is a bounded domain, and let a ∈ L1(�). If a− ∈ LN/2(�), then −1+ a
has a nondecreasing sequence (λk)k≥1 of eigenvalues characterized as

λk+1 = inf
{∫

�

(|∇u|2 + au2) :
∫
�

u2
= 1 and

∫
�

uej = 0 for 1 ≤ j ≤ k
}
.

One has−1u+au = λk+1u if and only if
∫
�
(|∇u|2+au2) = λk+1

∫
�
u2 and

∫
�
uej = 0

for 1 ≤ j ≤ k.

Proposition 4.6. Let ∗ be a spherical cap symmetrization and let � ⊂ RN be bounded.
Assume �, e1, . . . , ek are totally invariant with respect to ∗. If{

−1u+ au = λk+1u in �,

u = 0 on ∂�,

then there exists i ∈ G∗ such that u∗ = u ◦ i.

Proof. One has
∫
�
(|∇u|2 + au2) = λk+1

∫
�
u2 and

∫
�
uej = 0 for 1 ≤ j ≤ k. For every

H ∈ H∗, since a and ej , 1 ≤ j ≤ k, are totally invariant, we have∫
�

(|∇(uH )|2 + a(uH )2) = λk+1

∫
�

(uH )2 and
∫
�

uH ej = 0,

so that
−1uH + auH = λk+1u

H .

Since a ∈ L1
loc(�), Theorem 3.12 is applicable and yields the conclusion. ut

The same holds for Neumann and Robin boundary conditions. When � is not bounded,
the variational characterization of λk still works if one assumes lim|x|→∞ a(x) = ∞, and
the conclusion of Proposition 4.6 also holds.

Classical separation of variables methods give in fact results that are stronger than
Proposition 4.6. The total invariance of � under a spherical cap symmetrization implies
that it is invariant under rotations of SO(K) for some 1 ≤ K ≤ N . A basis of eigenfunc-
tions is given by Um,l(|x|, x′′)H(x/|x|) with associated eigenvalues µm,l , where Um,l is
a radial eigenvalue of

−1Um,l +

(
a +

m(m+K)

|x|2

)
Um,l = µm,lUm,l

and H is a homogeneous harmonic polynomial of degree m ≥ 0. The variational char-
acterization of µm,l gives µ1,1 < µm,1 for every m > 1; in particular, the first nonradial
eigenfunction is invariant under cap symmetrization.
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