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Abstract. In this paper we study a new notion of category weight of homology classes develop-
ing further the ideas of E. Fadell and S. Husseini [3]. In the case of closed smooth manifolds the
homological category weight is equivalent to the cohomological category weight of E. Fadell and
S. Husseini but these two notions are distinct already for Poincaré complexes. An important advan-
tage of the homological category weight is its homotopy invariance. We use the notion of homo-
logical category weight to study various generalizations of the Lusternik–Schnirelmann category
which appeared in the theory of closed 1-forms and have applications in dynamics. Our primary
goal is to compare two such invariants cat(X, ξ) and cat1(X, ξ) which are defined similarly with
reversion of the order of quantifiers. We compute these invariants explicitly for products of surfaces
and show that they may differ by an arbitrarily large quantity. The proof of one of our main results,
Theorem 8, uses an algebraic characterization of homology classesz ∈ Hi(X̃;Z) (whereX̃ → X

is a free abelian covering) which are movable to infinity ofX̃ with respect to a prescribed cohomol-
ogy classξ ∈ H1(X;R). This result is established in Part II which can be read independently of
the rest of the paper.

Keywords. Lusternik–Schnirelmann theory, category weight, topology of closed 1-form, homol-
ogy classes movable to infinity

1. Introduction

In this paper we study various generalizations of the classical Lusternik–Schnirelmann
category cat(X) which arise in topology of closed 1-forms. They are homotopy invariants
of pairs(X, ξ) whereX is a finite polyhedron andξ ∈ H 1(X;R) is a real cohomology
class. Several potentially different notions

cat(X, ξ) ≤ cat1(X, ξ) ≤ Cat(X, ξ) (1)

play different roles in application of the theory of closed one-forms to dynamics (see
[4], [7], [6]); each of these invariants turns into the classical cat(X) whenξ = 0. One

M. Farber and D. Scḧutz: Department of Mathematics, University of Durham, Durham DH1 3LE,
UK; e-mail: Michael.Farber@durham.ac.uk, dirk.schuetz@durham.ac.uk

Mathematics Subject Classification (2000):Primary 55N25; Secondary 55U99



244 M. Farber, D. Scḧutz

of the objectives of the present paper is to show that cat1(X, ξ) can be distinct from
cat(X, ξ) and moreover their difference can be arbitrarily large. At the moment we have
no examples where Cat(X, ξ) is distinct from cat1(X, ξ).

It is well-known that a most effective lower bound for the classical Lusternik–Schni-
relmann category cat(X) is the cohomological cup-length, i.e. the largest number of coho-
mology classes of positive degree such that their cup-product is nontrivial. In our recent
preprint [9] we established cohomological cup-length type lower bounds for cat(X, ξ)

which use local systems of a special kind. In view of (1) all lower bounds for cat(X, ξ)

hold for cat1(X, ξ) as well. In order to distinguish between these two invariants one needs
to have lower bounds for cat1(X, ξ) which in general are not true for cat(X, ξ). Such
lower bounds are found in the present paper.

Our main results are based on the idea of category weight which was initially intro-
duced by E. Fadell and S. Husseini who proposed in [3] to attach “weights” to cohomol-
ogy classes so that classes of higher weight contribute more into the cup-length estimate;
see §2 for more detail. We would like to mention also papers of Y. Rudyak [13] and
J. Strom [15] who suggested a useful modification of this notion. In this paper we pro-
pose yet another variation of this idea: we attach weights to homology classes (and not to
cohomology classes as did the previous authors) and measure the “level of nonvanishing”
of a cup-productu1 ∪ · · · ∪ ur by evaluating it〈u1 ∪ · · · ∪ ur , z〉 on homology classes of
different weight. We show that the notion of category weight of homology classes has an
important advantage of being homotopy invariant (unlike the weights of Fadell and Hus-
seini). We prove that for closed manifolds the category weight of a homology class equals
the category weight of Fadell and Husseini of the dual cohomology class. We also show
that this statement is false for Poincaré complexes. The results about category weights of
homology classes occupy Part I which can be read independently of the rest of the paper.

Part II also covers a story which may be read independently of Parts I and III. Here we
study free abelian coversp : X̃ → X and homology classesz ∈ Hi(X̃;Z) which can be
realized by singular cycles lying arbitrarily far in a specified direction. Such “directions”
are parametrized by cohomology classesξ ∈ H 1(X;R) with p∗(ξ) = 0. Our result states
that this property ofz is equivalent to the existence of an infinite chainc′ such that∂c′ = c

andc′ is “automatically produced out of finite data” (see the discussion after Theorem 5).
The main result of Part II generalizes Theorem 5.3 of [5] which treats the case of rank
one cohomology classes. It also generalizes our previous result [8] covering the case of
homology classes with coefficients in a field; in [8] our arguments use a different algebraic
mechanism which fails to work over the integers.

In Part III we use the results of Parts I and II to obtain new cohomological lower
bounds for cat1(X, ξ). Our Theorem 8 gives in many cases stronger estimates than The-
orem 5.6 of [5]; note that the latter theorem applies only in the special case of rank one
cohomology classes although the results of the present paper are valid in full general-
ity and do not impose this restriction. In Part III we also introduce a controlled version of
cat1(X, ξ) which behaves better under cartesian products. Finally, we compute cat1(X, ξ)

for products of surfaces as function of the cohomology classξ ∈ H 1(X;R). We compare
our results with the computations of the invariant cat(X, ξ) completed in [9]. We conclude
that cat1(X, ξ) may exceed cat(X, ξ) by an arbitrarily large amount.
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The following diagram illustrates dependence of parts of this paper:

Part I Part II
↘ ↙

Part III

Parts I and II can be read independently, the results of Parts I & II are used in Part III.

Part I: Category weights of homology classes

Here we introduce and study the notion of category weight of homology classes which is
somewhat dual to the cohomological notion introduced by E. Fadell and S. Husseini [3];
the homological category weight has the advantage of being homotopy invariant. In Part
III we use this notion to obtain improved cohomological lower bounds for cat1(X, ξ).

2. Basic definitions

The classical cohomological lower bound for the Lusternik–Schnirelmann category
cat(X) states that cat(X) > n if there existn cohomology classes of positive degree
uj ∈ H ∗(X;Rj ), wherej = 1, . . . , n, such that their cup-productu1 . . . un ∈ H ∗(X;R)

is nontrivial. HereRj denotes a local coefficient system onX andR is the tensor product
R1⊗ · · · ⊗ Rn.

E. Fadell and S. Husseini [3] improved this estimate by introducing the notion of a
category weightcwgt(u) of a cohomology classu ∈ H q(X;R). Here is their definition:

Definition 1. Let u ∈ H q(X;R) be a nonzero cohomology class whereR is a local
coefficient system onX. One says thatcwgt(u) ≥ k (wherek ≥ 0 is an integer) if for any
closed subsetA ⊂ X with catXA ≤ k one hasu|A = 0 ∈ H q(A;R).

Recall that the inequality catXA ≤ k means thatA can be covered byk open subsets
Ui ⊂ X such that each inclusionUi ⊂ X is null-homotopic,i = 1, . . . , k.

According to Definition 1 one has cwgt(u) ≥ 0 in general and cwgt(u) ≥ 1 for
any nonzero cohomology class of positive degree. As Fadell and Husseini [3] showed,
cwgt(u) > 1 in some special situations, which allows improving the lower estimate for
cat(X). Indeed, one has

cat(X) ≥ 1+
n∑

i=1

cwgt(ui)

assuming that the cup-productu1 . . . un is nonzero.
Y. Rudyak [13] and J. Strom [15] studied a modification of cwgt(u), called the strict

category weight swgt(u). The latter has the advantage of being homotopy invariant. How-
ever, in some examples the strict category weight is considerably smaller than the original
category weight of Fadell and Husseini.
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In this paper we introduce and exploit a “dual” notion of category weight of homology
classes. It has the geometric simplicity and clarity of category weight as defined by Fadell
and Husseini but has a surprising advantage of being homotopy invariant.

Definition 2. Letz ∈ Hq(X;R) be a singular homology class with coefficients in a local
systemR and letk ≥ 0 be a nonnegative integer. We say thatcwgt(z) ≥ k if for any closed
subsetA ⊂ X with catXA ≤ k there exists a singular cyclec in X−A representingz. We
say thatcwgt(z) = k iff cwgt(z) ≥ k andcwgt(z) 6≥ k + 1

In other words, cwgt(z) ≥ k is equivalent to the fact thatz can be realized by a singular
cycle avoiding any prescribed closed subsetA ⊂ X with catXA ≤ k.

For example, cwgt(z) ≥ 1 iff z can be realized by a singular cycle avoiding any closed
subsetA ⊂ X such that the inclusionA→ X is homotopic to a constant map.

It will be convenient to define the category weight of the zero homology class as+∞.
Formally cwgt(z) ≥ k if z lies in the intersection⋂

A

Im[Hq(X − A;R)→ Hq(X;R)]

whereA ⊂ X runs over all closed subsets with catXA ≤ k.
The relation cwgt(z) ≤ k means that there exists a closed subsetA ⊂ X with catXA ≤

k + 1 such that any geometric realization ofz intersectsA. In particular, we obtain the
following inequality:

cat(X) ≥ cwgt(z)+ 1 (2)

for any nonzero homology classz ∈ Hq(X;R). The last inequality can also be rewritten
as

0≤ cwgt(z) ≤ cat(X)− 1≤ dimX (3)

for any homology class.
Note that if X is path-connected andz is zero-dimensional, i.e.z ∈ H0(X), then

cwgt(z) = cat(X)− 1.

Lemma 1. Let f : R → R′ be a morphism of local coefficient systems overX and
let f∗ : Hq(X;R) → Hq(X;R′) be the induced map on homology. Then for anyz ∈

Hq(X;R) one has

cwgt(f∗(z)) ≥ cwgt(z). (4)

Proof. The result follows directly by applying the definition. ut

Lemma 2. Assume thatX is a simplicial polyhedron. Thencwgt(z) ≥ k iff z can be
realized inX − A for any sub-polyhedronA ⊂ X with catXA ≤ k.
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Proof. We only need to show the ‘if’ direction. LetA ⊂ X be closed with catXA ≤ k.
We need to show thatz can be realized by a cycle inX−A. We haveA ⊂ U1 ∪ · · · ∪Uk

with eachUi open and null-homotopic inX. Passing to a fine subdivision ofX, we can
find a sub-polyhedronB ⊂ X with A ⊂ B ⊂ U1 ∪ · · · ∪ Uk. Then catXB ≤ k andz can
be realized by a cycle lying inX − B ⊂ X − A. ut

Example 1. Assume thatX is a closed 2-dimensional manifold, i.e. a compact surface.
Let us show that any nonzero homology classz ∈ H1(X) has cwgt(z) ≥ 1. Indeed, it is
easy to see that any closed subsetA ⊂ X which is null-homotopic inX lies in the interior
of a diskD2

⊂ X; butH1(X − Int D2)→ H1(X) is an isomorphism.

3. Homotopy invariance ofcwgt(z)

Lemma 3. Let f : X → Y andg : Y → X be two continuous maps withg ◦ f ' 1X.
Let R′ be a local coefficient system overY andR = f ∗R′ be the induced local system
overX. Given a homology classz ∈ Hq(X;R), definez′ ∈ Hq(Y ;R′) by z′ = f∗(z).
Then their category weights satisfy

cwgt(z′) ≥ cwgt(z). (5)

Proof. We start with the following well-known general remark. LetB ′ ⊂ Y be a subset
which is null-homotopic inY . Then the setB = f−1(B ′) ⊂ X is null-homotopic inX.

Indeed, since 1X ' g ◦ f , the inclusionB → X is homotopic to the compositionB
f
→

B ′
i
→ Y

g
→ X where the inclusioni : B ′→ Y is null-homotopic by assumption.

Define k = cwgt(z). Assume thatA′ ⊂ Y is a closed subset with catY A′ ≤ k.
ConsiderA = f−1(A′) ⊂ X. Since catY A′ ≤ k there exist open setsU ′1, . . . , U

′

k ⊂ Y

coveringA′ with eachU ′i → Y null-homotopic. Then the setsUi = f−1(U ′i ) ⊂ X

are open, coverA and are null-homotopic inX (by the above remark). This shows that
catXA ≤ k.

Since cwgt(z) ≥ k, the classz can be realized by a singular cycle inX −A. Then the
cyclec′ = f∗(c) in Y represents the classz′ and is disjoint fromA′ asf mapsX−A into
Y − A′. ut

As a corollary of the previous result we obtain homotopy invariance of the category
weight:

Theorem 1. If f : X → Y is a homotopy equivalence then for any homology class
z ∈ Hq(X;R) one has

cwgt(z) = cwgt(f∗(z)). (6)

Heref∗(z) ∈ Hq(X;R′) whereR′ = g∗R is the local coefficient system overY induced
by the homotopy inverseg : Y → X of f .
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4. Further properties of the category weight

Theorem 2. Suppose thatX is a metric space. Assumeu ∈ H r(X;R), z ∈ Hq(X;R′)

where R and R′ are local systems overX. Then for the homology classu ∩ z ∈

Hq−r(X;R ⊗ R′) one has

cwgt(u ∩ z) ≥ cwgt(u)+ cwgt(z). (7)

Herecwgt(z) is the category weight of the homology classz as defined above in this paper
andcwgt(u) is the category weight ofu as defined by Fadell and Husseini[3].

Proof. Write k = cwgt(z), l = cwgt(u) and assume thatA ⊂ X is a closed subset with
catXA ≤ k + l. We want to show thatu ∩ z can be realized in the complementX − A.
There exists an open coverA ⊂ U1∪· · ·∪Uk+l ⊂ X with eachUi → X null-homotopic.
Find open subsetsVi ⊂ Ui such thatV̄i ⊂ Ui andA ⊂ V1 ∪ · · · ∪ Vk+l .

DefineB = V1 ∪ · · · ∪ Vl and letC = A − B. Clearly C is closed and satisfies
catXC ≤ k. Hencez can be realized by a cycle avoidingC. In other words,z = i∗(w)

wherew ∈ Hq(X − C;R′).
Since cwgt(u) ≥ l we haveu|B = 0 and thusu = j∗1 (v) for somev ∈ H r(X, B;R).

By statement 16 in [14, Chapter 5, §6], one has

j∗(u ∩ z) = j∗(j
∗

1v ∩ z) = v ∩ j̄∗(i∗w) = 0

wherej : X→ (X, X − A), j̄ : X→ (X, X − C) andj1 : X→ (X, B) are inclusions.
By exactness,j∗(u∩z) = 0 implies thatu∩z lies in the image ofHq−r(X−A;R⊗R′)→

Hq−r(X;R ⊗ R′). ut

As a corollary we obtain:

Corollary 4. Suppose thatX is a metric space and for some classesz ∈ Hq(X;R) and
u ∈ H q(X;R′) the evaluation〈u, z〉 ∈ R′ ⊗ R is nonzero. Then

cat(X) ≥ cwgt(z)+ cwgt(u)+ 1. (8)

Herecwgt(z) is the category weight of the homology classz as defined above in this paper
andcwgt(u) is the category weight ofu as defined by Fadell and Husseini[3].

Proof. This follows from inequality (2) combined with Theorem 2. ut

Inequality (8) allows us to improve the classical cohomological lower bound for the cat-
egory cat(X) by taking into account the quality of the homology classz.
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5. Manifolds and Poincaŕe complexes

In this section we prove that in the case of closed manifolds our notion of category
weight coincides with the cohomological notion of Fadell and Husseini [3]. However,
for Poincaŕe complexes these notions are distinct as we show by an example.

Theorem 3. Suppose thatX is a closedn-dimensional manifold, andz ∈ Hq(X;R)

whereR is a local coefficient system. Letu ∈ H n−q(X;R ⊗ Z̃) be the Poincaŕe dual
cohomology class, i.e.z = u ∩ [X] (see below). Then

cwgt(z) = cwgt(u). (9)

HereZ̃ denotes the orientation local system onX, i.e. for a pointx ∈ X the stalk ofZ̃ at
x is Z̃x = Hn(X, X − x;Z) (see[14]).

Proof. By the Poincaŕe duality theorem any homology classz ∈ Hq(X;R) can be
uniquely written asz = u ∩ [X] whereu ∈ H n−q(X;R ⊗ Z̃) and [X] ∈ Hn(X; Z̃)

is the fundamental class. Applying the inequality of Theorem 2 we find

cwgt(z) ≥ cwgt(u)+ cwgt([X]) = cwgt(u). (10)

To obtain the inverse inequality one observes that ifA ⊂ X is a closed subset with
catXA ≤ cwgt(z) thenz can be realized by a singular cycle in the complementX − A

and the usual intersection theory for chains in manifolds shows that the cocycle Poincaré
dual toz vanishes onA; hence cwgt(u) ≥ cwgt(z). ut

Example 2. LetX = RPn be the real projective space. For the unique nonzero homology
classz ∈ Hq(X;Z2) one has cwgt(z) = n − q. Indeed, the dual cohomology class is
αn−q

∈ H n−q(X;Z2) whereα ∈ H 1(X;Z2) is the generator. Clearly, cwgt(αn−q) =

n− q.

Theorem 3 implies:

Corollary 5. If X is a closedn-dimensional manifold then for any homology classz ∈

Hq(X;R) with q < n one has

cwgt(z) ≥ 1. (11)

Indeed, ifq < n then the dual cohomology classu has positive degree and hence cwgt(u)

≥ 1.
Consider now the case whenX is ann-dimensional Poincaré complex. The first part

of the proof of Theorem 3 is still applicable giving inequality (10) between category
weights of the homology and cohomology classes. However, the second part of the proof
fails. The following example shows that Theorem 3 is false for Poincaré complexes. It is a
modification of an argument due to D. Puppe showing that the notion of category weight
of cohomology classes is not homotopy invariant.
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Example 3. Consider the lens spaceL = S2n+1/(Z/p) wherep is an odd prime and
Z/p acts freely onS2n+1. Denote byr : S2n+1

→ L the quotient map. LetX be the
mapping cylinder ofr, i.e.

X = L t S2n+1
× [0, 1]/∼

where each point(x, 0) ∈ S2n+1
× [0, 1] is identified withr(x) ∈ L. ClearlyX is homo-

topy equivalent toL and so it is a Poincaré complex. By a theorem of Krasnosel’skiı̆ [10],
the category ofX equals 2n+ 2. Hence forz = 1 ∈ H0(X;Z2) one has

cwgt(z) = cat(X)− 1= 2n+ 1

(see above). The dual cohomology classu is the generatoru ∈ H 2n+1(X;Z2). Let us
show that

cwgt(u) = 1.

Indeed, consider the sphereS = S2n+1
× 1 ⊂ X. The restrictionu|S ∈ H 2n+1(S;Z2)

coincides with the induced classr∗(v) wherev ∈ H 2n+1(L;Z2) is the generator. Hence
the cohomology classu|S is nonzero. However, the sphereS has category 2 and moreover
catXS = 2 (as the inclusionS → X is not null-homotopic).

The following simple construction gives non-manifolds for which the category weight
can be explicitly calculated.

Lemma 6. Let X = X1 ∨ X2 be the wedge of two polyhedraX1 and X2 and letz ∈
Hq(X;R) be the sumz = z1+ z2 wherezi ∈ Hq(Xi;Ri) andRi = R|Xi

. Then

cwgt(z) = min{cwgt(z1), cwgt(z2)}. (12)

Herecwgt(zi) is the category weight ofzi viewed as a homology class ofXi .

Proof. The inequality cwgt(z) ≤ min{cwgt(z1), cwgt(z2)} is obvious. LetA ⊂ X be a
closed subset with catXA ≤ k wherek = min{cwgt(z1), cwgt(z2)}. ThenA = A1 ∨ A2
whereAi ⊂ Xi and catXi

Ai ≤ k, wherei = 1, 2. One can realizezi by a cycle avoiding
Ai . The sum of these two cycles is a cycle representingz which avoidsA. Thus we obtain
the opposite inequality cwgt(z) ≥ k. ut

6. Strict category weight

The notion of strict category weight was introduced in [13]; it is a homotopy invariant
variation of the category weight of Fadell and Husseini [3]. We use this notion in this pa-
per and therefore recall the relevant definitions. We warn the reader that our terminology
differs from [13] by 1 and is consistent with [3].

Definition 3. Given a continuous mapφ : A → X, we say thatcat(φ) ≤ k if A can
be covered byk open setsA1, . . . , Ak such that each restrictionφ|Ai

is null-homotopic.
Thestrict category weightof a cohomology classu ∈ H q(X;R) (whereR is a local
coefficient system onX) is defined as the maximal integerk such thatφ∗(u) = 0 for any
continuous mapφ : A→ X with cat(φ) ≤ k.
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The strict category weight is denoted by swgt(u). Clearly, one has

swgt(u) ≤ cwgt(u)

and swgt(u) ≥ 1 for any cohomology classu ∈ H q(X;R) of positive degreeq > 0.

Definition 4. LetX be a closed smooth connectedn-dimensional manifold. We define the
strict category weightof a homology classz ∈ Hq(X;R) (denotedswgt(z)) as the strict
category weight of the dual cohomology classu ∈ H n−q(X;R ⊗ Z̃).

A similar definition can be used in the case of Poincaré complexes, but we do not use it
in such generality.

Proposition 7. Letzi ∈ Hqi
(Xi;Ri) whereXi is a closed smooth orientable manifold of

dimensionni , i = 1, 2. Consider the cross-product

z1× z2 ∈ Hq(X1×X2;R)

whereq = q1+ q2 andR is the external tensor productR = R1 � R2. Then

swgt(z1× z2) ≥ swgt(z1)+ swgt(z2). (13)

Proof. Let ui ∈ H ni−qi (Xi;Ri) denote the dual ofzi , wherei = 1, 2. Then the dual of
z1 × z2 is u1 × u2 ∈ H n−q(X1 × X2;R) wheren = n1 + n2. Consider also the classes
u1× 1 ∈ H n1−q1(X1×X2;R1 � Z) and 1× u2 ∈ H n2−q2(X1×X2;Z � R2).

Defineki = swgt(zi) = swgt(ui). Let φ : A → X1 × X2 be a continuous map
with cat(φ) ≤ k1 + k2. ThenA is the union of open subsetsA = A1 ∪ A2 such that
cat(φ)|Ai

≤ ki . We thatφ∗(u1× 1)|A1 = 0 andφ∗(1× u2)|A2 = 0. This implies that the
classφ∗(u1×u2) = φ∗(u1×1)∪φ∗(1×u2) vanishes. Hence swgt(z1×z2) ≥ k1+k2. ut

Corollary 8. Let Xi be closed orientable manifolds andzi ∈ Hqi
(Xi;Ri) whereqi <

dimXi for i = 1, . . . , k. Considerz = z1×· · ·×zk ∈ Hq(X;R) whereX = X1×· · ·×Xk,
q = q1+ · · · + qk andR = R1 � · · ·� Rk. Then

cwgt(z) ≥ k. (14)

This corollary is a source of examples of homology classes having high category weight.

Part II: Moving integral homology classes to infinity

In Part II we study conditions for an integral homology classz ∈ Hi(X̃;Z) of a free
abelian coveringX̃ → X to be movable to infinity with respect to a cohomology class
ξ ∈ H 1(X;R). The case of homology classes with coefficients in a field was studied in
[8] using a different algebraic technique which is not applicable overZ.
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7. Abel–Jacobi maps and neighbourhoods of infinity

For the convenience of the reader we recall in this section the language introduced in [8].
Let X be a connected finite cell complex andp : X̃→ X a regular covering having a free
abelian group of covering transformationsH ' Zr . Write HR = H ⊗ R; it is a vector
space of dimensionr containingH as a lattice.

Proposition 9. There exists a canonical Abel–Jacobi map

A : X̃→ HR (15)

having the following properties:

(a) A is H -equivariant; hereH acts onX̃ by covering transformations and it acts onHR
by translations.

(b) A is proper (i.e. the preimage of a compact subset ofHR is compact).
(c) A is determined uniquely up to replacing it by a mapA′ : X̃ → HR of the form

A′ = A+ F ◦ p whereF : X→ HR is a continuous map.

This fact is well-known; we refer to [8] for a detailed proof.
Let ξ ∈ H 1(X;R) be a cohomology class with the property

p∗(ξ) = 0 ∈ H 1(X̃;R).

Such a classξ can be viewed either as a homomorphismξ : H → R or as a linear
functionalξR : HR→ R.

Definition 5. A subsetN ⊂ X̃ is called aneighbourhood of infinityin X̃ with respect to
the cohomology classξ if N contains the set

{x ∈ X̃; ξR(A(x)) > c} ⊂ N, (16)

for some realc ∈ R. Here A : X̃ → HR is an Abel–Jacobi map for the covering
p : X̃→ X.

See [8] for more details.

8. Homology classes movable to infinity

Let G be an abelian group (the coefficient system). We mainly have in mind the cases of
G = Z or G = k a field.

Definition 6 (see [4, §5]).A homology classz ∈ Hi(X̃;G) is said to bemovable to
infinity of X̃ with respect to a nonzero cohomology classξ ∈ H 1(X;R), p∗(ξ) = 0, if
in any neighbourhoodN of infinity with respect toξ there exists a (singular) cycle with
coefficients inG representingz.
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Equivalently, a homology classz ∈ Hi(X̃;G) is movable to infinity with respect toξ ∈
H 1(X;R) if z lies in the intersection⋂

N

Im[Hi(N;G)→ Hi(X̃;G)] (17)

whereN runs over all neighbourhoods of infinity iñX with respect toξ . This can also be
expressed by saying thatz lies in the kernel of the natural homomorphism

Hi(X̃;G)→ lim
←−

Hi(X̃, N;G) (18)

where in the inverse limitN runs over all neighbourhoods of infinity iñX with respect
to ξ .

The following theorem proven in [8] gives an explicit description of all movable ho-
mology classes in the case whenG = k is a field. It generalizes the result of [4, §5]
treating the simplest case of infinite cyclic coversq : X̃→ X.

Theorem 4. LetX be a finite cell complex andq : X̃→ X be a regular covering having
a free abelian group of covering transformationsH ' Zr . Let ξ ∈ H 1(X;R) be a
nonzero cohomology class of rankr satisfyingq∗(ξ) = 0. The following properties of a
nonzero homology classz ∈ Hi(X̃; k) (wherek is a field) are equivalent:

(A) z is movable to infinity with respect toξ .
(B) Any singular cyclec in X̃ realizing the classz bounds an infinite singular chainc′

in X̃ containing only finitely many simplices lying outside every neighbourhood of
infinity N ⊂ X̃ with respect toξ .

(C) There exists a nonzero elementx ∈ k[H ] such thatx · z = 0.

Later in this paper (see §9) we will describe the set of homology classes with integral
coefficients which are movable to infinity.

9. Integral homology classes movable to infinity

To get an analogue of Theorem 4 in the case of integral coefficients, we need another
definition.

Definition 7. Let H be a group andξ : H → R a homomorphism. A nonzero element
1 ∈ Z[H ] is said to haveξ -lowest coefficient 1if 1 = (1 − y)h with h ∈ H and
y =

∑
ajgj , where thegj ∈ H satisfyξ(gj ) > 0 andaj ∈ Z.

Theorem 5. Let X be a finite cell complex andp : X̃ → X be a regular covering
having a free abelian group of covering transformationsH ' Zr . Let ξ ∈ H 1(X;R) be
a nonzero cohomology class of rankr satisfyingp∗(ξ) = 0. The following properties of
a nonzero integral homology classz ∈ Hi(X̃;Z) are equivalent:

(A) z is movable to infinity with respect toξ .
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(B) Any singular cyclec in X̃ realizing the classz bounds an infinite singular chainc′

in X̃ with integral coefficients containing only finitely many simplices lying outside
every neighbourhood of infinityN ⊂ X̃ with respect toξ .

(C) There exists a nonzero element1 ∈ Z[H ] with ξ -lowest coefficient1 such that
1 · z = 0 .

This result improves Theorem 5.3 of [5] which treats the case of rank one cohomology
classes,r = 1. Movability to infinity of homology classes with coefficients in a field was
studied in [4] (r = 1 case) and in [8] (r ≥ 1).

Note that the implications (C)⇒(B)⇒(A) of Theorem 5 are straightforward (see
below); the only nontrivial statement is the implication (A)⇒(C). Let us explain why
(C)⇒(B). Suppose that1 · z = 0 ∈ Hi(X̃;Z) where1 ∈ Z[H ] hasξ -lowest coeffi-
cient 1. Without loss of generality we may assume that1 = 1− y wherey ∈ Z[H ] is
ξ -positive, i.e.y is a finite sum of the form

∑
ajgj wheregj ∈ H , ξ(gj ) > 0, andaj ∈ Z.

Let c be a chain representing the classz. Then the cycle1 ·c bounds, i.e.(1−y) ·c = ∂c1
wherec1 is a finite chain inX̃. Setc′ = c1 + yc1 + y2c1 + · · · . Then∂c′ = c andc′

has finitely many simplices lying outside every neighbourhood of infinityN ⊂ X̃ with
respect toξ .

The main part of the proof consists in establishing the vanishing of the lim1 term in
the following exact sequence:

0→ lim
←−

1 Hq+1(X̃, N;Z)→ Hq(X; Ẑ[H ]ξ )→ lim
←−

Hq(X̃, N;Z)→ 0. (19)

This exact sequence was described in §6 of [8]. Formally, the proof of the exactness
of (19) given in [8] assumes that the ring of coefficients is a field but it works equally well
in the caseZ with no modifications. In the exact sequence (19) lim and lim1 are taken
relative to the system of neighbourhoods of infinityN ⊂ X̃ with respect toξ . The symbol
Ẑ[H ]ξ in (19) denotes the Novikov completion of the group ringZ[H ] (see [11], [12]).
Recall that elements of the group ringZ[H ] are finite sums of the form

∑
aigi where

ai ∈ Z andgi ∈ H ; the ringẐ[H ]ξ also includes all countable sums
∑

aigi having the
property limi→+∞ ξ(gi) = +∞.

Proposition 10. Under the conditions of Theorem5 one has

lim
←−

1 Hq(X̃, N;Z) = 0, (20)

whereN runs over all neighbourhoods of infinity iñX with respect toξ partially ordered
by reverse inclusion.

Proposition 10 gives the implication (A)⇒(B) of Theorem 5. Indeed, using Definition 6
combined with (20) we see that a homology classz ∈ Hq(X̃;Z) is movable to infinity
with respect toξ if and only if a cyclec ∈ Cq(X̃) representingz bounds a chainc′ ∈

Cq(X̃) ⊗ Ẑ[H ]ξ , i.e. ∂c′ = c. HereC∗(X̃) denote the cellular chain complex ofX̃ with
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integral coefficients. One can viewc′ as an infinite chain iñX having finitely many terms
outside any given neighbourhood of infinity iñX with respect toξ .

To see that (B)⇒(C), let Sξ ⊂ Z[H ] be the subset consisting of elements withξ -
lowest coefficient 1 and3ξ = S−1

ξ Z[H ] the localization. By [6, Lemma 1.13] the in-

clusion3ξ → Ẑ[H ]ξ is faithfully flat so that the change of coefficientsH∗(X;3ξ ) →

H∗(X; Ẑ[H ]ξ ) is injective as well. The result follows.

10. Proof of Theorem 5

First we discuss some commutative algebra. Recall our notations.H = Zr is a free
abelian group andξ : H → R is an injective group homomorphism. We denote byA

the Novikov ringẐ[H ]ξ and byA0 its subringẐ[H0]ξ whereH0 = {g ∈ H ; ξ(g) ≥ 0}.
Elements ofA0 are countable formal sums of the form

∑
j ajgj whereaj ∈ Z andξ(gj )

tends to+∞.
It is well-known thatA is a principal ideal domain butA0 is not. Our goal is to obtain

some partial results about properties of modules over the ringA0 resembling those of
modules over principal ideal domains.

Definition 8. Let M be anA0-module. A sequence of elementsm1, . . . , mk ∈ M is a
quasi-basisfor M if (1) for anym ∈ M there existsg ∈ H0 such thatgm can be repre-
sented in the formgm =

∑
ajmj whereaj ∈ A0, and(2) there are no nontrivial relations∑

ajmj = 0.

Lemma 11. Let f : An
0 → Am

0 be a homomorphism of finitely generated freeA0-
modules. Then there exist quasi-basesd1, . . . , dn ∈ An

0 and e1, . . . , em ∈ Am
0 and an

integerµ ≤ min{n, m} such that for anyj ≤ µ one has

f (dj ) = aj ej , where aj ∈ A0, aj 6= 0, (21)

andf (dj ) = 0 for j > µ.

Proof. Localizations ofAn
0 andAm

0 with respect to the multiplicative setH lead to free
modules over the principal ideal domainA. Hence, applying the standard theory, we find
free basesd ′1, . . . , d

′
n ∈ An ande′1, . . . , e

′
m ∈ Am and an integerµ ≤ max{n, m} such

thatf (d ′j ) = a′j e
′

j for j ≤ µ (wherea′j ∈ A, a′j 6= 0) andf (d ′j ) = 0 for j > µ. Choose
g ∈ H0 such thatgd ′j ∈ An

0 andge′j ∈ Am
0 for all j . Chooseg′ ∈ H0 such thatg′a′j ∈ A0

for all j . Now setdj = gg′d ′j , ej = ge′j , andaj = g′a′j . We obtain quasi-basesdj andej
and clearly the relations (21) hold. ut

Lemma 12. LetC∗ be a free finitely generated1 chain complex overA0. Then there exist
quasi-baseseq

1, e
q

2, . . . , e
q
rq ∈ Cq (whereq ∈ Z and rq denotes the rank ofCq ) and

1 By this we mean that eachA0-moduleCq is finitely generated and only finitely many modules
Cq are nonzero.
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integersµq ≤ min{rq , rq−1} such that the differentiald : Cq → Cq−1 is given by

d(e
q
j ) =

{
a

q
j e

q−1
j for j ≤ µq ,

0 for j > µq ,
(22)

and the elementsaq
j ∈ A0 are nonzero.

Proof. The proof essentially repeats the arguments of Lemma 11. In the first step we
construct a basisf q

j of the localized chain complexC′q = A ⊗A0 Cq over the princi-
pal ideal domainA such that all differentialsd : C′q → C′q−1 have the diagonal form

d(f
q

j ) = α
q
j f

q−1
j with α

q
j ∈ A. In the second step one multiplies the basisf

q
j by a

suitable group elementgq
∈ H0 so that (1) the elementseq

j = gqf
q

j lie in the original

complexCq and (2) the elementsaq
j = gq(gq−1)−1α

q
j lie in A0. ut

Lemma 13. LetC∗ be a free finitely generated chain complex overA0. Then there exists
a finitely generated free chain subcomplexD∗ ⊂ C∗ such thatgC∗ ⊂ D∗ for some group
elementg ∈ H0 andHj (D∗) is isomorphic to a finite direct sum of cyclic2 A0-modules.

Proof. Apply Lemma 12 and take forDq ⊂ Cq the A0-submodule generated by the
elementseq

1, . . . , e
q
rq . ut

Next we apply the above results to obtain the following corollary.

Corollary 14. Let C∗ be a free finitely generated chain complex overA0. Let C̄∗ =

A⊗A0 C∗ be the localized chain complex andi : C∗ → C̄∗ the inclusion. Then for any
q there exists a group elementg = gq

∈ H0 such that the kernel of the induced map
i∗ : Hq(C)→ Hq(C̄) coincides with the kernel of multiplication byg onHq(C).

Proof. As a preparation, consider a nonzero cyclicA0-moduleM0 = A0/(aA0) and the
associatedA-moduleM = A/(aA). Herea ∈ A0 is a noninvertible element. Writea in
the forma = g(α + hβ) whereg ∈ H0, α ∈ Z, α 6= 0, β ∈ A0 andh ∈ H is such that
ξ(h) > 0. Note thatM is trivial if and only if a is invertible inA, i.e. whenα = ±1.
Similarly, M0 is trivial iff a is invertible inA0, i.e. wheng = 0 andα = ±1. We will say
thatM0 is acyclic module of the first(second) kind if α = ±1 (or |α| > 1, respectively).
We see that for a cyclic moduleM0 of the first kind there existsg ∈ H0 such thatgM0 = 0
and the corresponding moduleM is trivial. For a cyclic moduleM0 of the second kind,
there is ag ∈ H such thatgM0→ M is injective. Indeed, witha = g(α + hβ) as above
andM0 = A0/(aA0), we getgM0 = A0/(α + hβA0), which injects intoA/(α + hβA).

Apply Lemma 13 to obtain a subcomplexD∗ ⊂ C∗ such thatg′C∗ ⊂ D∗ for some
g′ ∈ H0 andH∗(D) is a finite direct sum of cyclicA0-modules. One finds thatA⊗A0D∗ =

A ⊗A0 C∗ = C̄∗ andHq(C̄) = A ⊗A0 Hq(C) = A ⊗A0 Hq(D) sinceA is flat overA0.
Also, the kernel of the map restricted to the summands of cyclic modules of the second

2 That is, modules of the formA0/(aA0) wherea ∈ A0.
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kind can be annihilated by multiplication with a suitable element ofH0. Thus there exists
anh ∈ H0 such that the kernel of the mapHq(D)→ Hq(C̄) coincides with the kernel of
h : Hq(D)→ Hq(D).

Now setg = hg′ ∈ H0. Let us show that the kernel ofi∗ : Hq(C) → Hq(C̄)

coincides with the kernel of multiplicationg∗ : Hq(C) → Hq(C) by g. Consider the
following diagram:

Hq(C)
g′∗
−→ Hq(D)

h∗
−→ Hq(D) −→ Hq(C)

i∗

−
→

j∗

−
→

j∗

−
→

−
→

i∗

Hq(C̄)
g′∗
−→ HqC̄)

h∗
−→ Hq(C̄)

id
−→ Hq(C̄)

The composition of the upper horizontal row is multiplication byg, i.e. the mapg∗ :
Hq(C)→ Hq(C). Every map appearing in the lower horizontal row is an isomorphism.
From the previous paragraph we know that Ker(j∗) = Ker(h∗). Therefore, examining the
diagram, we find that Ker(i∗) = Ker(g∗) as claimed. ut

The vanishing of the lim1 term of the exact sequence (19) (i.e. Proposition 10, see above)
would follow once one has the Mittag-Lefler condition (see [16, Prop. 3.5.7]), which in
our case states:

Proposition 15. For any neighbourhood of infinityN ⊂ X̃ with respect toξ there exists
a neighbourhood of infinityN ′ ⊂ N such that for any neighbourhood of infinityN ′′ ⊂ N ′

one has

Im[Hq(X̃, N ′′)→ Hq(X̃, N)] = Im[Hq(X̃, N ′)→ Hq(X̃, N)]. (23)

The homology groups appearing in (23) are with coefficients inZ and all neighbourhoods
of infinity are with respect to a fixed cohomology classξ .

The equality (23) can be expressed by saying that any cycle inX̃ relative toN which
can be refined to a cycle relative toN ′ can be refined to a cycle relative to an arbitrary
neighbourhood of infinityN ′′ ⊂ N ′ ⊂ X̃.

Proof of Proposition 15.Let C∗(X̃) denote the cellular chain complex ofX̃. It is a com-
plex of finitely generated freeZ[H ]-modules. LetN ⊂ X̃ be a cellular neighbourhood
of infinity with respect toξ as described in Lemma 3 of [8]. The cellular chain com-
plex C∗(N) is free and finitely generated overZ[H0] whereH0 = {g ∈ H ; ξ(g) ≥ 0}.
Consider the completed chain complexesC′∗(N) = A0 ⊗Z[H0] C∗(N) and C′∗(X̃) =

A ⊗Z[H ] C∗(X̃). Recall thatA = Ẑ[H ]ξ is the Novikov ring andA0 = Ẑ[H0]ξ . The
canonical inclusionsC∗(N) → C′∗(N) andC∗(X̃) → C′∗(X̃) determine a chain homo-
morphism

F : C∗(X̃)/C∗(N)
'
→ C′∗(X̃)/C′∗(N) (24)

which is an isomorphism. Injectivity ofF is equivalent toC∗(X̃) ∩ C′∗(N) = C∗(N)

(which is obvious) and surjectivity ofF is equivalent toC∗(X̃) + C′∗(N) = C′∗(X̃). The
latter follows from the equalityZ[H ] + A0 = A for subrings ofA.
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The short exact sequence of chain complexes overA0,

0→ C′∗(N)→ C′∗(X̃)→ C∗(X̃)/C∗(N)→ 0,

gives the exact sequence

· · · → H ′q(N)
i∗
→ H ′q(X̃)→ Hq(X̃, N)

∂
→ H ′q−1(N)→ · · ·

whereH ′∗(N) denotes the homology of the complexC′∗(N) and similarly forH ′∗(X̃); the
symbolHq(X̃, N) denotesHq(X̃, N;Z).

Applying Corollary 14 to the subcomplexC′∗(N) ⊂ C′∗(X̃) we find a group element
g ∈ H0 such that Ker[i∗ : H ′q−1(N)→ H ′q−1(X̃)] coincides with Ker[g∗ : H ′q−1(N)→

H ′q−1(N)] = Ker[j∗ : H ′q−1(N) → H ′q−1(g
−1N)]. Herej : N → g−1N is the inclu-

sion. SettingN ′ = gN ⊂ N we obtain

Ker[i∗ : H ′q−1(N
′)→ H ′q−1(X̃)] = Ker[i∗ : H ′q−1(N

′)→ H ′q−1(N)]. (25)

Now, consider the following commutative diagram:

H ′q(N) −→ H ′q(X̃)
β
−→ Hq(X̃, N)

−
→

−
→

−
→

=

Hq(N, N ′)
τ
−→ Hq(X̃, N ′)

α
−→ Hq(X̃, N)

−
→

−
→

∂

H ′q−1(N
′)

σ
−→
=

H ′q−1(N
′)

−
→

γ

−
→

H ′q−1(N) −→ H ′q−1(X̃)

Clearly Imβ ⊂ Im α. The inverse inclusion Imα ⊂ Im β would follow once we know that
for anyx ∈ Hq(X̃, N ′) there existsy ∈ Hq(N, N ′) such that∂τ(y) = ∂(x) ∈ H ′q−1(N

′).

Now, equality (25) says thatγ ◦ σ−1
◦ ∂ = 0 is trivial, which (using exactness properties

of the diagram above) means that for anyx ∈ Hq(X̃, N ′) an elementy ∈ Hq(N, N ′) with
the above mentioned property exists. This shows that Imα = Im β, i.e.

Im[Hq(X̃, N ′)→ Hq(X̃, N)] = Im[H ′q(X̃)→ Hq(X̃, N)]. (26)

For any neighbourhood of infinityN ′′ ⊂ N ′ one has the following diagram

Hq(X̃, N ′′) −→ Hq(X̃, N ′)

−
→ γ

−
−
−
→

−
→

α

H ′q(X̃) −→
β

Hq(X̃, N)

which gives Imβ ⊂ Im γ ⊂ Im α; but since we already know that Imα and Imβ coincide
we obtain Imγ = Im α, i.e. (23).
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This completes the proof of Proposition 15 for the specially chosen neighbourhood
N . If N1 ⊂ X̃ is an arbitrary neighbourhood of infinity with respect toξ theng1N ⊂ N1
and we easily see that for anyN ′′ ⊂ g1N

′ one has Im[Hq(X̃, N ′′) → Hq(X̃, N1)] =
Im[Hq(X̃, g1N

′)→ Hq(X̃, N1)], i.e. (23) is satisfied. ut

Part III: Cohomological estimates for cat1(X, ξ)

In Part III we combine the results of Parts I and II to obtain new cohomological lower
bounds for cat1(X, ξ). This allows us to compute explicitly cat1(X, ξ) in some exam-
ples. Finally, we compare cat1(X, ξ) with the values of a similar invariant cat(X, ξ) and
conclude that their difference can be arbitrarily large.

11. Line bundles, algebraic integers and movability of homology classes

Let X be a finite cell complex andξ ∈ H 1(X;R) be a nonzero cohomology class.ξ de-
termines the obvious homomorphismH1(X;Z)→ R. Its kernel will be denoted Ker(ξ).
The factor groupH = H1(X;Z)/Ker(ξ) is a finitely generated free abelian group which
is naturally isomorphic to the group of periods ofξ . The rank ofH is equals the rank of
the classξ ; it is denoted byr = rk(ξ). Consider the coveringp : X̃→ X corresponding
to Ker(ξ). This covering hasH as the group of covering transformations.

Let Vξ = (C∗)r = Hom(H, C∗) denote the variety of all complex flat line bundlesL

overX such that the induced flat line bundlep∗L overX̃ is trivial. If t1, . . . , tr ∈ H is a
basis, then the monodromy ofL ∈ Vξ alongti is a nonzero complex numberxi ∈ C∗ and
the numbersx1, . . . , xr ∈ C∗ form a coordinate system onVξ . Given a flat line bundle
L ∈ Vξ the monodromy representation ofL is the ring homomorphism

MonL : Z[H ] → C (27)

sending eachti ∈ H to xi ∈ C∗.
The dual bundleL∗ ∈ Vξ is such thatL ⊗ L∗ is trivial; if x1, . . . , xr ∈ C∗ are

coordinates ofL thenx−1
1 , . . . , x−1

r ∈ C∗ are coordinates ofL∗.

Any nonzero elementP ∈ Z[H ] can be written asP =
∑k

i=1 aihi whereai ∈ Z,
ai 6= 0, hi ∈ H andξ(h1) < · · · < ξ(hk). The nonzero integerak is called theξ -top
coefficientof P .

The following notion was introduced in [6, Definition 1.53].

Definition 9. A flat line bundleL ∈ Vξ is called aξ -algebraic integerif the kernel of
the monodromy homomorphismMonL : Z[H ] → C contains a nonzero polynomial
P ∈ Z[H ] havingξ -top coefficient1.
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Theorem 6. LetL ∈ Vξ be a complex flat line bundle overX which is not aξ -algebraic
integer. Suppose that for somev ∈ H q(X;L) and z ∈ Hq(X̃;Z) one has〈v, p∗(z)〉 6=

0 ∈ C wherep∗ : Hq(X̃;Z)→ Hq(X;L∗) is the obvious coefficient map. Then the class
z is not movable to infinity of̃X with respect toξ .

Proof. We will show that if a homology classz ∈ Hq(X̃;Z) is movable to infinity with
respect toξ thenp∗(z) = 0 ∈ Hq(X;L∗) for any L ∈ Vξ which is not aξ -algebraic
integer. This statement clearly implies the theorem.

Let Sξ ⊂ 3 = Z[H ] denote the set of all nonzero Laurent polynomialsP ∈ 3

having ξ -lowest coefficient 1. The monodromy homomorphism MonL∗ : 3 → C is
injective when restricted toSξ (because of our assumption thatL is not aξ -algebraic
integer). Hence MonL∗ : 3→ C extends to the localized ring3ξ = S−1

ξ 3.

The homomorphismp∗ : Hq(X̃;Z)→ Hq(X;L∗) can be decomposed as

p∗ : Hq(X̃;Z) = Hq(X;3)
α
→ Hq(X;3ξ )→ Hq(X;L∗)

and the module in the middle equalsHq(X;3ξ ) = S−1
ξ Hq(X̃;Z). If z ∈ Hq(X̃;Z) is

movable to infinity with respect toξ then1 · z = 0 for some1 ∈ Sξ and henceα(z) = 0
andp∗(z) = 0. ut

12. Definition and properties ofcat1(X, ξ)

LetX be a finite polyhedron andξ ∈ H 1(X;R) a cohomology class with real coefficients.
Let ω be a closed 1-form onX representingξ (see [4] for the formalism of closed 1-forms
on topological spaces).

Definition 10. LetN be a positive integer. A subsetA ⊂ X is said to beN -movable with
respect toω if there exists a continuous homotopyht : A → X, t ∈ [0, 1], such that
h0 : A→ X is the inclusion and for any pointx ∈ A we have∫ x

h1(x)

ω > N

where the integral is calculated along the patht 7→ h1−t (x) ∈ X, t ∈ [0, 1].

Recall that forA ⊂ X, catX(A) denotes the Lusternik–Schnirelmann category ofA in X,
i.e. the minimal integerk such thatA can be covered byk open sets inX each of which
is null-homotopic inX.

The following notion has been introduced in [7].

Definition 11. Let X be a finite polyhedron andξ ∈ H 1(X;R). Fix a closed1-form ω

in ξ . The numbercat1(X, ξ) is the minimal integerk such that there exists a closed subset
A ⊂ X with catX(X − A) ≤ k and such thatA is N -movable with respect toω for any
positive integerN .
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By reversing the order of quantifiers one obtains another notion originally introduced
in [4].

Definition 12. Let X be a finite polyhedron andξ ∈ H 1(X;R). Fix a closed1-form ω

in ξ . The numbercat(X, ξ) is the minimal integerk such that for any positive integerN
there exists a closed subsetA ⊂ X which isN -movable with respect toω and such that
catX(X − A) ≤ k.

It is easy to see that neither cat1(X, ξ) nor cat(X, ξ) depend on the choice ofω. Fur-
thermore both notions are homotopy invariants of the pair(X, ξ) (see [4, 7]). Another
observation is that forξ = 0 we get the ordinary Lusternik–Schnirelmann category
cat(X, ξ) = cat1(X, ξ) = cat(X).

It follows straightforwardly from the definitions that

cat(X, ξ) ≤ cat1(X, ξ) ≤ cat(X).

We show later in this paper that for some pairs(X, ξ) one has

cat(X, ξ) < cat1(X, ξ)

and that the difference between cat1(X, ξ) and cat(X, ξ) can indeed be arbitrarily large.

13. The main estimate

Theorem 7. LetX be a finite cell complex andξ ∈ H 1(X;R). LetL ∈ Vξ be a complex
flat line bundle overX which is not aξ -algebraic integer. Assume that for someu ∈

H q(X;L) and z ∈ Hq(X;3) the evaluation〈u, p∗(z)〉 ∈ C is nonzero wherep∗ :
Hq(X;3)→ Hq(X;L∗) is the coefficient homomorphism. Then3

cat1(X, ξ) ≥ cwgt(z)+ 1. (28)

Proof. Setk = cwgt(z) and assume the contrary, i.e. that cat1(X, ξ) ≤ k. Then there
exists a closed subsetA ⊂ X with catXA ≤ k such that the complementF = X − A

is N -movable for anyN > 0 with respect to a closed 1-formω on X representingξ .
Applying the definition, we find thatz can be realized by a singular cyclec in X−A = F

with coefficients in the local system3.
Consider the coveringp : X̃ → X corresponding to Ker(ξ). Viewed differently, the

cyclec is a usual singular cycle iñX lying in the setF̃ = p−1(F ). SinceF is N -movable
for anyN we find that any cycle inF̃ is movable to infinity with respect toξ . Thus we
obtain a contradiction with Theorem 6. ut

3 The groupHq (X;3) is naturally isomorphic toHq (X̃;Z). However, the category weights of
z viewed as element ofHq (X;3) or of Hq (X̃;Z) are in general different. In inequality (28) the
symbol cwgt(z) denotes the category weight ofz regarded as an element ofHq (X;3).
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Theorem 8. LetX be a finite cell complex andξ ∈ H 1(X;R). LetL ∈ Vξ be a complex
flat line bundle overX which is not aξ -algebraic integer. Suppose that for an integral
homology classz ∈ Hq(X̃;Z) = Hq(X;3) and some cohomology classesu ∈ H d(X;L)

and ui ∈ H di (X;C), wheredi > 0 for i = 1, . . . , k, the evaluation〈u ∪ u1 ∪ · · · ∪

uk, p∗(z)〉 ∈ C is nonzero. Herep∗(z) ∈ Hd(X;L∗), q = d + d1+ · · · + dk. Then

cat1(X, ξ) ≥ cwgt(z)+ k + 1. (29)

Here cwgt(z) denotes the category weight ofz viewed as a homology class ofX with
local coefficient system3.

Proof. First observe that we may assume that the classesu1, . . . , uk are integral, i.e. lie
in H ∗(X;Z). Indeed, the product〈u ∪ u1 ∪ · · · ∪ uk, p∗(z)〉 is a multilinear function of
u1, . . . , uk; since the integral cohomology classes generateH ∗(X;C), vanishing of this
function on all integral combinations would imply vanishing in general.

Definez′ = p∗(u1 ∪ · · · ∪ uk) ∩ z ∈ Hd(X̃;Z) = Hd(X;3). Then

〈u, p∗(z
′)〉 = 〈u ∪ u1 ∪ · · · ∪ uk, p∗(z)〉 6= 0 ∈ C.

Applying the previous theorem we find cat1(X, ξ) ≥ cwgt(z′)+1. Now, Theorem 2 gives
cwgt(z′) ≥ k + cwgt(z). This completes the proof. ut

Remark. Consider the statement of Theorem 8 in the special caseξ = 0. Then the
varietyVξ contains the trivial line bundleL = C only andL = C is not aξ -algebraic
integer. Hence Theorem 8 gives the inequality

cat(X) ≥ cwgt(z)+ k + 1

under the assumption that
〈u1 ∪ · · · ∪ uk, z〉 6= 0

whereui ∈ H di (X;C), di > 0 andz ∈ Hd(X;C), d = d1 + · · · + dk. This claim is a
special case of (8).

Example 4. Let X = 6 be a closed orientable surface of genusg > 1 andξ 6= 0 ∈
H 1(X;R). Fix a flat line bundleL ∈ Vξ which is transcendental (see [9, §6]). Then
H 1(X;L) has dimension 2g−2 > 0. Pick a nonzero classu ∈ H 1(X;L). By Proposition
6.5 from [9] there exists a homology classz ∈ H1(X;3) such that〈u, p∗(z)〉 6= 0.
Since cwgt(z) ≥ swgt(z) ≥ 1 we get cat1(6, ξ) ≥ 2 by applying Theorem 7. Since
cat1(X, ξ) ≤ dimX in general forξ 6= 0, we find

cat1(6, ξ) = 2 (30)

for any nonzeroξ ∈ H 1(6;R).
Note that cat(6, ξ) = 1 for anyξ 6= 0 (see Theorem 12 in [9]). This gives a first

instance where

cat(X, ξ) < cat1(X, ξ). (31)
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14. A controlled version ofcat1(X, ξ)

We have seen in Example 4 that cat(X, ξ) and cat1(X, ξ) can indeed be different. In order
to show that the difference between them can be arbitrarily large, we have to introduce
a controlled version of cat1(X, ξ) which behaves better under cartesian products. The
following discussion is very similar to [9, Section 9].

Let ω be a continuous closed 1-form on a finite cell complexX. Let ξ = [ω] ∈
H 1(X;R) be the cohomology class represented byω.

Definition 13. LetN andC be two positive integers. A subsetA ⊂ X is N -movable with
respect toω with controlC if there exists a continuous homotopyht : A→ X, t ∈ [0, 1],
such that(1) h0 : A→ X is the inclusion;(2) for any pointx ∈ A one has∫ h1(x)

x

ω < −N, (32)

where the integral is calculated along the patht 7→ ht (x) ∈ X, t ∈ [0, 1], and(3) for
any pointx ∈ A and for anyt ∈ [0, 1] one has∫ ht (x)

x

ω ≤ C. (33)

Definition 14. Fix a closed1-formω representingξ . The numberccat1(X, ξ) is the min-
imal integerk with the property that there existsC > 0 and a closed subsetA ⊂ X with
catX(X − A) ≤ k such thatA is N -movable with controlC with respect toω for every
positive integerN .

Lemma 16. The following properties hold forccat1(X, ξ).

(1) We havecat1(X, ξ) ≤ ccat1(X, ξ).
(2) If X is connected andξ 6= 0, thenccat1(X, ξ) ≤ cat(X)− 1.
(3) If ξ = 0, thenccat1(X, ξ) = cat(X).
(4) If φ : Y → X is a homotopy equivalence andξ ∈ H 1(X;R), then

ccat1(X, ξ) = ccat1(Y, φ∗ξ).

Proof. The first assertion is obvious, the remaining assertions are obtained by repeating
the arguments given in [4] and [9]. ut

Remark 1. It is worth pointing out that the applications of cat1(X, ξ) to dynamics de-
scribed in [7] also hold with the potentially larger quantity ccat1(X, ξ) (cf. [9, Re-
mark 9.9]).

The desired product inequality now reads as follows.



264 M. Farber, D. Scḧutz

Theorem 9. Let X and Y be finite cell complexes and letξX ∈ H 1(X;R) and ξY ∈

H 1(Y ;R) be real cohomology classes. Assume that

ccat1(X, ξX) > 0 or ccat1(Y, ξY ) > 0. (34)

Then

ccat1(X × Y, ξ) ≤ ccat1(X, ξX)+ ccat1(Y, ξY )− 1, (35)

where

ξ = ξX × 1 + 1× ξY . (36)

We skip the proof since it is fully analogous to the proof of the similar statement for
ccat(X, ξ) given in [9, Theorem 9].

15. Calculation ofcat1(X, ξ) for products of surfaces

Theorem 10. Let M2k denote the product61 × · · · × 6k where each6i is a closed
orientable surface of genusgi > 1. Given a cohomology classξ ∈ H 1(M2k

;R), one has

cat1(M2k, ξ) = ccat1(M2k, ξ) = 1+ k + r (37)

wherer denotes the number of indicesi ∈ {1, . . . , k} such that the cohomology class
ξ |6i
∈ H 1(6i;R) vanishes. In particular

cat1(M2k, ξ) = ccat1(M2k, ξ) = 1+ k (38)

assuming thatξ |6i
6= 0 ∈ H 1(6i;R) for anyi = 1, . . . , k.

Proof. After rearranging the surfaces we may assume thatξi = ξ |6i
is nonzero fori =

1, . . . , k − r andξi = 0 for i > k − r.
Note that ccat1(6i, ξi) > 0 for anyi = 1, . . . , k. Indeed, otherwise applying Theorem

10 of [9] we would getχ(6i) = 0, contradicting our assumptiongi > 0. Hence we may
apply the inequality of Theorem 9 several times to obtain

ccat1(M2k, ξ) ≤

k∑
i=1

ccat1(6i, ξi)− (k − 1).

By Example 4 and Lemma 16 we have

ccat1(6i, ξi) = cat1(6i, ξi) =

{
2 if i ≤ k − r,

3 if i > k − r,

and thus
ccat1(M2k, ξ) ≤ 2(k − r)+ 3r − (k − 1) = k + r + 1. (39)
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Next we prove the opposite inequality to (39). LetL ∈ Vξ be transcendental. Define
H = π1(M)/Ker(ξ) andLi = L|6i

andHi = π1(6i)/Ker(ξi). It follows thatLi is also
transcendental. Chooseu′i ∈ H 1(6i;Li) andzi ∈ H1(6̃i;Z) such that〈u′i, p∗(zi)〉 6= 0
as in Example 4. Herepi : 6̃i → 6i is the covering space corresponding to Ker(ξi) and
pi∗ : H∗(6̃i;Z) → Hi(6i;L

∗

i ). Note that fori > k − r we simply have6̃i = 6i and
Li = C. Now, Ker(ξ1)× · · · × Ker(ξk) ⊂ Ker(ξ) so there is a covering map

q : 6̃1× · · · × 6̃k → M̃

whereM̃ is the covering space ofM corresponding to Ker(ξ). Let

z′ = z1× · · · × zk ∈ Hk(M;Z[H1× · · · ×Hk]) ∼= Hk(6̃1× · · · × 6̃k;Z),

z = q∗(z
′) ∈ Hk(M;Z[H ]) ∼= Hk(M̃;Z).

It follows from Corollary 8 and Lemma 1 that cwgt(z) ≥ k (wherez is viewed as an
element ofHk(M;Z[H ])).

Define

u = u′1× · · · × u′k−r × 1× · · · × 1 ∈ H k−r(M;L),

uj = p∗k−r+ju
′

k−r+j ∈ H 1(M;C), j = 1, . . . , r,

wherepk−r+j : M → 6k−r+j is the projection. Notice that

〈u ∪ u1 ∪ · · · ∪ ur , p∗(z)〉 = ±

k∏
i=1

〈u′i, pi∗(zi)〉 6= 0.

Theorem 8 and Corollary 8 apply and give

cat1(M, ξ) ≥ cwgt(z)+ r + 1≥ k + r + 1.

Combining this with (39) we obtain

cat1(M, ξ) = ccat1(M, ξ) = k + r + 1

as claimed. ut

We now want to compare the values of cat1(M, ξ) with the invariant cat(M, ξ) (see Def-
inition 12) for products of surfacesM = 61 × · · · × 6k where each6i is a closed
orientable surface of genusgi > 1. It was shown in [9, Thm. 17] that

cat(M, ξ) = 1+ 2r (40)

wherer denotes the number of indicesi ∈ {1, . . . , k} such thatξ |6i
= 0.

Corollary 17. Under the assumptions of Theorem10 the difference

cat1(M, ξ)− cat(M, ξ) (41)

equals the number of indicesi ∈ {1, . . . , k} such thatξ |6i
6= 0 ∈ H 1(6i;R).

Corollary 17 leads to the following statement which is one of the main results of this
paper:

Corollary 18. The difference(41)can be arbitrarily large.
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