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Abstract. — It is known that, for any convex planar set W, the first non-trivial Neumann eigen-

value m1ðWÞ of the Hermite operator is greater than or equal to 1. Under the additional assumption
that W is contained in a strip, we show that m1ðWÞ ¼ 1 if and only if W is any strip. The study of the

equality case requires, among other things, an asymptotic analysis of the eigenvalues of the Hermite
operator in thin domains.
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1. Introduction

Let W � R2 be a convex domain and let us denote by g and dmg the standard
Gaussian function and measure in R2 respectively, that is

gðx; yÞ :¼ exp
�
� x2 þ y2

2

�
and dmg :¼ gðx; yÞ dx dy:

In this paper we consider the following Neumann eigenvalue problem for the
Hermite operator

�divðg‘uÞ ¼ mgu in W;

qu

qn
¼ 0 on qW;

8<
:ð1:1Þ

where n stands for the outward normal to qW. As usual, we understand (1.1) as a
spectral problem for the self-adjoint operator T in the Hilbert space L2

g ðWÞ :¼
L2ðW; dmgÞ associated with the quadratic form t½u� :¼ k‘uk2, DðtÞ :¼ H 1

g ðWÞ.
Here k � k denotes the norm in L2

g ðWÞ and

H 1
g ðWÞ :¼ fu a L2

g ðWÞ j‘u a L2
g ðWÞg

is a weighted Sobolev space equipped with the norm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � k2 þ k‘ � k2

q
. Since the

embedding H 1
g ðWÞ ,! L2

g ðWÞ is compact (see e.g. [8], [14], [17]), the spectrum of T
is purely discrete. We arrange the eigenvalues of T in a non-decreasing sequence
fmnðWÞgþl

n¼0 where each eigenvalue is repeated according to its multiplicity. The



first eigenfunction of (1.1) is clearly a constant with eigenvalue m0ðWÞ ¼ 0 for any
W. We shall be interested in the first non-trivial eigenvalue m1ðWÞ of (1.1), which
admits the following variational characterisation

m1ðWÞ ¼ min

R
W j‘uj2 dmgR
W
u2 dmg

: u a H 1
g ðWÞnf0g;

Z
W

u dmg ¼ 0

( )
:ð1:2Þ

A classical Poincaré-Wirtinger type inequality which goes back to Hermite
(see for example [13, Chapter II, p. 91 ¤ ]) states that

m1ðR2Þ ¼ 1ð1:3Þ

and thereforeZ
R2

�
u�

Z
R2

u dmg

�2
dmg a

Z
R2

j‘uj2 dmg; Eu a H 1
g ðR2Þ:

If W is any convex subset of R2, it is possible to prove that

m1ðWÞb 1ð1:4Þ

using various di¤erent techniques. For instance, in [9], among other things, the
authors consider smooth densities of the type e�V , with D2V b Id, which applies
to the Gaussian measure restricted to a convex set, by standard approximation
arguments. A di¤erent approach, from optimal transportation theory, is con-
tained in [11]. More recently, an improved inequality has been obtained for
bounded sets. In [5] (see also [2]) the authors prove that if W is a bounded, convex
set then

m1ðWÞb m1

�
� dðWÞ

2
;
dðWÞ
2

�
ð1:5Þ

where dðWÞ is the diameter of W and, here and throughout, m1ða; bÞ will denote
the first nontrivial eigenvalue of the Sturm–Liouville problem

�ðg1v 0Þ
0 ¼ mg1v in ða; bÞ;

v 0ðaÞ ¼ v 0ðbÞ ¼ 0;

�
ð1:6Þ

with �la a < baþl and

g1ðxÞ :¼ exp
�
� x2

2

�
:

Again, we understand (1.6) as a spectral problem for a self-adjoint operator with
compact resolvent in L2

g1
ðða; bÞÞ. It is well known (see for instance [13, p. 328])

that

m1ða; bÞb 1 with m1ða; bÞ ¼ 1 if and only if ða; bÞ ¼ R:ð1:7Þ
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An alternative way to gain (1.4) consists into passing to the limit in (1.5) as dðWÞ
goes to infinity (see [6]).

Inequality (1.4) is sharp in the sense that equality sign holds when W is any
two-dimensional strip (by a two-dimensional strip we mean, up to rotations and
translations, a set in the form R� I , where I is any open interval in R). It is
natural to ask if the strips are the unique domains for which the equality in (1.4)
is achieved.

We provide a partial answer to the uniqueness question via the following
theorem, which is the main result of this paper.

Theorem 1.1. Let W be a convex subset of Sy1;y2 :¼ fðx; yÞ a R2 : y1 < y < y2g
for some y1; y2 a R, y1 < y2. If m1ðWÞ ¼ 1, then W is a strip.

Inequality (1.5) is a Payne-Weinberger type inequality for the Hermite opera-
tor. We recall that the classical Payne-Weinberger inequality states that the first
nontrivial eigenvalue of the Neumann Laplacian in a bounded convex set W,
mD
1 ðWÞ, satisfies the following bound

mD
1 ðWÞb p2

dðWÞ2
;ð1:8Þ

where p2=dðWÞ2 is the first nontrivial Neumann eigenvalue of the one-
dimensional Laplacian in ð�dðWÞ=2; dðWÞ=2Þ (see [20]). The above estimate is
the best bound that can be given in terms of the diameter alone in the sense that
mD
1 ðWÞdðWÞ2 tends to p2 for a parallepiped all but one of whose dimensions shrink

to zero (see [18, 22]).
Estimate (1.4) is sharp, not only asymptotically, since the equality sign is

achieved when W is any strip S. Indeed, it is straightforward to verify that
m1ðSÞ ¼ m1ðRÞ ¼ 1 for any strip S. Hence the question faced in Theorem 1.1
appears quite natural.

The paper is organised as follows. Section 2 contains the proof of Theorem
1.1. The latter consists in various steps. We firstly deduce from (1.4) that any
optimal set must be unbounded; then we show that it is possible to split an
optimal set W getting two sets that are still optimal and have Gaussian area
mgðWÞ=2. Repeating this procedure we obtain a sequence of thinner and thinner,
optimal sets Wk and we finally prove that there exists a a R such that m1ðWkÞ
converges as k ! þl to m1ða;þlÞ, which is strictly greater than 1 unless
a ¼ �l. This circumstance implies that W contains a straight line, and hence
W is a strip.

The convergence of m1ðWkÞ to m1ða;þlÞ follows by a more general result
established in Section 3, where we actually prove a convergence of all eigen-
values of T in thin domains to eigenvalues of a one-dimensional problem
(see Theorem 3.1). We also establish certain convergence of eigenfunctions. We
believe that the convergence results are of independent interest, since our method
of proof di¤ers from known techniques in the case of the Neumann Laplacian in
thin domains [3, 4, 19, 21].
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For optimisation results related to the present work, we refer the interested
reader to [7, 15, 17, 10, 12].

2. Proof of Theorem 1.1

The main ingredient in our proof of Theorem 1.1 is the following lemma, which
tells us that cutting the optimiser of (1.4) in two convex, unbounded sets with
equal Gaussian area, we again get two optimisers.

Lemma 2.1. Let W be a convex subset of Sy1;y2 with m1ðWÞ ¼ 1 and suppose that
W is not a strip. Let y a ðy1; y2Þ be such that the straight line fy ¼ yg divides W
into two convex subsets with equal Gaussian area mgðWÞ. Then

m1ðWB fy < ygÞ ¼ m1ðWB fy > ygÞ ¼ 1:

Proof. Let u be an eigenfunction of (1.1) corresponding to m1ðWÞ: By (1.2), we

know that

Z
W

u dmg ¼ 0 and

1 ¼
R
W
j‘uj2 dmgR
W u2 dmg

:

For each a a ½0; 2p� there is a unique straight line ra orthogonal to ðcos a; sin aÞ
such that it divides W into two convex sets W 0

a, W
00
a with equal Gaussian measure.

Let IðaÞ :¼
Z
W 0

a

u dmg. Since IðaÞ ¼ �Iðaþ pÞ, by continuity there is a such that

IðaÞ ¼ 0. Now we claim that ra is parallel to the x-axis. Note firstly that W 0
a

and W 00
a are obviously convex and by (1.5), (1.7) and (1.4) we have

m1ðW 0
aÞb 1; m1ðW 00

a Þb 1:ð2:1Þ

Moreover, it is immediate to verify that

1 ¼ m1ðWÞ ¼

R
W 0

a

j‘uj2 dmg þ
R
W 00

a

j‘uj2 dmgR
W 0

a

u2 dmg þ
R
W 00

a

u2 dmg

bmin

R
W 0

a

j‘uj2 dmgR
W 0

a

u2 dmg

;

R
W 00

a

j‘uj2 dmgR
W 00

a

u2 dmg

8<
:

9=
;;

with equality holding if and only ifR
W 0

a

j‘uj2 dmgR
W 0

a

u2 dmg

¼

R
W 00

a

j‘uj2 dmgR
W 00

a

u2 dmg

:
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Without loss of generality we can assume that

min

R
W 0

a

j‘uj2 dmgR
W 0

a

u2 dmg

;

R
W 00

a

j‘uj2 dmgR
W 00

a

u2 dmg

8<
:

9=
;¼

R
W 0

a

j‘uj2 dmgR
W 0

a

u2 dmg

:

Finally, (2.1) ensures that

1 ¼ m1ðWÞ ¼ m1ðW 0
aÞ ¼ m1ðW 00

a Þ:ð2:2Þ

Now we want to show that both W 0
a and W 00

a are unbounded, and hence ra is
parallel to the x-axis. Suppose by contradiction that, for instance, W 0

a is bounded.
In such a case (1.5) yields

m1ðW 0
aÞb m1

�
� dðW 0

aÞ
2

;
dðW 0

aÞ
2

�
:

Taking into account (2.2) and (1.7), we get that

m1

�
� dðW 0

aÞ
2

;
dðW 0

aÞ
2

�
¼ 1

that is dðW 0
aÞ ¼ þl, which is a contradiction. r

Proof of Theorem 1.1. By contradiction, let us assume that W � Sy1;y2 is a
convex domain di¤erent from a strip and m1ðWÞ ¼ 1. Let us denote

W ¼ fðx; yÞ a R2 : y1 < y < y2; pðyÞ < xg;

where p is a convex, non-trivial function. From (1.5) and (1.7) it follows that W is
necessarily unbounded. By employing a separation of variables, we also deduce
from (1.5) and (1.7) that W cannot be a semi-strip. Finally, we may assume that
inffx : by a ½y1; y2�; ðx; yÞ a Wg is finite (otherwise, we would have the finite
supremum, which can be transferred to our situation by a reflection of the coor-
dinate system).

Repeating the procedure described in the above lemma, since at any step we
are dividing into two convex subsets with equal Gaussian area, we can obtain a
sequence of unbounded convex domains

W�k :¼ fðx; yÞ a R2 : y0 < y < dk; pðyÞ < xgð2:3Þ
¼ fðx; yÞ a W : y0 < y < dkg

such that

m1ðW�kÞ ¼ 1; �k :¼ dk � y0 ���!
k!þl

0:

Here the point y0 is chosen in such a way that p 0ðy0ÞA 0, which is always
possible because the situation of semi-strips has been excluded. Without loss of
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generality (reflecting again the coordinate system if necessary), we may in fact
assume

p 0ðy0Þ > 0;ð2:4Þ

so that p is increasing on ½y0; dk� whenever k is su‰ciently large. Applying now a
more general convergence result for eigenvalues in thin Neumann domains that
we shall establish in the following section (Theorem 3.1), we have

Lemma 2.2. lim
k!l

m1ðW�kÞ ¼ m1ðp�1ðy0Þ;þlÞ.

Since m1ðW�kÞ equals 1 for every k, we conclude that

m1ðp�1ðy0Þ;þlÞ ¼ 1:

However, from (1.7), we then deduce that p�1ðy0Þ ¼ �l, which contradicts
our assumptions from the beginning of the proof. In other words, W contains a
straight line and the theorem immediately follows. r

It thus remains to establish Lemma 2.2.

3. Eigenvalue asymptotics in thin strips

In this section we establish Lemma 2.2 as a consequence of a general result about
convergence of all eigenvalues of T in thin domains of the type (2.3).

3.1. The geometric setting. Let f : ½0;þlÞ ! ½0;þlÞ be a concave non-
decreasing continuous non-trivial function such that f ð0Þ ¼ 0 (the case f ð0Þ > 0
is actually much easier to deal with). Given a positive number e < sup f , we put

feðxÞ :¼ minfe; f ðxÞg

and define an unbounded domain

We :¼ fðx; yÞ a R2 : 0 < x; 0 < y < feðxÞg:

Clearly, (2.3) can be cast into this form after identifying f ¼ p�1 in a small neigh-
bourhood of zero and a translation. However, keeping in mind that the problem
(1.1) is not translation-invariant, we accordingly change the definition of the
Gaussian weight throughout this section

gðx; yÞ :¼ exp
�
�ðx0 þ xÞ2 þ ðy0 þ yÞ2

2

�
:

Here y0 is primarily thought as the point from (2.3) and x0 is then such that
ðx0; y0Þ a W�k . For the results established in this section, however, x0 and y0 can
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be thought as arbitrary real numbers. For our method to work, it is only impor-
tant to assume (2.4), which accordingly transfers to

f 0ð0Þ < þl:ð3:1Þ

3.2. The analytic setting and main result. Keeping the translation we have made
in mind, instead of (1.1) we equivalently consider the eigenvalue problem

�divðg‘uÞ ¼ mgu in We;

qu

qn
¼ 0 on qWe:

8<
:ð3:2Þ

We understand (3.2) as a spectral problem for the self-adjoint operator Te in the
Hilbert space L2

g ðWeÞ associated with the quadratic form te½u� :¼ k‘uk2e , DðteÞ :¼
H 1

g ðWeÞ. Here k � ke denotes the norm in L2
g ðWeÞ. We arrange the eigenvalues of Te

in a non-decreasing sequence fmnðWeÞgn AN where each eigenvalue is repeated
according to its multiplicity. In this paper we adopt the convention 0 a N. We
are interested in the behaviour of the spectrum as e ! 0, particularly m1ðWeÞ
because of Lemma 2.2.

It is expectable that the eigenvalues will be determined in the limit e ! 0 by
the one-dimensional problem

�ðg0u 0Þ0 ¼ ng0u in ð0;þlÞ;
u 0ð0Þ ¼ 0;

�
ð3:3Þ

where

g0ðxÞ :¼ gðx; 0Þ ¼ exp
�
�ðx0 þ xÞ2 þ y20

2

�
:

Again, we understand (3.3) as a spectral problem for the self-adjoint operator
T0 in the Hilbert space L2

g0
ðð0;þlÞÞ associated with the quadratic form t0½u� :¼

k‘uk20 , Dðt0Þ :¼ H 1
g0
ðð0;þlÞÞ, where k � k0 denotes the norm in L2

g0
ðð0;þlÞÞ. As

above, we arrange the eigenvalues of T0 in a non-decreasing sequence fnngn AN
where each eigenvalue is repeated according to its multiplicity. By construction,
for each n a N, nn coincides with the eigenvalue mnðx0;þlÞ defined in (1.6).

In this section we prove the following convergence result.

Theorem 3.1. Let f : ½0;þlÞ ! ½0;þlÞ be a concave non-decreasing continu-
ous non-trivial function such that f ð0Þ ¼ 0. Assume in addition (3.1). Then

En a N; mnðWeÞ ��!
e!0

nn:

We shall also establish certain convergence of eigenfunctions of Te to eigen-
functions of T0.

Clearly, Lemma 2.2 is the case n ¼ 1 of this general theorem.
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The rest of this section is devoted to a proof of Theorem 3.1.

3.3. From the moving to a fixed domain. Our main strategy is to map We into a
fixed strip W. We introduce a refined mapping in order to e¤ectively deal with the
singular situation f ð0Þ ¼ 0.

Let

ae :¼ inf f �1
e ðfegÞ:

By the definition of fe and since f is non-decreasing, ae ! 0 as e ! 0 and
feðxÞ ¼ e for all x > ae. If f ð0Þ > 0, then there exists e0 > 0 such that ae ¼ 0 for
all ea e0. On the other hand, if f ð0Þ ¼ 0, then ae > 0 for all e > 0. The trouble-
some situation is the latter, to which we have restricted from the beginning. In
this case, we introduce an auxiliary function

geðsÞ :¼
aesþ ae if s a ½�1; 0Þ;
sþ ae if s a ½0;þlÞ:

�

Since we are interested in the limit e ! 0, we may henceforth assume

ea 1 and ae a 1:ð3:4Þ

Define e-independent sets

W� :¼ ð�1; 0Þ � ð0; 1Þ; Wþ :¼ ð0;þlÞ � ð0; 1Þ; W :¼ ð�1;þlÞ � ð0; 1Þ:

The mapping

Le : W ! We : fðs; tÞ 7! Leðs; tÞ :¼ ðgeðsÞ; feðgeðsÞÞtÞgð3:5Þ

represents a C0;1-di¤eomorphism between W and We ( f is di¤erentiable almost
everywhere, as it is supposed to be concave). In this way, we obtain a convenient
parametrisation of We via the coordinates ðs; tÞ a W whose Jacobian is

jeðs; tÞ ¼ g 0
eðsÞ feðgeðsÞÞ:ð3:6Þ

Note that the Jacobian is independent of t and singular at s ¼ �1. Now we recon-
sider (3.2) in W. With the notation

geðs; tÞ :¼ ðg �LeÞðs; tÞ ¼ exp
�
� ½x0 þ geðsÞ�2 þ ½y0 þ feðgeðsÞÞt�2

2

�
;

introduce the unitary transform

Ue : L
2
g ðWeÞ ! L2

ge je=e
ðWÞ : fu 7!

ffiffi
e

p
u �Leg:

Here, in addition to the change of variables (3.5), we also make an irrelevant
scaling transform (so that the renormalised Jacobian je=e is 1 in Wþ). The
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operators He :¼ UeTeU
�1
e and Te are isospectral. By definition, He is associated

with the quadratic form he½c� :¼ te½U�1
e c�, DðheÞ :¼ UeDðteÞ.

Proposition 3.1. Assume (3.1). Then

he½c� ¼
Z
W

� qsc

g 0
e

� f 0
e � ge
fe � ge

tqtc
�2

þ ðqtcÞ2

ð fe � geÞ2

" #
geg

0
e

fe � ge
e

ds dt;ð3:7Þ

DðheÞ � H 1
ge je=e

ðWÞ:ð3:8Þ

Here we have started to simplify the notation by suppressing arguments of the
functions.

Proof. The space De :¼ C1
0 ðR2Þ 0 We is a core of te. The transformed space

D :¼ UeDe is a subset of C0
0 ðR2Þ 0 W consisting of Lipschitz continuous functions

on W which belong to C1ðW�ÞaC1ðWþÞ (we do not have C1 globally, because
ge and fe are not smooth). For any c a D, it is easy to check (3.7); this formula
extends to all c from the domain

DðheÞ ¼ D
k�khe ; k � khe :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he½�� þ k � k2

q
;

where k � k denotes the norm of L2
ge je=e

ðWÞ. Let c a D. Using elementary esti-
mates, we easily check

h�e ½c�a he½c�ð3:9Þ

where

h�e ½c� :¼ d

Z
W

� qsc

g 0
e

�2
geg

0
e

fe � ge
e

ds dt

þ
�
1� d

1� d
k f 0

e k
2
l

�Z
W

ðqtcÞ2

ð fe � geÞ2
geg

0
e

fe � ge
e

ds dt

with any d a ð0; 1Þ. Note that f 0
e is bounded under the assumption (3.1) and the

concavity. For any e > 0, we can choose d so small that h�e ½c� is composed of
a sum of two non-negative terms (d can be made independent of e if we restrict
the latter to a fixed bounded interval, say ð0; 1�, see (3.4), because k f 0

e kLlðð0;1ÞÞ a
k f 0kLlðð0;1ÞÞ, but this assumption is not needed for the property we are proving).
Using that g 0

e is bounded for any fixed e and the estimate fe � ge a e, we thus
deduce from (3.9) that there is a positive constant ce; d (again, this constant can
be made independent of e if ea 1) such that

ce; dkck2H 1
ge je=e

ðWÞ a kckhe :

This proves (3.8) because D is dense in H 1
ge je=e

ðWÞ. r
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3.4. The eigenvalue equation. Recall that we denote the eigenvalues of Te

(and hence He) by mnðWeÞ with n a N (¼ f0; 1; . . .g). The ðnþ 1Þ th eigenvalue
can be characterised by the Rayleigh-Ritz variational formula

mnðWeÞ ¼ inf
dimLn¼nþ1
Ln�DðheÞ

sup
c ALn

he½c�
kck2

:ð3:10Þ

Proposition 3.2. For any n a N, there exists a positive constant Cn such that
for all ea 1,

mnðWeÞaCn:

Proof. Assuming ea 1, we have the following two-sided e- and t-independent
bound

g�ðsÞa geðs; tÞa gþðsÞð3:11Þ

valid for every ðs; tÞ a Wþ with

g�ðsÞ :¼ exp
�
�ðjx0j þ sþ 1Þ2 þ ðjy0j þ 1Þ2

2

�
;

gþðsÞ :¼ exp
�
�ð�jx0j þ sÞ2 � 2jy0j

2

�
:

Using in addition that g 0
e ¼ 1 and fe � ge ¼ e in Wþ, we obviously have

Ec a Cl
0 ðð0;þlÞÞn f1g; he½c�

kck2
a

R
Wþ

ðqscÞ2gþðsÞ ds dtR
Wþ

c2g�ðsÞ ds dt
:

It then follows from (3.10) that the inequality of the proposition holds with the
numbers

Cn :¼ inf
dimLn¼nþ1

Ln�Cl
0
ðð0;þlÞÞ

sup
c ALn

R þl
0 c 0ðsÞ2gþðsÞ dsR þl
0 cðsÞ2g�ðsÞ ds

;

which are actually eigenvalues of the one-dimensional operator �g�1
� qsgþqs in

L2
g�
ðð0;þlÞÞ, subject to Dirichlet boundary conditions. r

Let us now fix n a N and abbreviate the ðnþ 1Þ th eigenvalue of He by
me :¼ mnðWeÞ. We denote an eigenfunction corresponding to me by ce and nor-
malise it to 1 in L2

ge je=e
ðWÞ, i.e.,

kcek ¼ 1ð3:12Þ

for every admissible e > 0.
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The weak formulation of the eigenvalue equation Hece ¼ mece reads

Ef a DðheÞ; heðf;ceÞ ¼ meðf;ceÞ;ð3:13Þ

where ð� ; �Þ stands for the inner product in L2
ge je=e

ðWÞ and heð� ; �Þ denotes the

sesquilinear form corresponding to he½��, that is Ef a DðheÞZ
W

�� qsce

g 0
e

� f 0
e � ge
fe � ge

tqtce

�� qsf

g 0
e

� f 0
e � ge
fe � ge

tqtf
�

ð3:14Þ

þ ðqtceÞ
ð fe � geÞ

ðqtfÞ
ð fe � geÞ

�
geg

0
e

fe � ge
e

ds dt

¼ me

Z
W

cefgeg
0
e

fe � ge
e

ds dt:

3.5. What happens in Wþ. Using jtja 1, we easily verify

Eðs; tÞ a Wþ; geðs; tÞb reðsÞg0ðsÞ;ð3:15Þ

where the function

reðsÞ :¼ exp
�
� a2e þ 2jx0jae þ e2 þ 2jy0je

2

�
expð�aesÞ

is converging pointwise to 1 as e ! 0.
Choosing f ¼ ce as a test function in (3.13) and using (3.15) together with

Proposition 3.2 and (3.12), we obtainZ
Wþ

ðqsceÞ
2reg0 ds dtþ

Z
Wþ

ðqtceÞ
2

e2
reg0 ds dta he½ce� ¼ mekcek

2
aC:ð3:16Þ

Here and in the sequel, we denote by C a generic constant which is independent
of e and may change its value from line to line. Writing

ceðs; tÞ ¼ jeðsÞ þ heðs; tÞ;ð3:17Þ

where Z 1

0

heðs; tÞ dt ¼ 0 for a:e: s a ð0;þlÞ;ð3:18Þ

we deduce from the second term on the left hand side of (3.16)

p2

Z
Wþ

h2e reg0 ds dta

Z
Wþ

ðqtheÞ
2reg0 ds dtaCe2:ð3:19Þ
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Di¤erentiating (3.18) with respect to s, we may writeZ
Wþ

ðqsceÞ
2reg0 ds dt ¼

Z
Wþ

j 02
e reg0 ds dtþ

Z
Wþ

ðqsheÞ
2reg0 ds dt

and putting this decomposition into (3.16), we get from the first term on the left
hand side Z þl

0

j 02
e reg0 dsaC;

Z þl

0

ðqsheÞ
2reg0 dsaC:ð3:20Þ

At the same time, from (3.12) using (3.15), we obtainZ
Wþ

j2
e reg0 ds dtþ

Z
Wþ

h2e reg0 ds dt ¼
Z
Wþ

c2
e reg0 ds dta kcek

2 ¼ 1;ð3:21Þ

where the first equality employs (3.18). Consequently,Z þl

0

j2
e reg0 dsa 1:ð3:22Þ

Finally, employing the first inequality from (3.20) and (3.22), we getZ þl

0

ð ffiffiffiffi
re

p
jeÞ

02g0 dsaC:ð3:23Þ

From (3.22) and (3.23), we see that f ffiffiffiffi
re

p
jege>0 is a bounded family in

H 1
g0
ðð0;þlÞÞ and therefore precompact in the weak topology of this space.

Let j0 be a weak limit point, i.e. for a decreasing sequence of positive numbers
feigi AN such that ei ! 0 as i ! þl,ffiffiffiffiffi

rei
p

jei ���!wi!þl
j0 in H 1

g0
ðð0;þlÞÞ:ð3:24Þ

Since H 1
g0
ðð0;þlÞÞ is compactly embedded in L2

g0
ðð0;þlÞÞ, we may assumeffiffiffiffiffi

rei
p

jei ���!si!þl
j0 in L2

g0
ðð0;þlÞÞ:ð3:25Þ

3.6. What happens in W�. Here ge can be estimated from below just by an
e-independent positive number, e.g.,

Eðs; tÞ a W�; geðs; tÞb exp
�
�ðjx0j þ 1Þ2 þ jy0j þ 1Þ2

2

�
:ð3:26Þ

On the other hand, we need a lower bound to fe. Employing that f is concave
and non-decreasing, we can use

Es a ð�1; 0Þ; feðgeðsÞÞb eðsþ 1Þ:ð3:27Þ

Recall also that g 0
e ¼ ae on ð�1; 0Þ.
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Choosing f ¼ ce as a test function in (3.13) and using (3.26) and (3.27), we
obtain Z

W�

� qsce

ae
� f 0

e � ge
fe � ge

tqtce

�2
aeðsþ 1Þ ds dtð3:28Þ

þ
Z
W�

ðqtceÞ
2

ð fe � geÞ2
aeðsþ 1Þ ds dtaC:

Assume (3.1). Using elementary estimates as in the proof of Proposition 3.1, this
inequality implies

d

Z
W�

� qsce

ae

�2
aeðsþ 1Þ ds dtð3:29Þ

þ
�
1� d

1� d
k f 0

e k
2
l

�Z
W�

ðqtceÞ
2

ð fe � geÞ2
aeðsþ 1Þ ds dtaC

with any d a ð0; 1Þ. We can choose d (independent of e due to (3.4)) so small that
the left hand side of (3.29) is composed of a sum of two non-negative terms.
Using in addition fe � gea e, we thus deduce from (3.29)

1

ae

Z
W�

ðqsceÞ
2ðsþ 1Þ ds dtþ ae

e2

Z
W�

ðqtceÞ
2ðsþ 1Þ ds dtaC:

Moreover, it follows from (3.1) and the convexity bound

Esb 0; f ðsÞa f 0ð0Þsð3:30Þ

that

ea f 0ð0Þae:ð3:31Þ

Hence Z
W�

j‘cej
2ðsþ 1Þ ds dtaCae:ð3:32Þ

Now we write (je is constant!)

ceðs; tÞ ¼ je þ heðs; tÞ;ð3:33Þ

where Z
W�

heðs; tÞðsþ 1Þ ds dt ¼ 0:ð3:34Þ

We state the following explicit result (although positivity of the minimum would
be su‰cient for our purposes).
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Lemma 3.1. Writing wðs; tÞ :¼ sþ 1, we have

min

R
W�

j‘hj2wR
W�

h2w
: u a H 1

wðW�Þnf0g;
Z
W�

hw ¼ 0

( )
¼ p2:

Proof. The minimum equals the first non-trivial eigenvalue m1 of the operator
�w�1 divðw‘Þ in L2

wðW�Þ, subject to Neumann boundary conditions. By separa-
tion of variables, m1 coincides with the minimum between the first non-trivial
eigenvalue of the operator �ðsþ 1Þ�1qsððsþ 1ÞqsÞ in L2ðð0; 1Þ; ðsþ 1Þ dsÞ, subject
to Neumann boundary conditions, and the first non-trivial eigenvalue of the
Laplacian �q2t in L2ðð0; 1Þ; dtÞ, subject to Neumann boundary conditions. (We
remark that the former operator is the radial component of the Laplacian in
the unit disk centred at ð�1; 0Þ.) By solving these one-dimensional eigenvalue
problems explicitly in terms of special functions, we know that the first non-trivial
eigenvalues are given by j21;1 and p2, respectively. Here j1;1Q3:83 is the first
positive zero of the Bessel function J1 (see [1, Sec. 9]). Since, j1;1 > p, we get the
desired claim. r

With help of this lemma, we deduce from (3.32)

p2

Z
W�

h2e ðsþ 1Þ ds dta
Z
W�

j‘hej
2ðsþ 1Þ ds dtaCae:ð3:35Þ

At the same time, from (3.12) using (3.26) and (3.27), we obtainZ
W�

j2
e aeðsþ 1Þ ds dtþ

Z
W�

h2e aeðsþ 1Þ ds dt ¼
Z
W�

c2
e aeðsþ 1Þ ds dtaC;ð3:36Þ

where the first equality employs (3.34). Consequently, recalling that je is con-
stant,

j2
e ae aC on W�:ð3:37Þ

3.7. The limiting eigenvalue equation in Wþ. Now we consider (3.13) for the
sequence feigi AN and a test function fðs; tÞ ¼ jðsÞ, where j a Cl

0 ðRÞ is such
that j 0 ¼ 0 on ½�1; 0�, and take the limit i ! þl.

We shall need a lower bound analogous to the upper bound (3.31). From the
fundamental theorem of calculus, we deduce

Es a ½0; ae�; f ðsÞb
�
ess inf
ð0;aeÞ

f 0
�
s:ð3:38Þ

Note that the infimum cannot be zero unless f is trivial (we assume from the
beginning e < sup f and that f is non-decreasing) and that it converges to
f 0ð0Þ > 0 as e ! 0. Consequently, for all su‰ciently small e, we have

eb
1

2
f 0ð0Þae:ð3:39Þ
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At the same time, in analogy with (3.15), we have

Eðs; tÞ a Wþ; geðs; tÞa cereðsÞg0ðsÞ;ð3:40Þ

where

ce :¼ exp
� 2jx0jae þ e2 þ 2jy0je

2

�
is converging to 1 as e ! 0.

We first look at the right hand side of (3.13). Using the decompositions (3.17)
and (3.33), we have

ðj;ceÞ ¼
Z
W�

jjegeae
fe � ge
e

ds dtþ
Z
W�

jhegeae
fe � ge
e

ds dt

þ
Z
Wþ

jjege ds dtþ
Z
Wþ

jhege ds dt:

Estimating ge a 1 and using (3.30) and (3.39), we getZ
W�

jhegeae
fe � ge
e

ds dt

����
����a a2e

e
f 0ð0Þ

Z
W�

jjj jhejðsþ 1Þ ds dt

a 2ae

Z
W�

jjj jhejðsþ 1Þ ds dt;

where the right hand side tends to zero as e ! 0 due to the Schwarz inequality
and (3.35). At the same time, recalling that je is constant in W�,Z

W�

jjegeae
fe � ge
e

ds dt

����
����a a2e

e
f 0ð0Þ

Z
W�

jjj jjejðsþ 1Þ ds dt

a 2aejjej
Z
W�

jjjðsþ 1Þ ds dt;

where the right hand side tends to zero as e ! 0 due to (3.37). Using (3.40), we
also getZ

Wþ

jhege ds dt

����
����a ce

Z
Wþ

jjj jhejreg0 ds dta ce

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Wþ

j2g0 ds dt

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Wþ

h2e reg0 ds dt

s
;

where the right hand side tends to zero as e ! 0 due to (3.19). Finally, we writeZ
Wþ

jjeigei ds dt ¼
Z
Wþ

jjei
ffiffiffiffiffi
rei

p
g0 ds dtþ

Z
Wþ

jjei
ffiffiffiffiffi
rei

p
g0

� geiffiffiffiffiffi
rei

p
g0

� 1
�
ds dt:
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Here the first term on the right hand side converges to

Z
Wþ

jj0g0 ds dt as i ! þl

due to (3.24), while the second term vanishes in the limit because of

Z
Wþ

jjei
ffiffiffiffiffi
rei

p
g0

� geiffiffiffiffiffi
rei

p
g0

� 1
�
ds dt

�����
�����

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Wþ

j2g0

� geiffiffiffiffiffi
rei

p
g0

� 1
�2

ds dt

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Wþ

j2
ei
reig0 ds dt

s
:

Indeed the second term on the right hand side is bounded by (3.21), while first
term tends to zero as i ! þl by the dominated convergence theorem. Summing
up,

lim
i!þl

ðj;cei
Þ ¼

Z þl

0

jj0g0 ds:ð3:41Þ

Employing that the test function j is constant on ½�1; 0� and the decomposi-
tion (3.17), we have

heðj;ceÞ ¼
Z
Wþ

j 0j 0
ege ds dtþ

Z
Wþ

j 0qshege ds dt:

Here the first term on the right hand side can be treated in the same way as above
with the conclusionZ

Wþ

j 0j 0
ei
gei ds dt ���!i!þl

Z
Wþ

j 0j 0
0g0 ds dt ¼

Z þl

0

j 0j 0
0g0 ds;

while we integrate by parts to handle the second term,Z
Wþ

j 0qshege ds dt ¼ �
Z
Wþ

j 00hege ds dt�
Z
Wþ

j 0heqsge ds dt:

Notice that the boundary terms vanish because j has a compact support in R and
j 0ð0Þ ¼ 0. As above, the first term on the right hand side vanishes as e ! 0 due
to (3.19). Similarly, using qsgeðs; tÞ ¼ �geðs; tÞðx0 þ sþ aeÞ for all ðs; tÞ a Wþ and
(3.40), we haveZ

Wþ

j 0heqsge ds dt

����
����a ce

Z
Wþ

jj 0j jhejreg0ðx0 þ sþ aeÞ ds dt

a ce

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Wþ

j 02g0ðx0 þ sþ aeÞ2 ds dt
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

Wþ

h2e reg0 ds dt

s
;

458 b. brandolini et al.



where the right hand side tends to zero as e ! 0 due to (3.19). Summing up,

lim
i!þl

heiðj;cei
Þ ¼

Z þl

0

j 0j 0
0g0 ds:ð3:42Þ

Since the set of functions j a Cl
0 ðRÞ satisfying j 0ð0Þ ¼ 0 is a core for the form

domain of the operator T0, we conclude from (3.42) and (3.41) that j0 belongs to
DðT0Þ and solves the one-dimensional problems

T0j0 ¼ mþ
0 j0; mþ

0 :¼ lim sup
i!þl

mei ;

T0j0 ¼ m�
0 j0; m�

0 :¼ lim inf
i!þl

mei :
ð3:43Þ

If j0A 0 on ð0;þlÞ, then me0 must coincide with some eigenvalues of T0. It
remains to check that indeed j0A 0 on ð0;þlÞ.

3.8. The limiting problem in W�: a crucial step. Define

W 0
� :¼ ð�1=2; 0Þ � ð0; 1Þ; W 0

þ :¼ ð0; 1=2Þ � ð0; 1Þ; W 0 :¼ ð�1=2; 1=2Þ � ð0; 1Þ:

From (3.32) and (3.36), we respectively haveZ
W 0

�

j‘cej
2
ds dta 2Cae;

Z
W 0

�

c2
e ds dta

2C

ae
:ð3:44Þ

At the same time, denoting m0 :¼ min½0;1=2� g0 and assuming ea 1, from (3.16)
and (3.21), we respectively getZ

W 0
þ

j‘cej
2
ds dta

C

m0reð1=2Þ
;

Z
W 0

þ

c2
e ds dta

1

m0reð1=2Þ
:ð3:45Þ

Consequently, ce a H 1ðW 0Þ for any ea 1 (although, in principle, kcekH 1ðW 0Þ
might not be uniformly bounded in e).

It follows that the boundary values ceð0�; tÞ and ceð0þ; tÞ exist in the sense
of traces in W 0

� and W 0
þ, respectively, and they must be equal as functions of t

in L2ðð0; 1ÞÞ. Using the decompositions (3.17) and (3.33), we therefore have, for
almost every t a ð0; 1Þ,

½jeð0�Þ � jeð0þÞ�2 ¼ heð0þ; tÞ � heð0�; tÞ½ �2 a 2½heð0þ; tÞ�2 þ 2½heð0�; tÞ�2

a 2C

Z 1=2

0

ð½heðs; tÞ�
2 þ ½qsheðs; tÞ�

2Þ ds

þ 2C

Z 0

�1=2

ð½heðs; tÞ�
2 þ ½qsheðs; tÞ�

2Þ ds:
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Here C is a positive constant coming from the Sobolev embedding theorem
H 1ðð0; 1=2ÞÞ ,! C0ð½0; 1=2�Þ applied to s 7! heð0e; tÞ for almost every t a ð0; 1Þ,
which is justified by he a H 1ðW 0

eÞ and Fubini’s theorem. Recall that je is con-
stant on ð�1; 0Þ and je a H 1ðð0; 1=2ÞÞ ,! C0ð½0; 1=2�Þ; more specifically, the first
inequality of (3.20) and (3.22) respectively yieldZ 1=2

0

j 02
e dsa

C

m0reð1=2Þ
;

Z 1=2

0

j2
e dsa

1

m0reð1=2Þ
:ð3:46Þ

Integrating with respect to t above, we deduce

½jeð0�Þ � jeð0þÞ�2 a 2C

Z
W 0

þ

½h2e þ ðqsheÞ
2� ds dtþ 2C

Z
W 0

�

½h2e þ ðqsheÞ
2� ds dt:

Applying (3.19), the second inequality of (3.20) and (3.35), we may write

½jeð0�Þ � jeð0þÞ�2 aC;ð3:47Þ

where C is a constant (di¤erent from the above) independent of e, provided that
(3.4) holds. Finally, applying (3.46) and the Sobolev embedding H 1ðð0; 1=2ÞÞ ,!
C0ð½0; 1=2�Þ, we deduce from (3.47) the following improvement upon (3.37)

j2
e aC on W�:ð3:48Þ

3.9. As e ! 0 only Wþ matters: convergence of eigenvalues and eigenfunctions.
Estimate (3.48) provides a crucial information whose significance consists in that
what happens in W� is insignificant.

Proposition 3.3. One has

kcei
k ���!

i!þl
kj0kL2

g0
ðð0;þlÞÞ:

Proof. We have

kcek
2 ¼

Z
W�

j2
e geae

fe � ge
e

ds dtþ
Z
W�

h2e geae
fe � ge
e

ds dt

þ
Z
W�

2jehegeae
fe � ge
e

ds dt

þ
Z
Wþ

j2
e ge ds dtþ

Z
Wþ

h2e ge ds dtþ
Z
Wþ

2jehege ds dt:

The right hand side of the first line together with the mixed term on the second
line goes to zero as e ! 0. Indeed, recalling (3.30), (3.39) and ge a 1,Z

W�

j2
e geae

fe � ge
e

ds dta 2aej
2
e

Z
W�

ðsþ 1Þ ds dt �!
e!0

0
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due to (3.48); Z
W�

h2e geae
fe � ge
e

ds dta 2ae

Z
W�

h2e ðsþ 1Þ ds �!
e!0

0

due to (3.35); and the mixed term goes to zero by the Schwarz inequality. Simi-
larly, recalling (3.40),

Z
Wþ

h2e ge ds dta ce

Z
Wþ

h2e reg0 ds dt �!
e!0

0

due to (3.19); while the Schwarz inequality yields

Z
Wþ

2jehege ds dt

����
����a 2ce

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Wþ

h2e reg0 ds dt

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Wþ

j2
e reg0 ds dt

s
�!
e!0

0;

where the second square root is bounded in e due to (3.22). Finally, we write

Z
Wþ

j2
ei
gei ds dt ¼

Z
Wþ

j2
ei
reig0 ds dtþ

Z
Wþ

j2
ei
ðgei � reig0Þ ds dt

and observe that the first term on the right hand side tends to the desired result
kj0k

2
L2
g0
ðð0;þlÞÞ as i ! þl by the strong convergence (3.25), while the second

term vanishes in the limit. In more detail,

Z
Wþ

j2
ei
ðgei � reig0Þ ds dt

����
���� ¼

Z
Wþ

ðj2
ei
rei � j2

0 þ j2
0Þ
� gei
rei

� g0

�
ds dt

����
����

a

Z
Wþ

j2
ei
rei � j2

0

�� ��ðceig0 þ g0Þ ds dt

þ
Z
Wþ

j2
0

� gei
rei

� g0

�
ds dt;

where the first term after the inequality tends to zero as i ! þl by the strong
convergence again, while the second term vanishes by the dominated convergence
theorem. r

It follows from Proposition 3.3 that j0A0, so that it is indeed an eigenfunc-
tion of T0 due to (3.43). In particular, mþ

0 ¼ m�
0 .

Now, let ĉce be a normalised eigenfunction corresponding to possibly another
eigenvalue m̂me :¼ mmðeÞ. Again, we use the decompositions (3.17) and (3.33) and
distinguish the individual components by hat. In the same way as we proved
Proposition 3.3, we can establish
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Proposition 3.4. One has

ðcei
; ĉcêej

Þ ����!
i; j!þl

ðj0; ĵj0ÞL2
g0
ðð0;þlÞÞ:

If mA n, then ðcei
; ĉcêej

Þ ¼ 0 and thus ðj0; ĵj0ÞL2
g0
ðð0;þlÞÞ ¼ 0. Hence j0 and

ĵj0 correspond to distinct eigenvalues of T0. In particular, j0 is an eigenfunction
corresponding to the ðnþ 1Þ th eigenvalue nn of T0. Since we get this result for
any weak limit point of fjege>0, we have the convergence results actually in
e ! 0 (no need to pass to subsequences).

This completes the proof of Theorem 3.1.
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Università degli Studi di Napoli Federico II

Complesso Monte S. Angelo

Via Cintia

80126 Napoli, Italy

brandolini@unina.it

Francesco Chiacchio

Dipartimento di Matematica e Applicazioni ‘‘R. Caccioppoli’’
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