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Solved and Unsolved Problems
Michael Th. Rassias (Institute of Mathematics, University of Zürich, Switzerland)

The world is continuous, but the mind is discrete.

David Mumford

The problem column in this issue is devoted to discrete mathematics.

This beautiful and highly applicable area of mathematics deals with

the study of discrete structures and phenomena. The structures stud-

ied in discrete mathematics consist of sequences of individual steps.

This is in contrast to other areas of mathematics such as differential

calculus, where the concept of a continuous process plays an integral

role.

Discrete mathematics covers several subjects, among them the

theory of sets and relations, mathematical logic, combinatorics and

graph theory, as well as some aspects of number theory. Combina-

torics and graph theory have a prominent place in the world of dis-

crete mathematics.

It is worth mentioning that in our modern society, discrete mod-

els – and thus the techniques to study them – have a wide range of

applicability. Apart from the fact that the notion of enumeration ap-

pears so naturally in our everyday life, another essential reason for

the increased applicability of such models is their intimate connec-

tion to computers, which have become so deeply integrated into our

culture.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

179. Let p = p1 p2 · · · pn and q = q1q2 · · · qn be two permuta-

tions. We say that they are colliding if there exists at least one

index i so that |pi−qi | = 1. For instance, 3241 and 1432 are collid-

ing (choose i = 3 or i = 4), while 3421 and 1423 are not colliding.

Let S be a set of pairwise colliding permutations of length n. Is it

true that |S | ≤
(

n

�n/2�
)
?

(Miklós Bóna, Department of Mathematics, University of

Florida, Gainesville, FL 32608, USA)

180. Let us say that a word w over the alphabet {1, 2, · · · , n}
is n-universal if w contains all n! permutations of the symbols

1, 2, . . . , n as a subword, not necessarily in consecutive positions.

For instance, the word 121 is 2-universal as it contains both 12

and 21, while the word 1232123 is 3-universal. Let n ≥ 3. Does

an n-universal word of length n2 − 2n + 4 exist?

(Miklós Bóna, Department of Mathematics, University of

Florida, Gainesville, FL 32608, USA)

181. Given natural numbers m and n, let [m]n be the collection

of all n-letter words, where each letter is taken from the alphabet

[m] = {1, 2, . . . ,m}. Given a word w ∈ [m]n, a set S ⊆ [n] and

i ∈ [m], let w(S , i) be the word obtained from w by replacing the

jth letter with i for all j ∈ S . The Hales–Jewett theorem then says

that for any natural numbers m and r, there exists a natural num-

ber n such that every r-colouring of [m]n contains a monochro-

matic combinatorial line, that is, a monochromatic set of the form

{w(S , 1),w(S , 2), . . . ,w(S ,m)} for some S ⊆ [n]. Show that for

m = 2, it is always possible to take S to be an interval in this

theorem, while for m = 3, this is not the case.

(David Conlon, Mathematical Institute, University of Oxford,

Oxford, UK)

182. (A) Let A1, A2, . . . be finite sets, no two of which are dis-

joint. Must there exist a finite set F such that no two of A1 ∩ F,

A2 ∩ F, . . . are disjoint?

(B) What happens if all of the Ai are the same size?

(Imre Leader, Department of Pure Mathematics and

Mathematical Statistics, University of Cambridge, Cambridge,

UK)

183. The following is from the 2012 Green Chicken maths con-

test between Middlebury and Williams Colleges. A graph G is

a collection of vertices V and edges E connecting pairs of ver-

tices. Consider the following graph. The vertices are the integers

{2, 3, 4, . . . , 2012}. Two vertices are connected by an edge if they

share a divisor greater than 1; thus, 30 and 1593 are connected by

an edge as 3 divides each but 30 and 49 are not. The colouring

number of a graph is the smallest number of colours needed so

that each vertex is coloured and if two vertices are connected by

an edge then those two vertices are not coloured the same. The

Green Chicken says the colouring number of this graph is at most

9. Prove he is wrong and find the correct colouring number.

(Steven J. Miller, Department of Mathematics and Statistics,

Williams College, Williamstown, MA, USA)

184. There are n people at a party. They notice that for every two

of them, the number of people at the party that they both know is

odd. Prove that n is an odd number.1

(Benny Sudakov, Department of Mathematics, ETH Zürich,

Zürich, Switzerland)

Solved and Unsolved Problems
Michael Th. Rassias (University of Zürich, Switzerland)



Problem Corner

56 EMS Newsletter September 2017

II Open Problems: Two combinatorial problems by

Endre Szemerédi

(Renyi Alfred Mathematical Institute of the

Hungarian Academy of Sciences, Budapest, Hungary.

This work was supported by the ERC-AdG. 321104

and OTKA NK 104183 grants.)

185* (Erdős’ unit distance problem). In 1946, Erdős [7] pub-

lished a short paper in the American Mathematical Monthly, in

which he suggested a very natural modification of the Hopf-Pann-

witz question. Let P be a set of n points in the plane. What happens

if we want to determine or estimate u(n), the largest number of un-

ordered pairs {p, q} ⊂ P such that p and q are at a fixed distance,

which is not necessarily the largest distance between two elements

of P? Without loss of generality, we can assume that this distance

is the unit distance. This explains why Erdős’ question is usually

referred to as the unit distance problem. That is,

u(n) = max
P⊂R2 ,|P|=n

∣∣∣∣{{p, q} ⊂ P : |p − q| = 1
}∣∣∣∣.

(a) Using classical results of Fermat and Lagrange, Erdős showed

that one can choose an integer x ≤ n/10 that can be written as

the sum of two squares in at least nc/ log log n different ways, for a

suitable constant c > 0. Thus, among the points of the
√

n × √n

integer lattice, there are at least (1/2)n1+c/ log log n pairs whose dis-

tance is
√

x. Scaling this point set by a factor of 1/
√

x, we obtain a

set of n points with at least (1/2)n1+c/ log log n, i.e. with a superlinear

number of unit distance pairs.

Erdős proved that

n1+c1/ log log n ≤ u(n) ≤ c2n3/2,

for some c1, c2 > 0, and he conjectured that the order of mag-

nitude of u(n) is roughly n1+c/ log log n. In spite of many efforts to

improve on the upper bound, 70 years after the publication of the

paper in Monthly, the best known upper bound is still only slightly

better than the above estimate. Erdős’ upper bound was first im-

proved to o(n3/2) by Józsa and Szemerédi [13], and ten years later

to O(n13/9) by Beck and Spencer [2]. In a joint paper with Spencer

and Trotter [17], I proved u(n) = O(n4/3), which is currently the

best known result.

(b) We say that n points in the plane are in convex position if they

form the vertex set of a convex polygon.

Erdős and Moser [9] conjectured that the number of unit distances,

uconv(n), among n points in convex position in the plane satisfies

uconv(n) = 5
3
n + O(1). They were wrong: Edelsbrunner and P. Ha-

jnal [6] exhibited an example with 2n − 7 unit distance pairs, for

every n ≥ 7. It is widely believed that uconv(n) = O(n) and perhaps

even uconv(n) = 2n + O(1). The best known upper bound is due to

Füredi [11], who proved by a forbidden submatrix argument that

uconv(n) = O(n log n). A very short and elegant inductional argu-

ment for the same bound can be found in [4].

Erdős suggested a beautiful approach to prove that uconv(n) grows

at most linearly with n. He conjectured that every convex n-gon

in the plane has a vertex from which there are no k + 1 other ver-

tices at the same distance. Originally, he believed that this is also

true with k = 2 but Danzer constructed a series of counterexam-

ples. Later, Fishburn and Reeds [10] even found convex polygons

whose unit distance graphs are 3-regular, that is, for each vertex

there are precisely three others at unit distance. If Erdős’ latter

conjecture is true for some integer k then this immediately implies

by induction that uconv(n) < kn.

186* Some problems on Sidon sets. A ⊂ [1, n] is called a Sidon

sequence if all sums a + a�, a, a� ∈ A are different.

(a) Prove or disprove that

|A| < n1/2 + O(1).

The best result is due to B. Lindström [15], who proved that

|A| < n1/2 + n1/4.

(b) Prove or disprove that

|A| < n1/2 + o(n1/4).

* * *

A = {a1 < a2 < a3 < . . .} is an infinite Sidon sequence if all sums

a + a�, a, a� ∈ A are distinct. A(n) denotes the number of elements

of A in [1, n].

(c) For every � > 0, construct (the construction can be a random

construction) an infinite Sidon sequence with A(n) > n1/2−ε.
The best bound is due to I. Ruzsa [16] and J. Cilleruelo [5]. They

constructed an infinite Sidon sequence with A(n) > n
√

2−1+o(1).

I. Ruzsa’s construction was a random one and J. Cilleruello’s con-

struction was a deterministic one.

* * *

Ah = {a1 < a2 < a3 < . . .} is a sequence such that all sums

a1 + a2 + . . . + ah, a1, a2, . . . , ah ∈ A are distinct. Ah(n) is the num-

ber of elements of Ah in [1, n].

(d) Prove or disprove that for h = 3,

A3(n) = o(n1/3).

Here, there are no results. A3(n) = O(n1/3) is trivial.
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[8] P. Erdős: On sets of distances of n points in Eu-

clidean space, Magyar Tudom. Akad. Matem. Kut. Int. Közl.

(Publ. Math. Inst. Hung. Acad. Sci.) 5 (1960), 165–169.
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III Solutions

171. Prove that every integer can be written in infinitely many

ways in the form

±12 ± 32 ± 52 ± · · · ± (2k + 1)2

for some choices of signs + and −.

(Dorin Andrica, Babesş Bolyai University, Cluj-Napoca,

Romania)

Solution by the proposer. The proof uses induction by step 16. In this

respect, we note that we have, for any positive integer m, the identity

16 = (2m − 1)2 − (2m + 1)2 − (2m + 3)2 + (2m + 5)2 (1)

and the representations

0 = −12 + 32 + 52 − 72 + 92 − 112 − 132 + 152,

1 = 12,

2 = 12 + 32 + 52 − 72 + 92 − 112 − 132 + 152,

3 = 12 − 32 + 52 + 72 + 92 + 112 + 132 − 152 − 172 − 192 + 212,

4 = −12 − 32 − 52 − 72 + 92 − 112 − 132 + 152 − 172 + 192,

5 = 12 + 32 + 52 + 72 + 92 + 112 + 132 + 152 − 172 − 192 − 212

−232 − 252 + 272 + 292,

6 = −12 − 32 + 52 − 72 − 92 + 112,

7 = 12 + 32 + 52 + 72 + 92 + 112 + 132 + 152 + 172 − 192 + 212

−232 − 252 − 272 + 292,

8 = −12 + 32,

9 = −12 − 32 + 52 − 72 − 92 − 112 − 132 − 152 − 172 + 192−
−212 − 232 − 252 − 272 + 292 + 312 + 332,

10 = 12 + 32,

11 = −12 − 32 + 52 − 72 − 92 − 112 − 132 − 152 + 172 − 192−
−212 + 232 + 252,

12 = −12 − 32 − 52 − 72 + 92 + 112 − 132 + 152 + 172,

13 = −12 − 32 − 52 − 72 + 92 + 112 − 132 − 152 + 172,

14 = −12 − 32 − 52 + 72,

15 = −12 − 32 + 52.

For example, to write 16 in this form, we use the representation of 0

and we consider m = 9 in identity (1) to get 16 = 172−192−212+232.

We obtain

16 = 0 + 16

= −12 + 32 + 52 − 72 + 92 − 112 − 132 + 152 + 172

− 192 − 212 + 232.

To show that there are infinitely many such representations, we ob-

serve that, from (1), we have 16 = (2m + 7)2 − (2m + 9)2 − (2m +

11)2 + (2m + 13)2. Hence, for any positive integer m, the following

identity holds:

0 = (2m − 1)2 − (2m + 1)2 − (2m + 3)2 + (2m + 5)2 − (2m + 7)2

+ (2m + 9)2 + (2m + 11)2 − (2m + 13)2.

In this way, we can add 0 to a representation for a suitable value of

m to get a new representation and then continue. �

Also solved by José Harnández Santiago (Morelia, Michoacán, Mex-

ico) and Alexander Vauth (Lübbecke, Germany)

172. Show that, for every integer n ≥ 1 and every real number

a ≥ 1, one has

1

2n
≤ 1

na+1

n∑
k=1

ka − 1

a + 1
<

1

2n

(
1 +

1

2n

)a
.

(László Tóth, University of Pécs, Hungary)

Solution by the proposer. We prove by induction on n. For n = 1, we

have
1

2
≤ 1 − 1

a + 1
<

1

2

(
3

2

)a
.

Here, the first inequality is equivalent to a ≥ 1, which holds true by

the condition. For the second one, if 1 ≤ a < 3 then 1 − 1
a+1
< 3

4
≤

1
2

(
3
2

)a
; if a ≥ 3 then 1 − 1

a+1
< 1 < 1

2

(
3
2

)a
.

Let S a(n) = 1a + 2a + · · · + na and assume that the inequalities

hold true for n, that is,

1

2
na +

1

a + 1
na+1 ≤ S a(n) <

1

2

(
n +

1

2

)a
+

1

a + 1
na+1, (2)

and prove (2) for n + 1.

Adding (n + 1)a to (2), we get

1

2
na +

1

a + 1
na+1 + (n + 1)a ≤ S a(n + 1) (3)

<
1

2

(
n +

1

2

)a
+

1

a + 1
na+1 + (n + 1)a.

Applying the inequalities

f

(
x + y

2

)
≤ 1

y − x

∫ y

x

f (t) dt ≤ f (x) + f (y)

2

for the convex function f (t) = ta with a ≥ 1 and for x = n, y = n+ 1,

we deduce
(
n +

1

2

)a
≤ 1

a + 1

(
(n + 1)a+1 − na+1

)
≤ na + (n + 1)a

2
. (4)

Now, by the second inequality of (4), we obtain

1

a + 1
(n + 1)a+1 − 1

2
(n + 1)a ≤ 1

2
na +

1

a + 1
na+1,

that is,

1

a + 1
(n + 1)a+1 +

1

2
(n + 1)a ≤ 1

2
na +

1

a + 1
na+1 + (n + 1)a. (5)
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By (5) and (3), we deduce

1

2
(n + 1)a +

1

a + 1
(n + 1)a+1 ≤ S a(n + 1). (6)

On the other hand, the first inequality of (4) gives

1

a + 1
na+1 ≤ 1

a + 1
(n + 1)a+1 −

�
n +

1

2

�a
(7)

and, by using the well known inequality

�
x + y

2

�a
<

xa + ya

2
, (a > 1, x � y)

for x = n + 1
2
, y = n + 3

2
, we have

(n + 1)a <
1

2

�
n +

1

2

�a
+

1

2

�
n +

3

2

�a
. (8)

Now, by summing the inequalities (7) and (8),

1

2

�
n +

1

2

�a
+

1

a + 1
na+1+(n+1)a <

1

2

�
n +

3

2

�a
+

1

a + 1
(n+1)a+1 (9)

and finally, by (9) and (3),

S a(n + 1) <
1

2

�
n +

3

2

�a
+

1

a + 1
(n + 1)a+1. (10)

Taking into account inequalities (6) and (10), we conclude that (2)

holds true for n + 1 and the proof is complete. �

Remarks. 1. The equality holds if and only if a = 1 and n ≥ 1 is

arbitrary.

2. We deduce by these inequalities the following well known

results:

lim
n→∞

1a + 2a + · · · + na

na+1
=

1

a + 1
,

lim
n→∞

n

�
1a + 2a + · · · + na

na+1
− 1

a + 1

�
=

1

2
,

valid for every fixed real a ≥ 1.

Also solved by Mihály Bencze (Brasov, Romania) and Panagiotis T.

Krasopoulos (Athens, Greece)

173. Let cn(k) denote the Ramanujan sum, defined as the sum of

kth powers of the primitive nth roots of unity. Show that, for any

integers n, k, a with n ≥ 1,

�
d|n

cd(k)an/d ≡ 0 (mod n).

(László Tóth, University of Pécs, Hungary)

Solution by the proposer. The proof is based on the congruence

Mn(a) :=
�
d|n
μ(d)an/d ≡ 0 (mod n), (11)

represented several times in the literature (see, for example, [1] and

[2]), and on Hölder’s relation,

cn(k) =
�
δ|(n,k)

δμ(n/δ).

We obtain

Rn(k, a) :=
�
d|n

cd(k)an/d =
�
d|n

⎛⎜⎜⎜⎜⎜⎜⎝
�
δ|(d,k)

δμ(d/δ)

⎞⎟⎟⎟⎟⎟⎟⎠ an/d ,

where, by denoting k = δa, d = δb, n = d j and regrouping the terms,

Rn(k, a) =
�
δb j=n
δa=k

δμ(b)aj =
�
δm=n
δa=k

δ
�
b j=m

μ(b)aj =
�
δ|(n,k)

δMn/δ(a).

We have from (11) that, for any δ, Mn/δ(a) is a multiple of n/δ,

hence δMn/δ(a) is a multiple of n. This shows that Rn(k, a) is a mul-

tiple of n. �

Remarks 1. If k = 0 then cn(0) = ϕ(n) is Euler’s totient function and

we have, as a consequence,
�
d|n
ϕ(d)an/d ≡ 0 (mod n),

which is also known in the literature.

2. For k = 1, one has cn(1) = μ(n), the Möbius function, and the

given congruence reduces to (11).
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Also solved by Mihály Bencze (Brasov, Romania) and Sotirios E.

Louridas (Athens, Greece)

174. Prove, disprove or conjecture:

(1) There are infinitely many primes with at least one 7 in their

decimal expansion.

(2) There are infinitely many primes where 7 occurs at least 2017

times in their decimal expansion.

(3) There are infinitely many primes where at most one-quarter

of the digits in their decimal expansion are 7s.

(4) There are infinitely many primes where at most half the digits

in their decimal expansion are 7s.

(5) There are infinitely many primes where 7 does not occur in

their decimal expansion.

(Steven J. Miller, Department of Mathematics and Statistics,

Williams College, Williamstown, MA, USA)

Solution by the proposer. (1) This follows from Dirichlet’s Theorem

of Primes (if a and b are relatively prime then there are infinitely

many primes congruent to a modulo b), as 7 and 10 are relatively

prime. The same is true for part (2).

We tackle part (4) first as it is easier than (3). Assume it is not

true. Let us count how many numbers in [10k, 10k+1) have at least

half their digits as 7s and, if k is large, there will be no primes in this

interval with at most half their digits as 7s (by assumption). How

many numbers are there? For each � ∈ [k/2, k], we have
�

k

�

�
ways

to choose which � of k digits are 7s and thus the number of such

numbers is
k�

�=k/2

�
k

�

�
1�9k−� ≤ k

2

�
k

k/2

�
9k/2

because the largest binomial coefficient is in the middle. While we

could use Stirling, note
�

k

k/2

�
< (1 + 1)k = 2k by the binomial theo-

rem. Thus, the number of numbers in [10k , 10k+1) with at least half

their digits as 7s is at most k2k9k/2 = k · 6k; as there are more than

10k such numbers, we see the percentage of numbers that have at

least half their digits as 7s is at most k6k/10k = k(6/10)k , which

tends to zero VERY rapidly. By Chebyshev’s Theorem we have that
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there are at least .9π(10k+1) − 1.1π(10k) primes in this interval, or at

least 10k−2/k primes. Thus, even if every number with at least half

its digits as 7s were prime, there wouldn’t be enough such numbers

to account for all the primes in [10k , 10k+1). Thus, there are infinitely

many primes with at most half their digits as 7s. It is not unreason-

able to expect that a typical large prime has about 10% of its digits

as 7s. Do you expect there to be infinitely many primes where there

are at most c% of the digits as 7s, where c is any number strictly less

than 1/7?

One can argue similarly for (3) but it is a little more involved. I

found it easiest to break the counting into primes with between k/4

and k/3 of their digits as 7s and then k/3 and k/2 of their digits as 7s

(by (4), we don’t need to worry about more than k/2 of their digits as

7s or we could just look directly at k/3 to k of their digits as 7s). The

proof follows from estimating the sums – Stirling was useful for k/4

to k/3. Let’s analyse from k/3 to k/2. Arguing as above, we have

k/2∑
�=k/3

(
k

�

)
1�9k−� ≤ k

6

(
k

k/2

)
92k/3 ≤ k

6
2k(92/3)k ≤ k(2 · 92/3)k.

As 2 ·92/3 ≈ 8.65 < 10, the number of such numbers tends to zero so

rapidly that, arguing as in part (4), there just aren’t enough of these

numbers to matter. We are thus left with � ∈ [k/4, k/3]:

k/3∑
�=k/4

(
k

�

)
1�9k−� ≤ k

12

(
k

k/3

)
93k/4.

If we used
(

k

k/3

)
≤ 2k , we would find the above is at most k(2 · 93/4)k

but 2 · 93/4 ≈ 10.39 > 10; this is why we must be more careful and

why we have to split up into different ranges. By Stirling,

(
k

k/3

)
∼ kke−k

√
2πk

(k/3)k/3e−k/3
√

2πk/3 · (2k/3)2k/3e−2k/3
√

2π2k/3

� 1

(1/3)k/3 · (2/3)2k/3
√

k

≤
(

3

22/3

)k
.

Substituting this in above gives

k/3∑
�=k/4

(
k

�

)
1�9k−� � k ·

(
3

22/3

)k
93k/4 ≤ k ·

(
3 · 93/4

22/3

)k
.

As 3 · 93/4/22/3 ≈ 9.82 < 10, arguing as before, we see that there are

negligibly many numbers of this form. I really like this problem, as

it highlights how careful we must be. We just need to get a number

less than 10, so we keep splitting things up into different regions and

using different estimates in each. We always replace the binomial

coefficients with their largest value in the interval (which is at the

right end point for � ≤ k/2) and the 9k−� term with its largest value

(which is at the left end point for � ≤ k/2). It would be interesting to

do a more careful analysis and not bound things so crudely but this is

what we number theorists do whenever possible: arguing as crudely

as possible to get the required result.

Finally, part (5) is interesting. It’s natural to conjecture that there

are infinitely many. The following is a very common heuristic. As-

sume the two events are independent, namely having no 7s and being

a prime. Let us label all such numbers a1, a2, a3, . . . . The probability

a number x is prime is essentially 1/ log x, thus the expected number

of numbers at most x that are prime and 7-free is
∑

ai≤x 1/ log ai. We

break this into sums of ai ∈ [10k , 10k+1). There are 9k numbers in

this interval that are 7-free. We obtain an upper bound for the sum

by replacing each ai with 10k and a lower bound by replacing with

10k+1. This yields

K∑
k=1

9k

(k + 1) log 10
≤
∑

ai≤10K+1

1

log ai

≤
K∑

k=1

9K

k log 10
.

Both the upper and lower bounds clearly tend to infinity with K,

though much more slowly than π(10K+1) ≈ 10K+1/(K + 1) log 10.

As an aside, there are some sequences that are so sparse that we

do not expect infinitely many primes. The standard example is the

Fermat numbers: Fn = 22n
+ 1. It is conjectured that only the

first four are prime; see, for example, tinyurl.com/yarhbtu3. Using

an = 22n
+ 1 ≈ 22n

, we find that the expected number of prime Fer-

mat numbers is about

∞∑
n=0

1

log 22n ≈
∞∑

n=0

1

2n log 2
≈ 2

log 2
≈ 3.

Returning to the problem at hand, it was recently successfully re-

solved by James Maynard; see his arXiv post “Primes with restricted

digits”, available at https://arxiv.org/pdf/1604.01041v1, where he

shows there are infinitely many primes base 10 omitting any given

digit. �

Also solved by Mihály Bencze (Brasov, Romania), Cristinel Mortici

(Targoviste, Romania) and Socratis Varelogiannis (National Techni-

cal University of Athens, Greece)

175. Show that there is an infinite sequence of primes p1 < p2 <

p3 < · · · such that p2 is formed by appending a number in front

of p1, p3 is formed by appending a number in front of p2 and so

on. For example, we could have p1 = 3, p2 = 13, p3 = 313,

p4 = 3313, p5 = 13313, . . . . Of course, you might have to add

more than one digit at a time. Find a bound on how many digits

you need to add to ensure it can be done.

(Steven J. Miller, Department of Mathematics and Statistics,

Williams College, Williamstown, MA, USA)

Solution by the proposer. One way to solve this problem is to use

Dirichlet’s Theorem for Primes in Arithmetic Progression, which

states that if a and m are relatively prime then there are infinitely

many primes congruent to a modulo m. Start with any prime num-

ber, and call that p1, and define the function g(n) to be the number

of digits of n. By Dirichlet’s theorem, since p1 and 10g(p1) are rela-

tively prime, there are infinitely many primes congruent to p1 mod-

ulo 10g(p1); note that all of these primes will have their final g(p1)

digits as p1, and thus are constructed by appending digits in front of

p1. For definiteness, take the smallest such prime and call that p2. We

continue by induction. If we have formed pm then pm+1 is obtained

by applying Dirichlet’s result to the pair pm, 10g(pm).

Unfortunately, as usually stated, Dirichlet’s theorem is not con-

structive; it just states that there are infinitely many primes but says

nothing about how far we must go before we find the first such prime.

Fortunately, with a bit more work, one can find upper bounds on how

far we must search. Interestingly, however, what we need is the sec-

ond smallest prime in arithmetic progressions, and thus many of the

results in the literature are not directly applicable. If we wish to use

them, however, we can easily modify our work. Start offwith a prime

p1, append a 1 to the front of it and then construct p2 by choosing

the first prime congruent to 10g(p1) + p1 modulo 10g(p1)+1, and so on.

It is conjectured that the first prime congruent to a modulo m can be

found by going up to C�m
1+� (where, for each � > 0, there is some

C�) but this is far from known. Linnik proved in 1944 that there are c

and L such that the first prime is found before cmL, though he didn’t
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provide a value for L. The best current value is L = 5, which is due

to Xylouris.

As an aside, this problem bears some similarity to searches for

Cunningham chains, which are sequences of primes with specific re-

lations between terms. A Cunningham chain of the first kind is a set

of primes where pn = 2pn + 1 (the second kind is pn = 2pn − 1).

It is believed that there are Cunningham chains of arbitrarily long

length and this follows from standard conjectures (the world record

of either is 19, which is due to Wroblewski from 2014). �

Also solved by Mihály Bencze (Brasov, Romania) and Sotirios E.

Louridas (Athens, Greece)

176. Consider all pairs of integers x, y with the property that

xy − 1 is divisible by the prime number 2017. If three such inte-

gral pairs lie on a straight line on the xy−plane, show that both the

vertical distance and the horizontal distance of at least two of such

three integral pairs are divisible by 2017.

(W. S. Cheung, Department of Mathematics, The University of

Hong Kong, Pokfulam, Hong Kong)

Solution by the proposer. By assumption, there are real numbers a,

b, c ∈ R with (a, b, c) = 1 and integers ki, i = 1, 2, 3, such that

axi + byi = c (1)

and

xiyi = 1 + ki · 2017 (2)

for all i = 1, 2, 3. Without loss of generality, we may assume that

2017 � b. By (1), we have

a(x1 − xi) = b(yi − y1) , i = 1, 2, 3 .

By (2),

xiyi = x1y1 + (ki − k1) · 2017 , i = 1, 2, 3 .

Hence,

(x1 − xi)byi = bx1yi − bxiyi

= bx1(yi − y1) − b(ki − k1) · 2017

= ax1(x1 − xi) − b(ki − k1) · 2017

and so we have

(x1 − xi)(ax1 − byi) = b(ki − k1) · 2017 .

Hence,

2017 | (x1 − xi)(ax1 − byi) . (3)

Observe that this forces that at least one of

2017 | (x1 − x2) , 2017 | (x1 − x3) and 2017 | (y2 − y3)

should hold. In fact, if 2017 � (x1 − x2) and 2017 � (x1 − x3), by (3),

we must have

2017 | (ax1 − by2) , 2017 | (ax1 − by3) ,

and so

2017 | b(y2 − y3) .

Since 2017 � b, we have 2017 | (y2 − y3).

Take, for example, 2017 | (y2 − y3). Then, by

2017 | x2(y2−y3) , 2017 | (1− x2y2) , 2017 | (x3y3−1) , (4)

we have

2017 | (x3 − x2)y3 .

By (4), 2017 � y3, so we have 2017 | (x2 − x3). Hence, both the ver-

tical and horizontal distances of (x2, y2) and (x3, y3) are divisible by

2017. The remaining cases can be proven analogously. �

Also solved by Cristinel Mortici (Targoviste, Romania) and Panagi-

otis T. Krasopoulos (Athens, Greece)

Remark 1. The following much shorter solution to Problem 164

(Newsletter, March 2017, Issue 103) was provided by Panagiotis T.

Krasopoulos (Greece), Hans J. Munkholm (Denmark) and Ellen S.

Munkholm (Denmark).

Any power of 2015, say P = 2015n, has the form P = 5k with k a

positive integer. Therefore

P = 5k =
k2

k
· 22 + 12

2 − 1
=

(2k)2 + k2

2k − k
.

Remark 2. Problems 163, 164, 166 and 167 (Newsletter, March

2017, Issue 103) were also solved by Dimitrios Koukakis (Greece).

We would like you to submit solutions to the proposed problems and

ideas on the open problems. Send your solutions either by ordinary

mail to Michael Th. Rassias, Institute of Mathematics, University of

Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, or

by email to michail.rassias@math.uzh.ch.

We also solicit your new problems with their solutions for the next

“Solved and Unsolved Problems” column, which will be devoted to

Fundamentals of Mathematical Analysis.


