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Some new parallels between groups
and Lie algebras, or What can be
simpler than the multiplication table?
Boris Kunyavskĭı (Bar-Ilan University, Ramat Gan, Israel)

Perhaps in the times of Ahmes
the multiplication table was exciting.

Bertrand Russell1

The Greek system of numerals was very bad, so that the
multiplication table was quite difficult, and complicated
calculations could only be made by very clever people.

Bertrand Russell2

We give a survey of recent developments in the study of equa-
tions in groups and Lie algebras and related local-global
invariants, focusing on parallels between the two algebraic
structures.

1 Foreword

Imagine the following situation. Your kid, during the first year
in elementary school, asks you to explain the notion of prime
numbers (having heard about them from super-nerd class-
mates). Division is not yet known, only the multiplication ta-
ble has been taught. What can be done? Here is a possible
solution.
• Show multiplication table (see Figure 3).
• Delete the first row and the first column (corresponding to

multiplication by 1).
• Say that prime numbers are exactly those that do not appear

in such a table (add “infinitely extended” if you feel that
your Wunderkind is able to understand this).

One of the goals of the present paper is to consider, in some
detail, a similar situation for algebraic systems other than nat-
ural numbers, with a focus on groups and Lie algebras, with
an eye towards observing some new phenomena and parallels,
and in the hope of making these multiplication tables as ex-
citing as the usual one was in the time of Ahmes and as mind-
challenging as it was for ancient Greeks (see the epigraphs).

We will also consider some related problems and arising
parallels, most of which are still vague and/or hypothetical.

2 Prime elements in general algebras

Let us write down the childlike definition of prime numbers
given in the foreword in a formal fashion:

1 What I Believe, Kegan Paul, Trench, Trübner & Co., London, 1925.
2 An Outline of Intellectual Rubbish: A Hilarious Catalogue of Organized

and Individual Stupidity, Haldeman-Julius Publications, Girard, Kansas,
1943.

Definition 2.1. Let A = N \ {1} = {2, 3, 4, 5, . . .}. Equip A
with usual multiplication. Then a ∈ A is prime if the equation
xy = a has no solutions (x, y) ∈ A × A.

Figure 1. “Rhind Mathematical Papyrus”, around 1550 BC (British Mu-
seum reference: EA10058©The Trustees of the British Museum)

Figure 2. Greek Multiplication table on a wax tablet (British Museum
AddMS34186. About 100AD.©The Trustees of the British Museum)

Figure 3. Multiplication table (Wikimedia Commons, originally pub-
lished in: Popular Science Monthly, volume 26, 1885, p. 451)
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Let us now mimic it and extend it to arbitrary algebras.

Definition 2.2. Let A be an algebra equipped with a binary
operation (the sign of which will be omitted). Then we say
that a ∈ A is prime if the equation xy = a has no solutions
(x, y) ∈ A × A.

Example 2.3. (Group commutators) Let G be a group, and
let AG be the underlying set of G with operation [x, y] :=
xyx−1y−1. For brevity, let us call prime elements of the al-
gebra AG prime elements of G. These are elements of G not
representable as a single commutator.

Denote by [G,G] the subgroup of G generated by all com-
mutators [x, y], x, y ∈ G, and recall that G is said to be perfect
if [G,G] = G.

If G is not perfect, it obviously contains prime elements:
any a � [G,G] is prime.

3 Wide groups

Definition 3.1. We say that a group G is wide if [G,G] con-
tains prime elements.

Historically, the first example of a wide group (of or-
der 1024) was attributed to George Abram Miller (see [31]).
In 1977, in his PhD thesis, Robert Guralnick proved that
the smallest wide group is of order 96 (see [39]). Actually,
there are two non-isomorphic wide groups of order 96. Nowa-
days, such statements can easily be verified by computer. The
smallest wide perfect group is of order 960. Further examples
and results can be found in a survey paper by Luise-Charlotte
Kappe and Robert Morse [50] and in the Bourbaki 2013 talk
delivered by Gunter Malle [62].

The next step, from perfect to simple groups, is far more
tricky. The cases of finite and infinite groups should be con-
sidered separately.

In the case where G is finite, each element is a single
commutator. This was conjectured by Øystein Ore in the
1950s [70]. The proof required lots of various techniques.
Most groups of Lie type were treated by Erich Ellers and
Nikolai Gordeev in the 1990s [26]. The proof was finished
by Martin Liebeck, Eamonn O’Brien, Aner Shalev and Pham
Huu Tiep in 2010 [60]. See Malle’s Bourbaki talk [62] for
details.

If G is infinite, the situation is entirely different.
There are several cases where each element of G is a sin-

gle commutator: G = A∞ is the infinite alternating group
(Ore [70]); G = G(k) is the group of k-points of a semisimple
adjoint linear algebraic group G over an algebraically closed
field k (Rimhak Ree [74]); and G is the automorphism group
of some “nice” topological or combinatorial object (e.g., the
Cantor set). Precise references and additional examples and
generalisations can be found in our survey [48] (jointly with
Alexey Kanel-Belov and Eugene Plotkin).

The first example of the opposite kind was discovered by
Jean Barge and Étienne Ghys in 1992 [5]. Looking at the title
of their paper, it is hard to suspect that it is about the multi-
plication table in groups. Indeed, the group they constructed
is of differential-geometric origin. It is simple and wide (it
contains elements not representable as a single commutator).
Both statements are proved using highly nontrivial geomet-
rical arguments. Later on, more examples of such a kind

were constructed (Alexey Muranov [67], Pierre-Emmanuel
Caprace and Koji Fujiwara [21], Elisabeth Fink and Andreas
Thom [30]).

These groups are indeed very different from the “nice”
groups discussed above. For any group G, one can introduce
the following notions.

For any a ∈ [G,G] define its length �(a) as the smallest
number k of commutators needed to represent it as a prod-
uct a = [x1, y1] . . . [xk, yk]. Define the commutator width of
G as wd(G) := supa∈[G,G] �(a). It turns out that for a simple
group G, the commutator width wd(G) may be as large as we
wish, or even infinite (such examples appear in the papers by
Barge–Ghys and Muranov).

4 First parallels: Wide Lie algebras

Now let L be a Lie algebra defined over a field k. As above,
we say that L is wide if the derived algebra [L, L] contains el-
ements which are not representable as a single Lie bracket.
As in the case of groups, wide Lie algebras naturally ap-
pear among finite-dimensional nilpotent Lie algebras (see,
e.g., the MathOverflow discussion [63]). It is worth noting
that the smallest dimension where such examples arise is
10, which is parallel to Miller’s example of a wide group
of order 1024 = 210 mentioned above. This phenomenon
is not surprising, in light of well-known relations between
nilpotent groups and Lie algebras: they go back to the clas-
sical Baker–Campbell–Hausdorff formula and culminate in
the correspondence of categorical flavour, due to Anatoly
Mal’cev and Michel Lazard (see, e.g., the monograph of Ev-
genii Khukhro [51] for some details concerning this corre-
spondence). With some effort one can also construct wide
perfect Lie algebras (see [7]). We shall focus on the case of
simple Lie algebras. Here are our main questions.

Question 4.1. Does there exist a wide simple Lie algebra?

More generally, as in the case of groups, one can define for
every a ∈ [L, L] its bracket length �(a) as the smallest k such
that a is representable as a sum a = [x1, y1]+ · · ·+ [xk, yk], and
then define the bracket width of L as wd(L) := supa∈[L,L] �(a).

If Question 4.1 is answered in the affirmative, one can ask
the next question:

Question 4.2. Does there exist a simple Lie algebra L of in-
finite bracket width?

Where does one look for counter-examples? Below L is a
simple Lie algebra over a field k.

First suppose that L is finite-dimensional. In the follow-
ing cases it is known that every element is a single bracket
(i.e., wd(L) = 1): L is split and k is sufficiently large (Gor-
don Brown [14]; Ralf Hirschbühl [41] improved estimates on
the size of k); k = R, L is compact (there are many different
proofs, attributed to Dragan Ðoković and Tin-Yau Tam [25],
Karl-Hermann Neeb (see [42]), Dmitri Akhiezer [1], Alessan-
dro D’Andrea and Andrea Maffei [22], Joseph Malkoun and
Nazih Nahlus [61]); some non-compact algebras L over R
(Akhiezer, op. cit.).

The most interesting unexplored class in finite-dimen-
sional case is the family of algebras of Cartan type over a
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field of positive characteristic. As a working hypothesis, one
can suspect that none of these algebras are wide.

Remark 4.3. If L is finite-dimensional over any infinite field
of characteristic different from 2 and 3, its bracket width is at
most two (George Bergman and Nazil Nahlus [7]).

Suppose now that L is infinite-dimensional. There are sev-
eral natural families of simple infinite-dimensional Lie alge-
bras. Here are some of them: four families Wn, Hn, S n, Kn of
algebras of Cartan type; (subquotients of) Kac–Moody alge-
bras; algebras of vector fields on smooth affine varieties.

As to the first case, a theorem by Alexei Rudakov [77]
shows that none of the algebras L of Cartan type are wide (we
owe this observation to Zhihua Chang). I am unaware of any
approach to the second family, though there are simple Kac–
Moody groups of infinite width (see the paper by Caprace and
Fujiwara [21] mentioned above).

Question 4.4. Are there wide simple Kac–Moody algebras?

Even the case of affine Kac–Moody algebras seems open.
However, the third family, which moves us back to the

origin of the area, turned out to be more promising. Actually,
algebras of vector fields appeared in the work of the founders
of the theory, Sophus Lie and Élie Cartan.

In our work in progress [57] (joint with Andriy Regeta)
we established the following fact.

Theorem 4.5. Among Lie algebras of vector fields on smooth
affine varieties there are wide algebras.

Some details are in order.
Let k be an algebraically closed field of characteristic

zero. Let X ⊂ An
k be an irreducible affine k-variety. Let

Vect(X) denote the collection of (polynomial) vector fields on
X, i.e., Vect(X) = Der(O(X)), the set of derivations of the al-
gebra of regular functions on X. It carries a natural structure
of Lie algebra, as a Lie subalgebra of the algebra of endomor-
phisms Endk(O(X)):

[ξ, η] := ξ ◦ η − η ◦ ξ.
There are strong relations between properties of X and Vect(X).
We only mention a couple of the most important facts:
two normal affine varieties are isomorphic if and only if
Vect(X) and Vect(Y) are isomorphic as Lie algebras (Janusz
Grabowski [37] for smooth varieties, Thomas Siebert [87] in
general); X is smooth if and only if Vect(X) is simple (David
Alan Jordan [46], Siebert, op. cit.; see also the lecture notes
by Hanspeter Kraft [53] and a new proof by Yuli Billig and
Vyacheslav Futorny [8]).

Example 4.6. Let X = An. Then L = Vect(An) is a free
O(An) = k[x1, . . . , xn]-module of rank n generated by ∂xi =
∂
∂xi

, i = 1, . . . , n. It is an easy exercise to show that every ele-
ment of L can be represented as a single Lie bracket. We leave
the proof to the reader.

The situation is not as simple for more general affine va-
rieties, even for curves. The following example, by Billig and
Futorny [8], shows the essence of the problem.

Example 4.7 ([8]). Let H = {y2 = 2h(x)} where h(x) is a
separable monic polynomial of odd degree 2m + 1 ≥ 3, A =

O(H) = k[x, y]/〈y2 −2h(x)〉, D = Vect(H) = Derk(A). Then D
is a free A-module of rank 1 generated by τ = y∂x + h′(x)∂y.
The algebra D contains neither semisimple nor nilpotent el-
ements. (We say that η ∈ D is semisimple if ad(η) has an
eigenvector.)

Theorem 4.8 ([57]). The Lie algebra D is wide.

Idea of proof. One can introduce a filtration on D so that the
smallest nonzero degree is 2m − 1. Then any η ∈ D with
deg η = 2m−1 is not representable as a single Lie bracket. �

Here is another example for the case of surfaces.

Example 4.9. Let S = {xy = p(z)} ⊂ A3
k where p(z) is a

separable polynomial, deg p ≥ 3 (Danielewski surface). Let
L = LND(S ) be the subalgebra of Vect(S ) generated by all
locally nilpotent vector fields.

Lemma 4.10 (Matthias Leuenberger and Andriy Regeta [59]).
L is a simple Lie algebra.

Assuming that the surface satisfies a certain additional
condition on the Jacobian of regular functions, we can prove
the following fact.

Theorem 4.11 ([57]). L is a wide Lie algebra.

The proof is based on the same paper by Leuenberger and
Regeta [59] and uses degree arguments.

Question 4.12. What is the bracket width of the algebras
Vect(H) and LND(S )?

Here are some further questions.
• What geometric properties of X are responsible for the fact

that the Lie algebra Vect(X) is wide?
• Does there exist a Lie-algebraic counterpart of the Barge–

Ghys example? This requires going over to the category of
smooth vector fields on smooth manifolds.
• Where should one look for further examples of wide simple

Lie algebras?
There are two candidates, both suggested by Yuli Billig.

Let K2 denote the Lie algebra obtained from the matrix(
2 2
2 2

)

in the same way as Kac–Moody Lie algebras are obtained
from generalised Cartan matrices, see the seminal paper of
Victor Kac [47]. Is K2 wide?

Further eventual examples could be found among the most
natural generalisation of examples of Theorem 4.8, in the
class of algebras of Krichever–Novikov type (see, e.g., the
monograph by Martin Schlichenmaier [80]). One can ask
whether there are wide simple algebras of Krichever–Novikov
type. If yes, can the width be arbitrarily large? Can it be infi-
nite?

One can ask a ‘metamathematical’ question.

Question 4.13. Let L be a ‘generic’ (‘random’, ‘typical’)
simple Lie algebra. Is L wide?

Of course, any eventual answer will heavily depend on
what is meant by ‘random’, ‘typical’, etc. However, the ab-
sence of semisimple and nilpotent elements in the Lie alge-
bra Vect(H) mentioned above is a witness of the absence of
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any analogue of the triangular decomposition. This is in sharp
contrast with the situation for Kac–Moody algebras and gives
some evidence for the following (‘metamathematical’) work-
ing hypothesis.

Less structured (‘amorphous’) Lie algebras tend to be
wide.

Informally, these opposite hypotheses can be illustrated
by the difference between the skeletons of fish and jellyfish
(yes, jellyfish do have skeletons).

5 Word equations in groups and polynomial
equations in Lie algebras

Let us now present a wider perspective on the notions dis-
cussed in the previous section. Namely, suppose we are given
a group G with operation [g, h] = ghg−1h−1 (resp. a Lie alge-
bra L with bracket [, ]). Trying to find a given element a of G
(resp. of L) in its multiplication table, we search for a solution
of the equation

[x, y] = a (1)

in G ×G (resp. in L × L), i.e., the right-hand side is fixed and
x, y are unknowns.

One can generalise equation (1) as follows.
Let w(x, y) denote a group word in x, y (more formally,

an element of the free group F2 = F (x, y)). One may think
of something like x2y2020x−1y−3. Even more generally, for
any integer d ≥ 1 one can consider w(x1, . . . , xd) ∈ Fd =

F (x1, . . . , xd) and for every group G and a ∈ G look for solu-
tions of the word equation

w(x1, . . . , xd) = a. (2)

In a similar way, one can consider a Lie polynomial
P(X1, . . . , Xd) (an element of the free Lie algebra Ld =

L(X1, . . . , Xd)) and for every Lie algebra L and A ∈ L look
for solutions of the equation

P(X1, . . . , Xd) = A. (3)

Remark 5.1. Note that our set-up only includes equations
with constant-free left-hand side. This means that if, say, A, B
are fixed elements of a Lie algebra L, we consider equations
[X, Y] = A but not [B, X] = A. As to equations with con-
stants, see our joint papers with Nikolai Gordeev and Eugene
Plotkin [32]–[34], the paper by Anton Klyachko and Andreas
Thom [52], and the references therein. Also, to avoid any con-
fusion, we want to emphasise that in our set-up, solutions of
(2) are sought in G, and not in an overgroup of G.

Here are some natural questions one can ask about equa-
tion (2) (of course, similar questions arise for equation (3)).

Question 5.2. Let a group G be given. Is equation (2) solv-
able
(a) for all a ∈ G, or, at least,
(b) for a ‘typical’ a ∈ G?

Part (a) leads to a natural generalisation of the notion of
commutator width of G discussed in Section 3 (the so-called
w-width). Various situations where one can guarantee that
part (a) is answered in the affirmative are described in some
detail in the monograph by Dan Segal [81] and in several sur-
vey papers; apart from [48] mentioned above, see also the pa-
pers by Aner Shalev [82, 83], and our more recent papers [2]

(jointly with Tatiana Bandman and Shelly Garion) and [35]
(jointly with Nikolai Gordeev and Eugene Plotkin).

As to part (b), any change in a precise definition of ‘typ-
ical’ may be critically important for an eventual answer. Say
if G can be equipped with different topologies and ‘typical’
translates as ‘belonging to a dense set in the chosen topol-
ogy’, the answer to (b) heavily depends on this choice. Here
is an archetypical example where this dependence is the most
striking: G is (the group of rational points of) a linear alge-
braic group defined over a field k. For this class of groups,
Armand Borel established a general result. To formulate it, it
is convenient to introduce the following notion.

Definition 5.3. Let d be a positive integer, and let w =

w(x1, . . . , xd) ∈ Fd be a word. For a group G define a map
w : Gd → G (4)

by evaluation: (g1, . . . , gd) �→ w(g1, . . . , gd).

Such maps will be called word maps. If G is non-abelian,
w is not a group homomorphism. In some special cases, one
can say more about these maps. Let G be a linear algebraic
group defined over a field k. Then, given a word w ∈ Fd, one
can define a morphism of the underlying algebraic k-varieties
w : Gd → G which induces the word map (4) on the group
G = G(k) of k-points of G (and, more generally, on K-points
G(K) for any field extension K/k). We denote all these maps
by the same letter w with the hope that this does not cause any
confusion.

Theorem 5.4 (Borel [11]). Let G be a connected semisimple
linear algebraic group defined over a field k. Then for any
non-identity word w ∈ Fd, the morphism w : Gd → G is dom-
inant.

Recall that this means that the image of w contains a
Zariski-dense open set (or, informally, that equation (2) with
a ‘typical’ right-hand side is solvable).

Remark 5.5. It is worth emphasising the role of Zariski
topology in this statement. One should not think that the as-
sertion remains true in any topology. Andreas Thom [89] no-
ticed that for the special unitary group G = S Un, word maps
on the compact group G = G(R), equipped with the Euclidean
topology (some people, especially those who are far removed
from algebraic geometry, call it ‘natural’), may behave quite
differently. Namely, given ε > 0, one can find a word w ∈ F2
such that the image of the word map (4) is contained in the
open disk of radius ε centred at the identity matrix. (There is
no contradiction with Borel’s theorem because such a disk is
Zariski-dense.)

Remark 5.6. One cannot expect to extend Borel’s theorem
too far beyond the class of semisimple groups, see [35] for
some argumentation. Perhaps the only general hope is to treat
perfect algebraic groups. Under certain additional assump-
tions, the dominance statement has been established in [34],
and one has no examples of perfect algebraic groups G and
words w for which the word morphism is not dominant.

6 Towards infinitesimal analogues

One can consider infinitesimal analogues of the problems dis-
cussed in the previous section. Namely, for a Lie polynomial
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P(X1, . . . , Xd) one can ask the following question, similar to
Question 5.2:

Question 6.1. Let a Lie algebra L be given. Is equation (3)
solvable
(a) for all A ∈ L, or, at least,
(b) for a ‘typical’ A ∈ L?

As in the group case, it is convenient to introduce the cor-
responding evaluation map:

P : Ld → L, (a1, . . . , ad) �→ P(a1, . . . , ad). (5)

In these terms, Question 6.1 can be rephrased as the question
about the surjectivity or dominance of the map (5).

In view of Remark 5.6, it is reasonable to focus on simple
Lie algebras.

Let us take an informal look at the known ways to go over
from groups to Lie algebras (or in the opposite direction).

Let us briefly recall several classical approaches to such
a transition, without pretending to give a comprehensive
overview.

First bridges between groups and Lie algebras had been
built even before these notions were defined in a formal
way. One can mention Poisson and Jacobi, whose pioneering
works on Hamiltonian mechanics paved a road towards what
is nowadays called Poisson geometry, Poisson–Lie groups,
etc. (see a nice survey by Alan Weinstein [91] for details).

One can also mention Arthur Cayley, whose ingenious
formula, allowing one to pass from special orthogonal to
skew-symmetric matrices, was the first instance of what is
now called an equivariant birational isomorphism between an
algebraic group and its Lie algebra; see the books by Her-
mann Weyl [92] and Mikhail Postnikov [72] for a detailed
discussion and further development of this idea. Note that like
the work of Poisson–Jacobi, Cayley’s invention served as a
tool in theoretical mechanics (this time the Lagrangian vari-
ant). Note also that the limits up to which the Cayley trans-
form can be generalised have recently been established; see
the paper by Nicole Lemire, Vladimir Popov and Zinovy Re-
ichstein [58] where this problem was posed and settled in the
case of algebraically closed ground field and the subsequent
papers [12, 13] for the treatment of the general case.

However, neither these ‘prehistoric’ methods, nor the ex-
ponential map introduced by Lie and Cartan, nor the more
recent approach by Mal’cev and Lazard mentioned above can
help with our problem of finding infinitesimal analogues of
Borel’s theorem. The main point is that there is no obvious
way to arrange the transfer to move group commutator to Lie
bracket.

Moreover, it turns out that a straightforward transfer of
the dominance statement to the case of a semisimple Lie
algebra g cannot hold because there are Lie polynomials
identically zero on g. Here is a counter-optimistic exam-
ple: for g = sl(2, k) (k is a field of characteristic zero) and
P(X, Y, Z) = [[[[[Z, Y], Y], X], Y], [[[[Z, Y], X], Y], Y]], Yuri
Razmyslov [73] showed that P(X, Y, Z) ≡ 0 on g.

Of course, it was known well before Borel’s theorem that
such a phenomenon cannot occur for word maps on semisim-
ple algebraic groups: in characteristic zero this follows from
the famous alternative established by Jacques Tits [90], in
general from an even earlier paper by Vladimir Platonov [71].

This observation might lead the reader to the conclusion
that a road from Borel’s theorem towards its eventual in-
finitesimal analogue cannot look like a freeway paved with
classical works in Lie theory, but is rather similar to a rocky
mountain road. However, the following theorem proved in our
joint paper [3] with Bandman, Gordeev and Plotkin may sug-
gest a more sober viewpoint, where the phenomena similar to
Razmyslov’s example are considered as sort of potholes to be
circumvented.

Theorem 6.2. Let g(R, k) be a Chevalley algebra. If
char(k) = 2, assume that R does not contain irreducible com-
ponents of type Cr, r ≥ 1 (here C1 = A1,C2 = B2).

Suppose P(X1, . . . , Xd) is not an identity of the Lie alge-
bra sl(2, k). Then the induced map P : g(R, k)d → g(R, k) is
dominant.

Here R stands for a root system, and g(R, k) denotes the
Lie algebra over k obtained from the corresponding complex
semisimple Lie algebra g(R,C) using its Chevalley basis. In
fact, it is the notion of Chevalley basis that allows one to
streamline the road from algebraic groups to Lie algebras (in
the case they are semisimple). More specifically, one of the
crucial tools here is the so-called adjoint quotient, which was
also invented by Claude Chevalley and further developed by
Tonny Springer and Robert Steinberg [88].

Remark 6.3. We do not know whether the assumption on the
polynomial P in Theorem 6.2 can be removed.

Remark 6.4. Theorem 6.2 can be used to reduce, for any
given Lie polynomial, the problem of the dominance of the
corresponding evaluation map on simple Lie algebras to the
case of algebras of types A2 and B2, see [3].

One can try to pursue the obtained parallel regarding
Zariski dominance to the case of Euclidean topology, with
an aim to check whether some counterpart of Thom’s phe-
nomenon (see Remark 5.5) can occur.

Question 6.5. Do there exist a Lie polynomial P and a com-
pact simple real Lie algebra g such that the image of map (5)
is not dense in Euclidean topology?

Remark 6.6. There is much less hope of establishing any re-
lationship between the affirmative answers to Questions 5.2(a)
and 6.1(a), in other words, between the surjectivity of the
word map w on a semisimple group G (defined with the
help of group commutators) and the corresponding polyno-
mial map on the Lie algebras g = Lie(G) induced by the Lie
polynomial obtained from w by replacing group commutators
with Lie brackets. An explicit example can be found in the
paper by Tatiana Bandman and Yuri Zarhin [4].

In light of these remarks, I regret to say that as of now,
here an eventual route towards infinitesimal analogues rather
looks like a mountain road.

7 Local-global invariants of groups and Lie
algebras

In the last part of this survey, we consider two well-known
objects of cohomological nature related to a given group G.
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They proved useful in many important problems, some of
which are beyond group theory (see my survey [56] and
our joint paper with Kang [49] for details). It turned out re-
cently that they naturally appear as parts of certain cohomol-
ogy of Hopf algebras (called lazy cohomology, see the pa-
per by Pierre Guillot and Christian Kassel [38], or invari-
ant cohomology, see the paper by Pavel Etingof and Shlomo
Gelaki [27]). An even more surprising relation, where the two
invariants fit together nicely within another invariant with the
origin in mathematical physics (the so-called group of braided
tensor autoequivalences of the Drinfeld centre of G), was dis-
covered by Alexei Davydov [23, 24].

We are not going to discuss these spectacular achieve-
ments here. Our interest is rather in very recent Lie-algebraic
analogues of these group-theoretic objects and eventual paral-
lels. (This is an ongoing joint project with Vadim Ostapenko.)

Bogomolov multiplier
Recall that the Schur multiplier of a group G is defined as the
second cohomology group H2(G,Q/Z) (where the action of
G on Q/Z is trivial).

The Bogomolov multiplier B(G) of a finite group G is de-
fined by

B(G) := ker[H2(G,Q/Z)→
∏

A<G abelian

H2(A,Q/Z)];

Fedor Bogomolov showed [9] that in this formula one can
replace ‘abelian’ by ‘bicyclic’.

The group B(G) appeared in some algebraic-geometric
context: it coincides with the unramified Brauer group of the
quotient V/G of a faithful action of G on a complex vector
space V , and thus is a birational invariant of this variety; this
allowed David Saltman [79] to produce first counter-examples
to Emmy Noether’s problem on the rationality of fields of in-
variants of permutation groups.

One can also note a recent unexpected application of the
Bogomolov multiplier outside group theory: after extending
the definition to profinite groups, B(G) can be interpreted in
the context of the noncommutative Iwasawa theory (as the
kernel of the map K1(Zp[[G]]) → K1(Qp[[G]]), see the paper
by Urban Jezernik and Jonatan Sánchez [45]).

One should also mention some recently discovered re-
lations of the Bogomolov multiplier to more conventional
group-theoretic problems, in the spirit of Section 3 of the
present paper. Namely, in the same paper [45] Jezernik and
Sánchez showed that if one fixes an odd prime p and consid-
ers the asymptotic behaviour of all finite p-groups, the (loga-
rithmically scaled) proportion of wide groups tends to 1; the
same is true of the proportion of groups with nonzero Bo-
gomolov multiplier. In another paper by Jezernik [44] (joint
with Primož Moravec), one can find an interesting link be-
tween B(G) and the classical notion of commuting probabilty
of G, going back to Paul Erdős and Paul Turán.

Let L now be a (finite-dimensional) Lie algebra over a
field k. Assume for simplicity that k is of characteristic zero.
To define an analogue B(L) of the Bogomolov multiplier, one
can use another interpretation of B(G) due to Moravec [65].
It is based on the notion of nonabelian exterior square G ∧G.
The Schur multiplier is dual to the kernel M(G) of the natural
map G ∧ G → [G,G], g ∧ h �→ [g, h], and B(G) is dual to

the quotient M(G)/M0(G), where M0(G) is generated by g∧h
with commuting g, h.

It turns out that this construction can be transferred
to Lie algebras; details can be found in recent papers by
Zeinab Araghi Rostami, Mohsen Parvizi and Peyman Ni-
roomand [75, 76].

A primary goal is to transfer to B(L) as many known prop-
erties of B(G) as possible. Whereas the Bogomolov multiplier
vanishes on finite simple groups [55] and simple Lie alge-
bras (follows from the results of Peggy Batten’s PhD the-
sis [6] where the vanishing of the Schur multiplier of sim-
ple Lie algebras is proven), on the other extreme edge (p-
groups/nilpotent Lie algebras) there are nontrivial examples.
For instance, in the paper [29] Gustavo Fernández-Alcober
and Urban Jezernik showed that the Bogomolov multiplier of
a p-group can be as large as we wish. In the papers [75, 76]
mentioned above, one can find examples of finite-dimensional
nilpotent Lie algebras with nontrivial Bogomolov multiplier.
However, the following question is still open.

Question 7.1. Can the dimension of B(L) be as large as pos-
sible?

Further, recall the notion of isoclinism introduced by
Philip Hall in the group-theoretic context [40]. Groups G and
H are called isoclinic if there are isomorphisms from G/Z(G)
to H/Z(H) and from G/[G,G] to H/[H,H] commuting with
the commutator map. This notion proved useful in lots of
problems, particularly in the classification of finite p-groups,
and was later on extended to associative rings (see the mono-
graph [54] by Robert Kruse and David Price), to Lie algebras
by Kay Moneyhun [64], and more recently, with certain mod-
ifications, to more general algebraic structures by Stephen
Buckley [15].

Isoclinic objects often share many important properties.
In this connection, in our joint paper with Akinari Hoshi and
Ming-chang Kang [43] it was conjectured that isoclinic finite
groups have the same Bogomolov multiplier. This was proved
by Moravec [65] and later strengthened by Fedor Bogomolov
and Christian Böhning [10] by showing that if G and H are
isoclinic, the orbit varieties V/G and W/H with respect to their
faithful actions are stably birationally equivalent.

This leads to the following question.

Question 7.2. Is B(L) invariant under isoclinism of Lie alge-
bras?

In a more conceptual mood, one could try to revisit the
results of [45] where it is shown that ‘generically’ (in some
appropriate sense a hint to which was given above), B(G) is
nontrivial. Can one translate this statement into the language
of Lie algebras?

Shafarevich–Tate groups and algebras
Let a group G act on itself by conjugation. The Shafarevich–
Tate set is defined with the help of (nonabelian) group coho-
mology corresponding to this action, by the formula

X(G) := ker[H1(G,G)→
∏

C<G cyclic

H1(C,G)]. (6)

The definition and the name were introduced by Takashi
Ono [68, 69]. The local-global flavour justifies the allusion
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to the object bearing the same name which appeared in the
arithmetic-geometric context (related to the action of the ab-
solute Galois group of a number field K on the group A(K) of
K-points of an abelian K-variety A). The usage of the Cyrillic
letter X (“Sha”) in this notation was initiated by John Cas-
sels because of its appearance as the first letter in the surname
of Igor Shafarevich.

Formula (6) admits a more down-to-earth interpretation,
attributed in [69] to Marcin Mazur: X(G) can be identi-
fied with the collection of all locally inner (=pointwise in-
ner=class preserving) endomorphisms, i.e., f ∈ End(G) with
the property f (g) = a−1ga (where a depends on g). Note that
any class preserving endomorphism is injective. Hence, if G
is finite, it is surjective, and we arrive at the object introduced
by William Burnside more than 100 years ago:

X(G) � Autc(G)/Inn(G),

where Autc(G) stands for the group of class-preserving auto-
morphisms of G. In particular, this means that if G is finite,
X(G) is a group, not just a pointed set. (Ono [69] extended
this to the case where G is profinite.)

In my survey [56] (see also the survey by Manoi Ya-
dav [94]), one can find many classes of groups G with triv-
ial X(G) (they are called X-rigid there), as well as some
interesting examples with nontrivial X(G) (they often give
rise to counter-examples to some difficult problems, such as
Higman’s problem on isomorphism of integral group rings).

Let us now go towards a Lie-algebraic analogue of the
Shafarevich–Tate group, taking formula (6) as a starting point.
Given a Lie algebra L over a field k (for simplicity assumed to
be of characteristic zero), consider the Chevalley–Eilenberg
first (adjoint) cohomology H1(L, L). It is well known that
it can be identified with the outer derivations Out(L) :=
Der(L)/ ad(L). Recall that ad(L) is the collection of all in-
ner derivations of L defined by the formula adZ(X) = [Z, X].
Viewing Der(L) as a Lie algebra and noticing that ad(L) is its
Lie ideal, we obtain a Lie algebra structure on Out(L).

Further, define ‘locally inner’ derivations by

Derc(L) :=
{
D ∈ Der(L) | (∀X ∈ L) (∃Z ∈ L) D(X) = [Z, X]

}
(7)

(here Z depends on X).
This notion was introduced by Carolyn Gordon and Ed-

ward Wilson [36] (under the name of ‘almost inner’ deriva-
tions) in the differential-geometric context, allowing them
to produce a continuous family of isospectral non-isometric
compact Riemann manifolds. Recently, the interest in these
Lie-algebraic structures was revived in the series of papers by
Farshid Saeedi and his collaborators [84–86], and also in the
series of papers by Dietrich Burde, Karel Dekimple and Bert
Verbecke [16–18].

First, one can note that Derc(L) is a Lie subalgebra of
Der(L) [16, Proof of Proposition 2.3], and ad(L) is a Lie ideal
of Derc(L).

Definition 7.3. Set X(L) := Derc(L)/ ad(L) and call it the
Shafarevich–Tate algebra of L.

By analogy with the group case, we introduce the follow-
ing notion (cf. [56]).

Definition 7.4. If X(L) = 0, we say that L is X-rigid.

Here are some parallels between theX-rigidity of groups
and Lie algebras. If not stated otherwise, the group-theoretic
facts mentioned below are taken from the survey [56], where
the reader can find the references to the original works, and
the Lie-algebraic statements are borrowed from [17].
1. Any simple finite-dimensional Lie algebra L over a field k

of characteristic zero is X-rigid because L has no outer
derivations at all (Whitehead’s first lemma, the proof does
not use the classification). There are many classes of alge-
bras with no outer derivations, in particular, many com-
plete algebras (with trivial centre and no outer deriva-
tions) are known. In the parallel universe of finite groups,
it is known that all finite simple groups are X-rigid
(Walter Feit and Gary Seitz [28], the proof heavily re-
lies on the classification). Note that the situation is dif-
ferent for infinite groups (and may be different for finite-
dimensional Lie algebras over fields of positive character-
istic or infinite-dimensional Lie algebras).

2. The following groups (Lie algebras over a field of char-
acteristic zero) are X-rigid: free nilpotent; abelian-by-
cyclic groups (resp. finite-dimensional Lie algebras with
codimension one abelian ideal); extraspecial groups of or-
der p2n+1 (resp. Heisenberg Lie algebras H2n+1 ([16, Ex-
ample 2.6] for n = 1); p-groups of order at most p4 (resp.
nilpotent Lie algebras of dimension at most 4). Note that
the list of known classes of X-rigid Lie algebras is far
shorter than the list of known classes of X-rigid groups,
and one can continue producing more X-rigid Lie alge-
bras, taking X-rigid groups as a source for inspiration.

3. On the other hand, many examples of algebras with nonzero
X(L) can be found among nilpotent and, more generally,
solvable algebras [16,36,86]. The dimension ofX(L) can
be arbitrarily large [36]. In the nilpotent case, a more di-
rect relation between X(G) and X(L) could apparently
be formulated, in the spirit of [36].

Here are some open problems.

Question 7.5. Is the Lie algebra X(L) solvable?

Note that for any finite group G it is conjectured that the
group X(G) is solvable. The proof of this statement in the
paper by Chih-han Sah [78] contains a gap. This was noticed
by Masafumi Murai [66] who showed that its validity depends
on the Alperin–McKay conjecture.

Question 7.6. Does there exist L such that X(L) is non-
abelian?

Note that Sah [78] disproved Burnside’s statement [20]
and exhibited examples of p-groups G with nonabelianX(G),
the smallest among them is a group of order 215.

Further, since X(G) is known to be an isoclinic invariant
according to Yadav [93], it is natural to pose a question in the
spirit of Question 7.2.

Question 7.7. Is X(L) invariant under isoclinism of Lie al-
gebras?

Remark 7.8. To conclude, I would like to mention eventual
analogues of X(G) and X(L) that one can introduce for
other classes of algebras. First of all, this is the class of as-
sociative algebras where, given such an algebra A, one can



12 EMS Newsletter December 2020

Feature

define the multiplicative X consisting of outer ‘locally in-
ner’ automorphisms of A as well as the additive X consist-
ing of outer ‘locally inner’ derivations of A. Second, one can
consider various generalisations of Lie algebras (Leibniz al-
gebras, Mal’cev algebras, etc.) as well as their counterparts
serving as analogues of Lie groups. In the opposite direction,
one can enrich a Lie algebra with some additional structure
and consider the arising versions of X. The first interesting
case on this route is the class of Poisson algebras. But this is
another story. To obtain insight into eventual parallels among
these new objects, one will have to use modern bridges rather
than the older ones.
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