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Planar Traveling Waves of Mono-Stable
Reaction-Diffusion Equations
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Abstract. This paper is concerned with planar traveling wavefronts of mono-stable
reaction-diffusion equations in Rn (n ≥ 2). We show that the large time behavior of
the disturbed fronts can be controlled by two functions, which are the solutions of the
specified nonlinear parabolic equations in Rn−1, and the planar traveling fronts are
asymptotically stable in L∞(Rn) under ergodic perturbations, which include quasi-
periodic and almost periodic ones as special cases.
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1. Introduction

In this paper, we consider the Cauchy problem of the following mono-stable
reaction-diffusion equations{

ut = ∆u+ f(u), x ∈ Rn−1, y ∈ R, t > 0,

u(x, y, 0) = u0(x, y), x ∈ Rn−1, y ∈ R,
(1)

where ∆ = ∂2

∂x21
+ · · ·+ ∂2

∂x2n−1
+ ∂2

∂y2
and n ≥ 2. We assume that the initial data u0

is bounded and continuous on Rn and that the function f is of mono-stable type.

In the above equation the term f(u) represents a source term with f(0) =
f(1) = 0. Such equations have been derived to model problems arising from
applied science, such as population dynamics, genetics, combustion and flame
propagation. In these situations, one of most interesting and natural questions
is the asymptotic behavior of solutions u(x, y, t) as t→ +∞, in particular, the
stability of traveling wavefronts. Here, the planar traveling wavefronts of (1)
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are the special solutions in the form of u(x, y, t) = φ((x, y) · e + ct), where c is
the wave speed, and e is the unit basis of Rn. Without loss of generality, let
us take e = (0, . . . , 0, 1). So, the planar wavefronts are the solutions to the 1-D
equation

ut = uyy + f(u), (2)

which, simply denoted by φ(y + ct) = φ(ξ) with ξ = y + ct, satisfy that{
φ′′(ξ)− cφ′(ξ) + f(φ(ξ)) = 0, ξ ∈ R,

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→∞

φ(ξ) = 1.

When f is of bistable type, namely, f ′(0) < 0 and f ′(1) < 0, the traveling
wave φ(y+ct) with a specific wave speed c has been proved to uniquely exist up
to shift, and further proved to be stable in different cases, cf. [1, 3–5, 11, 14, 17,
18,25] and references therein. Notice that, in [18], Matano and Nara considered
the Cauchy problem (1) under the condition that f is of bistable type. They
proved that the planar front is asymptotically stable in L∞(Rn) under spatially
ergodic perturbation, and that the large time behavior of the disturbed planar
front can be approximated by that of the mean curvature flow with a drift term
for all large time up to +∞.

When f(u) is mono-stable, i.e., f(0) = f(1) and f ′(1) < 0 but f ′(0) > 0,
for example, f(u) = u(1− u), the equation (1) is just the so-called Fisher-KPP
equation, which was first introduced and studied by Fisher [6] and Kolmohoroff,
Petrovsky and Piscounoff [13] in 1937. The wavefronts φ(y + ct) of (1) in
this mono-stable case are obtained for c ≥ c∗ = 2

√
f ′(0) (for example, see

[9, 15,16,19,20,23]), and satisfy

lim
z→−∞

φ(z)e−λ1(c)z = 1, lim
z→−∞

φ′(z)e−λ1(c)z = λ1(c), (3)

lim
z→−∞

φ(z)|z|−1e−λ∗(c∗)z = 1, lim
z→−∞

φ′(z)|z|−1e−λ∗(c∗)z = λ∗(c∗), (4)

where λ1(c) is the smaller positive root of

∆c(λ) := cλ− λ2 − f ′(0) = 0,

with c ≥ c∗ = 2
√
f ′(0), and λ∗ = λ(c∗). These wavefronts are further proved

to be asymptotically stable in different designed solution spaces, for example,
see [7,10,12,15,16,19–23] and the references therein. However, when the initial
perturbation u0(x, y)−φ(y) is ergodic in x, including quasi-periodic and almost
periodic cases, the stability of such a wavefront has remained open for many
years. Obviously, to attach this problem is interesting and significant. This will
be the main target of the present paper.

Throughout this paper, we always assume that u0(x, y) ≥ 0 and there exists
M0 > 0 and α ∈ (0, 1] such that
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(F) f ∈ C1(R), f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, f(u) > 0 for u ∈ (0, 1),
f(u) < 0 for u ∈ (1,∞), 0 < f ′(0)u− f(u) < M0u

1+α, ∀u ∈ (0, 1).

Inspired by [18], in this paper we will consider the stability of planar fronts
under spatially ergodic perturbation. Due to the function f is of mono-stable
type, there are something essentially different from [18] in the bistable case,
particularly, here 0 is an unstable state, which essentially causes some difficulty
to get the stability. In fact, we first need to construct different sub-supersolution
from that of [18], then, in order to derive the ω-limit of solution to (1), we then
need technically to establish a crucial estimate.

Now let us now state our main results.

Theorem 1.1 (Large time behavior). Let n ≥ 2 and let (F) hold. Let u(x, y, t)
be a solution problem (1) whose initial value u0(x, y) is nonnegative, bounded
and uniformly continuous on Rn and satisfies

lim inf
y→+∞

inf
x∈Rn−1

u0(x, y) > 1− δ,

where 0 < δ < ε0 for some constant ε0 ∈ (0, 1).

1) When c > c∗, and u0(x, y) satisfies

lim
y→−∞

u0(x, y)e−λ1(c)y = Bϕ(x)

for some constant B > 0, where λ1(c) is defined in (3) and 0 < κ0 ≤
ϕ(x) ≤ κ1, x ∈ R (κ0 and κ1 are two constants), then there exist a
constant T > 0 and a smooth function γ(x, t) such that

(i) for each t ∈ [T,+∞) and x ∈ Rn−1, one has u(x, y, t) = φ(0) if and
only if y = γ(x, t);

(ii) it holds that

lim
t→∞

sup
(x,y)∈Rn

|u(x, y, t)− φ(y − γ(x, t))| = 0;

(iii) for any ε > 0, there exists Tε > 0 such that

v1(x, t)− ε ≤ γ(x, t) ≤ v2(x, t) + ε, t ≥ Tε,

where v1(x, t) and v2(x, t) satisfy{
v1t = ∆xv1 − k|∇xv1|2 − c, x ∈ Rn−1, t > 0,

v1(x, 0) = γ(x, Tε), x ∈ Rn−1;{
v2t = ∆xv2 + k|∇xv2|2 − c, x ∈ Rn−1, t > 0,

v2(x, 0) = γ(x, Tε), x ∈ Rn−1.

Here ∆x and ∇x denote the (n − 1)-dimensional Laplacian and the
(n − 1)-dimensional gradient, respectively. k is defined as in
Lemma 2.3.
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2) When c = c∗, and u0 > 0 satisfies

lim
y→−∞

u0(x, y)|y|−1e−λ∗(c)y = Bψ(x)

for some constant B > 0, where λ∗(c) is defined in (4), and 0 < ι0 ≤
ψ(x) ≤ ι1, x ∈ R (ι0 and ι1 are two constants), then the above properties
(i)–(iii) hold, where c is replaced by c∗.

The statement (i) of Theorem 1.1 shows that the φ(0)-level surface of
u(x, y, t) has a graphical representation y = γ(x, t). The statement (ii) implies
that the solution u(x, y, t) behaves like the function φ(y − γ(x, t)) for large t,
thus the large time behavior of the solution u(x, y, t) is basically determined by
the position of the φ(0)-level surface γ(x, t). The last statement shows that the
behavior of γ(x, t) can be controlled by the two functions v1(x, t) and v2(x, t).

In order to obtain the stability of planar wave, we need the following defi-
nition.

Definition 1.2 (Unique ergodicity in the x-direction). A bounded uniformly
continuous function p(x, y): Rn−1 × R → R is called uniquely ergodic in the
x-direction if there exists a unique probability measure on Hp, namely, p(x, y)
is σa-invariant for any a ∈ Rn−1, where

Hp := {σag|a ∈ Rn−1}
L∞loc(R

n−1)
, (σap)(x) = p(x+ a),

and A
X

stands for the closure of a set A in the X-topology.

Proposition 1.3. [18, Corollary 2.12] Let u0(x, y) be a uniformly continuous
bounded function on Rn−1 × R and uniquely ergodic in the x-direction. Then
for each fixed t ≥ 0, the solution u(x, y, t) of (1) is uniquely ergodic in the
x-direction.

Theorem 1.4 (Stability of planar traveling waves). In addition to the assump-
tions of Theorem 1.1, assume further that u0(x, y) is uniquely ergodic in the
x-direction. Then there exists a constant µ ∈ R such that

lim
t→∞

sup
(x,y)∈Rn

∣∣u(x, y, t)− φ(y + ct+ µ)
∣∣ = 0.

From [18], we see that

P ⊂ QP ⊂ AP ⊂ SE ⊂ UE,

where P,QP,AP,SE,UE denote, respectively, the sets of periodic functions,
quasi-periodic functions, almost periodic functions, strictly ergodic functions
and uniquely ergodic functions. Hence the above Theorem 1.4 is a general
result.
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It is also interesting to compare our result with those existing stability re-
sults for the mono-stable traveling waves studied in [10,15,16,19,20]. In [10], the
problem under consideration is periodic, but the initial perturbation considered
in our paper can be more general like ergodic perturbation. In [15, 19, 20], the
periodic initial perturbations are not treated, and in order to apply the maxi-
mum principle, they need to restrict the initial data to be 0 ≤ u0(x, y) ≤ 1, but
such a condition can be removed in our stability. However, our assumption on
u0(x, y) decay to 0 as y → −∞ is stronger than those in [10,15,19,20]. On the
other hand, the proof approaches adopted in these papers are totally different.
The methods used in [10] and [15,19,20] are super-solution and Green functions
method respectively, but we use the ω-limit and level set to prove the stability
of planar fronts. Notice also that, here we give a new description about the
large time behavior of the solution to (1). Unfortunately, we can not obtain
the convergence rate by the ω-limit method. In [16], for the special case with
φ(0) = 1

2
, the planar traveling waves for the mono-stable type equation was

proved to be stable. Here we further extend and develop all results in [16], and
our results on the asymptotic behave of perturbed planar waves as well as their
stability are more specific than in [16]. We remark that, in papers [8, 10], they
all considered the monostable case, but in this paper, we use a different method
from [8,10].

The rest of this paper is organized as follows. In Section 2, we consider
problem (1) in one-dimension. Section 3 is concerned with the proofs of Theo-
rems 1.1 and 1.4.

2. One dimensional problem and preliminary

In this section we first study the one dimensional problem (1) in a moving frame,
i.e., {

ut − uzz + cuz = f(u), z ∈ R, t > 0,

u(z, 0) = u0(z), z ∈ R. (5)

Obviously, traveling wave solution φ(z), i.e., the solution of (2), is a stationary
solution of (5).

Now, we construct a family of subsolutions. The proof of the following
lemma is standard and thus we omit it.

Lemma 2.1. Assume that (F) holds. Let λ1(c) and λ2(c) be the two positive

roots of ∆c(λ) = 0 with c > 2
√
f ′(0). For every η ∈ (1,min{1+α, λ2(c)

λ1(c)
}), there

exists a positive number Q := Q(c, η) ≥ 1 such that for each q ≥ Q, then

ψ(z) := max
{

0, eλ1(c)(z+z
−) − qeηλ1(c)(z+z−)

}
, for z− ∈ R,

is a subsolution to the traveling wave problem with speed c, i.e.,

N [ψ](z) := cψ′(z)− ψ′′(z)− f(ψ(z)) ≤ 0 for all z ∈ R.
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The following supersolution and subsolution we construct here are differ-
ent from that in [4], where Chen–Guo [4] considered the discrete quasilinear
monostable equations.

Lemma 2.2. Assume that (F) holds and φ(z) is a monotone increasing solution
of (2) with c ≥ 2

√
f ′(0). Then there exist ε0 ∈ (0, 1), β > 0, and σ ≥ 1 such

that, for any ε ∈ (0, ε0], the functions defined by

u+(z, t) = (1 + εe−βt)φ(z + σε(1− e−βt))
u−(z, t) = (1− εe−βt)φ(z − σε(1− e−βt))

are supersolution and subsolution of (5), respectively, i.e.,

L[u+](z, t) := u+t − u+zz + cu+z − f(u+) ≥ 0,

L[u−](z, t) := u−t − u−zz + cu−z − f(u−) ≤ 0.

Proof. We only study the supersolution because the subsolution can be proved
similarly. By using the relation φ′′ − cφ′ + f(φ) = 0, we have

L[u+](z, t) = −εβe−βtφ+ σεβe−βt(1 + εe−βt)φ′

− (1 + εe−βt)φ′′ + c(1 + εe−βt)φ′ − f((1 + εe−βt)φ)

= −εβe−βtφ+ σεβe−βt(1 + εe−βt)φ′

+ (1 + εe−βt)f(φ)− f((1 + εe−βt)φ).

By the assumption (F), we take constants β > 0 and ε0 > 0 such that

−f ′(s) ≥ β > 0, for s ∈ [1− 2ε0, 1 + 2ε0]. (6)

In addition, we take M1 > 0 sufficiently large so that

φ(ξ) ≥ 1− ε0, ξ ≥M1. (7)

Here we only consider the case that c > c∗ and the other case that c = c∗ can
be similarly proved. As limξ→−∞ φ(ξ)e−λ1(c)ξ = 1 and limξ→−∞ φ

′(ξ)e−λ1(c)ξ =
λ1(c), we can take M2 > 0 sufficiently large such that

1

2
< φ(ξ)e−λ1(c)ξ <

3

2
, φ′(ξ)e−λ1(c)ξ >

1

2
λ1(c) for ξ ≤ −M2. (8)

Denote

% := min{φ′(ξ), −M2 ≤ ξ ≤M1} > 0.

Finally, choose σ ≥ 1 sufficiently large so that

σ ≥ max

{
1,

3β + 3‖f ′‖L∞[0,1]

βλ1(c)
,
β + ‖f ′‖L∞[0,1]

β%

}
.
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Let ξ = z+σε(1− e−βt), then for any ξ ≥M1, combining (6) and (7) and using
the fact that φ′ > 0, we have

L[u+] ≥ εφe−βt
(
−β −

∫ 1

0

f ′((1 + εe−βtτ)φ)dτ

)
> 0.

For any ξ ≤ −M2, by using (8), we obtain

ε−1eβte−λ1(c)ξL[u+] ≥ 1

2
σβλ1(c)−

3

2
β − 3

2
‖f ′‖L∞[0,1] ≥ 0.

For −M2 ≤ ξ ≤M1, we have

ε−1eβtL[u+] ≥ σβ%− β − ‖f ′‖L∞[0,1] ≥ 0.

In summary, we have L[u+] ≥ 0. This completes the proof.

Lemma 2.3 ([16, Lemma 2.2]). Assume that (F) holds and φ(z) is a monotone
increasing solution of (2) with c ≥ 2

√
f ′(0). Then there exists a constant k > 0

depending only on f such that

−kφ′(ξ) ≤ φ′′(ξ) ≤ kφ′(ξ), ξ ∈ R.

At the end of this section, we consider the following nonlinear parabolic
equation {

vt = ∆xv − k|∇xv|2 − c, x ∈ Rn−1, t > 0,

v(x, 0) = v0(x), x ∈ Rn−1,
(9)

where constant k is defined as in Lemma 2.3, c is the wave speed, and ∆x

and ∇x denote the (n− 1)-dimensional Laplacian and the (n− 1)-dimensional
gradient, respectively. By using Definition 1.2, we have the following result.

Lemma 2.4. Let v(x, t) be a solution to the problem (9) whose initial value
v0(x) is uniquely ergodic. Then

lim
t→∞

sup
x∈Rn−1

|v(x, t) + (µ+ ct)| = 0

where µ = 1
k

lnµ∗, and

µ∗ = lim
R→∞

1

|BR(a)|

∫
BR(a)

exp(−kv0(x))dx > 0

is the uniform mean of e−kv0(x) with a certain point a ∈ Rn−1.
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Proof. Let w(x, t) := exp(−k(v(x, t)+ct)), then w satisfies the following Cauchy
problem {

wt = ∆xw, x ∈ Rn−1, t > 0,

w(x, 0) = exp(−kv0(x)), x ∈ Rn−1,

which implies

w(x, t) =

∫
Rn−1

G(x− y, t) exp(−kv0(y))dy,

where G(x, t) is the heat kernel on Rn−1 given by

G(x, t) = (4πt)−
n−1
2 exp

(
−|x|

2
4t

)
.

Consequently, we have

v(x, t) = −1

k
ln

(∫
Rn−1

G(x− y, t) exp(−kv0(y))dy

)
− ct.

Since v0(x) is uniquely ergodic, by [18, Remark 2.1], the function exp(kv0(x))
has uniform mean in the sense that the following limit exists uniformly in
a ∈ Rn−1 and is independent of a:

µ∗ = lim
R→∞

1

|BR(a)|

∫
BR(a)

exp(−kv0(x))dx > 0.

This implies∫
Rn−1

G(x− y, t) exp(−kv0(y))dy → µ∗ as t→∞,

uniformly in x ∈ Rn−1. Thus, we obtain

lim
t→∞

sup
x∈Rn−1

∣∣∣∣v(x, t) +

(
1

k
lnµ∗ + ct

)∣∣∣∣ = 0

This completes the proof of the lemma.

Similarly, we consider the following problem{
vt = ∆xv + k|∇xv|2 − c, x ∈ Rn−1, t > 0,

v(x, 0) = v0(x), x ∈ Rn−1,
(10)

where k > 0 is defined as in Lemma 2.3.

Lemma 2.5. Let v(x, t) be a solution to the problem (10) whose initial value
v0(x) is uniquely ergodic. Then the exists a constant ν ∈ R such that

lim
t→∞

sup
x∈Rn−1

|v(x, t) + (ν + ct)| = 0.
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3. Proofs of Theorems 1.1 and 1.4

In this section, we consider problem (1) in Rn and prove our main results.
Firstly, we give some rough upper and lower bounds for the solution at large
time, then introduce the notion of ω-limit points of the solution and study the
basic properties of φ(0)-level surface of the solution. Finally, we construct a fine
set of supersolutions and subsolutions and give the proofs of the main theorems.

Let us express the solutions u(x, y, t) of (1) in a moving frame, thus the
planar waves can be viewed as stationary states. Let

u = u(x, z, t), z = y + ct,

be the solution of the problem (1), namely,{
ut = ∆u− cuz + f(u), x ∈ Rn−1, z ∈ R, t > 0,

u(x, z, 0) = u0(x, z), x ∈ Rn−1,
(11)

where ∆ = ∂2

∂x21
+ · · ·+ ∂2

∂x2n−1
+ ∂2

∂z2
. Throughout this section, we always assume

that the initial value u0 is nonnegative, bounded and uniformly continuous
on Rn, and satisfies

lim
z→−∞

u0(x, z)e
−λ1(c)z = Bϕ(x), lim inf

z→+∞
inf

x∈Rn−1
u0(x, z) > 1− δ, (12)

where δ is defined as in Theorem 1.1. We first consider upper and lower bound
of the solution of (11) at large time.

Lemma 3.1. Let u(x, z, t) be the solution of (11). Then there exist constant
z∗, z

∗ ∈ R such that

lim inf
t→∞

inf
x∈Rn−1

u(x, z, t) ≥ φ(z − z∗), uniformly in z ∈ R,

lim sup
t→∞

sup
x∈Rn−1

u(x, z, t) ≤ φ(z − z∗), uniformly in z ∈ R.

Proof. We first show the upper bound. Let u+(z, t) be defined as in Lemma 2.2.
Then it suffices to show that there exist constants T > 0 and z0 ∈ R such that

u(x, z, T ) ≤ (1 + ε0)φ(z − z0) = u+(z − z0, 0). (13)

Indeed, the comparison principle and (13) give u(x, z, t) ≤ u+(z− z0, t− T ) for
t ≥ T , which yield upper bound by letting t→∞.

We first consider the case c > c∗. Since f(u) < 0 for u > 1 by the assump-
tion (F), we see from the comparison that

u(x, z, T ) < 1 +
ε0
2
, (x, z) ∈ Rn (14)



60 X. Wang

for all sufficiently large T > 0. Note that λ1(c) > 0 and let ẑ = − 1
λ1(c)

ln(Bκ1),

then we have Bκ1e
λ1(c)ẑ = 1. From (12), we know that

lim
z→−∞

u0(x, z + ẑ)e−λ1(c)z = Bϕ(x)eλ1(c)ẑ ≤ 1,

thus there exists z1 > 0 such that u0(x, z + ẑ) <
(
1 + ε0

2

)
eλ1(c)z for z ≤ −z1.

Then there exists z2 ∈ R such that

u0(x, z) <
(

1 +
ε0
2

)
eλ1(c)(z+z2) for (x, z) ∈ Rn.

On the other hand, let ū(x, z, t) = (1 + ε0
2

)eλ1(c)(z+z2) and we have

ūt −∆ū+ cūz − f(ū) =
(

1 +
ε0
2

)
(−λ21(c) + cλ1(c))e

λ1(c)(z+z2) − f(ū)

= f ′(0)ū− f(ū)

≥ 0,

where we have used the facts that f ′(0)ū− f(ū) ≥ 0 for ū ∈ (0, 1) and f(ū) ≤ 0
for ū ≥ 1. So we obtain u(x, z, t) ≤ (1 + ε0

2
)eλ1(c)(z+z2) by the comparison

principle. It then follows that there exists z3 ∈ R such that

u(x, z, t) ≤ (1 + ε0)φ(z + z2) for z ≤ z3. (15)

The assertion (13) then follows immediately by combining (14) and (15).
Next, we show the lower bound. Similar to the case for the upper bound,

we only show that there exists constants T > 0 and z0 ∈ R such that

u(x, z, T ) ≥ (1− ε0)φ(z − z0) = u−(z − z0, 0). (16)

We first show that
lim inf
z→+∞

inf
x∈Rn−1

u(x, z, T ) > 1− ε0 (17)

for each T > 0. For this purpose, let us choose constants β,M such that

lim inf
z→+∞

inf
x∈Rn−1

u0(x, z) > 1− δ > β > 1− ε0

and that

u0(x, z) ≥ max{0, β −Me−z}, (x, z) ∈ Rn.

Then the function w(x, z, t) = max{0, β −Me−(z−at)} is a subsolution of (11)
if a > 0 is chosen sufficiently large. Hence u(x, z, T ) ≥ β −Me−(z−aT ). This
proves (17). Next, it follows from (12) that there exists a constant z4 ∈ R such
that

u0(x, z + ẑ + 1) ≥ eλ1(c)z for z ≤ z4,
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where ẑ = − 1
λ1(c)

lnB. Let

q = max{Q(c, η), e−(η−1)λ1(c)z4}, where η =
1 + min{1 + α, λ2(c)

λ1(c)
}

2
.

Then, when z > z4, we have eλ1(c)z − qeηλ1(c)z < 0. Hence

u0(x, z + 1) ≥ max
{

0, eλ1(c)z − qeηλ1(c)z
}
.

The comparison principle then gives

u(x, z + 1, t) ≥ eλ1(c)z − qeηλ1(c)z.

As limz→−∞ φ(z)e−λ1(c)z=1, there exists z5 ∈ R such that eλ1(c)(z+1)−qeηλ1(c)(z+1)

> φ(z) for z ≤ z5. Consequently,

u(x, z, t) ≥ φ(z − ẑ − 2) for z ≤ z5. (18)

It is well-known that the solution u(x, z, t) of (11) has the following property:
u(x, z, t) > 0, for all t > 0 if the initial data u0(x, z) ≥ 0 and u0(x, z) 6≡ 0.
By using the above property, the assertion (16) then follows immediately by
combining (17) and (18).

Next, we consider the case c = c∗. The upper bound is similar to the case
that c > c∗. Next, we consider the lower bound. Similar to the case that c > c∗,
it suffices to show that u0(x, z) ≥ (1− ε0)φ(z − z0) for all (x, z) ∈ Rn. By the
assumption of Theorem 1.1, limz→−∞ u0(x, z)|z|−1e−λ

∗(c)z = Bψ(x), we have
there exist a constant z̃ ∈ R such that

lim
z→−∞

u0(x, z + z̃)|z + z̃|−1e−λ∗(c)z = Beλ
∗z̃ψ > 2.

It follows from (4) that there exist a constant z6 ∈ R such that

u0(x, z) ≥ φ(z − 2|z̃|) for z ≤ z6.

Combining the above inequality and using (12) and u0(x, z) > 0, it is easy to
prove that u0(x, z) ≥ (1 − ε0)φ(z − z0) for all (x, z) ∈ Rn. This completes the
proof.

Now, we introduce the notion of ω-limit points of the solution u(x, z, t)
of (11), where we consider a sequence both in x and t. Then we show that any
ω-limit point is a planar wave under the assumption (12).

Definition 3.2. A function w(x, z, t) defined on Rn−1 × R × R is called an
ω-limit point of the solution u(x, z, t) of (11) if there exists a sequence {(xi, ti)}
such that 0 < t1 < t2 < · · · → ∞ and that

u(x+ xi, z, t+ ti)→ w(x, z, t) as i→∞ in C2,1
loc (Rn × R).
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The following remark tells us how to construct ω-limit point, which is similar
to what stated in [18].

Remark 3.3. Let u(x, z, t) be a solution of (11). Then for every sequence
{(xi, ti)} with 0 < t1 < t2 < · · · → ∞, there exist a subsequence {(x′i, t′i)} and
an ω-limit point w(x, z, t) of u(x, z, t) such that

u(x+ x′i, z, t+ t′i)→ w(x, z, t), as i→∞ in C2,1
loc (Rn × R).

Indeed, since u0 is bounded on Rn, the assumption (F) and comparison principle
imply that u(x, z, t) is bounded on Rn× [0,∞). Therefore, by Lp-estimates and
Schauder’s estimate, the solution u(x, z, t) belongs to C2+α,1+α

2 (Rn × [δ, T ]) for
any 0 < δ < T . Furthermore,

‖u‖
C2+α,1+α2 (Rn×[δ,T ]) ≤ C, (19)

where C > 0 is a constant independent of T > 0. Let {Qk}k=1,2,... be a sequence
of compact subsets of Rn × R satisfying

Q1 ⊂ Q2 ⊂ · · · and lim
k→∞

Qk = Rn × R.

Then, for each k, the sequence of functions {u(x+ xi, z, t+ ti)}i=1,2,... is defined
on Qk for all large i and the restrictions of these functions onto Qk is relatively
compact in C2,1(Qk) by virtue of the estimate (19). By using diagonal argument,
we can choose a subsequence {(x′i, t′i)} and a function w(x, z, t) defined on Rn×R
such that, for any k ≥ 1, it holds that

lim
i→∞
‖u(x+ x′i, z, t+ t′i)− w(x, z, t)‖C2,1(Qk) = 0,

which means u(x+ x′i, z, t+ t′i)→ w(x, z, t) as i→∞ in C2,1
loc (Qk).

In order to prove that any ω-limit point is a planar wave, the following
lemma is needed.

Lemma 3.4. Let u(x, z, t) be a function defined on Rn−1×R×R and satisfies

ut = ∆u− cuz + f(u), (x, z) ∈ Rn, t ∈ R.

Assume further that there exist two constants z∗, z
∗ ∈ R with z∗ < z∗, such that

φ(z − z∗) ≤ u(x, z, t) ≤ φ(z − z∗), (x, z) ∈ Rn, t ∈ R. (20)

Then there exists a constant z0 ∈ [z∗, z
∗] such that

u(x, z, t) = φ(z − z0), (x, z) ∈ Rn, t ∈ R.
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Proof. The proof of this lemma is similar to [2, Theorem 3.1] and we only give
outline of the proof. Define

us(x, z, t) = u(x+ y, z + s, t+ T ), y ∈ Rn−1, s, T ∈ R.

Then φ(z+s−z∗) ≤ us(x, z, t) ≤ φ(z+s−z∗). It follows from the monotonicity
of φ that there exists s ∈ R satisfying

us(x, z, t) ≥ u(x, z, t).

Indeed, let s = z∗ − z∗, then u(x, z, t) ≤ φ(z − z∗) < φ(z + s− z∗) ≤ us(x, z, t).
Now, let

s∗ = inf{s ∈ R, us′ ≥ u, in Rn × R for all s′ ≥ s}.

Since limz→−∞ φ(z) = 0, limz→∞ φ(z) = 1 and by using (20), there exists con-
stant A1 > 0 such that{

u(x, z, t) ≥ 1− γ, for all z ≥ A1 and (x, t) ∈ Rn−1 × R,
u(x, z, t) ≤ γ, for all z ≤ −A1 and (x, t) ∈ Rn−1 × R.

Note that, without loss of generality, one can assume γ ∈ (0, 1
2
). Let

A = max{A1,
z∗−z∗

2
}, then u(x, z, t) ≥ 1 − γ for z ≥ A and u(x, z, t) ≤ γ

for z ≤ −A. It is easy to see that s∗ ≤ 2A and s∗ > −∞. Assume that s∗ > 0
and call S = {(x, z, t) ∈ Rn × R, −A ≤ z ≤ A}. If infS(us∗ − u) > 0, then
there exists η0 ∈ (0, s∗) such that us∗−η ≥ u is S for all η ∈ [0, η0]. Denote
E = {(x, z, t) ∈ Rn × R, z > A} and v = us∗−η − u, we see that v ≥ 0 on
∂E = {z = A} and satisfies

vt −∆v + cvz = f(us∗−η)− f(u) ≥ −Bv

for some constant B (remember that f ∈ C1(R) and 0 ≤ us∗−η, u ≤ 1). The
parabolic maximum principle implies that v(x, z, t) ≥ 0 in E. Similarly, we can
prove that v ≥ 0 for z ≤ −A. Therefore, us∗−η ≥ u in Rn×R for all η ∈ [0, η0].
This contradicts the minimality of s∗. It follows then that

inf
S

(us∗ − u) = 0.

As a consequence, there exist z∞ ∈ [−A,A] and a sequence (xn, zn, tn)n∈N such
that

zn → z∞ and us∗(xn, zn, tn)− u(xn, zn, tn)→ 0 as n→∞.

Set un(x, z, t) = u(x + xn, z + zn, t + tn). Up to extraction of a subsequence,
the functions un converge locally and uniformly to a solution u∞ of ut −∆u+
cuz − f(u) = 0 such that

v(x, z, t) = u∞(x+ y, z + s∗, t+ T )− u(x, z, t) ≥ 0, in Rn × R
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and v(0, z∞, 0) = 0. It follows from the strong parabolic maximum principle
that v(x, z, t) = 0 for all t ≤ 0 and then v ≡ 0 in Rn × R by uniqueness of
the solution of the Cauchy problem (11). Thus u∞(0, 0, 0) = u∞(ky, ks∗, kT )
for all k ∈ Z. But u∞(ky, ks∗, kT ) → 1 as k → ∞ since s∗ > 0. This is a
contradiction.

Thus, s∗ ≤ 0, whence

u0(x, z, t) = u(x+ y, z, t+ T ) ≥ u(x, z, t).

Since T ∈ R and y ∈ Rn−1 are arbitrary, we conclude that u depends on z only,
namely, u(x, z, t) = φ(z − z0) for some z0 ∈ R. This completes the proof.

From Lemma 3.1, any ω-limit point of u satisfies

φ(z − z∗) ≤ w(x, z, t) ≤ φ(z − z∗), (x, z) ∈ Rn, t ∈ R

for some constant z∗, z∗ ∈ R. Applying the above Lemma, we immediately have
the following result.

Lemma 3.5. Let u(x, z, t) be a solution of (11). Then every ω-limit point
w(x, z, t) of u is a planar wave, that is, there exists a constant z0 ∈ R such that

w(x, z, t) = φ(z − z0), (x, z) ∈ Rn, t ∈ R.

Now, we derive estimate for the derivatives of the solution of (11).

Lemma 3.6 (Monotonicity in z). Let u(x, z, t) be a solution of (11). Then for
any constant R > 0, there exists a constant T > 0 such that

inf
x∈Rn−1, |z|≤R, t≥T

uz(x, z, t) > 0.

By using Lemma 3.5 and similar to [18, Lemma 4.7], one can easily prove the
above result. By using the above Lemmas 3.6 and 3.1, the following corollary
is obtained.

Corollary 3.7. Let u(x, z, t) be a solution of (11). Then there exists a constant
T > 0 such that

inf
(x,z,t)∈D

uz(x, z, t) > 0,

where

D =

{
(x, z, t) ∈ Rn × [T,∞),

φ(0)

2
≤ u(x, z, t) ≤ 1 + φ(0)

2

}
.
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Lemma 3.8 (Decay of x-derivatives). Let u(x, z, t) be a solution of (11). Then
for any constant R > 0, it holds that

lim
t→∞

sup
x∈Rn−1,|z|≤R

|uxi(x, z, t)| = 0, lim
t→∞

sup
x∈Rn−1,|z|≤R

|uxixj(x, z, t)| = 0

for each 1 ≤ i, j ≤ n− 1.

Note that there is no assumption about the function f in the proof of
[18, Lemma 4.9], so the above Lemma can be proved similar to that of
[18, Lemma 4.9] and we omit it here.

Next we study the φ(0)-level surface of the solution of (11). From Corol-
lary 3.7 and Lemma 3.8, we can derive the following lemma that the φ(0)-level
surface of the solution u(x, z, t) has a graphical representation z = Γ(x, t) for
all t.

Lemma 3.9. Let u(x, z, t) be a solution of (11) and let T > 0 be as defined in
Corollary 3.7. Then there exists a smooth bounded function Γ(x, t) such that

u(x, z, t) = φ(0) if and only if z = Γ(x, t) (21)

for any (x, t) ∈ Rn−1 × [T,∞). Furthermore, the following estimates hold:

(i) for each 1 ≤ i, j ≤ n− 1,

lim
t→∞

sup
x∈Rn−1

|Γxi(x, t)| = 0, lim
t→∞

sup
x∈Rn−1

|Γxixj(x, t)| = 0;

(ii) there exists a constant M > 0 such that, for each 1 ≤ i, j, k ≤ n− 1,

sup
x∈Rn−1

|Γxixjxk(x, t)| ≤M for t ≥ T.

Proof. Since

D =

{
(x, z, t) ∈ Rn × [T,∞),

φ(0)

2
≤ u(x, z, t) ≤ 1 + φ(0)

2

}
is bounded in the z-direction by virtue of Lemma 3.1 and the facts φ(−∞) = 0,
φ(+∞) = 1, we can define a bounded function Γ(x, t) satisfying (21) thanks to
Corollary 3.7. Here Γ(x, t) is smooth by the implicit function theorem, since
u(x, z, t) is smooth for t > 0. The other estimates follows from Lemma 3.8 and
we omit it here. This completes the proof.

The following lemma shows that the large time behavior of the solution can
be essentially determined by the φ(0)-level surface Γ(x, t).
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Lemma 3.10. Let u(x, z, t) be a solution of (11) and let Γ(x, t) be as defined
in Lemma 3.9. Then it holds that

lim
t→∞

sup
(x,z)∈Rn

|u(x, z, t)− φ(z − Γ(x, t))| = 0.

Proof. We prove this lemma by contradiction method. If the above claim does
not hold, there exists a constant δ > 0 and a sequence {(xk, zk, tk)} such that
0 < t1 < t2 < · · · → ∞ and that

|u(xk, zk, tk)− φ(zk − Γ(xk, tk))| ≥ δ. (22)

On the other hand, by virtue of Lemma 11 and boundedness of Γ(x, t), we can
choose constants R > 0 and T > 0 such that

sup
x∈Rn−1, |z|≥R, t≥T

|u(x, z, t)− φ(z − Γ(x, t))| < δ,

which mean that {zk} is bounded. We can choose subsequence of {(xk, zk, tk)},
which we denote again by {(xk, zk, tk)} such that

z∞ := lim
k→∞

zk, γ∞ := lim
k→∞

Γ(xk, tk)

u(x+ xk, z, t+ tk)→ w(x, z, t) as k →∞ in C2,1
loc (Rn × R),

where w is some ω-limit point of u. This and (22) shows that

|w(0, z∞, 0)− φ(z∞ − γ∞)| = lim
k→∞
|u(xk, zk, tk)− φ(zk − γ(xk, tk))| ≥ δ. (23)

On the other hand, since we have

w(0, γ∞, 0) = lim
k→∞

u(xk,Γ(xk, tk), tk) = φ(0).

Lemma 3.5 implies that w(x, z, t) ≡ φ(z− γ∞). This contradicts to (23). Thus,
the proof is complete.

By setting y = z − ct and γ(x, t) = Γ(x, t) − ct, we obtain the statements
(i),(ii) of Theorem 1.1 from Lemmas 3.9 and 3.10. Thus it remains to prove the
statement (iii). This will be done at the end of this section.

In the following, we construct supersolutions of (11). For this purpose, we
consider the Cauchy problem in the form{

vt = ∆xv − k|∇xv|2, x ∈ Rn−1, t > 0,

v(x, 0) = v0(x), x ∈ Rn−1,
(24)

where constant k is defend as in Lemma 2.3.
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Lemma 3.11 (Supersolution). For any constant ε ∈ (0, ε0], there exist smooth
functions p(t) and q(t) satisfying

p(0) > 0, q(0) = 0, 0 ≤ p(t), q(t) ≤ ε for t ≥ 0, (25)

such that for any function v(x, t) satisfying (24), the function defined by

u+(x, z, t) = (1 + p(t))φ(z − v(x, t) + q(t)),

satisfies

L[u+] := u+t −∆u+ + cu+z − f(u+) ≥ 0, (x, z) ∈ Rn, t > 0.

Proof. The proof of this lemma is similar to that of Lemma 2.2. Define a
constant k > 0 as in Lemma 2.3. Then by using the relation φ′′−cφ′+f(φ) = 0
and Lemma 2.3, we have

L[u+] = [(−vt + ∆xv)φ′ − |∇xv|2φ′′](1 + p(t)) + p′(t)φ+ (1 + p(t))q′(t)φ′

− (1 + p(t))(φ′′ − cφ′)− f((1 + p(t))φ)

≥ (1 + p(t))(kφ′ − φ′′)|∇xv|2 + p′(t)φ+ (1 + p(t))q′(t)φ′

+ (1 + p(t))f(φ)− f((1 + p(t))φ)

≥
(
p′(t)

p(t)
φ+

q′(t)

p(t)
φ′ − φ

∫ 1

0

f ′((1 + τp(t))φ)dτ

)
p(t)

By the assumption (F), we take constants 0 < K < 1 and ε0 > 0 such that

−f ′(s) ≥ K > 0, s ∈ [1− 2ε0, 1 + 2ε0]. (26)

In addition, we take M1 > 0 sufficiently large so that

φ(ξ) ≥ 1− ε0, ξ ≥M1. (27)

As limξ→−∞ φ(ξ)e−λ1(c)ξ = 1 and limξ→−∞ φ
′(ξ)e−λ1(c)ξ = λ1(c), we can take

M2 > 0 sufficiently large such that

1

2
< φ(ξ)e−λ1(c)ξ <

3

2
, φ′(ξ)e−λ1(c)ξ >

1

2
λ1(c) for ξ ≤ −M2. (28)

Denote

H(t) = min

{
K2ε2

16C2
0

, t−2
}
, % := min{φ′(ξ), −M2 ≤ ξ ≤M1} > 0,

C0 ≥ max

{
1,

3K + 3‖f ′‖L∞[0,1]

λ1(c)
,
K + ‖f ′‖L∞[0,1]

%

}
.
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Finally, we choose functions p(t), q(t) ∈ C∞ satisfying

H(t) ≤ Kp(t) ≤ 2H(t), K|p′(t)| ≤ 2|H ′(t)|, q(t) = C0

∫ t

0

p(s)ds.

Then (25) holds provided that

p(0) ≤ Kε2

16C2
0

, 0 < p(t) ≤ Kε2

8C2
0

≤ ε, 0 ≤ q(t) ≤ C0

∫ ∞
0

p(s)ds ≤ ε.

Let ξ = z − v(x, t) + q(t), then for any ξ ≥ M1, combining (26) and (27) and
using the fact that φ′ > 0, we have

L[u+] ≥
(
p′(t)

p(t)
−
∫ 1

0

f ′((1 + τp(t))φ)dτ

)
p(t)φ ≥

(
p′(t)

p(t)
+K

)
p(t)φ ≥ 0,

since we have supt≥0
|p′(t)|
p(t)
≤ supt≥0

2|H′(t)|
Kp(t)

≤ supt≥0
2|H′(t)|
H(t)

= Kε
C0

< K. For any

ξ ≤ −M2, by using (28), we obtain

e−λ1(c)ξp(t)−1L[u+] ≥ 1

2
C0λ1(c)−

3K

2
− 3

2
‖f ′‖L∞[0,1] ≥ 0.

For any −M2 ≤ ξ ≤M1, we have

L[u+] ≥
(
C0%−K − ‖f ′‖L∞[0,1]

)
p(t) ≥ 0.

In summary, we have L[u+] ≥ 0. This completes the proof.

In order to construct subsolutions of (11) we consider the problem of the
form {

vt = ∆xv + k|∇xv|2, x ∈ Rn−1, t > 0,

v(x, 0) = v0(x), x ∈ Rn−1,
(29)

where constant k is defend as in Lemma 2.3.

Lemma 3.12 (Subsolution). For any constant ε ∈ (0, ε0], there exist smooth
functions p(t) and q(t) satisfying

p(0) > 0, q(0) = 0, 0 ≤ p(t), q(t) ≤ ε0 for t ≥ 0,

such that for any function v(x, t) satisfying (29), the function defined by

u−(x, z, t) = (1− p(t))φ(z − v(x, t)− q(t)),

satisfies

L[u−] := u−t −∆u− + cu−z − f(u−) ≤ 0, (x, z) ∈ Rn, t > 0.
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The proof of Lemma 3.12 is similar to that of Lemma 3.11 and we omit it
here.

Lemma 3.13 (Lower bound of Γ(x, t)). Let u(x, z, t) be a solution of (11) and
let Γ(x, t) be as defined in Lemma 3.9. Then for any ε > 0, there exists a
constant T > 0 such that the function v1(x, t) defined by{

v1t = ∆xv1 − k|∇xv1|2, x ∈ Rn−1, t > 0,

v1(x, 0) = Γ(x, T ), x ∈ Rn−1,
(30)

satisfies

Γ(x, t) ≥ v1(x, t− T )− ε, t ≥ T.

Proof. From Corollary 3.7, we can choose constants T > 0 and L > 0 such that

inf
(x,z,t)∈D

uz(x, z, t) ≥ L,

D =

{
(x, z, t) ∈ Rn × [T,∞),

φ(0)

2
≤ u(x, z, t) ≤ 1 + φ(0)

2

}
.

For ε̂ := min
{
ε0,

1
1+‖φ′‖L∞

min
{
Lε, 1+φ(0)

2

}}
, we choose functions p(t) and q(t)

satisfying

p(0) > 0, q(0) = 0, 0 ≤ p(t), q(t) ≤ ε̂ for t ≥ 0,

as in Lemma 3.11. Then it follows from Lemma 3.10 that, by choosing T larger
if necessary,

u(x, z, T ) ≤ (1 + p(0))φ(z − Γ(x, T )). (31)

For such T , we define v1(x, t) as a function satisfying (30). Then Lemma 3.11
shows that the function u+(x, z, t) given by

u+(x, z, t) = (1 + p(t− T ))φ(z − v1(x, t) + q(t− T ))

is a supersolution of (11) for t > T . Due to that (31) implies that u(x, z, T ) ≤
u+(x, z, T ), the comparison principle gives that u(x, z, t) ≤ u+(x, z, t) for t ≥ T .
Then by virtue of p(t), q(t) ≤ ε̂, we have

u(x, v1(x, t− T ), t)− φ(0) ≤ u+(x, v1(x, t− T ), t)− φ(0)

= (1 + p(t− T ))φ(q(t− T ))− φ(0)

≤ (1 + ‖φ′‖L∞)ε̂

≤ min

{
Lε,

1 + φ(0)

2

}
.
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Noting that u(x,Γ(x, t), t) = φ(0), we get

Lε ≥ u(x, v1(x, t− T ), t)− u(x,Γ(x, t− T ), t)

≥ inf
u∈[φ(0), 1+φ(0)

2
], t≥T

uz × (v1(x, t− T )− Γ(x, t− T ))

≥ L(v1(x, t− T )− Γ(x, t− T )),

which implies that Γ(x, t) ≥ v1(x, t − T ) − ε for t > T . This completes the
proof.

Similarly, we have the following result.

Lemma 3.14 (Upper bound of Γ(x, t)). Let u(x, z, t) be a solution of (11) and
let Γ(x, t) be as defined in Lemma 3.9. Then for any ε > 0, there exists a
constant T > 0 such that the function v2(x, t) defined by{

v2t = ∆xv2 + k|∇xv2|2, x ∈ Rn−1, t > 0,

v2(x, 0) = Γ(x, T ), x ∈ Rn−1,

satisfies

Γ(x, t) ≤ v2(x, t− T ) + ε, t ≥ T.

Now we are ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The statements (i),(ii) of Theorem 1.1 are directly from
Lemmas 3.9 and 3.10, respectively. Thus we only prove the statement (iii).

By Lemmas 3.13 and 3.14, the large time behavior of the φ(0)-level surface
Γ(x, t) of the solution u(x, z, t) of (11) can be controlled by the two functions
v1(x, t) and v2(x, t). This means that the φ(0)-level surface γ(x, t) = Γ(x, t)−ct
of the solution u(x, y, t) of (1) can be controlled by the two functions v1(x, t) and
v2(x, t), where v1(x, t) and v2(x, t) are the solution of (9) and (10), respectively.
Hence the statement (iii) of Theorem 1.1 follows from Lemmas 3.13 and 3.14.
This completes the proof of Theorem 1.1.

Next, we prove Theorem 1.4. Firstly, similar to [18, Lemma 4.15], one can
prove the φ(0)-level surface Γ(x, t) remains uniquely ergodic for all large t ≥ 0.

Lemma 3.15 (Ergodicity of φ(0)-level surface). Let u(x, z, t) be a solution
of (11) and assume that u0(x, z) is uniquely ergodic in the x-direction. Then
the φ(0)-level surface Γ(x, t) defined in Lemma 3.9 is uniquely ergodic for each
t ≥ T , where T > 0 is the constant in Lemma 3.9.
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Secondly, note that if v1(x, t) and v2(x, t) are the solution of (9) and (10),
respectively, then v1(x, t) ≤ v2(x, t). Indeed, let w(x, t) = v1(x, t) − v2(x, t),
then w(x, t) satisfies{

wt(x, t)−∆w(x, t) = −|∇xv1(x, t)|2 − |∇xv2(x, t)|2 ≤ 0, x ∈ Rn−1, t > 0,

w0(x) = 0, x ∈ Rn−1.

By the comparison principle of parabolic equation, we see that v1(x, t)≤v2(x, t).

Proof of Theorem 1.4. Let T > 0 and Γ(x, t) be defined in Lemma 3.9, then
Γ(x, t) is uniquely ergodic for each t ≥ T from Lemma 3.15. Combining Lem-
mas 2.4 and 2.5, one can easily prove the Theorem 1.4.
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