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Abstract. We introduce a new class of measures of noncompactness related to asymp-
totic stability and ultimate monotonicity in the space of continuous and bounded
functions on an unbounded interval. With help of those measures of noncompactness
and a fixed point theorem of Darbo type we investigate the existence of asymptotically
stable and ultimately nondecreasing solutions of some quadratic functional integral
equations of Hammerstein–Volterra type.
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1. Introduction

The theory of integral equations is an important branch of mathematical analy-
sis. This theory applies to many real world problems, especially in mathematical
physics, mechanics, engineering, biology, economics and so on (cf. [1, 13, 16,
18, 21, 22, 23]). It is worthwhile mentioning that, building on the theory of
integral equations one can answer many questions arising in the kinetic theory
of gases, the theory of radiative transfer and the theory of neutron transport
[14, 15, 19, 20].
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The principal aim of this paper is to study the existence of solutions of
quadratic functional integral equations in some special classes of functions.
Namely, we will look for such solutions of integral equations which are simulta-
neously asymptotically stable and ultimately nondecreasing in the sense defined
below. The main tools which will be used are the technique of measures of non-
compactness and a fixed point theorem of Darbo type.

In order to realize our purposes we define a class of measures of noncom-
pactness related to asymptotic stability and ultimate monotonicity. The use
of those measures of noncompactness enables us to prove that some quadratic
functional integral equations of Hammerstein–Volterra type have solutions in
the space of bounded and continuous functions on the real half axis which are
nonnegative, asymptotically stable and ultimately nondecreasing.

The results of this paper generalize several results obtained earlier. More-
over, our main theorem obtained below seems to apply as well to other classes
of functional and functional integral equations.

2. Notation, definitions and some auxiliary facts

In this section we introduce some notation and collect some basic facts needed
in what follows. By R we denote the set of real numbers, by R+ = [0,∞) the
set of all nonnegative real numbers.

Let E be an infinite dimensional real Banach space with norm ‖ · ‖. We
denote by B(x, r) the closed ball centered at x and with radius r. If X is a
subset of E then the symbols X and ConvX denote the closure and convex
closure of X, respectively. If X and Y are subsets of E and λ ∈ R then we
write X + Y and λX to denote the usual algebraic operations on sets.

Throughout this paper, we denote by ME the family of all nonempty
bounded subsets of E and by NE its subfamily consisting of all nonempty rel-
atively compact sets.

Now we recall a few definitions which turn out to be useful in nonlinear
analysis and its applications (see [2, 3, 5, 7], for example). Given a Banach
space E and a function µ : ME → R+, in what follows we call the set

ker µ = {X ∈ ME : µ(X) = 0} (2.1)

the kernel of µ. In mathematical analysis such set functions µ are used over
and over, but in the sequel we will use only set functions which are measures
of noncompactness in the axiomatic sense of [7]. Let us recall the necessary
definition.

Definition 2.1. A set function µ is said to be a measure of noncompactness in
E if it satisfies the following conditions:
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1o The kernel ker µ is nonempty and ker µ ⊆ NE.

2o X ⊆ Y implies µ(X) ≤ µ(Y ).

3o µ(X) = µ(X).

4o µ(ConvX) = µ(X).

5o µ(λX + (1 − λ)Y ) ≤ λµ(X) + (1 − λ)µ(Y ) for λ ∈ [0, 1].

6o If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊆ Xn (n =
1, 2, . . .) and if limn→∞ µ(Xn) = 0, then the intersection set X∞=

⋂∞
n=1 Xn

is nonempty.

Measures of noncompactness are closely related to the following fixed point
theorem of Darbo type (cf. [17,7]) which will be used further on.

Theorem 2.1. Let Ω be a nonempty, bounded, closed and convex subset of a

Banach space E, and let V : Ω → Ω be a continuous mapping. Assume that

there exists a constant k ∈ [0, 1) such that µ(V X) ≤ kµ(X) for any nonempty

subset X of Ω. Then V has a fixed point in the set Ω.

We remark that, under the hypotheses of Theorem 2.1, it can be shown [7]
that the set of all fixed points of the operator V in Ω always belongs to the
kernel ker µ. This observation, although being quite simple, will be crucial in
our further considerations.

Now let us introduce two Banach function spaces which we will use in
our existence theorems for functional integral equations in Section 5. Namely,
denote by B(R+) the space consisting of all bounded real functions on the half-
line R+, equipped with the standard supremum norm

‖x‖ = sup {|x(t)| : t ∈ R+} . (2.2)

Together with B(R+) we will also consider the closed subspace BC(R+) of all
continuous functions x ∈ B(R+). Obviously, both B(R+) and BC(R+) are
Banach spaces with respect to the norm (2.2).

In what follows we assume that Ω is a nonempty subset of the space BC(R+)
and V is an operator defined on Ω with values in BC(R+). Consider the operator
equation

x(t) = (V x)(t), (t ≥ 0). (2.3)

Definition 2.2. We say that solutions of equation (2.3) are asymptotically

stable if there exists a ball B(x0, r) in the space BC(R+) such that B(x0, r)∩Ω 6=
∅ and for each ε > 0 there exists T > 0 such that |x(t)−y(t)| ≤ ε for all solutions
x, y ∈ B(x0, r) ∩ Ω of (2.3) and for t ≥ T .

We mention that the concept of asymptotic stability in the sense of Defini-
tion 2.2 was introduced in [9, 10]. Clearly, a unique solution of equation (2.3) is
always asymptotically stable in the sense of Definition 2.2, so only in the case
of multiple solutions this notion becomes interesting.
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3. Some set functions in the spaces B(R+) and BC(R+)

In this section we will work in the space B(R+) or in its closed subspace BC(R+)
described in the previous section. Let us recall that both spaces are endowed
with the standard supremum norm (2.2).

For a function x ∈ B(R+) and fixed T > 0 we define the quantities

dT (x) = sup {|x(s) − x(t)| − [x(s) − x(t)] : T ≤ t < s}
iT (x) = sup {|x(s) − x(t)| − [x(t) − x(s)] : T ≤ t < s} .

The quantity dT (x) represents the so-called modulus of decrease of the function x

on the interval [T,∞), while iT (x) represents the modulus of increase of x on
the interval [T,∞). These quantities have been introduced in [8] in the case of
a bounded interval [a,b] (cf. also [11]).

Next, for X ∈ MB(R+) we put

dT (X) = sup {dT (x) : x ∈ X} , iT (X) = sup {iT (x) : x ∈ X} . (3.1)

Observe that the functions T 7→ dT (x) and T 7→ iT (x) are nonincreasing on the
half-axis R+. This implies that the limits

d∞(x) = lim
T→∞

dT (x) , i∞(x) = lim
T→∞

iT (x)

exist. Similarly, since T 7→ dT (X) and T 7→ iT (X) are also nonincreasing on
R+, the limits

d∞(X) = lim
T→∞

dT (X) , i∞(X) = lim
T→∞

iT (X) (3.2)

exist as well. In what follows, we will we will say that a function x ∈ B(R+) is
ultimately nondecreasing if d∞(x)=0, and ultimately nonincreasing if i∞(x)=0.

Consider now the families ker d∞ and ker i∞ in the sense of (2.1). If a set X

contains only functions which are nondecreasing (resp. nonincreasing) on R+

or on a subinterval [b,∞) of R+ then clearly X ∈ ker d∞ (resp. X ∈ ker i∞).
This implies, in particular, that neither ker d∞ nor ker i∞ is the kernel of a
measure of noncompactness in B(R+), and so neither d∞ nor i∞ is a measure of
noncompactness in the space B(R+). However, as we will see later (see (3.10)
and (3.11) below), one may use the set functions d∞ and i∞ to construct a
natural measure of noncompactness in the subspace BC(R+).

Suppose now that a set X consists entirely of functions having limits at
infinity and tending to their limits uniformly with respect to X, i.e., the limit

lim
t→∞

x(t) = gx (3.3)
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exists uniformly with respect to x ∈ X. We claim that in this case X ∈
ker d∞ and X ∈ ker i∞. To see this, we first remark that such a set X can be
characterized by the relation (see [6, 7])

lim
T→∞

{

sup
x∈X

{

sup {|x(t) − x(s)| : t, s ≥ T}
}

}

= 0 . (3.4)

Thus, for ε > 0 we can find T > 0 such that |x(t) − x(s)| ≤ ε for all t, s ≥ T

and for each x ∈ X. Hence, taking s ≥ t ≥ T and choosing any x ∈ X we
obtain the estimates

∣

∣|x(s) − x(t)| − [x(s) − x(t)]
∣

∣ ≤ 2|x(s) − x(t)| ≤ 2ε

and
∣

∣|x(s) − x(t)| − [x(t) − x(s)]
∣

∣ ≤ 2|x(s) − x(t)| ≤ 2ε .

This shows that d∞(X) ≤ 2ε and i∞(X) ≤ 2ε, by definition (3.2), and so
X ∈ ker d∞ and X ∈ ker i∞, since ε > 0 was arbitrary.

We will show later that condition (3.4) is sufficient, but not necessary for
a set X to belong to the families ker d∞ and ker i∞. A condition which is both
necessary and sufficient is contained in the following theorem.

Theorem 3.1. A bounded and nonempty subset X of the space B(R+) belongs

to the family ker d∞ if and only if for any ε > 0 there exists T > 0 such that

for each x ∈ X and for all s ≥ t ≥ T the inequality

x(t) ≤ x(s) + ε (3.5)

holds.

Proof. Suppose first that X ∈ ker d∞, and let ε > 0. Then there exists T > 0
such that for each x ∈ X and for all s ≥ t ≥ T we have

|x(s) − x(t)| − [x(s) − x(t)] ≤ ε . (3.6)

If x(s) ≥ x(t) for s ≥ t ≥ T , then (3.5) is satisfied. Conversely, if x(s) < x(t),
then |x(s) − x(t)| = −[x(s) − x(t)], and from (3.6) we get

|x(s) − x(t)| − [x(s) − x(t)] = −2[x(s) − x(t)] ≤ ε ,

hence x(t) ≤ x(s) + ε
2
≤ x(s) + ε. This shows that for any ε > 0 there exists

T > 0 such that for every x ∈ X and for all s ≥ t ≥ T the inequality (3.5) is
satisfied.

Conversely, assume now that the condition (3.5) holds. Fix ε > 0 and
choose T > 0 according to (3.5). Further, let x ∈ X and t, s be such that
T ≤ t ≤ s. If x(s) ≥ x(t), then we have

|x(s) − x(t)| − [x(s) − x(s)] = 0 ≤ ε .
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On the other hand, if x(s) < x(t), then in view of (3.5) we obtain x(t)−x(s) ≤ ε,
hence

|x(s) − x(t)| − [x(s) − x(t)] = −2[x(s) − x(t)] = 2[x(t) − x(s)] ≤ 2ε .

In both cases we have shown that dT (x) ≤ 2ε for any function x ∈ X, and so
dT (X) ≤ 2ε, by (3.1). Since ε was arbitrary we have d∞(X) = 0 as claimed.
This completes the proof.

Of course, in exactly the same way we can prove the following parallel result
for ker i∞.

Theorem 3.2. A bounded and nonempty subset X of the space B(R+) belongs

to the family ker d∞ if and only if for any ε > 0 there exists T > 0 such that

for each x ∈ X and for all s ≥ t ≥ T the inequality x(s) ≤ x(t) + ε holds.

In the following theorem we give a necessary condition for a bounded set
X ⊂ B(R+) to belong to ker d∞ or ker i∞.

Theorem 3.3. Let X ∈ ker d∞ or X ∈ ker i∞. Then each function x ∈ X has

a finite limit at infinity, i.e., the limit (3.3) exists and is finite.

Proof. First let us notice that, in view of the boundedness of x, if the limit
(3.3) exists then it is finite. Suppose that the limit (3.3) does not exist for
some function x ∈ X. Then x does not satisfy the Cauchy condition, i.e., there
exists ε0 > 0 such that for each T > 0 we find t, s with s > t ≥ T such that
|x(s) − x(t)| ≥ ε0. This implies that there exists an increasing sequence {tn}
such that T ≤ tn → ∞ as n → ∞ and

|x(tn+1) − x(tn)| ≥ ε0 . (3.7)

In view of the boundedness of the function x, the sequence {x(tn)} is bounded.
By the classical Bolzano-Weierstrass theorem there exists a subsequence{x(tkn

)}
of the sequence {x(tn)} which is convergent to a finite limit, say xg. Moreover,
there exists a monotonic subsequence of the sequence {x(tkn

)} (which we denote
by the same symbol {x(tkn

)}) which converges to xg. Without loss of generality,
we may assume that {x(tkn

)} is nondecreasing.

Thus, keeping in mind (3.7) we get

|x(tkn+1
) − x(tkn

)| = x(tkn+1
) − x(tkn

) ≥ ε0 ,

and so x(tkn+1
) ≥ x(tkn

)+nε0 for n = 1, 2, . . .. But this implies limn→∞ x(tkn
) =

∞, contradicting the boundedness the sequence {x(tkn
)}. This completes the

proof.
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We point out again that Theorem 3.3 gives only a necessary condition (ex-
istence of the limit (3.3) for each x ∈ X), while condition (3.4) is only sufficient
(existence of this limit uniformly with respect to x ∈ X) for a set X to belong
to ker d∞ (or to ker i∞). This is illustrated by means of the following example.

Example 3.1. Consider the set X ⊂ B(R+) consisting of all functions xn (n =
1, 2, . . .) defined by

xn(t) =











0 for t ∈ [0, n)

t − n for t ∈ [n, n + 1)

1 for t ≥ n + 1 .

It is easily seen that dT (xn) = 0 for each fixed T > 0 and for any n = 1, 2, . . .,
and so dT (X) = 0, by (3.1). Consequently, d∞(X) = 0 as well, by (3.2).

On the other hand, observe that all functions belonging to X tend to 1 at
infinity, but not uniformly with respect to X. So (3.3) holds with gxn

≡ 1, but
(3.4) fails. Let us also remark that i∞(X) = 1 in this example.

Now we introduce and study some measures of noncompactness involving
the quantities d∞ and i∞ defined above. To this end, we first recall the con-
struction of a special measure of noncompactness for continuous functions from
[7] (cf. also [6]).

For fixed ε > 0 and T > 0 we denote by

ωT (x, ε) = sup {|x(t) − x(s)| : t, s ∈ [0, T ], |t − s| ≤ ε}

the usual modulus of continuity of a function x on the interval [0,T]. Next, for
a nonempty bounded subset X of the space BC(R+) we put

ωT (X, ε) = sup {ωT (x, ε) : x ∈ X} , ωT
0 (X) = lim

ε→0
ωT (X, ε) ,

and
ω0(X) = lim

T→∞
ωT

0 (X) . (3.8)

In what follows, for t ∈ R+ we will use the shortcut

X(t) = {x(t) : x ∈ X} , diam X(t) = sup {|x(t) − y(t)| : x, y ∈ X} .

Then the function µ defined by the formula

µ(X) = ω0(X) + lim sup
t→∞

diamX(t) (X ∈ MBC(R+)) (3.9)

is a measure of noncompactness in the space BC(R+) in the sense of Defi-
nition 2.1. This measure has also some additional properties [6]. Note that
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the kernel (2.1) of the measure µ can be characterized as follows [6]: A set
X ∈ MBC(R+) belongs to ker µ if and only if X is locally equicontinuous on R+

and the “thickness” of the bundle X(t) formed by the elements of X tends to
zero as t → ∞.

In the sequel we consider the functions µd and µi defined on the family
MBC(R+) by

µd(X) = µ(X) + d∞(X) (3.10)

and
µi(X) = µ(X) + i∞(X) , (3.11)

respectively, where µ denotes the measure of noncompactness (3.9), while d∞

and i∞ are given by (3.2). It is not hard to see that µd and µi are in fact
measures of noncompactness in the sense of Definition 2.1. For example, the
condition 6o of Definition 2.1 follows easily from the inequalities µd(X) ≥ µ(X)
and µi(X) ≥ µ(X) (for X ∈ MBC(R+)) and the fact that µ is a measure of
noncompactness in the space BC(R+).

To give a simple example, for the set X ∈ MB(R+) (actually, X ∈ MBC(R+))
from Example 3.1 we have

d∞(X) = 0, i∞(X) = ω0(X) = lim sup
t→∞

diamX(t) = 1,

µi(X) = 3, µ(X) = µd(X) = 2 .

The kernel (2.1) of µd and µi may also be easily characterized: For example,
a set X ∈ MBC(R+) belongs to ker µd if and only if X is locally equicontinuous
on R+, the thickness of the bundle X(t) formed by the elements of X tends to
zero as t → ∞, and all functions x ∈ X are ultimately nondecreasing on R+. Of
course, a similar characterization holds for the kernel kerµi of the measure of
noncompactness µi. These characterizations of ker µd and ker µi will be crucial
in our further considerations.

4. Properties of superposition operators related to
ultimate monotonicity

One of the simplest and most frequently used nonlinear operators is the so-
called superposition operator (cf. [4]). Given an interval J ⊆ R, we denote
by XJ a set of functions x : R+ → J . Furthermore, given a function of two
variables f : R+ ×J → R, we may assign to every function x ∈ XJ the function
Fx defined by

(

Fx)(t) = f(t, x(t)
)

(t ≥ 0) . (4.1)

The operator F defined in this way is called the superposition operator generated
by the function f . In the sequel we will suppose throughout that the following
hypotheses are satisfied:
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(α) The function f is continuous on the set R+ × J .

(β) The function t 7→ f(t, u) is ultimately nondecreasing uniformly with re-
spect to u belonging to bounded subintervals of J , i.e.,

lim
T→∞

{

sup {|f(s, u)−f(t, u)|−[f(s, u)−f(t, u)] : s ≥ t > T, u ∈ J1}
}

= 0

for any bounded subinterval J1 ⊆ J .

(γ) For any fixed t ∈ R+ the function u 7→ f(t, u) is nondecreasing on J .

(δ) The function u 7→ f(t, u) satisfies a Lipschitz condition, i.e., there exists
a constant k > 0 such that

|f(t, u) − f(t, v)| ≤ k|u − v| (4.2)

for all t ≥ 0 and all u, v ∈ J .

Theorem 4.1. Suppose that the assumptions (α) − (δ) are satisfied. Then the

inequality

d∞(Fx) ≤ kd∞(x) (4.3)

holds for any x ∈ XJ ∩ B(R+), where k is the Lipschitz constant from (4.2).

Proof. Choose a bounded function x ∈ XJ and fix T > 0. We define a subset
IT
e ⊆ R+ × J by

IT
e = {(t, s) ∈ R+ × R+ : T ≤ t < s and x(t) = x(s)} .

Then for (t, s) ∈ IT
e we have

|(Fx)(s) − (Fx)(t)| − [(Fx)(s) − (Fx)(t)]

= |f(s, x(s)) − f(t, x(t))| − [f(s, x(s)) − f(t, x(t))]

= |f(s, x(t)) − f(t, x(t))| − [f(s, x(t)) − f(t, x(t))] .

Hence, keeping in mind the boundedness of x and assumption (β) we get

lim
T→∞

{

sup{|(Fx)(s)−(Fx)(t)|−[(Fx)(s)−(Fx)(t)] : s>t≥T, (s, t)∈IT
e }

}

= 0 .
(4.4)

Now assume that t, s ∈ R+, T ≤ t < s and (t, s) 6∈ IT
e i.e., x(t) 6= x(s). Then
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we obtain

|(Fx)(s) − (Fx)(t)| − [(Fx)(s) − (Fx)(t)]

= |f(s, x(s)) − f(t, x(t))| − [f(s, x(s)) − f(t, x(t))]

≤ |f(s, x(s)) − f(t, x(s))| + |f(t, x(s)) − f(t, x(t))| − [f(s, x(s)) − f(t, x(s))]

− [f(t, x(s)) − f(t, x(t))]

= {|f(t, x(s)) − f(t, x(t))| − [f(t, x(s)) − f(t, x(t))]}
+ {|f(s, x(s)) − f(t, x(s))| − [f(s, x(s)) − f(t, x(s))]}

≤
{ ∣

∣

∣

∣

f(t, x(s)) − f(t, x(t))

x(s) − x(t)

∣

∣

∣

∣

|x(s) − x(t)|

− f(t, x(s)) − f(t, x(t))

x(s) − x(t)
[x(s) − x(t)]

}

+ {|f(s, x(s)) − f(t, x(s))| − [f(s, x(s)) − f(t, x(s))]}

=

{ ∣

∣

∣

∣

f(t, x(s)) − f(t, x(t))

x(s) − x(t)

∣

∣

∣

∣

|x(s) − x(t)|

−
∣

∣

∣

∣

f(t, x(s)) − f(t, x(t))

x(s) − x(t)

∣

∣

∣

∣

[x(s) − x(t)]

}

+ {|f(s, x(s)) − f(t, x(s))| − [f(s, x(s)) − f(t, x(s))]}

≤ k|x(s) − x(t)|
|x(s) − x(t)| {|x(s) − x(t)| − [x(s) − x(t)]}

+ {|f(s, x(s)) − f(t, x(s))| − [f(s, x(s)) − f(t, x(s))]}
≤ k · sup {|x(s) − x(t)| − [x(s) − x(t)] : s > t ≥ T, (t, s) 6∈ IT

e }
+ sup {|f(s, x(s)) − f(t, x(s))|
− [f(s, x(s)) − f(t, x(s))] : s > t ≥ T, (t, s) 6∈ IT

e } .

Observe that in the second equality sign we used the fact that the expression
f(t,x(s))−f(t,x(t))

x(s)−x(t)
is nonnegative. From these estimates and assumption (β) we

further obtain

lim
T→∞

{

sup{|(Fx)(s)−(Fx)(t)|−[(Fx)(s)−(Fx)(t)] : s>t≥T, (t, s) 6∈IT
e }

}

≤ k lim
T→∞

{

sup {|x(s) − x(t)| − [x(s) − x(t)] : s > t ≥ T, (t, s) 6∈ IT
e }

}

.
(4.5)

Combining now (4.4) and (4.5) we obtain (4.3), and the proof is complete.

Theorem 4.1 generalizes a result given in [12]. Note that in the proof of
Theorem 4.1 we tacitly assumed that both the set IT

e and its complement R\IT
e

are unbounded. Obviously, in the case when one of these sets is bounded we
can repeat the same reasoning referring only to an unbounded set.
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A particularly interesting special case in Theorem 4.1 is when we may choose
k < 1 in (4.2). In this case (4.3) means that, loosely speaking, the superposi-
tion operator F generated by f strictly improves the degree of decrease of any
bounded subset X of XJ .

In the following corollaries we consider two special cases where the hypothe-
ses (α)−(δ) are easy to verify. The first corollary is an immediate consequence of
the mean value theorem, the second follows from a straightforward calculation.
Afterwards we illustrate these corollaries with two simple examples.

Corollary 4.1. Suppose that the function f : R+ × J → R satisfies the

assumptions (α) and (β) of Theorem 4.1. Moreover, assume that the partial

derivative fu exists and is nonnegative and bounded on the set R+ × J . Then f

also satisfies the hypotheses (γ) and (δ), where the Lipschitz constant in (4.2)
may be taken as

k = sup {fu(t, u) : (t, u) ∈ R+ × J} .

Corollary 4.2. Let a : R+ → R+ be continuous, bounded and ultimately

nondecreasing, and h : J → R differentiable with nonnegative and bounded

derivative on J . Then both functions f(t, u) = a(t)h(u) and f(t, u) = a(t)+h(u)
satisfy assumptions (α)−(δ) of Theorem 4.1. The Lipschitz constant k appearing

in (4.2) is given by

k = ‖a‖BC(R+) sup {h′(u) : u ∈ J}

in the first case, and by

k = sup {h′(u) : u ∈ J}

in the second case.

Example 4.1. For fixed α > 0, let f : R+ × [α,∞) → R+ be defined by
f(t, u) = a(t)

√
u, where

a(t) = e−
t

4 sin t +
t

t + 1
(t ≥ 0).

It is easily seen that the function a takes positive values and is continuous and
bounded on R+ with ‖a‖BC(R+) ≤ 3

2
, but is certainly not monotonic on R+.

However, since a(t) → 1 as t → ∞, from the properties of the quantity d∞

established in Section 3 we conclude that d∞(a) = 0 which means that a is
ultimately nondecreasing on R+.

Further, putting J = [α,∞) and h(u) =
√

u we see that the derivative
h′(u) = 1

2

√
u is positive and bounded on J , and so we may apply the first case

of Corollary 4.2. A trivial calculation shows that k = 3
4

√
α in this example; in
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particular, k < 1 if α > 9
16

. Thus, according to Corollary 4.2 the function f

satisfies all the assumptions (α) − (δ), and so Theorem 4.1 applies.

Example 4.2. Let f : R+ × [3,∞) → R be defined by

f(t, u) = sin

[

π
3t + 1

2t + 1

(

1

2
+

u

9 + u2

)]

.

We claim that the function f satisfies all assumption (α)−(δ) of Theorem 4.1 on
J = [3,∞). The hypothesis (α) is obvious. To see that (β) holds as well, note
that for fixed u ∈ J we have limt→∞ f(t, u) = sin

[

3
2
π

(

1
2

+ u
9+u2

)]

. Consider the
set X = {f(·, u) : 3 ≤ u < ∞} ⊂ BC(R+). The estimate

∣

∣

∣

∣

sin

[

π
3t + 1

2t + 1

(

1

2
+

u

9 + u2

)]

− sin

[

3

2
π

(

1

2
+

u

9 + u2

)]∣

∣

∣

∣

≤ π

3
· 1

2t + 1

shows that all functions in X tend to their limits uniformly with respect to
the set X. So from the facts established in Section 3 we conclude that the
function f satisfies assumption (β).

Now, combining the inequalities π ≤ π 3t+1
2t+1

≤ 3
2
π and 1

2
≤ 1

2
+ u

9+u2 ≤ 2
3
, we

see that
π

2
≤ π

3t + 1

2t + 1

(

1

2
+

u

9 + u2

)

≤ π (4.6)

for all pairs (t, u) ∈ R+ × J . For the partial derivative of f with respect to u

we obtain

fu(t, u) =
9 − u2

(9 + u2)2
cos

[

π
3t + 1

2t + 1

(

1

2
+

u

9 + u2

)]

.

Consequently, taking into account the estimate (4.6) we conclude that 0 ≤
fu(t, u) ≤ 1

72
on R+ × J , and so we may apply Corollary 4.1 with k = 1

72
.

This shows that the function f satisfies all the assumptions (α)–(δ), and so
Theorem 4.1 applies.

5. Application to a functional integral equation

In this section we will consider the quadratic functional integral equation of
Hammerstein–Volterra type

x(t) = m(t) + f(t, x(t))

∫ t

0

g(t, τ)h(τ, x(τ))dτ (t ≥ 0). (5.1)

Integral equations of this type may be encountered in the mathematical mod-
elling of real world problems arising in mathematical physics, engineering, eco-
nomics, biology and so on (cf. [1, 13, 16, 18, 20, 21, 22, 23]).
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Using the measure of noncompactness (3.10) and some results concerning
the superposition operator (4.1) established in Section 4 we will show now that
equation (5.1) has asymptotically stable and ultimately nondecreasing solutions
in the space BC(R+). To this end, throughout this section we impose the
following hypotheses:

(i) The function m : R+ → R is continuous, bounded and ultimately nonde-
creasing with

m0 := inf {m(t) : t ∈ R+} ≥ 0.

(ii) The function f : R+ × J → R+ satisfies the assumptions (α) − (γ) from
Section 4 on the interval J = [m0,∞).

(iii) There exists a nondecreasing function k : J → R+ such that

|f(t, u) − f(t, v)| ≤ k(r)|u − v|

for all t ∈ R+ and all u, v ∈ J with |u − v| ≤ r.

(iv) The function g : R+ × R+ → R+ is continuous and satisfies the condition

lim
T→∞

{

sup

{
∫ s

0

{|g(s, τ) − g(t, τ)| − [g(s, τ) − g(t, τ)]}dτ : s > t ≥ T

}}

= 0 .

(v) The function h : R+×J → R+ is continuous, and there exists a continuous
nondecreasing function p : R+ → R+ satisfying p(0) = 0 and

|h(t, u) − h(t, v)| ≤ p(|u − v|)

for all t ∈ R+ and all u, v ∈ J .

(vi) The functions t 7→ f(t,m(t)) and t 7→ h(t,m(t)) are bounded on R+.

(vii) The function a : R+ → R+ defined by the formula

a(t) =

∫ t

0

g(t, τ)dτ

vanishes at infinity, i.e., limt→∞ a(t) = 0.

Apart from the function a, in what follows we will also use auxiliary functions
b, c and d defined by

b(t) = f(t,m(t))a(t)

c(t) =

∫ t

0

g(t, τ)h(τ,m(τ))dτ

d(t) = f(t,m(t))c(t) .

(5.2)
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By construction, it is clear from (vii) that the function a is bounded. We claim
that the functions b, c and d are bounded as well. In fact, from (vi) we deduce
that the numbers

Fm = sup {f(t,m(t)) : t ∈ R+} , Hm = sup {h(t,m(t)) : t ∈ R+} (5.3)

are finite. This immediately implies that

b(t) ≤ Fma(t), c(t) ≤ Hma(t), d(t) ≤ Hmf(t,m(t))a(t) = Hmb(t).

So the four constants

A = sup {a(t) : t ∈ R+}, B = sup {b(t) : t ∈ R+},
C = sup {c(t) : t ∈ R+}, D = sup {d(t) : t ∈ R+}

(5.4)

are all finite. Using these constants, we impose, in addition to (i)–(vii), a final
condition:

(viii) There exists a positive real number r0 which simultaneously satisfies the
inequalities

{

Ark(r)p(r) + Bp(r) + Crk(r) + D ≤ r

(Ap(r) + C)k(r) < 1 ,

where k(r) is the local Lipschitz constant from assumption (iii) and p(r)
is from assumption (v).

At first glance, the hypotheses (i)–(viii) may appear somewhat artificial. In
the last section we will give a nontrivial illustrative example of equation (5.1)
where all hypotheses (i)–(viii) are satisfied. Now we are in a position to for-
mulate and prove our main existence result for the functional integral equa-
tion (5.1).

Theorem 5.1. Under the assumptions (i)–(viii) equation (5.1) has at least

one solution x ∈ BC(R+) which is nonnegative, ultimately nondecreasing, and

asymptotically stable, and satisfies the two-sided estimate

m(t) ≤ x(t) ≤ m(t) + r0 (t ≥ 0),

where r0 is the number occurring in assumption (viii).

Proof. Consider the subset Ω of the space BC(R+) defined by

Ω = {x ∈ BC(R+) : m(t) ≤ x(t) for t ∈ R+} .

We define an operator V on Ω by putting

(V x)(t) = m(t) + f(t, x(t))

∫ t

0

g(t, τ)h(τ, x(τ))dτ (t ≥ 0).
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This operator may be represented in the form

V x = m + (Fx)(Hx) , (5.5)

where F is the superposition operator (4.1) and H is the Hammerstein integral
operator defined by

(Hx)(t) =

∫ t

0

g(t, τ)h(τ, x(τ))dτ (t ≥ 0).

With this notation, we may rewrite the functional integral equation (5.1) equiv-
alently as fixed point equation (2.3) for the operator (5.5). In the remaining
part of this section we will show how to apply Theorem 2.1 to this operator.

Let us show first that the operator V maps the set Ω into itself. To prove
this, fix x ∈ Ω. In view of the assumptions (i), (ii), (iv) and (v) we see that the
function V x is continuous on R+ and (V x)(t) ≥ m(t) for t ∈ R+, since both
(Fx)(t) ≥ 0 and (Hx)(t) ≥ 0. To show that V x ∈ Ω it remains to prove that
V x is bounded on R+.

From (iii) we get, for arbitrary t ∈ R+,

|(Fx)(t)| ≤ |f(t, x(t)) − f(t,m(t))| + f(t,m(t))

≤ k(‖x − m‖)|x(t) − m(t)| + f(t,m(t))

≤ ‖x − m‖k(‖x − m‖) + f(t,m(t)) ,

(5.6)

while (v) implies that

|(Hx)(t)| ≤
∫ t

0

g(t, τ)[|h(τ, x(τ)) − h(τ,m(τ))| + h(τ,m(τ))] dτ

≤
∫ t

0

g(t, τ)[p(|x(τ) − m(τ)|) + h(τ,m(τ))] dτ

≤ p(‖x − m‖)
∫ t

0

g(t, τ) dτ +

∫ t

0

g(t, τ)h(τ,m(τ)) dτ

≤ p(‖x − m‖)a(t) + c(t) .

(5.7)

Thus, using the representation (5.5) and multiplying (5.6) and (5.7), by defini-
tion (5.4) of the numbers B, C and D we obtain

|(V x)(t)| ≤ ‖m‖ + ‖x − m‖k(‖x − m‖)p(‖x − m‖)a(t)

+ ‖x − m‖k(‖x − m‖)c(t) + p(‖x − m‖)a(t)f(t,m(t))

+ c(t)f(t,m(t))

≤ ‖m‖ + ‖x − m‖k(‖x − m‖)p(‖x − m‖)
+ ‖x − m‖k(‖x − m‖)C + p(‖x − m‖)B + D .

(5.8)
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Since the last espression in (5.8) does not depend on t, we conclude that V x is
indeed a bounded function on the interval R+, and so V x ∈ Ω.

A similar computation as in (5.8) shows that, for arbitrary x ∈ Ω, the
inequality

‖V x − m‖ ≤ ‖x − m‖k(‖x − m‖)p(‖x − m‖)A
+ ‖x − m‖k(‖x − m‖)C + p(‖x − m‖)B + D

holds, where again we have used the upper bounds (5.4). Hence, taking into
account the first inequality in assumption (viii) we conclude that there exists a
positive real number r0 such that V transforms the set

Ωr0
= Ω∩B(m, r0) = {x ∈ BC(R+) : m(t) ≤ x(t) ≤ m(t)+r0 for t∈R+} (5.9)

into itself. Clearly, the set Ωr0
is bounded, convex, and closed. In the sequel

we will consider the operator V on the set Ωr0
and apply Theorem 2.1 to V on

this set.

We show now that the operator V is continuous on the set Ωr0
. To do this

fix a number ε > 0 and take x, y ∈ Ωr0
such that ‖x − y‖ ≤ ε. Then, by our

assumptions (ii), (iii) and (v) we have

|(V x)(t) − (V y)(t)|

≤
∣

∣

∣

∣

f(t, x(t))

∫ t

0

g(t, τ)h(τ, x(τ))dτ − f(t, y(t))

∫ t

0

g(t, τ)h(τ, x(τ))dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

f(t, y(t))

∫ t

0

g(t, τ)h(τ, x(τ))dτ − f(t, y(t))

∫ t

0

g(t, τ)h(τ, y(τ))dτ

∣

∣

∣

∣

≤ |f(t, x(t)) − f(t, y(t))|

×
∫ t

0

g(t, τ)[|h(τ, x(τ)) − h(τ,m(τ))| + h(τ,m(τ))]dτ

+ [|f(t, y(t)) − f(t,m(t))|

+ f(t,m(t))]

∫ t

0

g(t, τ)|h(τ, x(τ)) − h(τ, y(τ))|dτ

≤ k(r0)|x(t) − y(t)|
∫ t

0

g(t, τ)[p(|x(τ) − m(τ)|) + h(τ,m(τ))]dτ

+ [k(r0)|y(t) − m(t)| + f(t,m(t))]

∫ t

0

g(t, τ)p(|x(τ) − y(τ)|)dτ

≤ k(r0)p(r0)a(t)|x(t) − y(t)| + k(r0)c(t)|x(t) − y(t)|

+ r0k(r0)

∫ t

0

g(t, τ)p(|x(τ) − y(τ)|)dτ

+ f(t,m(t))

∫ t

0

g(t, τ)p(|x(τ) − y(τ)|)dτ .

(5.10)
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By the definition (5.4) of the numbers A, B and C, this yields

|(V x)(t) − (V y)(t)| ≤ k(r0)p(r0)Aε + k(r0)Cε + r0k(r0)Ap(ε) + Bp(ε) ,

and so the continuity of the operator V on the set Ωr0
follows from the continuity

of the function p assumed in (v).

In the next step we show that

lim sup
t→∞

diam(V X)(t) = 0 (5.11)

for any nonempty subset X of Ωr0
. In fact, let x, y ∈ X. Then, for a fixed

t ∈ R+, from the estimate (5.10) we obtain

diam(V X)(t) ≤ a(t)k(r0)p(r0)diamX(t) + c(t)k(r0)diamX(t)

+ r0k(r0)

∫ t

0

g(t, τ)p(diamX(τ))dτ

+ f(t,m(t))

∫ t

0

g(t, τ)p(diamX(τ))dτ

≤ a(t)k(r0)p(r0)diamX(t) + c(t)k(r0)diamX(t)

+ a(t)r0k(r0)p(r0) + b(t)p(r0) .

Consequently, taking into account assumption (vii) we see that (5.11) is true.
We will now combine this with estimates for the set functions (3.8) and (3.9),
in order to derive an estimate for the measure of noncompactness (3.10).

Fix T > 0 and ε > 0, and let x ∈ X. Next, take t, s ∈ [0, T ] such that
|t − s| ≤ ε. Without loss of generality we may assume that t < s. Then, again
by our assumptions (ii), (iii) and (v) and the representation (5.5) we obtain

|(V x)(s) − (V x)(t)|
≤ |m(s) − m(t)| + |(Fx)(s)(Hx)(s) − (Fx)(t)(Hx)(s)|

+ |(Fx)(t)(Hx)(s) − (Fx)(t)(Hx)(t)| ≤ ωT (m, ε)

+ |(Fx)(s) − (Fx)(t)|(Hx)(s) + (Fx)(t)|(Hx)(s) − (Hx)(t)|
≤ ωT (m, ε) + [|f(s, x(s)) − f(s, x(t))|

+ |f(s, x(t)) − f(t, x(t))|]
∫ s

0

g(s, τ)h(τ, x(τ))dτ

+ [|f(t, x(t)) − f(t,m(t))| + f(t,m(t))]

×
∣

∣

∣

∣

∫ s

0

g(s, τ)h(τ, x(τ))dτ −
∫ t

0

g(t, τ)h(τ, x(τ))dτ

∣

∣

∣

∣
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≤ ωT (m, ε) + [k(r0)|x(s) − x(t)|

+ ωt
1(f, ε)]

∫ s

0

g(s, τ)[|h(τ, x(τ)) − h(τ,m(τ))| + h(τ,m(τ))]dτ

+ [r0k(r0) + f(t,m(t))]

×
[∣

∣

∣

∣

∫ s

0

g(s, τ)h(τ, x(τ))dτ −
∫ s

0

g(t, τ)h(τ, x(τ))dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ s

0

g(t, τ)h(τ, x(τ))dτ −
∫ t

0

g(t, τ)h(τ, x(τ))dτ

∣

∣

∣

∣

]

≤ ωT (m, ε) +
[

k(r0)ω
T (x, ε) + ωt

1(f, ε)
]

[a(s)p(r0) + c(s)]

+ [r0k(r0) + f(t,m(t))]

[
∫ s

0

|g(s, τ) − g(t, τ)|h(τ, x(τ))dτ

+

∫ s

t

g(t, τ)h(τ, x(τ))dτ

]

≤ ωT (m, ε) +
[

k(r0)ω
T (x, ε) + ωT

1 (f, ε)
]

(Ap(r0) + C)

+ [r0k(r0) + sup {f(t,m(t)) : t ∈ [0, T ]}]

×
[

∫ s

0

ωt
1(g, ε)[p(r0) + h(τ,m(τ))]dτ

+ ε sup {g(t, τ) : t, τ ∈ [0, T ]}(p(r0) + Hm)

]

,

(5.12)

where we have used (5.3) and the shortcuts

ωT
1 (f, ε)= sup {|f(s, τ)−f(t, τ)| : t, s, τ ∈ [0, T ], |t − s|≤ ε, τ ∈ [m0, ‖m‖ + r0]}

ωT
1 (g, ε)= sup {|g(s, τ)−g(t, τ)| : t, s, τ ∈ [0, T ], |t − s|≤ ε} .

Now, from the uniform continuity of the function f on the set [0, T ] ×
[m0, ‖m‖ + r0] and of the function g on the set [0, T ] × [0, T ] we infer that
ωT

1 (f, ε) → 0 and ωT
1 (g, ε) → 0 as ε → 0. Combining the above statements with

(5.12) we get ωT
0 (V X) ≤ (Ap(r0) + C)k(r0)ω

T
0 (X) , and so, by (3.8), also

ω0(V X) ≤ (Ap(r0) + C)k(r0)ω0(X) . (5.13)

Fix T > 0 and take t, s such that s > t ≥ T . Then, keeping in mind the
representation (5.5), for any x ∈ X we obtain

|(V x)(s) − (V x)(t)| − [(V x)(s) − (V x)(t)]

≤ |m(s) − m(t)| − [m(s) − m(t)]

+ |(Fx)(s)(Hx)(s) − (Fx)(t)(Hx)(s)|
+ |(Fx)(t)(Hx)(s) − (Fx)(t)(Hx)(t)|
− [(Fx)(s)(Hx)(s) − (Fx)(t)(Hx)(s)]

− [(Fx)(t)(Hx)(s) − (Fx)(t)(Hx)(t)]



Measures of Noncompactness 269

and hence

|(V x)(s) − (V x)(t)| − [(V x)(s) − (V x)(t)]

≤ dT (m) + (Hx)(s){|(Fx)(s) − (Fx)(t)| − [(Fx)(s) − (Fx)(t)]}
+ (Fx)(t){|(Hx)(s) − (Hx)(t)| − [(Hx)(s) − (Hx)(t)]}

≤ dT (m) + (Hx)(s)dT (Fx)

+ (Fx)(t){|(Hx)(s) − (Hx)(t)| − [(Hx)(s) − (Hx)(t)]} .

(5.14)

Thus, by (5.3) and our assumptions (ii), (iii) and (v) we obtain the estimates

(Hx)(s) ≤
∫ s

0

g(s, τ)[p(r0) + h(τ,m(τ))]dτ ≤ a(s)p(r0) + c(s) (5.15)

(Fx)(t) ≤ |f(t, x(t)) − f(t,m(t))| + f(t,m(t)) ≤ r0k(r0) + Fm , (5.16)

and

|(Hx)(s) − (Hx)(t)| − [(Hx)(s) − (Hx)(t)]

=

∣

∣

∣

∣

∫ s

0

g(s, τ)h(τ, x(τ))dτ −
∫ t

0

g(t, τ)h(τ, x(τ))dτ

∣

∣

∣

∣

−
[
∫ s

0

g(s, τ)h(τ, x(τ))dτ −
∫ t

0

g(t, τ)h(τ, x(τ))dτ

]

≤
∣

∣

∣

∣

∫ s

0

g(s, τ)h(τ, x(τ))dτ −
∫ s

0

g(t, τ)h(τ, x(τ))dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ s

0

g(t, τ)h(τ, x(τ))dτ −
∫ t

0

g(t, τ)h(τ, x(τ))dτ

∣

∣

∣

∣

−
[
∫ s

0

g(s, τ)h(τ, x(τ))dτ −
∫ s

0

g(t, τ)h(τ, x(τ))dτ

]

−
[
∫ s

0

g(t, τ)h(τ, x(τ))dτ −
∫ t

0

g(t, τ)h(τ, x(τ))dτ

]

≤
∫ s

0

|g(s, τ) − g(t, τ)|h(τ, x(τ))dτ +

∣

∣

∣

∣

∫ s

t

g(t, τ)h(τ, x(τ))dτ

∣

∣

∣

∣

−
∫ s

0

[g(s, τ) − g(t, τ)]h(τ, x(τ))dτ −
∫ s

t

g(t, τ)h(τ, x(τ))dτ

=

∫ s

0

{|g(s, τ) − g(t, τ)| − [g(s, τ) − g(t, τ)]}h(τ, x(τ))dτ

≤
∫ s

0

{|g(s, τ) − g(t, τ)| − [g(s, τ) − g(t, τ)]}[|h(τ, x(τ)) − h(τ,m(τ))|

+ h(τ,m(τ))]dτ

≤ (p(r0) + Hm)

∫ s

0

{|g(s, τ) − g(t, τ)| − [g(s, τ) − g(t, τ)]}dτ .

(5.17)
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Combining the estimates (5.14)–(5.17), using the assumptions (vi) and (vii),
and taking into account the definition of the functions b, c and d in (5.2) we
finally get

d∞(V X) = 0 . (5.18)

Summarizing, from (5.11), (5.13) and (5.18) we derive the estimate

µd(V X) ≤ (Ap(r0) + C)k(r0)µd(X) ,

where µd is the measure of noncompactness (3.10). So the second inequality in
assumption (viii) guarantees that the operator V strictly diminishes the measure
of noncompactness (3.10), while the first inequality in (viii) shows that V leaves
the bounded closed convex set Ωr0

invariant. By Theorem 2.1, V has at least
one fixed point x in the set Ωr0

which of course is a solution of (5.1).

Moreover, keeping in mind Definition 2.2 and the fact that all fixed points
of V in Ωr0

belong to ker µd, we conclude that all solutions of (5.1) from the
set Ωr0

are asymptotically stable and ultimately nondecreasing. Finally, the
two-sided estimate in the assertion of Theorem 5.1 follows of course from the
definition (5.9) of the invariant set Ωr0

. This completes the proof.

6. An example

In this final section we give an example which illustrates the applicability of the
abstract Theorem 5.1.

Example 6.1. Consider the quadratic functional integral equation of Ham-
merstein-Volterra type

x(t) = 3 + te−
t

2 + sin

[

π
3t + 1

2t + 1

(

1

2
+

x(t)

9 + x2(t)

)]

×
∫ t

0

τ

1 + t2 + τ 4

√

τ

1 + τ 2
− 3 + x(τ) dτ ,

(6.1)

where t ∈ R+. Putting

m(t) = 3 + te−
t

2 , f(t, u) = sin

[

π
3t + 1

2t + 1

(

1

2
+

u

9 + u2

)]

,

g(t, τ) =
τ

1 + t2 + τ 4
, h(t, u) =

√

t

1 + t2
− 3 + u ,

(6.2)

we see that equation (6.1) is of the form (5.1). We are now going to show that
the functions in (6.2) meet all the hypotheses (i)–(viii) of the preceding section.

It is easily seen that the function m satisfies (i) with m0 = 3 and ‖m‖ =
3 + 2e−1 ≈ 3.73576; so we may consider the function f as in Example 4.2 on
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the interval J = [3,∞). As we have seen there, f satisfies the assumptions (ii)
and (iii) with k(r) ≡ 1

72
.

In order to check that the function g satisfies assumption (iv) observe that
for any T > 0 and for arbitrary t, s with s > t ≥ T we have

∫ s

0

{|g(s, τ) − g(t, τ)| − [g(s, τ) − g(t, τ)]}dτ

=

∫ s

0

{
∣

∣

∣

∣

τ

1 + s2 + τ 4
− τ

1 + t2 + τ 4

∣

∣

∣

∣

−
[

τ

1 + s2 + τ 4
− τ

1 + t2 + τ 4

]}

dτ

= 2

∫ s

0

[

τ

1 + t2 + τ 4
− τ

1 + s2 + τ 4

]

dτ

=
1√

1 + t2
arctan

s2

√
1 + t2

− 1√
1 + s2

arctan
s2

√
1 + s2

≤ 1√
1 + t2

arctan
s2

√
1 + t2

≤ 1√
1 + T 2

π

2
.

Since the last expression in this estimate tends to 0 as T → ∞, we deduce that
the function g satisfies assumption (iv).

Observing that |h(t, u) − h(t, v)| ≤
√

|u − v| for t ∈ R+ and for arbitrary
u, v ∈ J , we see that the function h satisfies assumption (v) with p(r) =

√
r for

r ∈ R+.

Now we show that the assumptions (vi) and (vii) are satisfied as well. For
t ∈ R+ we have

f(t,m(t)) = sin

[

π
3t + 1

2t + 1

(

1

2
+

m(t)

9 + m2(t)

)]

≤ 1

and

h(t,m(t)) =

√

t

1 + t2
− 3 + 3 + te−t/2 ≤

√

1

2
+

2

e
=: η ≈ 1.1116,

and so (vi) is satisfied. Moreover, the function a appearing in assumption (vii)
has here the form a(t) =

∫ t

0
τ

1+t2+τ4 dτ = 1
2
√

1+t2
arctan t2√

1+t2
. Clearly, a(t) → 0

as t → ∞. Since

c(t) ≤ a(t)

√

1

2
+

2

e
≤ η

2
√

1 + t2
arctan

t2√
1 + t2

,

by (5.2), for the constants defined in (5.4) we get the estimates

A ≤ 1

2
· π

2
=

π

4
, B ≤ π

4
, C ≤ η

π

4
< 1, D ≤ C < 1. (6.3)
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It remains to show that (viii) is satisfied for some r0 > 0. The two inequal-
ities from assumption (viii) have here the form















Ar
√

r

72
+ B

√
r +

Cr

72
+ D ≤ r

A
√

r + C

72
< 1.

(6.4)

In view of (6.3), each positive solution r of the inequalities















πr
√

r

288
+

π
√

r

4
+

r

72
+ 1 ≤ r

π
√

r

288
+

1

72
< 1

(6.5)

is certainly a solution of the inequalities (6.4). But it is easy to check that
r0 = 3, say, solves (6.5), and so also solves (6.4).

Summarizing, we see Theorem 5.1 applies to equation (6.1), and so (6.1)
has a solution x ∈ BC(R+) which satisfies the two-sided estimate

3 + te−
t

2 ≤ x(t) ≤ 6 + te−
t

2

for any t ∈ R+, since it belongs to the set Ω4, see (5.9). Moreover, this solution
is, as any other solution of (6.1) from the set Ω4, both asymptotically stable
and ultimately nondecreasing.
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Integral Operators in Spaces of Summable Functions. Leyden: Noordhoff 1976.
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