
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal for Analysis and its Applications
Volume 27 (2008), 31–52

On Two-Dimensional Immersions

of Prescribed Mean Curvature in R
n
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Abstract. We consider two-dimensional immersions of disc-type in R
n
. We focus on

well known classical concepts and study the nonlinear elliptic systems of such map-
pings. Using an Osserman-type condition we give a-priori estimates of the principle
curvatures for graphs with prescribed mean curvature fields and derive a theorem of
Bernstein type for minimal graphs.
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Introduction

The main result of our paper is an estimate of the principal curvatures of two-
dimensional graphs with prescribed mean curvature in Euclidean space R

n in
terms of certain a-priori data.

The notations which we need to formulate this result are introduced in the
first chapter: In Section 1.1. a definition of differential geometric immersions
with smooth sections of the normal bundle; in Section 1.2 an introduction to
conformally parametrized immersions with prescribed mean curvature fields;
and in Section 1.3 our main theorem with a brief discussion. In particular, we
will infer a theorem of Bernstein type for minimal graphs.

Before we give a detailed proof in Chapter 3 we recall important concepts of
the differential geometry of two-dimensional immersions in R

n using the classical
Ricci calculus. Among these are the differential equations of Weingarten and
Gauss, as well as the integrability conditions of Ricci which lead us to the notion
of the normal sectional curvature.
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While in the first chapter we introduce the non-linear elliptic mean curva-
ture systems in a more abstract way, in Chapter 2 these systems arise naturally
from the differential geometric identities. A variational problem which illus-
trates the appearance of mean curvature systems as minimal surfaces in certain
Riemannian spaces, and an example for our main theorem complete this second
part.

Chapter 3 presents a detailed proof of our curvature estimate. Essentially we
use ideas from [12] (see also [13] and [14]) where the author applies fundamental
results on non-linear elliptic systems with quadratic gradient growth which were
developed in [6].

1. Basic notations and the main theorem

1.1. Basic notations. Denote by B := {(u, v) ∈ R
2 : u2 + v2 < 1} the open

unit disc in R
2 and by B ⊂ R

2 its topological closure. For positive integers
n ≥ 3 we consider two-dimensional immersions

X(u, v) = (x1(u, v), . . . , xn(u, v)), (u, v) ∈ B, (1.1)

of the regularity class X ∈ C3+α(B,Rn) ∩ C0(B,Rn), α ∈ (0, 1), such that

rank ∂X(u, v) ≡ rank




x1u(u, v) x1v(u, v)
...

...
xnu(u, v) xnv (u, v)


 = 2 ∀ (u, v) ∈ B, (1.2)

where the indices u and v denote the partial derivatives w.r.t. u and v.

Definition 1.1. We define C(B,Rn) to be the set of all immersions X =
X(u, v) with the properties (1.1) to (1.2).

We infer that the tangent vectors Xu = Xu(u, v) and Xv = Xv(u, v) are
linearly independent at any (u, v) ∈ B and span the two-dimensional tangent
plane at that point, namely

TX(w) := Span
{
Xu(w), Xv(w)

}
, w = u+ iv ∈ B. (1.3)

The normal space NX(w) := TX(w)⊥ at w ∈ B is a (n− 2)-dimensional vector
space spanned by vectorsN1(w), . . . , Nn−2(w) such that there hold the orthonor-
mality relations

NΣ(w) ·NΘ(w)
t = δΣΘ :=

{
1 if Σ = Θ

0 if Σ 6= Θ
∀Σ,Θ ∈ {1, . . . , n− 2} (1.4)

with the Kronecker symbol δΣΘ. Here, the upper t means the transposed vector.
Let X∈ C(B,Rn). Then there exists an orthonormal set {N1(w), . . . , Nn−2(w)}
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such that NΣ ∈ C2+α(B, Sn−1) for all Σ = 1, . . . , n − 2, where Sn−1 := {Z ∈
R
n : |Z|2 = 1}, and

NΣ(w) ·Xu`(w)
t = 0 ∀Σ = 1, . . . , n− 2, ` = 1, 2, ∀w ∈ B. (1.5)

Definition 1.2. We call a set {N1, . . . , Nn−2} from the assumption above an
orthonormal normal (ON-) section of the immersion X = X(u, v).

Example 1.3. Given functions ϕ1, . . . , ϕn−2 ∈ C3+α(Ω,R) on a bounded do-
main Ω ⊂ R

2, we define unit vectors

Ñ1 :=
1√

1 + |∇ϕ1|2
(−ϕ1,x,−ϕ1,y, 1, 0, . . . , 0),

Ñ2 :=
1√

1 + |∇ϕ2|2
(−ϕ2,x,−ϕ2,y, 0, 1, . . . , 0), . . .

(1.6)

which are normal to the graph (x, y, ϕ1(x, y), . . . , ϕn(x, y)). Here, ∇ denotes the
Euclidean gradient. Using Gram–Schmidt orthonormalization these vectors can
be transformed into an ON-normal section {N1, . . . , Nn−2}.

1.2. Immersions with prescribed mean curvature fields. Following [15]
we introduce conformal parameters (u, v) ∈ B into the immersion X = X(u, v)
such that there hold in B the conformality relations

|Xu(u, v)|2 = W (u, v) = |Xv(u, v)|2 , Xu(u, v) ·Xv(u, v)
t = 0. (1.7)

Here, W = W (u, v) means the area element

W (u, v) :=
√
g11(u, v)g22(u, v)− g12(u, v)2

gij(u, v) := Xui(u, v) ·Xuj(u, v)
t ,

(1.8)

of the surface. Note that W (u, v) > 0 for all (u, v) ∈ B.

Definition 1.4. The functions gij = gij(u, v), i, j = 1, 2, from (1.8) are called
the coefficients of the first fundamental form of the immersion X = X(u, v).

Given a vector valued functionH : R
n → R

n we define a scalar fieldH : R
n×

Sn−1 → R by

H(X,Z) := H(X) · Z t for X ∈ R
n, Z ∈ Sn−1 . (1.9)

Now, we introduce the notion of prescribed mean curvature fields H(X,Z).
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Definition 1.5. Let X ∈ C(B,Rn) with an ON-normal section {N1, . . . , Nn−2}
be given. Then we call X = X(u, v) a conformally parametrized immersion of
prescribed mean curvature field H ∈ C0(Rn × Sn−1,R) iff there hold (1.7) and

4X = 2H(X,N1)WN1 + · · ·+ 2H(X,Nn−2)WNn−2 in B (1.10)

with the Euclidean Laplace operator 4. The immersion is called a minimal
surface iff H(X,Z) ≡ 0, that is 4X = 0 in B.

Remark 1.6. The differential system (1.10) is invariant w.r.t. orthogonal
changes of the ON-normal section {N1, . . . , Nn−2}. For the proof let O =
(oΣΩ)Σ,Ω=1,...,n be an orthogonal matrix which in B ⊂ R

2 satisfies the relations

2
n−2∑

Σ=1

oΣΩ(w)
2 =

n−2∑

Σ=1

oΩΣ(w)
2 = 1 for Ω = 1, . . . , n− 2

n−2∑

Σ=1

oΣΩ(w)oΣΩ′(w) =
n−2∑

Σ=1

oΩΣ(w)oΩ′Σ(w) = 0 for Ω 6= Ω′ .

We introduce a new ON-normal section {Ñ1, . . . , Ñn−2} via ÑΣ :=
∑n−2

Ω=1 oΣΩNΩ,
Σ = 1, . . . , n− 2. The stated invariance follows from

n−2∑

Σ=1

H(X, ÑΣ)ÑΣ =
n−2∑

Σ=1

{
H(X) ·

n−2∑

Ω=1

oΣΩN
t
Ω

} n−2∑

Ω′=1

oΣΩ′NΩ′

=
n−2∑

Ω=1

(
n−2∑

Σ=1

o2ΣΩ

){
H(X) ·N t

Ω

}
NΩ

+
n−2∑

Ω,Ω′=1
Ω6=Ω′

(
n−2∑

Σ=1

oΣΩoΣΩ′

){
H(X) ·N t

Ω

}
NΩ′

=
n−2∑

Ω=1

{
H(X) ·N t

Ω

}
NΩ

=
n−2∑

Ω=1

H(X,NΩ)NΩ .

1.3. The main theorem. We admit mean curvature fields H ∈ C0(Rn ×
Sn−1,R) which additionally satisfy the following Hölder and Lipschitz assump-
tions:

|H(X,Z)| ≤ h0 ∀X ∈ R
n , Z ∈ Sn−1, and

|H(X1, Z1)−H(X2, Z2)| ≤ h1|X1 −X2|α + h2|Z1 − Z2|
∀X1, X2 ∈ R

n , Z1, Z2 ∈ Sn−1 .

(1.11)
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Theorem 1.7. Let an immersion X ∈ C(B,Rn) of prescribed mean curvature
field H = H(X,Z) be given such that (1.11) holds. Furthermore, we assume:

(A1) the immersion X = X(u, v) is a conformal reparametrization of a graph

(x, y, ϕ1(x, y), . . . , ϕn−2(x, y))

ϕΣ ∈ C3+α(Ω,R) for Σ = 1, . . . , n− 2,
(1.12)

over a bounded and simply connected domain Ω ⊂ R
2;

(A2) the surface represents a geodesic disc Br(X0) of geodesic radius r > 0
and with center X0 := (0, . . . , 0) such that, with a real constant d0 > 0, it
holds

Area[Br(X0)] :=

∫∫

B

W (u, v) du dv ≤ d0r
2 (1.13)

for the area of the geodesic disc, where d0 ∈ (0,+∞) does not depend on r;

(A3) at every point w ∈ B, each normal vector of the immersion makes an
angle of at least ω > 0 with the x1-axis.

Then, for any orthonormal basis {N 1, . . . , Nn−2} of the normal space at X0

there exists a constant

Θ = Θ
(
h0r, h1r

1+α, h2r, d0, sinω, n, α
)
∈ (0,+∞) (1.14)

such that it holds

κΣ,1(0, 0)
2 + κΣ,2(0, 0)

2 ≤ 1

r2

{
(h0r)

2 +Θ
}

(1.15)

for the principal curvatures κΣ,1 and κΣ,2 w.r.t. NΣ for all Σ = 1, . . . , n− 2.

Remark 1.8. 1. The principal curvatures κΣ,i = κΣ,i(u, v) are defined as the
eigenvalues of a Weingarten form w.r.t. a unit normal vector NΣ (see Section 2.1
for details).

2. An estimate of the principal curvatures can be proved under the assump-
tion Area[X] ≤ M0 with any constant M0 ∈ (0,+∞) instead of (A2), where Θ
from (1.14) will depend on M0. However, (A2) leads to the following Bernstein
type result.

Consider minimal graphs (x, y, ϕ1, (x, y), . . . , ϕn−2(x, y)), (x, y) ∈ R
2. Be-

cause its Gauss curvature is non-positive (see Section 2.1), by a theorem of
Hadamard (see [9, Theorem 3.4.16]) we can introduce geodesic discs Br(X0)
for all X0 = (x0, y0, ϕ1(x0, y0), . . . , ϕn−2(x0, y0)) and all r > 0. Then the limit
r →∞ yields the

Corollary 1.9. Let X = X(x, y), (x, y) ∈ R
2, be a complete minimal graph

with the properties:
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(i) there exists X0 = (x0, y0, ϕ1(x0, y0), . . . , ϕn−2(x0, y0)) and a radius r0 > 0
such that all geodesic discs Br(X0) with center X0 and radius r ≥ r0
satisfy

Area[Br(X0)] ≤ d0r
2 ∀ r ≥ r0 (1.16)

with a constant d0 ∈ (0,+∞) which does not depend on r;

(ii) each normal vector of the graph makes an angle of at least ω > 0 with the
x1-axis.

Then X = X(x, y) is a linear mapping.

Proof. For any point X1 = (x1, y1, ϕ1(x1, y1), . . . , ϕn−2(x1, y1)) on the graph we
have

Area[Br(X1)] ≤ 4d0r
2 ∀ r ≥ max{r0, d(X0, X1)} (1.17)

where d(X0, X1) ≥ 0 is the inner distance between X0 and X1 on the surface.
This holds because of the inclusion

Br(X1) ⊂ B2r(X0) ∀ r ≥ max{r0, d(X0, X1)} (1.18)

and assumption (i).

Since K ≤ 0 for the Gaussian curvature we can consider geodesic discs
Br(X1) for all r ∈ (0,+∞) on account of Hadamard’s theorem. With the aid
of [15] we introduce conformal parameters into such a geodesic disc.

Using the curvature estimate (1.15) and letting r → ∞ shows that all
principal curvatures at X1 vanish which proves the Corollary (note that Θ does
not depend on r since h0, h1, h2 = 0).

Remark 1.10. 1. In [11] Osserman proved that a complete two-dimensional
minimal surface in R

n is a plane if all of its normal vectors make a certain
positive angle with a fixed axis in space (compare with assumption (A3)). The
method of his proof is based essentially on results of complex analysis and it
does not need a growth condition of the form (1.13).

2. In [7] a Bernstein type result for minimal submanifolds is proved. The
methods established there were generalized in [8] to prove curvature estimates
for submanifolds with parallel mean curvature fields. Due to the higher dimen-
sion of the manifolds itself the authors assume a-priori bounds for the gradients.

3. Curvature estimates and related Bernstein type result for minimal sub-
manifolds can also be found in [19] where the authors extend methods from [17]
for minimal immersions with vanishing normal sectional curvature (see also [20],
and (2.13) below).

4. Our method of proof uses essentially results from [6], and follows [12]
where curvature estimates for two-dimensional immersions of mean curvature
type in R

3 where established.
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2. Differential geometry of surfaces in R
n

2.1. Mean and Gaussian curvature fields and principal curvatures. Let
X ∈ C(B,Rn) be given with an ON-normal section {N1, . . . , Nn−2}. Consider
the forms

(Lk
Σ,i)i,k=1,2 := (LΣ,ijg

jk)i,k=1,2 ∈ R
2×2 , Σ = 1, . . . , n− 2, (2.1)

with the coefficients gij = gij(u, v) of the inverse of the first fundamental form,
i.e., gijg

jk = δki with the Kronecker symbol δki using the summation convention.

Definition 2.1. The mean curvature HΣ = HΣ(u, v) and the Gaussian curva-
ture KΣ = KΣ(u, v) in direction NΣ, Σ = 1, . . . , n− 2, are defined as

HΣ :=
1

2
trace (Lk

Σ,i)i,k=1,2 =
LΣ,11g11 − 2LΣ,12g12 + LΣ,22g22

2(g11g22 − g212)
(2.2)

and

KΣ := det (Lk
Σ,i)i,k=1,2 =

LΣ,11LΣ,22 − L2Σ,12

g11g22 − g212
. (2.3)

The principal curvatures κΣ,1, κΣ,2 w.r.t. NΣ are the eigenvalues of (Lk
Σ,i)i,k=1,2,

that is

HΣ =
κΣ,1 + κΣ,2

2
, KΣ = κΣ,1κΣ,2 , Σ = 1, . . . , n− 2. (2.4)

Definition 2.2. Let the immersion X ∈ C(B,Rn) be given with an ON-normal
section {N1, . . . , Nn−2}. The Gaussian curvature of X = X(u, v) is defined by

K(u, v) :=
n−2∑

Σ=1

KΣ(u, v), (u, v) ∈ B. (2.5)

Remark 2.3. 1. Similarly to the proof of the invariance of the mean curva-
ture system w.r.t. changes of the ON-normal section in 1.2, one can show the
invariance of the Gauss curvature K = K(u, v).

2. For minimal surfaces we have KΣ ≤ 0 for all Σ = 1, . . . , n− 2, therefore
K ≤ 0.

3. Up to sign, K = K(u, v) is the non-trivial component of the Riemannian
curvature tensor

Rnijk = R`
ijkg`n =

(
Γ`ij,uk − Γ`ik,uj + ΓmijΓ

`
mk − ΓmikΓ

`
mj

)
g`n (2.6)

with the Christoffel symbold Γkij defined in (2.11). In particular, evaluating the
tangent components of Xuiuv −Xuivu = 0 yields

R2112 =
n−2∑

Σ=1

KΣW
2 . (2.7)

This is the so-called theorema egregium.
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2.2. The differential equations. We want to express NΣ,ui and Xuiuj in
terms of the moving frame {Xu, Xv, N1, . . . , Nn−2}.

Proposition 2.4. Let X ∈ C(B,Rn) be given with an ON-normal section
{N1, . . . , Nn−2}. Then there hold the Weingarten equations

NΣ,ui = −LΣ,ijgjkX t
uk + σΘΣ,iNΘ , i = 1, 2, Σ = 1, . . . , n− 2, (2.8)

with the torsion coefficients

σΘΣ,i :=

{
NΣ,ui ·N t

Θ if Σ 6= Θ

0 if Σ = Θ ,
(2.9)

as well as the Gauss equations

Xuiuj = ΓkijXuk +
n−2∑

Σ=1

LΣ,ijNΣ , i, j = 1, 2, (2.10)

with the Christoffel symbols

Γkij :=
1

2
gk`(gj`,i + g`i,j − gij,`), gij,k := gij,uk . (2.11)

For the proofs of these equations we refer to [3].

The σΩΣ,i = σΩΣ,i(u, v) are also called the coefficients of the normal connec-
tion. This notation becomes clear from the next result.

Corollary 2.5. Let the immersion X ∈ C(B,Rn) be given with an ON-normal
section {N1, . . . , Nn−2}. Then there hold the Ricci equations

σΩΣ,2,u − σΩΣ,1,v + σΘΣ,2σ
Ω
Θ,1 − σΘΣ,1σ

Ω
Θ,2 = (LΣ,2jLΩ,k1 − LΣ,1jLΩ,k2)g

jk (2.12)

for Σ,Ω = 1, . . . , n− 2.

These identities follow by evaluating NΣ,uv−NΣ,vu = 0 for Σ = 1, . . . , n− 2
(see, e.g., [3]). Note the similarity of the left hand side in (2.12) with the
Riemannian curvature tensor in (2.6).

Definition 2.6. The normal curvature tensor of {N1, . . . , Nn−2} is given by

SΩΣ,ij := σΩΣ,i,uj − σΩΣ,j,ui + σΘΣ,iσ
Ω
Θ,j − σΘΣ,jσ

Ω
Θ,i . (2.13)

Remark 2.7. Consider the two-dimensional plane σ := Span {NΣ, NΩ} ⊂ R
n.

Then Sij(σ) := SΩΣ,ij is invariant w.r.t. changes of the orthonormal basis of σ.
Thus Sij(σ) represents a sectional curvature in the normal bundle.
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2.3. The mean curvature system. Using conformal parameters (u, v) ∈ B,

the Christoffel symbols satisfy Γ111+Γ122 = 0, Γ211+Γ222 = 0. Together with (2.2)
and (2.10) we calculate

4X = (Γ111 + Γ122)Xu + (Γ211 + Γ222)Xv +
n−2∑

Σ=1

(LΣ,11 + LΣ,22)NΣ

= 2
n−2∑

Σ=1

HΣWNΣ . (2.14)

This is exactly the mean curvature system from (1.10).

Corollary 2.8. Under the assumptions |H1|, . . . , |Hn−2| ≤ h0 with a real con-
stant h0 ∈ [0,+∞) there holds the estimate

|4X| ≤ 2(n− 2)h0|Xu||Xv| ≤ (n− 2)h0|∇X|2 in B. (2.15)

The quadratic growth in the gradient allows, e.g., the following enclosure prin-
ciple (see [5]).

Corollary 2.9. Let the conformally parametrized immersion X ∈ C(B,Rn) be
given with an ON-normal section {N1, . . . , Nn−2}. Let |H1|, . . . , |Hn−2| ≤ h0 for
the associated mean curvature field of X = X(u, v) with a real constant h0 such
that

0 ≤ h0 sup
(u,v)∈B

|X(u, v)| ≤ 1

n− 2
. (2.16)

Then it holds
sup

(u,v)∈B

|X(u, v)|2 = sup
(u,v)∈∂B

|X(u, v)|2 (2.17)

where we set ∂B := {(u, v) ∈ R
2 : u2 + v2 = 1}.

Proof. Using (2.15) and (2.16) we estimate

4|X|2 = 2|∇X|2 + 24X ·X t ≥ 2
{
1− (n− 2)|X|h0

}
|∇X|2 ≥ 0. (2.18)

The maximum principle yields the statement.

2.4. An example from the calculus of variations. We want to discuss
a variational problem (see [2] for n = 3) whose critical points X = X(u, v)
satisfy the above mean curvature system together with the continuity assump-
tions (1.11).

Proposition 2.10. Let the conformally parametrized immersion X ∈ C(B,Rn)
be critical for

F [X] :=

∫∫

B

Γ(X)W dudv (2.19)
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with a positive weight function Γ ∈ C1+α(Rn,R). Let {N1, . . . , Nn−2} be an
ON-normal section. Then X = X(u, v) satisfies the mean curvature system

4X = 2
n−2∑

Σ=1

HΣWNΣ in B (2.20)

with the mean curvatures

HΣ = H(X,NΣ) =
ΓX(X) ·N t

Σ

2Γ(X)
, Σ = 1, . . . , n− 2. (2.21)

Proof. (i) We introduce the unit normal field

N(u, v) :=
n−2∑

Σ=1

γΣ(u, v)NΣ(u, v),
n−2∑

Σ=1

(γΣ)2 = 1, (2.22)

with coefficients γΣ∈ C2+α(B,R) and consider the variation X̃(u, v)=X(u, v)+
εϕ(u, v)N(u, v) with a test function ϕ ∈ C∞

0 (B,R) and ε ∈ (−ε0,+ε0). We
calculate

X̃u = Xu + εϕuN + εϕNu , X̃v = Xv + εϕvN + εϕNv , (2.23)

and therefore

X̃2
u = W + 2εϕXu ·Nt

u + o(ε)

X̃2
v = W + 2εϕXv ·Nt

v + o(ε)

X̃u · X̃ t
v = ε

{
Xu ·Nt

v +Xv ·Nt
u

}
ϕ+ o(ε).

(2.24)

(ii) We define the forms

Lij := Xuiuj ·Nt = −Xui ·Nt
uj = −Xuj ·Nt

ui , i, j = 1, 2. (2.25)

Note that Nui · Nt = 0 due to N2 = 1, and Xui · Nt
uj

= −Xuiuj · Nt in view
of Xui · Nt = 0. Furhermore, it holds Xu · Nt

v = Xv · Nt
u. Then, (2.24) can be

written in the form

X̃2
u = W − 2εϕL11 + o(ε)

X̃2
v = W − 2εϕL22 + o(ε)

X̃u · X̃ t
v = − 2εϕL12 + o(ε)

(2.26)

which yields the variation formula

δg11 = −2ϕL11 , δg12 = −2ϕL12 , δg22 = −2ϕL22 . (2.27)
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From 2WδW = g22 δg11 − 2g12 δg12 + g11 δg22 we obtain

δW =
1

2
δg11 +

1

2
δg22 = −

{
L11 + L22

}
ϕ = − 2HWϕ (2.28)

with the mean curvature field H := 1
2
Lijg

ij.

(iii) Together with δΓ(X) = ΓX(X) ·Nt ϕ we infer

δF [X] =

∫∫

B

{
ΓX(X) ·Nt − 2Γ(X)H(X,N)

}
Wϕdu dv (2.29)

for all ϕ ∈ C∞
0 (B,R). Then δF [X] = 0 gives

H(X,N) =
ΓX(X) ·Nt

2Γ(X)
, (2.30)

where γΣ = γΣ(u, v) is chosen arbitrarily.

(iv) Let γΣ ≡ 1 for any Σ ∈ {1, . . . , n−2} and γΩ ≡ 0 for all Ω 6= Σ. Then
N = NΣ, H = HΣ, such that (2.20) follows.

Remark 2.11. If we endow R
n with the Riemannian metric

ds2 := Γ(x1, . . . , xn)
{
(dx1)2 + · · ·+ (dxn)2

}
, (2.31)

then F [X] measures the area of an immersion X = X(u, v) in the Riemannian
space (Rn, ds2). Thus, minimal surfaces in this Riemannian space are surfaces
with mean curvature field H(X,N) from (2.30) in R

n. An example of such a
space is obtained by stereographic projection of the sphere Sn into R

n, where

Γ(X) =
4

(1 + |X|2)2 , X = (x1, . . . , xn). (2.32)

2.5. An example: The holomorphic graph (w,w2). Let us consider the
graph

X(u, v) := (u, v, u2 − v2, 2uv),

(u, v) ∈ BR :=
{
(u, v) ∈ R

2 : u2 + v2 ≤ R2
} (2.33)

in R
4 which is generated by the holomorphic function Φ(w) := w2, w = u+ iv.

Note that this graph can be extended to a graph over the whole plane R
2

but it is not a plane. We show that (A1) and (A2) of our Theorem are satisfied,
while (A3) holds with an angle ω = ω(R) such that ω(R) → 0 for R → ∞.

Therefore, we cannot apply Corollary 1.

Statement 1. The graph is a conformally parametrized minimal graph over BR.

Furthermore, it can be extended to a complete and non-linear minimal graph
over R

2. In particular, it holds H(X,Z) ≡ 0 for the mean curvature field.
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Statement 2. The unit vectors

N1 :=
1√

1 + 4u2 + 4v2
(−2u, 2v, 1, 0)

N2 :=
1√

1 + 4u2 + 4v2
(−2v,−2u, 0, 1)

(2.34)

form an ON-normal section {N1, N2} over BR.

Let c(t) = (u(t), v(t)) ⊂ BR, t ∈ [0, T ], denote a continuously differentiable
curve such that

(i) c(0) = (0, 0) and c(T ) ∈ ∂BR;

(ii) |ċ(t)|2 = 1 for all t ∈ [0, T ] where the dot denotes differentiation w.r.t.
the variable t.

Denote the class of all these curves by D.

Statement 3. It holds

Area[Br(X0)] ≤ 192πr2 for large r > 0, X0 = (0, . . . , 0). (2.35)

Proof. We give a lower bound for the length L[c] of the image curve X ◦ c(t) for
any c ∈ D on the surface. Assume w.l.o.g. that |u(T )| ≥ |v(T )|, in particular
|u(T )| ≥ R

2
. Define t∗ := sup

{
t ∈ (0, T ) : |u(t)| ≤ R

4

}
. Note that T − t∗ ≥ R

4

because of the arc length parametrization. Then we estimate as follows:

L[c] =
T∫

0

√
1 + 4u2 + 4v2 dt ≥

T∫

t∗

√
1 + 4u2 dt ≥ R

2
(T − t∗) ≥ R2

8
. (2.36)

In the same way we treat the case |v(T )| ≥ |u(T )|.
Now if we define r := minc∈D L[c], then the geodesic disc Br(X0), X0 :=

(0, . . . , 0), projects into BR. Using (2.36) we estimate the area of this geodesic
disc:

Area[Br(X0)] ≤
∫∫

BR

(1 + 4u2 + 4v2) du dv ≤ 192πr2, ∀R ≥ 1 (2.37)

since
∫∫

BR
(1+4u2+4v2) du dv =

∫ 2π
0

∫ R
0
(1+4%2)% d% dϕ = 2π(R

2

2
+R4) ≤ 3πR4

for all R ≥ 1.

Thus, Assumption (A2) is satisfied at least for large r > 0.

Statement 4. (A3) does not hold for R→∞.
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Proof. The condition that each normal vector N makes an angle of at least
ω > 0 with the x1-axis means |N · (1, 0, . . . , 0)t| ≤ cosω < 1. But consider N1

from (2.34) for v = 0, then

|N1 · (1, 0, . . . , 0)t| =
2|u|√
1 + 4u2

−→ 1 for |u| → ∞ (2.38)

which proves the statement.

3. Proof of the main theorem

We set HΣ(X) ≡ H(X,NΣ). At first it holds

κΣ,1(0, 0)
2 + κΣ,2(0, 0)

2 = 4HΣ(0, 0)
2 − 2KΣ(0, 0)

≤ 4h20 + 2|KΣ(0, 0)|

=
1

r2

{
(2h0r)

2 + r2|KΣ(0, 0)|
}

(3.1)

for Σ = 1, . . . , n− 2. The desired curvature bound follows from an estimate of

KΣ(0, 0) =
(Xuu ·NΣ)(Xvv ·NΣ)− (Xuv ·NΣ)

2

W 2

∣∣∣
(0,0)

. (3.2)

This means that (i) we have to find a lower bound for the area element, and (ii)
we have to establish an upper bound for the second derivatives of the immersion.

1. In the first part we will prove the estimate

W (w)

r2
≥ C1 for w ∈ B 1

2

(0, 0) (3.3)

with a constant C1 = C1(h0r, d0, sinω, n) > 0.

1.1. Due to the graph property (A1) it is not difficult to find a global
ON-normal section {N1, . . . , Nn−2} on the surface: Note that the vectors e3 :=
(0, 0, 1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1) are not in any tangent plane of the sur-
face beause

1√
1 + |∇ϕ1|2

(−ϕ1,x,−ϕ1,y, 1, 0, . . . , 0),
...

...
...

1√
1 + |∇ϕn−2|2

(−ϕn−2,x,−ϕn−2,y, 0, . . . , 0, 1)

(3.4)
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are normal to the surface and their inner products with eΣ do not vanish.
Therefore, the projections

N∗
1 := e3 −

e3 ·X t
u

|Xu|2
Xu −

e3 ·X t
v

|Xv|2
Xv

N∗
2 := e4 −

e4 ·X t
u

|Xu|2
Xu −

e4 ·X t
v

|Xv|2
Xv , . . .

(3.5)

can be transformed into an ON-normal section {N1, . . . , Nn−2}. In the first part
of the proof we will work with this section.

1.2. Using conformal parameters (u, v) ∈ B it holds

4X = 2H(X,N1)WN1 + 2H(X,N2)WN2 + . . .

+2H(X,Nn−2)WNn−2 in B.
(3.6)

From (1.11) we infer the estimate

|4X(u, v)| ≤ (n− 2)h0|∇X(u, v)|2 in B. (3.7)

The special structure of this differential inequality – the quadratic growth in
the gradient – enables us to apply the methods of [6].

We cite two important consequences of our assumptions.

1.3. Assumption (A2) yields: Let Γ(B) be the set of all continuous and
piecewise differentiable curves γ : [0, 1] → B, such that γ(0) = (0, 0) and
γ(1) ∈ ∂B. Then (see [12])

inf
γ∈Γ(B)

1∫

0

∣∣∣∣
d

dt
X ◦ γ(t)

∣∣∣∣ dt ≥ r. (3.8)

1.4. Assumption (A3) gives |∇x1|2 ≥ W sin2 ω in B. The proof can be taken
from [11, Lemma 1.1], where the author makes essential use of the conformal
representation of the surface.

For the estimate of the area element we define several auxiliary functions
and apply Heinz’ results on elliptic systems in R

2 from [6].

1.5. We denote by F ∗(u, v) := (x1(u, v), x2(u, v)) : B → R
2 the plane

mapping w.r.t. X = X(u, v). Then we have

(i) |4F ∗(w)| ≤ 4h0
sin2 ω

|∇F ∗(w)|2 for all w ∈ B

because we estimate |4F ∗| ≤ |4X| ≤ (n− 2)h0|∇X|2 = 2(n− 2)h0W ≤
4h0

sin2 ω
|∇x1|2 ≤ 4h0

sin2 ω
|∇F ∗|2;
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(ii) |∇X(w)|2 ≤ 2

sin2 ω
|∇F ∗(w)|2 for all w ∈ B

which follows from |∇X|2 = 2W ≤ 2
sin2 ω

|∇x1|2 ≤ 2
sin2 ω

|∇F ∗|2.
1.6. Let w0 ∈ B and ν ∈ (0, 1) be given such that B2ν(w0) := {w ∈ B : |w−

w0| < 2ν} ⊂ B. We consider the mapping Y (w) := 1
r
{X(w0 + 2νw)−X(w0)},

w ∈ B, and the corresponding plane mapping F (w) := (y1(w), y2(w)) : B → R
2.

The immersion Y = Y (w) satisfies

|Yu(w)|2 =
4ν2

r2
W (w0 + 2νw) = |Yv(w)|2, Yu(w) · Yv(w)t = 0 (3.9)

and due to (3.7)

|4Y (w)| ≤ (n− 2)(h0r)|∇Y (w)|2 in B. (3.10)

1.7. Together with 1.5 (ii) we infer

|4F (w)| ≤ |4Y (w)| ≤ (n− 2)(h0r)|∇Y (w)|2

=
8(n− 2)ν2(h0r)

r2
W (w0 + 2νw)

=
4(n− 2)ν2(h0r)

r2
|∇X(w0 + 2νw)|2

≤ 8(n− 2)ν2(h0r)

r2 sin2 ω
|∇F ∗(w0 + 2νw)|2 (3.11)

=
8(n− 2)ν2(h0r)

r2 sin2 ω

r2

4ν2
|∇F (w)|2

≤ 2(n− 2)(h0r)

sin2 ω
|∇F (w)|2

for all w ∈ B. Furthermore, from (A1) we infer that F = F (u, v) is one-to-one
and has positive Jacobian JF (w) > 0 for all w ∈ B. Additionally, assumption
(A2) gives

D[F ] ≤ D[Y ] ≤ 1

r2
D[X] ≤ 2d0 . (3.12)

with the Dirichlet energy

D[Z] :=
∫∫

B

{
|Zu|2 + |Zv|2

}
du dv (3.13)

We apply [6, Theorem 6, p. 254] to obtain the following inner gradient estimate:
There is a constant c1 = c1(h0r, d0, sinω, n) ∈ (0,+∞) such that

|∇F (u, v)| ≤ c1(h0r, d0, sinω, n) ∀ (u, v) ∈ B 1

2

(0, 0). (3.14)
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1.8. From 1.7, (3.11) we get

1

r2
W (w0 + 2νw) ≤ 1

4ν2 sin2 ω
c1(h0r, d0, sinω, n)

=: c2(h0r, d0, sinω, ν, n)

(3.15)

for all w ∈ B. In particular, we arrive at

1

r2
W (w) ≤ c2(h0r, d0, sinω, ν, n) ∀w ∈ B 1

2

(0, 0). (3.16)

This estimate will be used in the second part of the proof.

1.9. Because JF (w) > 0 and D[F ] ≤ 2d0 we can apply [6, Lemma 17,
p. 255]: There exists a constant c3 = c3(h0r, d0, sinω, n) ∈ (0,+∞) such that

|∇F (w)|2 ≤ c3(h0r, d0, sinω, n)|∇F (0, 0)| 25 (3.17)

for all w ∈ B 1

2

(0, 0). It follows

4ν2

r2
W (w0 + 2νw) ≤ 1

sin2 ω
|∇F (w)|2

≤ c3(h0r, d0, sinω, n)

sin2 ω
|∇F (0, 0)| 25

≤ c3(h0r, d0, sinω, n)

sin2 ω
|∇Y (0, 0)| 25

=
c3(h0r, d0, sinω, n)

sin2 ω

[
8ν2

r2
W (w0)

] 1

5

.

(3.18)

Rearranging yields an inequality of Harnack type

[
W (w0)

r2

] 1

5

≥ 4 · 8− 1

5ν
8

5 sin2 ω

c3(h0r, d0, sinω)

W (w0 + 2νw)

r2
(3.19)

for all w ∈ B 1

2

(0, 0), or equivalently

c4(h0r, d0, sinω, ν, n)

[
W (w)

r2

]5
≤ W (w0)

r2
(3.20)

for all w ∈ Bν(w0) with the constant c4(h0r, d0, sinω, ν, n) :=
27ν8 sin10 ω

c3(h0r,d0,sinω,n)5
∈

(0,+∞).

1.10. (A2) also ensures that we can estimate the area element in at least
one point: There is a point w∗ ∈ B1−ν0(0, 0), ν0 := min(e−4πd0 , 1

2
) such that

W (w∗)

r2
≥ 1

4(1− e−4πd0)
=: c5(d0) > 0 . (3.21)
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The constant ν0 comes from an application of the Courant–Lebesgue lemma.

1.11. We now establish an estimate of the area element: Set ν := 1
2
ν0 ∈ (0, 1

4
]

and choose an integer m = m(ν) ∈ N such that 1 − 2ν ≤ m
2
ν ≤ 1 − ν. For an

arbitrary w0 ∈ B1−ν0(0, 0) we define the points

wj :=
j

m
w∗ +

m− j

m
w0 for j = 0, . . . ,m (3.22)

with w∗ ∈ B1−ν0(0, 0) from 1.10. We have

|wj| ≤
j

m
|w∗|+ m− j

m
|w0| < 1− ν0 (3.23)

and therefore B2ν(wj) = Bν0(wj) ⊂ B. Furthermore, it holds

|wj+1 − wj| =
∣∣∣
1

m
w∗ − 1

m
w0

∣∣∣ ≤ 1

m
|w∗ − w0| ≤

2(1− ν0)

m
≤ ν. (3.24)

This implies wj+1 ∈ Bν(wj) for j = 0, . . . ,m− 1.

We apply the Harnack inequality from 1.9, (3.20) and obtain

l
W (w0)

r2
≥ c4

[
W (w1)

r2

]5
≥ c1+54

[
W (w2)

r2

]52
≥ · · ·

· · · ≥ c1+5+5
2+···+5m−1

4

[
W (wm)

r2

]5m
.

(3.25)

Recall that wm = w∗, and 1.10, (3.21) gives

W (w0)

r2
≥ c1+5+5

2+···+5m−1

4 c5(d0)
5m =: C1(h0r, d0, sinω, n) > 0 (3.26)

for all w0 ∈ B1−ν0(0, 0). From ν0 ≤ 1
2
we conclude

W (w)

r2
≥ C1(h0r, d0, sinω, n) ∀ w ∈ B 1

2

(0, 0) . (3.27)

This completes the first part of the proof.

2. In the second part we estimate the second derivatives of X = X(u, v)
using 4X = 2H(X,N1)WN1 + · · · + 2H(X,Nn−2)WNn−2. In particular, we
have to give Hölder estimates of the right hand side of this equation. We will
construct an adequate orthonormal section {N1, . . . , Nn−2} of the normal space.

2.1. Define the auxiliary function

Z(u, v) =
1

r
{X(u, v)−X(0, 0)} = 1

r
X(u, v), (u, v) ∈ B. (3.28)
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Denoting byWZ the area element of Z, we have |Zu|2= WZ= |Zv|2 andZu·Zt
v=0

in B. It holds r2WZ = WX with WX := |Xu|2 = |Xv|2. We calculate

4Z =
2

r
H(X,N1)WXN1 + · · ·+

2

r
H(X,Nn−2)WXNn−2

= 2rH(rZ,N1)WZN1 + · · ·+ 2rH(rZ,Nn−2)WZNn−2 .

(3.29)

2.2. Due to 1.8, (3.16) we have the estimate

|4Z(w)| ≤ 2(n− 2)(rh0)c2(h0r, d0, sinω, n) ∀w ∈ B 1

2

(0, 0). (3.30)

Furthermore, we get

|Z(u, v)| = |Z(u, v)− Z(0, 0)| ≤ 2 max
w∈B 1

2

(0,0)
|∇Z(w)|

≤ 2
√

2c2(h0r, d0, sinω) in B 1

2

(0, 0).
(3.31)

Potential theoretic estimates yield a constant c6(h0r, d0, sinω, n, α) such that

|Zui(w1)− Zui(w2)| ≤ c6(h0r, d0, sinω, n, α)|w1 − w2|α

∀w1, w2 ∈ B 1

4

(0, 0) , ∀ α ∈ (0, 1),
(3.32)

where u1 = u, u2 = v (see, e.g., [16, Chapter XII, §2]). Therefore

|WZ(w1)−WZ(w2)| ≤ c7(h0r, d0, sinω, n, α)|w1 − w2|α

∀w1, w2 ∈ B 1

4

(0, 0)
(3.33)

with the constant c7 := 4
√
c2 c6.

2.3. Using the mean value theorem we have the Lipschitz estimate

|Z(w1)− Z(w2)| ≤ 4
√

2c2(h0r, d0, sinα) |w1 − w2|
∀w1, w2 ∈ B 1

2

(0, 0).
(3.34)

In a certain neighborhood of the origin we construct an ON-normal section
{N1, . . . , Nn−2} whose Hölder norm can be estimated.

2.4. We choose unit vectors N 1, . . . , Nn−2 ∈ R
n such that

NΣ · Zuj(0, 0)
t = 0, NΣ ·N t

Ω = δΣΩ , j = 1, 2, Σ,Ω = 1, . . . , n− 2, (3.35)

and define vectors

N∗
Σ(w) := NΣ −

NΣ · Zu(w)
t

|Zu(w)|2
Zu(w)−

NΣ · Zv(w)
t

|Zv(w)|2
Zv(w) in B. (3.36)
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2.5. These vectors belong to the normal space at Z(w) but they may not
be linearly independent. We now determine a ν1 = ν1(h0r, d0, sinω, n, α) > 0
such that

|N∗
Σ(w)|2 = 1− [NΣ · Zu(w)

t]2

WZ(w)
− [NΣ · Zv(w)

t]2

WZ(w)
≥ 1

2
in Bν1(0, 0). (3.37)

Namely, using (3.35) and 2.2, (3.32) we calculate

|NΣ · Zu`(w)
t|2 = |NΣ · {Zu`(w)− Zu`(0, 0)}t|2

≤ |Zu`(w)− Zu`(0, 0)|2

≤ c6(h0r, d0, sinω, n, α)
2|w|2α ,

(3.38)

for ` = 1, 2, Σ = 1, . . . , n− 2, and from 1.11, (3.26) we know the lower bound

WZ(w) ≥ C1(h0r, d0, sinω, n) in B 1

2

(0, 0). (3.39)

Thus, (3.37) holds if ν2α1 ≤ C1

4c6
.

2.6. We remark that the vectors N ∗
Σ(w), Σ = 1, . . . , n−2, satisfy the Hölder

estimate

|N∗
Σ(w1)−N ∗

Σ(w2)| ≤ c8(h0r, d0, sinω, n, α)|w1 − w2|α

∀w1, w2 ∈ Bν1(0, 0)
(3.40)

with a constant c8(h0r, d0, sinω, n, α). This estimate arises from the Hölder es-
timate for Zuj and the lower bound of WZ .

2.7. For Σ = 1, . . . , n− 2 we define

ÑΣ(w) :=
N∗
Σ(w)

|N∗
Σ(w)|

in Bν1(0, 0). (3.41)

These vectors are well defined because it holds |N ∗
k (w)|2 ≥ 1

2
in Bν1(0, 0), but

they are not orthogonal. Note that

N∗
Σ ·N∗

Ω =
(NΣ · Zt

u)(NΩ · Zt
u)

WZ

+
(NΣ · Zt

v)(NΩ · Zt
v)

WZ

(3.42)

for Σ 6= Ω and therefore, with (3.38),

|ÑΣ · Ñ t
Ω| =

|N∗
Σ ·N∗

Ω|
|N∗

Σ||N ∗
Ω|
≤ 2

C1

{
|NΣ · Zt

u||NΩ · Zt
u|+ |NΣ · Zt

v||NΩ · Zt
v|
}

≤ 4c26
C1
|w|2α .

(3.43)
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2.8. Thus we can find a ν2 = ν2(h0r, d0, sinω, n, α) with 0 < ν2 ≤ ν1
such that the following vectors (write NΣ for NΣ(w) and ÑΩ for ÑΩ(w)) are
well-defined in Bν2(0, 0) :

N1 := Ñ1

N2 :=
Ñ2 −

{
N1 · Ñ t

2

}
N1√

1−
{
N1 · Ñ t

2

}2

...

Nn−2 :=
Ñn−2 −

{
N1 · Ñ t

n−2

}
N1 − . . .−

{
Nn−3 · Ñ t

n−2

}
Nn−3√

1−
{
N1 · Ñ t

n−2

}2 − . . .−
{
Nn−3 · Ñ t

n−2

}2 .

(3.44)

Namely, we choose ν2 ∈ (0, 1) sufficiently small with the property that all
denominators in (3.44) are greater than or equal to 1

2
. These vectors form an

ON-normal section in Bν2(0, 0). Furthermore, the Hölder estimates

|NΣ(w1)−NΣ(w2)| ≤ c9(h0r, d0, sinω, n, α)|w1 − w2|α

∀w1, w2 ∈ Bν2(0, 0) , Σ = 1, . . . , n− 2
(3.45)

hold with a constant c9(h0r, d0, sinω, n, α) which can be calculated from the
Hölder estimates for the N ∗

Σ.

2.9. Now we make use of the differential system

4Z = 2rH(rZ,N1)WZN1 + 2rH(rZ,N2)WZN2 (3.46)

in Bν2(0, 0). We already established |4Z(w)| ≤ 2(n−2)(h0r)c2 in Bν2(0, 0) (see
2.2). Using (1.11) we obtain the Hölder estimate

|H(rZ(w1), NΣ(w1))−H(rZ(w2), NΣ(w2))|
≤ h1r

α|Z(w1)− Z(w2)|α + h2|NΣ(w1)−NΣ(w2)|
≤ h14

αrα(2c2)
α
2 |w1 − w2|α + h2c9|w1 − w2|α .

(3.47)

Thus we can find a constant c10 = c10(h0r, h1r
1+α, h2r, d0, sinω, n, α) such that

|4Z(w1)−4Z(w2)| ≤ c10|w1 − w2|α ∀w1, w2 ∈ Bν2(0, 0). (3.48)

2.10. We set ν3 :=
1
2
ν2. From interior Schauder estimates we infer a constant

C2(h0r, h1r
1+α, h2r, d0, sinω, n, α) ∈ (0,+∞) such that there holds

|Zuu(w)|, |Zuv(w)|, |Zvv(w)| ≤ C2 in Bν3(0, 0). (3.49)
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2.11. From the beginning of the proof we recall

κ1,Σ(0, 0)
2 + κ2,Σ(0, 0)

2

≤ 1

r2

{
(h0r)

2 +
|Zuu(0, 0)||Zvv(0, 0)|+ |Zuv(0, 0)|2

WZ(0, 0)2

}
.

(3.50)

Setting Θ(h0r, h1r
1+α, h2r, d0, sinω, n, α) :=

2C2

2

C2

1

we arrive at

κ1,Σ(0, 0)
2 + κ2,Σ(0, 0)

2 ≤ 1

r2

{
(h0r)

2 +Θ
}
. (3.51)

This completes the proof.

Remark 3.1. 1. The graph property (A1) is essentially needed in 1.9 where
we derived the Harnack-type inequality for the area element. For certain im-
mersions of prescribed mean curvature in R

3 one can establish a modulus of
continuity for the spherical mapping which ensures the graph property at least
locally.

2. Assumption (A2) is needed e.g. in 1.9 for the gradient estimate in terms
of |∇F (0, 0)|, and in 1.10 to ensure a point w∗ with the property W (w∗) ≥ r2c5.

For certain stable or generalized stable immersions in R
3 one can realize the

constant d0 in (1.13) (see e.g. [4]).
3. Assumption (A3) is needed in 1.5. to establish the inequality

|4F ∗(w)| ≤ 4h0
sin2 ω

|∇F ∗(w)|2

for the plane mapping F ∗. For immersions in R
3, such an inequality follows

already from the conformal parametrization and (A3) is not needed.
4. The assumptions (1.11) on the mean curvature field are needed in 2.9

and 2.10 where we applied Schauder theory to establish upper bounds for the
second derivatives of the immersion.
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