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A Nonlinear Case of the
1-D Backward Heat Problem:

Regularization and Error Estimate

Dang Duc Trong, Pham Hoang Quan, Tran Vu Khanh
and Nguyen Huy Tuan

Abstract. We consider the problem of finding, from the final data u(x, T ) = ϕ(x),
the temperature function u(x, t), x ∈ (0, π), t ∈ [0, T ] satisfies the following nonlinear
system

ut − uxx = f(x, t, u(x, t)), (x, t) ∈ (0, π)× (0, T )

u(0, t) = u(π, t) = 0, t ∈ (0, T ).

The nonlinear problem is severely ill-posed. We shall improve the quasi-boundary
value method to regularize the problem and to get some error estimates. The approx-
imation solution is calculated by the contraction principle. A numerical experiment
is given.
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1. Introduction

Let T be a positive number, we consider the problem of finding the temperature
u(x, t), (x, t) ∈ (0, π)× [0, T ] such that

ut − uxx = f(x, t, u(x, t)), (x, t) ∈ (0, π)× (0, T ) (1)

u(0, t) = u(π, t) = 0, t ∈ (0, T ) (2)

u(x, T ) = ϕ(x), x ∈ (0, π), (3)

where ϕ(x), f(x, t, z) are given. The problem is called the backward heat prob-
lem, the backward Cauchy problem or the final value problem.
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As is known, the nonlinear problem is severely ill-posed, i.e., solutions do not
always exist, and in the case of existence, these do not depend continuously on
the given data. In fact, from small noise contaminated physical measurements,
the corresponding solutions have large errors. It makes difficult to numerical
calculations. Hence, a regularization is in order. The linear case was studied
extensively in the last four decades by many methods. The literature related to
the problem is impressive (see, e.g., [3, 4, 7] and the references therein). In the
pioneering work [7] in 1967, the authors presented, in a heuristic way, the quasi-
reversibility method. They approximated the problem by adding a ”corrector”
into the main equation. In fact, they considered the problem

ut + Au− εA∗Au = 0, t ∈ [0, T ]
u(T ) = ϕ.

The stability magnitude of the method is of order ecε
−1

. In [1, 12], the problem
is approximated with

ut + Au+ εAut = 0, t ∈ [0, T ]
u(T ) = ϕ.

The method is useful if we cannot construct clearly the operator A∗. However,
the stability order in the case is quite as large as that in the original quasi-
reversibility methods. In [10], using the method, so-called, of stabilized quasi
reversibility, the author approximated the problem with

ut + f(A)u = 0, t ∈ [0, T ]
u(T ) = ϕ.

He shows that, with appropriate conditions on the ”corrector” f(A), the sta-
bility magnitude of the method is of order cε−1.

Sixteen years after the work by Lattes-Lions, in 1983, Showalter presented
the quasi-boundary value method. He considered the problem

ut − Au(t) = Bu(t), t ∈ [0, T ]
u(0) = ϕ,

and approximated the problem with

ut − Au(t) = Bu(t), t ∈ [0, T ]
u(0) + εu(T ) = ϕ.

According to him, this method gives a better stability estimate than the other
discussed methods. Clark and Oppenheimer, in their paper [4], used the quasi-
boundary value method to regularize the backward problem with

ut + Au(t) = 0, t ∈ [0, T ]
u(T ) + εu(0) = ϕ.
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The authors show that the stability estimate of the method is of order ε−1. Very
recently, in [6], the quasi-boundary method was used to solve a backward heat
equation with an integral boundary condition.

Although we have many works on the linear case of the backward problem,
the literature of the nonlinear case is quite scarce. Very recently, in [11], the
authors tranform the problem into the one of minimizing an appropriate func-
tional. However, a sharp error estimate and an effective method of calculation
are not given in [11].

Informally, problem (1)−(3) can be transformed to an integral equation
having the form

u(x, t) =
∞
∑

n=1

[

e(T−t)n
2

ϕn −
∫ T

t

e(s−t)n
2

fn(u)(s) ds

]

sinnx

where ϕ(x) =
∑∞

n=1 ϕn sinnx, f(u)(x, t) =
∑∞

n=1 fn(u)(t) sinnx are the expan-

sion of ϕ and f(u), respectively. The terms e(T−t)n2

, e(s−t)n2

(n large) are the
unstability cause. Hence, to regularize the problem, we have to replace the
terms by better terms. Naturally, we shall replace two terms by

e−tn
2

αn(ε, t) + e−Tn
2
,

e−tn
2

βn(ε, t, s) + e−sn
2
,

where αn, βn are positive functions satisfying

lim
ε↓0

αn(ε, t) = lim
ε↓0

βn(ε, t, s) = 0.

Many versions of αn, βn are suggested from the quasi-type methods discussed
above.

In the present paper, we shall use an association of the quasi-reversibility
method and the quasi-boundary value method to regularize our problem. In
fact, we approximate problem (1)−(3) by the following problem:

uεt − uεxx =
∞
∑

n=1

e−tn
2

ε
t
T + e−tn2

fn(u
ε)(t) sinnx, (x, t) ∈ (0, π)× (0, T ) (4)

uε(0, t) = uε(π, t) = 0, t ∈ [0, T ] (5)

εuε(x, 0) + uε(x, T )

= ϕ(x)−
∞
∑

n=1

(
∫ T

0

ε

ε
s
T + e−sn2

fn(u
ε)(s) ds

)

sinnx, x ∈ [0, π], (6)

where 0 < ε < 1, fn(u)(t) =
2
π
〈f(x, t, u(x, t)), sinnx〉 and 〈·, ·〉 is the inner

product in L2(0, π). We shall prove that, the (unique) solution uε of (4)−(6)
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satisfies the following equality:

uε(x, t) =
∞
∑

n=1

(

e−tn
2

ε+ e−Tn2
ϕn −

∫ T

t

e−tn
2

ε
s
T + e−sn2

fn(u
ε)(s) ds

)

sinnx , (7)

where ϕn =
2
π
〈ϕ(x), sinnx〉.

The remainder of the paper is divided into three sections. In Section 2,
we shall show that (4)−(6) is well posed and that the solution uε(x, t) satis-
fies (7). Then, in Section 3, we estimate the error between an exact solution u0

of problem (1)−(3) and the approximation solution uε. In fact, we shall prove
that

‖uε(·, t)− u0(·, t)‖ ≤ Cε
t
T (8)

and that there is a tε > 0 such that

‖uε(·, tε)− u0(·, 0)‖ ≤ 4
√
8C

4
√
T

(

ln

(

1

ε

))− 1

4

, (9)

where ‖ · ‖ is the norm in L2(0, π) and C depends on u0 and f . Finally, a
numerical experiment will be given in Section 4.

2. The well-posedness of problem (4)−(6)

In the section, we shall study the existence, the uniqueness and the stability of
a (weak) solution of problem (4)−(6). In fact, one has

Theorem 2.1. Let ϕ ∈ L2(0, π) and let f ∈ L∞([0, π]× [0, T ]×R) satisfy

|f(x, y, w)− f(x, y, v)| ≤ k|w − v|

for a k > 0 independent of x, y, w, v. Then problem (4)−(6) has uniquely a
weak solution uε ∈ C([0, T ];L2(0, π)) ∩ L2(0, T ;H1

0 (0, π)) ∩ C1(0, T ;H1
0 (0, π))

satisfying (7). The solution depends continuously on ϕ in C([0, T ];L2(0, π)).

Proof. The proof is divided into three steps. In Step 1, we shall prove that
problem (4)−(6) is equivalence to problem (7). In Step 2, we prove the existence
and the uniqueness of a solution of (7). Finally in Step 3, the stability of the
solution is given.

Step 1. Prove that (4)-(6) is equivalence (7). We divide this step into two
parts.

Part A. If uε ∈ C([0, T ];L2(0, π)) satisfies (7), then uε is solution of (4)−(6).
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For 0 ≤ t ≤ T , we have

uε(x, t) =
∞
∑

n=1

(

e−tn
2

ε+ e−Tn2
ϕn −

∫ T

t

e−tn
2

ε
s
T + e−sn2

fn(u
ε)(s) ds

)

sinnx , (10)

where uε ∈C([0, T ];L2(0, π) ∩ C1((0, T );H1
0 (0, π)) ∩ L2(0, T ;H1

0 (0, π))) can be
verified directly. In fact, uε ∈ C∞((0, T ];H1

0 (0, π))). Moreover, one has

uεt(x, t) =
∞
∑

n=1

(−n2e−tn
2

ε+ e−Tn2
ϕn −

∫ T

t

−n2e−tn
2

ε
s
T + e−sn2

fn(u
ε)(s)ds

)

sinnx

+
∞
∑

n=1

e−tn
2

ε
t
T + e−tn2

fn(u
ε)(t) sinnx

= − 2
π

∞
∑

n=1

n2
〈

uε(x, t), sinnx
〉

sinnx

+
∞
∑

n=1

(

e−tn
2

ε
t
T + e−tn2

fn(u
ε)(t)

)

sinnx

= uεxx(x, t) +
∞
∑

n=1

(

e−tn
2

ε
t
T + e−tn2

fn(u
ε)(t)

)

sinnx (11)

and

εuε(x, 0) + uε(x, T ) = ϕ−
∞
∑

n=1

(
∫ T

0

ε

ε
s
T + e−sn2

fn(u
ε)(s)ds

)

sinnx. (12)

So uε is the solution of (4)−(6).
Part B. If uε satisfies (4)−(6), then uε is a solution of (7).
In fact, taking the inner product of the equation (4) with respect to sinnx

we get in view of (4)

d

dt
uεn(t) + n

2uεn(t) =
e−tn

2

ε
t
T + e−tn2

fn(u
ε)(t), (13)

where we recall that

uεn(t) =
2

π

〈

uε(x, t), sinnx
〉

, fn(u
ε)(t) =

2

π

〈

f(x, t, uε(x, t)), sinnx
〉

.

It follows that

uεn(t) = e−tn
2

uεn(0) +

∫ t

0

e−(t−s)n2

fn(u
ε)(s) ds. (14)
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Hence, we have the Fourier expansion

uε(x, t) =
∞
∑

n=1

(

e−tn
2

uεn(0) +

∫ t

0

e−(t−s)n2 e−sn
2

ε
s
T + e−sn2

fn(u
ε)(s) ds

)

sinnx

=
∞
∑

n=1

(

e−tn
2

uεn(0) +

∫ t

0

e−tn
2

ε
s
T + e−sn2

fn(u
ε)(s) ds

)

sinnx. (15)

Hence

uε(x, T ) =
∞
∑

n=1

(

e−Tn
2

uεn(0) +

∫ T

0

e−Tn
2

ε
s
T + e−sn2

fn(u
ε)(s) ds

)

sinnx. (16)

Substituting (16) into (6) gives

∞
∑

n=1

(

(

ε+ e−Tn
2)

uεn(0)
)

sinnx = ϕ−
∞
∑

n=1

(
∫ T

0

ε+ e−Tn
2

ε
s
T + e−sn2

fn(u
ε)(s) ds

)

sinnx.

We obtain

uεn(0) =
1

ε+ e−Tn2
ϕn −

∫ T

0

1

ε
s
T + e−sn2

fn(u
ε)(s) ds. (17)

Replacing (17) in (15), we receive (7). This completes the proof of Step 1.

Step 2. The existence and the uniqueness of solution of (7).

Put

G(w)(x, t) = ϕ(x, t)−
∞
∑

n=1

∫ T

t

e−tn
2

ε
s
T + e−sn2

fn(w)(s) ds sinnx

for w ∈ C([0, T ];L2(0, π)), where ϕ(x, t) =
∑∞

n=1
e−tn2

ε+e−Tn2ϕn sinnx. We claim

that, for every w, v ∈ C([0, T ];L2(0, π)),m ≥ 1, we have

‖Gm(w)(·, t)−Gm(v)(·, t)‖2 ≤
(

k

ε

)2m
(T − t)mCm

m!
|‖w − v‖|2, (18)

where C = max{T, 1} and |‖ · ‖| is the supremum norm in C([0, T ];L2(0, π)).
We shall prove the latter inequality by induction.
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For m = 1, we have

‖G(w)(·, t)−G(v)(·, t)‖2

=
π

2

∞
∑

n=1

[

∫ T

t

e−tn
2

ε
s
T + e−sn2

(fn(w)(s)− fn(v)(s)) ds

]2

≤ π

2

∞
∑

n=1

∫ T

t

(

e−tn
2

ε
s
T + e−sn2

)2

ds

∫ T

t

(

fn(w)(s)− fn(v)(s)
)2
ds

≤ π

2

∞
∑

n=1

1

ε2
(T − t)

∫ T

t

(

fn(w)(s)− fn(v)(s)
)2
ds

=
1

ε2
(T − t)

∫ T

t

∫ π

0

(

f(x, s, w(x, s))− f(x, s, v(x, s))
)2
dx ds

≤ k2

ε2
(T − t)

∫ T

t

∫ π

0

|w(x, s)− v(x, s)|2dx ds

= C
k2

ε2
(T − t)|‖w − v‖|2.

Thus (18) holds.

Suppose that (18) holds for m = j. We prove that (18) holds for m = j+1.
We have

‖Gj+1(w)(·, t)−Gj+1(v)(·, t)‖2

≤ π

2

1

ε2

∞
∑

n=1

[
∫ T

t

∣

∣fn(G
j(w))(s)− fn(G

j(v))(s)
∣

∣ ds

]2

≤ π

2

1

ε2
(T − t)

∫ T

t

∞
∑

n=1

∣

∣fn(G
j(w))(s)− fn(G

j(v))(s)
∣

∣

2
ds

≤ 1

ε2
(T − t)

∫ T

t

∥

∥f(·, s, Gj(w)(·, s))− f(·, s, Gj(v)(·, s))
∥

∥

2
ds

≤ 1

ε2
(T − t)k2

∫ T

t

∥

∥Gj(w)(·, s)−Gj(v)(·, s)
∥

∥

2
ds

≤ 1

ε2
(T − t)k2

(

k

ε

)2j ∫ T

t

(T − s)j

j!
dsCj|‖w − v‖|2

≤
(

k

ε

)2(j+1)
(T − t)j+1

(j + 1)!
Cj+1|‖w − v‖|2.

Therefore, by the induction principle, we have

|‖Gm(w)−Gm(v)‖| ≤
(

k

ε

)m
T

m
2

√
m!

√
Cm |‖w − v‖|

for all w, v ∈ C([0, T ];L2(0, π)).
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We considerG : C([0, T ];L2(0, π))→ C([0, T ];L2(0, π)). There exists a pos-

itive integer m0 such that G
m0 is a contraction since limm→∞

(

k
ε

)m T
m
2
√
Cm√

m!
=

0. It follows that the equation Gm0(w) = w has a unique solution uε ∈
C([0, T ];L2(0, π)). In fact, one has G(Gm0(uε)) = G(uε). Hence Gm0(G(uε)) =
G(uε). By the uniqueness of the fixed point of Gm0 , one has G(uε) = uε, i.e.,
the equation G(w) = w has a unique solution uε ∈ C([0, T ];L2(0, π)). From
Part A, Step 1, we complete the proof of Step 2.

Step 3. The solution of the problem (4)−(6) depends continuously on ϕ in
L2(0, π).

Let u and v be two solutions of (4)−(6) corresponding to the final values ϕ
and ω. From (7) one has in view of the inequality (a+ b)2 ≤ 2(a2 + b2)

‖u(·, t)− v(·, t)‖2 ≤ π

∞
∑

n=1

(

e−tn
2

ε+ e−Tn2
|ϕn − ωn|

)2

+ π
∞
∑

n=1

(
∫ T

t

e−tn
2

ε
s
T + e−sn2

∣

∣fn(u)(s)− fn(v)(s)
∣

∣ds

)2

.

(19)

One has, for s > t and α > 0, e−tn2

α+e−sn2 =
1

(αesn
2
+1)

t
s (α+e−sn2

)1−
t
s
≤ α

t
s
−1. Letting

α = ε, s = T , we get

e−tn
2

ε+ e−Tn2
≤ ε

t
T
−1. (20)

Letting α = ε
s
T , we get

e−tn
2

ε
s
T + e−sn2

≤ ε
t
T
− s

T . (21)

Hence, from (19) it follows that

‖u(·, t)− v(·, t)‖2 ≤ 2ε2( t
T
−1)‖ϕ− ω‖2

+ 2k2(T − t)ε2
t
T

∫ T

t

ε−2 s
T ‖u(·, s)− v(·, s)‖2ds.

So, we have

ε−2( t
T

)‖u(·, t)− v(·, t)‖2 ≤ 2ε−2‖ϕ− ω‖2

+ 2k2(T − t)

∫ T

t

ε−2 s
T ‖u(·, s)− v(·, s)‖2ds.

Using Gronwall’s inequality we have

‖u(·, t)− v(·, t)‖ ≤ 2ε t
T
−1 exp

(

k2(T − t)2
)

‖ϕ− ω‖.
This completes the proof of Step 3 and the proof of our theorem.
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3. Regularization of problem (1)−(3)

We first have a uniqueness result

Theorem 3.1. Let ϕ, f be as in Theorem 2.1. Then problem (1)−(3) has at
most one (weak) solution u ∈W , where

W = C([0, T ];L2(0, π)) ∩ L2(0, T ;H1
0 (0, π)) ∩ C1((0, T );L2(0, π)).

Proof. Let M > 0 be such that |∂f
∂z
(x, t, z)| ≤ M for all (x, t, z) ∈ (0, π) ×

(0, T ) × R. Let u1(x, t) and u2(x, t) be two solutions of problem (1)−(3) such
that u1, u2 ∈W.

Put w(x, t) = u1(x, t)− u2(x, t). Then w satisfies the equation

wt(x, t)− wxx(x, t) = f(x, t, u1(x, t))− f(x, t, u2(x, t)).

Since f is Lipschizian, we have (wt−wxx)
2 ≤M2w2. Now w(0, t) = w(π, t) = 0

and w(x, T ) = 0. Hence by the Lees–Protter theorem ([8, p. 373]), w = 0 which
gives u1(x, t) = u2(x, t) for all t ∈ [0, T ]. The proof is completed.

Despite the uniqueness, problem (1)−(3) is still ill-posed. Hence, a regular-
ization has to resort. We have the following result.

Theorem 3.2. Let ϕ, f, uε be as in Theorem 2.1.

a) If we can find a u and a subsequence (uεj) in (C[0, T ];L2(0, π)) such that

uεj → u in C([0, T ];L2(0, π)),

then u is the unique solution of Problem (1)−(3).
b) If problem (1)−(3) has a weak solution

u ∈W (defined in Theorem 3.1)

which satisfies
∫ T

0

∑∞
n=1 e

2sn2

f 2
n(u)(s)ds <∞. Then

‖u(·, t)− uε(·, t)‖ ≤
√
M exp

(

3k2T (T − t)

2

)

ε
t
T

for every t ∈ [0, T ], where M = 3‖u(0)‖2 + 6π
∫ T

0

∑∞
n=1 e

2sn2

f 2
n(u)(s)ds

and uε is the unique solution of problem (4)−(6).
Proof. a) We present an outline of the proof.

The function uεj satisfies (4), (5) (with ε replaced by εj) subject to the
initial condition uεj(x, 0) =

∑∞
n=1 ϕ

j
n sinnx and u(x, 0) =

∑∞
n=1 un(0) sinnx.

One gets (see [5])

uεj(x, t) =
∞
∑

n=1

[

e−tn
2

ϕjn +

∫ t

0

e−tn
2

ε
s/T
j + e−sn2

fn(u
εj)ds

]

sinnx.
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Letting ε ↓ 0, we shall get

u(x, t) =
∞
∑

n=1

(

e−tn
2

un(0) +

∫ t

0

e−(t−s)n2

fn(u) ds

)

sinnx.

On the other hand, letting ε ↓ 0 in (6), we get u(x, T ) = ϕ(x). Hence u is the
solution of problem (1)–(3) as desired.

b) The exact solution u satisfies

u(x, t) =
∞
∑

n=1

(

e−(t−T )n2

ϕn −
∫ T

t

e−(t−s)n2

fn(u)(s) ds

)

sinnx (22)

u(x, T ) =
∞
∑

n=1

(

e−Tn
2

un(0) +

∫ T

0

e−(T−s)n2

fn(u)(s)ds

)

sinnx =
∞
∑

n=1

ϕn sinnx,

where we recall un(0) =
2
π
〈u(x, 0), sinnx〉 (see [5]). Hence

e−Tn
2

un(0) +

∫ T

0

e−(T−s)n2

fn(u)(s) ds = ϕn. (23)

From (7), (22) and (23), we get

|un(t)− uεn(t)| =
∣

∣

∣

∣

εe−tn
2

e−Tn
2(ε+ e−Tn2)

ϕn −
∫ T

t

ε
s
T e−tn

2

e−sn
2(ε

s
T + e−sn2)

fn(u)(s) ds

−
∫ T

t

e−tn
2

ε
s
T + e−sn2

(

fn(u)(s)− fn(u
ε)(s)

)

ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

εe−tn
2

ε+ e−Tn2
un(0) +

∫ T

0

εe−tn
2

e−sn
2(ε+ e−Tn2)

fn(u)(s) ds

−
∫ T

t

ε
s
T e−tn

2

e−sn
2(ε

s
T + e−sn2)

fn(u(s)ds

∣

∣

∣

∣

+

∫ T

t

e−tn
2

ε
s
T + e−sn2

∣

∣fn(u)(s)− fn(u
ε)(s)

∣

∣ds.

(24)

From (20), (21) and (24), we have

|un(t)− uεn(t)|

≤ ε · ε t
T
−1|un(0)|+

∫ T

0

ε · ε t
T
−1

∣

∣

∣

∣

fn(u)(s)

e−sn
2

∣

∣

∣

∣

ds+

∫ T

t

ε
s
T .ε

t
T
− s

T

∣

∣

∣

∣

fn(u)(s)

e−sn
2

∣

∣

∣

∣

ds

+

∫ T

t

ε
t
T
− s

T

∣

∣fn(u)(s)− fn(u
ε)(s)

∣

∣ds

≤ ε
t
T |un(0)|+ 2ε

t
T

∫ T

0

∣

∣

∣

∣

fn(u)(s)

e−sn
2

∣

∣

∣

∣

ds+ ε
t
T

∫ T

t

ε−
s
T

∣

∣fn(u)(s)− fn(u
ε)(s)

∣

∣ds.
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We have in view of the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2)

‖u(·, t)− uε(·, t)‖2 =
π

2

∞
∑

n=1

|un(t)− uεn(t)|2

≤ 3π
2

∞
∑

n=1

ε2
t
T |un(0)|2 + 6π

∞
∑

n=1

ε2
t
T

(
∫ T

0

∣

∣

∣

1

e−sn
2
fn(u)(s)

∣

∣

∣
ds

)2

+
3π

2

∞
∑

n=1

ε2
t
T

(
∫ T

t

ε−
s
T

∣

∣fn(u)(s)− fn(u
ε)(s)

∣

∣ds

)2

≤ 3ε2 t
T ‖u(0)‖2 + 6πTε2

t
T

∫ T

0

∞
∑

n=1

e2sn
2

f 2
n(u)(s) ds

+ 3(T − t)ε2
t
T

∫ T

t

ε−2 s
T ‖f(·, s, u(·, s))− f(·, s, uε(·, s))‖2ds

≤ ε2
t
T

(

3‖u(0)‖2 + 6πT

∫ T

0

∞
∑

n=1

e2sn
2

fn(u(s))
2ds

+ 3k2T

∫ T

t

ε−2 s
T ‖u(·, s)− uε(·, s)‖2ds

)

.

Hence

ε−2 t
T ‖u(·, t)− uε(·, t)‖2 ≤M + 3k2T

∫ T

t

ε−2 s
T ‖u(·, s)− uε(·, s)‖2ds ,

whereM = 3‖u(0)‖2+6πT
∫ T

0

∑∞
n=1 e

2sn2

f 2
n(u)(s)ds. Using Gronwall’s inequal-

ity, we get

ε−2 t
T ‖u(·, t)− uε(·, t)‖2 ≤Me3k2T (T−t).

This completes the proof of Theorem 3.2.

Remark 3.3.
1. From Part a), we conclude that if problem (1)−(3) does not have any

exact solution u ∈ W , then one has

lim
ε↓0
inf
{

max
0≤t≤T

‖uε(·, t)− ψ(·, t)‖
}

> 0

for every ψ ∈ C([0, T ];L2(0, π)).
2. If f(x, t, u) ≡ 0, we have the linear homogeneous problem, the error

estimate is as in [2].
3. From (23), one has

un(0) = ϕne
Tn2 −

∫ T

0

esn
2

fn(u)(s)ds .
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If
∑∞

n=1 ϕ
2
ne

2Tn2

< ∞, then
∑∞

n=1

( ∫ T

0
esn

2

fn(u)(s)ds
)2

< ∞. Hence the as-
sumptions of f in Theorem 3.2 are reasonable.

One has

Theorem 3.4. Let ϕ, f be as in Theorem 2.1 and let u ∈ W be a solution of
problem (1)−(3) such that ∂u

∂t
∈L2((0, T );L2(0, π)) and

∫ T

0

∑∞
n=1e

2sn2

f 2
n(u)(s)ds<

∞. Then for all ε > 0 there exists a tε such that

‖u(·, 0)− uε(·, tε)‖ ≤ 4
√
8C

4
√
T

(

ln

(

1

ε

))− 1

4

,

where

C = max

{

exp

(

3k2T 2

2

)(

3‖u0(·, 0)‖2+ 6πT

∫ T

0

∞
∑

n=1

e2sn
2

f 2
n(u)(s)ds

)
1

2

, N

}

(25)

and

N =

(
∫ T

0

∥

∥

∥

∥

∂u

∂t
(·, s)

∥

∥

∥

∥

2

ds

)
1

2

. (26)

Proof. We have u(x, t)− u(x, 0) =
∫ t

0
∂u
∂s
(x, s)ds. It follows that

‖u(·, 0)− u(·, t)‖2 ≤ t

t
∫

0

∥

∥

∥

∥

∂u

∂t
(·, s)

∥

∥

∥

∥

2

ds = N 2t.

Using Theorem 3.2 and (25)–(26), we have

‖u(·, 0)− uε(·, t)‖ ≤ ‖u(·, 0)− u(·, t)‖+ ‖u(·, t)− uε(·, t)‖ ≤ C(
√
t+ ε

t
T ).

For every ε, there exists tε such that
√
tε = ε

tε
T , i.e., ln tε

tε
= 2 ln ε

T
. Using inequality

ln t > −1
t
for every t > 0, we get

‖u(·, 0)− uε(·, tε)‖ ≤ 4
√
8C

4
√
T

(

ln

(

1

ε

))− 1

4

.

This completes the proof of Theorem 3.4.

Remark 3.5. Using the Galerkin method (see, e.g., [9]), we can show that the
assumption on ut holds if u(·, 0) ∈ H1

0 (0, π).

In the case of nonexact data, one has
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Theorem 3.6. Let ϕ, f be as in Theorem 2.1. Assume that the exact solution
u of (1)−(3) corresponding to ϕ satisfies

u ∈ W, ∂u

∂t
∈ L2((0, T );L2(0, π))

and
∫ T

0

∑∞
n=1 e

2sn2

f 2
n(u)(s)ds < ∞. Let ϕε ∈ L2(0, π) be a measured data such

that ‖ϕε − ϕ‖ ≤ ε. Then there exists a function uε satisfying

‖uε(·, t)− u(·, t)‖ ≤ (2 +
√
M) exp

(

3k2T (T − t)

2

)

ε
t
T , for every t ∈ (0, T )

‖uε(·, 0)− u(·, 0)‖ ≤ 4
√
8

4
√
T

(

ln

(

1

ε

))− 1

4
(

exp(k2T 2) + C
)

,

where M = 3‖u(·, 0)‖2 + 6πT
∫ T

0

∑∞
n=1 e

2sn2

f 2
n(u)(s)ds, and C is defined in

(25)–(26).

Proof. Let vε be the solution of problem (4)−(6) corresponding to ϕ and let wε

be the solution of problem (4)−(6) corresponding to ϕε, where ϕ, ϕε are in right
hand side of (6).

Using Theorem 3.4, there exists a tε such that
√
tε = ε

tε
T (27)

and

‖vε(·, tε)− v(·, 0)‖ ≤ 4
√
8C

4
√
T

(

ln

(

1

ε

))− 1

4

. (28)

Put

uε(·, t) =
{

wε(·, t), 0 < t < T

wε(·, tε), t = 0 .

Using Theorem 3.2 and Step 3 in Theorem 2.1, we get

‖uε(·, t)− u(·, t)‖ ≤ ‖wε(·, t)− vε(·, t)‖+ ‖vε(·, t)− u(·, t)‖

≤ (2 +
√
M) exp

(

3k2T (T − t)

2

)

ε
t
T ,

for every t ∈ (0, T ). From (27)–(28) and Step 3 in Theorem 2.1, we have
‖uε(·, 0)− u(·, 0)‖ ≤ ‖wε(·, tε)− vε(·, tε)‖+ ‖vε(·, tε)− u(·, 0)‖

≤ 2ε tε
T exp(k2T 2) +

4
√
8C

4
√
T

(

ln

(

1

ε

))− 1

4

≤ 4
√
8

4
√
T

(

ln

(

1

ε

))− 1

4
(

exp(k2T 2) + C
)

,

where C is defined in (25)–(26). This completes the proof of Theorem 3.6.
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4. A numerical experiment

We consider the equation

−uxx + ut = f(u) + g(x, t),

where g(x, t) = 2et sinx− e4t sin4 x, u(x, 1) = ϕ0(x) ≡ e sinx and

f(u) =



















u4, u ∈ [−e10, e10]

− e30

e−1
u+ e41

e−1
, u ∈ (e10, e11]

e30

e−1
u+ e41

e−1
, u ∈ (−e11,−e10]

0, |u| > e11 .

The exact solution of the equation is u(x, t) = et sinx. Especially, u
(

x, 99
100

)

≡
u(x) = exp

(

99
100

)

sinx. Let ϕε(x) ≡ ϕ(x) = (ε+ 1)e sin x. We have

‖ϕε − ϕ‖2 =

(
∫ π

0

ε2e2 sin2 x dx

)
1

2

= εe
(π

2

)
1

2

.

We find the regularized solution uε
(

x, 99
100

)

≡ uε(x) having the following
form:

uε(x) = vm(x) = w1,m sinx+ w2,m sin 2x+ w3,m sin 3x ,

where v1(x) = (ε+ 1)e sinx,w1,1 = (ε+ 1)e, w2,1 = 0, w3,1 = 0 and







wi,m+1 =
e−tm+1i

2

ε+e−tmi2
wi,m − 2

π

∫ tm
tm+1

e−tm+1i
2

ε
s

tm +e−si2

(∫ π

0
(v4

m(x) + g(x, s)) sin ix dx
)

ds

tm = 1− am, a = 1
40000

, m = 1, 2, . . . , 4000, i = 1, 2, 3.

Put aε = ‖uε−u‖ the error between the regularization solution uε and the exact
solution u. Letting ε = ε1 = 10

−5, ε = ε2 = 10
−7, ε = ε3 = 10

−11, numerical
results are given as follows.

ε uε aε

ε1 = 10
−5 2.430605996 sin x− 0.000171846090 sin 3x 0.32664942510

ε2 = 10
−7 2.646937077 sin x− 0.002178680692 sin 3x 0.05558566020

ε3 = 10
−11 2.649052245 sin x− 0.004495263004 sin 3x 0.05316693437
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Paris: Dunod 1967.

[8] Lees, M. and Protter, M. H., Unique continuation for parabolic differential
equations and inequalities. Duke Math. J. 28 (1961), 369 – 382.
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