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Abstract. Induced conditional expectations of finite index on crossed product C*algebras 
are considered which are non-algebraically of finite index. The characteristics of actions of 
(amenable) topological groups on compact Hausdorif spaces X are investigated, ensuring the 
appearance of a well-defined induced conditional expectation on the corresponding commuta-
tive C*a1gebra C(X) and its property to be of finite index. For this purpose Hilbert C* module 
and topological techniques are used. Special emphasis is placed on discrete group actions. 
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In the light of recent results by E. Kirchberg and the first author [6] we generalize 
some interesting results of Mahmood Khoshkam [10] concerning special conditional ex-
pectations on crossed product C*algebras which are of finite index in the sense of 
Y. Watatani's algebraic definition [20] to the broader setting of similar conditional ex-
pectations E on them which are of finite index in the sense of M. Baillet, Y. Denizeau 
and J.-F. Havet [3], i.e. those for which there exists a finite real number K > 1 so that 
the mapping (K . E - id) is positive. 

Subsequently we consider actions of amenable infinite discrete or topological groups 
on locally compact Hausdorif spaces which give rise to conditional expectations of finite 
index. In these cases the action of an amenable topological group G can always be 
replaced by a suitable action of the completely disconnected group arising as the factor 
group of G by its connected component of the identity. The influence of the maximal 
length of orbit in X under the group action on the characteristic constant K(EG) of 
the derived conditional expectation of finite index on Co(X) is described. 

In addition we analyze the constructions of conditional expectations of finite index 
on commutative C*algcbras C(X) given by Y. Watatani [3: Propositions 2.8.1 and 
2.8.21, which arise from actions of finite groups on compact Hausdorif spaces X. Special 
attention is paid to the close interrelation between non-maximal orbits in X under 
the group action and of the non-algebraic character of the corresponding conditional 
expectation of finite index. For these investigations we use group action and Hubert 
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C*module techniques. Examples are used to illustrate the phenomena appearing for 
discrete group actions. 

We make use of some basic notions and results from the theory of Hilbert C"-
modules during our considerations to streamline the explanations. For an introduction 
to this theory we refer the reader to the papers by W. L. Paschke [12] and M. A. Rieffel 
[17]. 

1. On liftings of conditional expectations of finite index 
to crossed products 

Throughout the present section we only deal with discrete groups C. If a group G acts 
on a C*algebra. A as a group of *-automorphisms, we denote the full and the reduced 
crossed product C*algebras by A >i G and A x r C respectively (cf. ([4, 14, 19]). We 
consider conditional expectations E A —* B ç A on C*algebras A, i.e. projections of 
norm one with range C*suhalgebra B c A (see [14, 19] for detailed results). The C* 
algebra A can always be assumed to be unital without loss of generality since E can be 
continued to a normal conditional expectation E** on the bidual W*algebra A* of A 
with range C*algebra E**(A**) c A" which is "-isomorphic to the bidual W*:algebra 
B of B, whereby the reduction of E to the canonical embedding A - A" recovers 
E. A conditional expectation E is said to be faithful if E(x*x) = 0 implies x = 0 for 
x E A. In this case both A and E(A) = B share a common identity. To consider both 
conditional expectations E: A — B ç A and actions a of groups G on the C*algebras 
involved, we suppose that the group action ce of G by *-automorphisms on A commutes 
with the conditional expectation E. 

We shall investigate conditional expectations of finite index both in the sense of 
Y. Watatani [20] and in the sense of M. Baillet, Y. Denizeau and J.-F. Havet [3]. If we 
consider W*factors and normal conditional expectations on them with factor image W* 
algebra, both notions reduce to the classical index notion of V. Jones, M. Pimsner. and 
S. Popa [3, 9, 15]. A conditional expectation E: A — B c A is said to be algebraically of 
finite index if there exist elements {u i , ...,u} C A, a quasi-basis, such that the equality 
X 

= En u 1 E(ux) is valid for every x E A. In this case the index is defined by 
Ind(E) = which is a positive invertible element in the center of A such that 
Ind(E) 1A, and it does not depend on the choice of the quasi-basis {u i , ..., u,} inside 
A and in particular not on the number of itselements [20]. From another point of.view 
the existence of a finite quasi-basis for some conditional expectation E : A —* B ç A 
is equivalent to the algebraic statement that A is a finitely generated projective (or, 
equivalently, Hilbert) B-module. 

There is another interesting class of conditional expectations E : A — B ç A 
— those for which there exists a finite real number K > 1 such that the mapping 
(K . E — idA ) is a positive map on A. They have the following remarkable property: 

Proposition 1.1. Let A be a C*algebra and E : A —+ B c A be a conditional 
expectation with fixed point set B. There then exists a finite real number K > 1 such 
that the mapping (K . E — idA ) is positive if and only if E is faithful and the (right) 
pre-Hilbert B-module {A, E(( . ; )A)} is complete with respect to the norm II E((, )A)II 
(where (a,b)A =ab for a,bEA).
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Proof. If A is complete with respect to the norm II E((, )A)ll, then by the general 
theory of Banach spaces there exists a number K such that K II E (xx )il 2 ll xx iI holds 
for every x E A. Set x - a(& + E(aa))4 for a E A and e > 0, and observe that 

(c + E(a*a))_4 . E(aa) . ( e + E(a*a))_4	1. 

The inequality
K 'A 2 (c + E(a*a))	. a m a . (E + E(aa)) 

holds. Multiplying by (E + E(aa)) from both sides we arrive at K (E + E(aa)) 2 a*a 
for every a E A and c > 0. This yields the other statement. The converse is obvious by 
spectral theory and by the inequality 11E(x)11	11x11 which is valid for every x E A U 

The difference between the two types of conditional expectations of being of finite 
index arises in the way the Hilbert B-module {A,E((,.)A)} is generated, finitely or 
infinitely . (see [6], [20: Propositions 2.8.1 and 2.8.2], and Section 3). The results of 
collaboration between E. Kirchberg and the first author [6) showed that conditional 
expectations E : A -+ B c A of finite index have been identified with those satisfying 
the following equivalent conditions: for a conditional expectation E on a (unital) C-
algebra A there exists a real number K 2 1 such that the mapping (K . E - idA ) is 
positive if and only if there exists a real number L 2 1 such that the mapping (L . E—idA) 
is completely positive, if and only if E is faithful and A is complete with respect to the 
norm li E((,)A)ll (where (a,a)A = a*a for a E A). Setting 

K(E) = inf {K : (K . E - id A ) is positive on 

and
L(E) = inf {L: (L . E - id A ) is completely positive on A} 

the estimate K(E) < L(E) K(E) . [K(E)] can be shown, where [.) denotes the 
entire part of a real number. Moreover, in addition to the properties of this class of 
conditional expectations obtained in [1], normal conditional expectations of finite index 
on W*algebras commute with the (abstract) projections of W*algebras to their finite, 
infinite, discrete and continuous type I, type Iii, type II and type III parts, i.e. they 
respect and preserve these W t-decompositions in full. Additionally, the index value and 
the Jones' tower always exist in this case. In the general C*case the index value of E 
can only be obtained as an element of the center of the bidual W*algebra A** of A 
extending E to its canonical normal conditional expectation E : A*	B** c A 
(see [4, 191 and Section 3). However, if the index value belongs to the image C*algebra 
B, the Jones' tower can be shown to exist. 

These observations of [6] extend and augment the results of M. Pimsner, S. Popa 
[15], M. Baillet, Y. Denizeau and J.-F. Havet [3], Y. Watatani [20], P. Jolissaint [8], 
E. Andruchow and D. Stojanoff[1, 2] and others, closing the gap of knowledge separating 
Proposition 3.3 and Theorem 3.5 of [3]. There are examples of conditional expectations 
of finite index which are not of the purely algebraic type investigated by Y. Watatani 
(cf. [20: Proposition 2.8.2] and Section 3). A large class of these examples is closely
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related to group actions on compact Hausdorif spaces and the related C*algebras , as 
well as to crossed products. 

In the special situation of a conditional expectation E : A -+ B C A and a dis-
crete group C acting on A, where the action a of G and the mapping E are supposed 
to commute, M. Khoshkam showed that there exist canonically induced conditional 
expectations E from A x G to B m C ç A x G, respectively Er from A x, G to 
B > r G ç A x r G [10: Remark 2.6]. They arise from the projection of 1 1 (G, A) onto 
1'(G, B) defined by f—i Eof. 

Now we extend the result of M. Khoshkam [10: Theorem 2.8] that the additional 
property of one of the three interrelated conditional expectations E, Er and E of being 
algebraically of finite index implies the same property for the other two mappings. We 
would like to consider the more general case of conditional expectations of finite index 
(cf. [3]) possessing a finite real number K > 1 such that the mapping (K . E - id) is 
positive. 

Proposition 1.2. Let E : A -+ B ç A be a conditional expectation of finite index 
with characteristic number K(E). Then E is of finite index if and only if Er is of finite 
index, if and only if E is of finite index. The equality K(Er) = K(E) = K(E) holds 
for their characteristic numbers. In particular, E is faithful in this case. 

If, moreover, either E, Er or E is algebraically of finite index in the sense of 
Y. Watatani [20], then both the other conditional expectations possess the same property. 

Proof. If E is faithful, then Er is faithful too (and vice versa), since the conditional 
expectations E0 : A x r G -+ A and E : B >i r G - B given by the evaluation at the 
identity of G are faithful and the equality E o Er = E o E0 holds. Because of the norm-
density of A in the pre-Hilbert B-module {A, E((cdot, .))} the action of C extends to its 
norm-completion EE for every faithful conditional expectation E. Similarly, EE 3 r G 
can be formed. By [10: Propposition 2.7] both the Hilbert B M r C-modules Ep and 
EE M r C are isometrically isomorphic. 

Furthermore, suppose E is of finite index in the sense of [3]. By Proposition 1.1-the 
Hilbert B-module EE coincides with A. Consequently, the Hilbert B M r C-module Ep 
coincides with A >i r G, and Proposition 1.1 shows again the existence of a finite real 
number K(Er) > 1 such that the mapping (K(Er) Er - idA G) is positive, i.e. Er 
is of finite index. The conclusions work equally well in the converse direction. 

If E is of finite index, it obviously has to be faithful. Hence [20: Proposition 2.71 and 
the assertions above apply again, and E turns out to be of finite index, too. Conversely, 
suppose E to be of finite index. This means the validity of the inequality 

K(E) . E(a*a) > a*a 

for every a E A. Denoting by Ag,a e 1'(G, A) the element giving a E A at g E G and 
zero elsewhere, we obtain 

	

E ((EA9C) *	 E (EAgi,o * A;. a.) (e) = 1:E(aja) 

=E(aia) ^K(E).>aia >0,
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which implies the faithfulness of E on l'(G, A) since the inequality above is preserved 
for all elements of 1 1 (G,A) by continuity. Consequently, E is faithful on A N G. To 
finish, we apply again Proposition 1.1 and the assertions above to E, which proves E 
to be of finite index. 

The remaining part of the proof is concerned with the estimates of the characteristic 
numbers K(E) for the three conditional expectations E, Er' and E which are now known 
to be of finite index (and hence, faithful) if and only if one of them is. Again, let E0, 
E be those conditional expectations E0 A > G - A, E : B (r) G - B which 
arise as evaluation at the identity of C. Since both E and E are already shown to be 
faithful in the case that E is of finite index the equality 

EOE(r)EOEO	 (1) 

is valid. Note that E0 and E are faithful by [5], and that the restriction of E0 to 
B ( r) G yields E. By (1) we obtain the identity 

E 0 (K(E) E r - id )I(r)G) (K(E) . E - idA ) o 

valid on A >	G. Suppose E is of finite index with characteristic number K(E) > 1.
(K(E) = 1 implies E = id A .) By assumption 

((K(E) E - id A ) o Eo)(a) = (E 0 (K(E) E r - idA )O(r)G))(a) >0 

for every a E (A >	G). Since E is faithful and has a special mapping rule, the 
value (K(E)	- idA () G)(a) belongs to (A	G) for every a E (A >	G). 
This implies K(E( r) )	K(E). Conversely, suppose E( r) to be of finite index with
characteristic number K(E(r) ) > 1. Then 

(E 0 (K(E) E r - idA )(,)G)big)(a) = ((K(E) E - idA ) o Eo)(a) ^: 0 

for every a E (A >a ( ,) G) + . Since E0 is a faithful positive mapping, we derive the 
positivity of the element (K(E(r) ) E - idA )i () G)( a) for every a e (A x ( r) G), and 
K(E() ) ^ K(E). This proves the equality K(Er) = K(E) = K(E) 

The following assertion extends another result of M. Khoshkarn about conditional 
expectations which are algebraically of finite index to the case of those of finite index 
(cf. [10: Proposition 3.5]). 

Proposition 1.3. Let A 2 B 2 C be C*.algebras with the same unit. Suppose the 
maps E: A - B C A and F: B -i C c B are faithful conditional expectations relating 
these three C*algebras. Then F o E A - C c A has finite index if and only if E and 
F both have finite indices. Moreover, the inequality K(F o E) < K(F) . K(E) is valid. 
Finally, the composition F o E is algebraically of finite index if and only both F and E 
are so. 

Proof. Suppose E and F to be of finite index in the sense of [6], i.e. there exists 
real-numbers

K(E) = inf {K : (K . E - idA ) is positive on A} > 1,
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and
K(F) = inf {K : (K . F - id B ) is positive on B} > 1. 

Since K(E) = 1 implies E = idA we may assume K(E)> 1 without loss of generality. 
Because the inequality K(F) . F> idB is valid by assumption, we conclude that 

(K(F) . K(E) F o E - idA ) > K(E) . E - idA > 0,	 (2) 
which implies F o E to be of finite index 

Conversely, let F o E be of finite index. Then there exists a finite real number 
K(F o E) such that the map (K(F o E) . F o E - idA big) is positive. Applying the 
positive map E from the left we obtain 

0 Eo(K(F0E) . F0E—idA ) =(K(F0E).F—idB)oE, 
which implies the positivity of the map (K(F o E) . F - id8 ) for the finite real number 
K(F o E), and hence proves F of being of finite index. 

Furthermore, assume that E is not of finite index. Equivalently, there exists a se-
quence ja i }jEN C A such that the sequence {IIE(aI)II}IEN is bounded, but the sequence 
{II a II}EN is not. Then the sequence {II F ( E ( ai))II}$EN is bounded since F was shown 
to be of finite index. However, F(E(a)) = (F o E)(a 1 ), and F o E was supposed to 
be of finite index, too. Consequently, the sequence {IIaII}tEN has to be bounded. in 
contravention to its choice. The only way out is the assumption of the existence of a 
finite real number K(E) such that the inequality K(E). II E(a)II ^! h a il holds for every 
a E A. This condition is equivalent to the property of E being of finite index. 

For the special case of E and F or F o E being algebraically of finite index we refer 
to M. Khoshkam's result. The inequality K(F o E) K(F) . K(E) can be derived from 
(2) above. An example below shows that equality does in general not hold U 

Example 1.4. Consider the faithful conditional expectations of finite index 

E:M2(C)—+C2, E: (a b) 
_ 

(0a 
0) 

F:C2 _i C , F:(	)_+±.(	). 
The corresponding characteristic numbers are K(E) = K(F) = K(F o E) = 2, and, 
therefore, K(F o E) < K(F) . K(E). 

For a discrete group C and a subgroup H c G we can define conditional expectations 
EH from A A C onto A > H, respectively E,') from A ,. G onto A A r H, induced 
by the canonical projection of 1'(G, A) onto 1'(H, A) (see [10] for explanations). By 
[10: Theorem 3.4] the conditional expectations EH and E H have finite index if and 
only if [G: H] < oo, and Ind(E( ) ) = [C : H) in this case. Applying Proposition 1.3 to 
the conditional expectation E( ) 0 Er : A (r) G + B A (y) H we can formulate the 
following result (cf. [10: Theorem 3.6] for the algebraic case): 

Corollary 1.5. In the situation described the conditional expectation E ) o E(r) 
of finite index if and only if E is of finite index and [G : H] < oo. It is algebraically 
of finite index if and only if E is algebraically of finite index and [C : H) < oc. In the 
latter case the indices can be counted andInd(E(r) )) =. [C : H] . Ind(E).
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2. Conditional expectations arising from topological 
group actions 

For a locally compact Hausdorif space X and a continuous action of a topological group 
C on X we denote the C*subalgebra of C-invariant continuous functions on X vanishing 
at infinity by C(X) and the stabilizer subgroup of x E X by G = {g E G : gz = x}. 
We want to consider situations for which the group action of C on X gives rise to a 
well-defined conditional expectation EG on the corresponding C*algebra C0 (X). For 
this purpose we need the following definitions: 

Definition 2.1. We say that an action of a topological group G on a locally com-
pact Hausdorif space X is uniformly continuous if for every point x E X and every 
neighbourhood U of x there exists a neighbourhood V of x such that g(V) ç U for 
every gEG.	 - 

Example 2.2. Let the space X C JR2 be defined in polar coordinates (r, q) by

={(!,i) :nmEN}u{(_O) :nEN}u{(OO)} 

As X is a closed bounded subset in R  it is a compact normal space. For the sake of 
convinience we denote its components by 

Xm = { (, ) 
-n-EN U {(O,O)} (MEN) 

n Tn 

Xo={(-O):nEN}U{(OO)}	X=UXm. 

Let G c °Z 2 be the group of sequences g (9', . . . ) g,, ... ) with entries equal to zero 
or one, where only a finite number of elements differs from zero. By 9(k) we denote the 
sequence with the unique non-zero element on the k-th place. Define an action of C on 
X by the following rules: 

(i) If X E Xm and m k, then g(k)X = 

(ii) If x E Xk, x = (, fl and n 1, n k, then again g(k)x = 

(iii) 9(k) transposes the points (1, fl and (, fl. 
Under the action of G, the orbit of every point of X \ Xo consists of exactly two points, 
and the points of X 0 are fixed. Although the described action is continuous (when G 
is considered as a discrete group), this action does not satisfy the condition of uniform 
continuity as every neighbourhood of the origin contains points which are moved by 
some element of C to points located at a distance from the origin equal to one. 

Note that a continuous action of a compact group is always uniformly continuous. 

Definition 2.3. An action of an amenable topological group Con a locally compact 
Hausdorff space X generates a conditional expectation E,0 m on Co(X) if the formula 

EG,am(f)( X ) rnc(f(g'x))	 (3)
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defines a continuous function for any f E Co(X) and for some fixed (left) invariant 
mean MG on C. 

Examples 2.4. Let the discrete group Z act on the manifold S' by an irrational 
rotation. Then every orbit of a point x E S' consists of infinitely many points, and the 
conditional expectation EZ is well-defined by the integral formula. The positive linear 
functional EZ turns out to be the standard integral of continuous functions over S1. 

Consider the discrete group Z acting on itself in the natural way. The related 
conditional expectation EG,am coincides with the invariant mean mz selected. 

The mapping EG,am derived from the group action in Example 2.2 by (3) is discon-
tinuous at (0,0) what shows the need of the additional assumption of uniform continuity 
to the action of G on X. 

In addition to the proof of well-definedness of this type of conditional expectations, 
we want to obtain some sufficient conditions for them to be of finite index in the sense 
of [3, 6]. 

Lemma 2.5. Let G be an (amenable) topological group acting on a locally compact 
Hausdorff space X. Suppose that the orbit Cx consists of a finite number of points for 
every x E X. Then the connected component H of the identity of G acts trivially on 
i.e. it belongs to the stabilizer C of x E X. 

Proof. A finite subset of a Hausdorif space X consisting of more than one point is 
not connected. Consider the mapping H -+ H/HZ - Hx, h hH hx where H is 
the stabilizer of x under the action of H. The first mapping in this combination is an 
epimorphism, the second one is a homeomorphism. Thus Hz is connected and hence 
coincides with {x} I 

Lemma 2.6. Let G be an amenable topological group which acts on a locally com-
pact normal space Xin such a way that it generates a conditional expectation EG,am 
on Co(X) (cf. (3)). Suppose for some x E X there exists an orbit Cx consisting of 
an infinite number of points, and the corresponding mean on Cx is normal, namely for 
every E > 0 there exists a positive function f with f(x) = 1 and mG(f) < E. Then the 
characteristic number K(E ,om ) of the conditional expectation EG,am is infinite. 

Proof. The mentioned functions exist by [18: Theorem V.17.4], and they satisfy 
the inequality 1 = 1(x) K(EG,am) . EG,am(f)(x) < K(E ,cm). Hence the claim is 
obvious since e > 0 was arbitrarily chosen I 

Note that the conditions of Lemma 2.6 are satisfied for Example 2.4. 

Theorem 2.7. Let C be an amenable topological group which acts on the locally 
compact normal space X in such a way that a conditional expectation EG,am is generated 
on C0 (X) for a certain (left) invariant mean MG on C. Suppose that the corresponding 
mean on Cx is normal there for every x E X. Then there are exactly two cases: 

(i) For the connected component of the identity H of C the action of C factorizes 
into the composition

CxX —+ G/HxX 
/ 

X
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The action of G on X can alternatively be described by the action of the completely 
disconnected group G/H. In this case the characteristic value K(E G,am ) can in general 
be finite. 

(ii) In all other cases only infinite values K(E 6m ) appear. 

Proof. First of all, H is a normal subgroup of G by [17: p. 1281. If there is an 
infinite orbit, then by Lemma 2.6 we obtain the second situation; otherwise we have the 
first case by Lemma 2.51 

The consequence of Theorem 2.7 is that the consideration of conditional expecta-
tions of finite index arising from the actions of amenable topological groups on locally 
compact normal spaces X leads to the investigation of actions of amenable completely 
disconnected groups on these spaces. We may restrict to the latter kind of actions to 
look for results. Note that the factor group G/H of a locally compact group by its con-
nected component of the identity H is not necessarily discrete (however, this is true for 
Lie groups). For example, any infinite product of finite groups is a non-discrete group 
with trivial connected component. We will, nevertheless, concentrate on the case of 
finite and discrete group actions during our further considerations. The most promising 
situation is characterized by the existence of an upper bound for the number of points 
in any orbit. 

Theorem 2.8. Let X be a locally compact Hausdorff space equipped with an action 
of a finite group C. Then for the conditional expectation EG,am we have the estimate 

K(EG,am ) Ic := max #(Gx). 
rEX 

If X is a normal space, then we have the equality K(E G,am ) = Ic. 

Proof: Let x E X be an arbitrary element and k = #Gx. Then 

k . E ,am(f)x = kf(g1x) 
IGI 1: -	gEG 

=k1-	>	Gl.f(gx) 
[g]EG/G 

k
f(g'x) 

kx (g]EG/G 
> f  

Suppose that K(E,am) < k and X is normal. Take an element x E X realizing 
k > K(EG,atn). Then there exists a neighbourhood U of x such that (gU1 ) fl U = 0 
for some element g E C with gx 0 x. Since X is supposed to be normal there exists a 
continuous non-negative function f with support inside LT (cf. [18: Theorem V.17.41.
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Then
K(EG,am) EGam(f) X = K(EG,am )	f(gx) 

gEG 

= K(EGam)	>	IG z I f(gx)
IGI [g]EG/G 

< k—	f(gx)
[gJEG/G, 

=f(x). 

This contradicts the definition of the characteristic number K(EG,am), and completes 
the proof I 

Lemma 2.9. Suppose a discrete amenable group C acts in a uniformly continuous 
manner on a locally compact Hausdorff space X in such a way that each orbit has length 
#Gx with #Gx k for some fixed. k E N. Then EG,am $3 well-defined. 

Proof. Let H C G be a subgroup of finite index and let T be a transversal of H, 
i.e. a choice of representatives in cosets. We have the equality 

mG (f(gx)) = m (9.ET f(hgax)xgn 

= i: f(gax).mG(xg,H) 
g.,ET 
C.	f(gx). 

g ET 

Set I = 1. Then for every x € X the equality 1 = MG( 1 ) = c #(G/H) holds, which 
implies c = #(G/H)-1 and 

mG (f(gx)) =	
1 

#(G/HY > f(gx). 
gET 

Now, fix e > 0 and x E X. Choose y so close to x such that the estimate If(gx)—f(gy) < 
E holds for every g E C. Because of the uniform continuity of the action of C on X this 
choice is possible, since we can take y from such a small neighbourhood U of x that the 
variation off is less than e on g i V = V, 92 V, ..., gmV for { g i = e,g2,. . . ,g,,} = T and 
GV c U. In this situation every g € C can be decomposed as g = g 1 h for some h € H, 
and gy E g1V. 

Consequently, the subgroup D = C1 fl C, has finite index and the set of cosets 
C/D coincides with the set of pairwise intersections gG1 fl hG,. Moreover, the index 
of D in G is not greater than the product of the indices of G. and C (cf. [12: p. 62]). 
The functions (g) = f(gx) and (g) = f(gy) are constant on D, and so we obtain the 
equalities

EG,am(f)(X) = 4UG/D	
f(gax), 

'	gET
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and, analogously,

E,am(f)(y) =	
I	

> f(gay) 
#(G/D) 9. ET 

for the selected elements x, y e X. Hence 

	

IE am (f)(x) - Eam(f)(y)I	
1 

#(G/D) . #(GID) C = C 

and the lemma is proved U 

Definition 2.10. Suppose an arbitrary topological group G acts in a uniformly 
continuous manner on a locally compact Hausdorff space X in such a way that each 
orbit has length #Gx with #Gx k for some fixed k E N. As in Lemma 2.9 we define 
a conditional expectation E : Co(X) - E(Co(X)) c Co(X) by 

1 
EG(f)(x ) =

#(G/G) 
f(g0x),(xEX). 

g . ET 

Precisely the same argument as in Lemma 2.9 applies to prove the following statement. 

Lemma 2.11. Suppose a discrete group G acts in a uniformly continuous manner 
on a locally compact Hausdorff space X in such a way that each orbit has length #Gx < k 
for some fixed k E N. Then EG is well-defined. 

Theorem 2.12. Suppose a discrete group G acts on a locally compact Hausdorff 
space X in such a way that k := max {#( Gx ) : x E X} <+oo. If X is a normal space, 
then K(EG) = k. 

Proof. Let x e X be an arbitrary element and k = # Gx. Then 

k Ec(f)( x ) =	f(gax) f(x). 
X 9. ET 

Assume K(E) < k for a normal space X. Choose a point x E X with k > K(EG). 
Then we can obtain a neighbourhood U of x such that gU1 fl g,U = 0 for i	j 
and { g i = 1,g2 ,. .. ,g,-,,}	T1 . For a continuous non-negative function f with support
inside U. (cf. [18: Theorem V.17.41 for the existence) we have the inequality 

K(E) . Ea(f)(x) = K(EG )	f(gax) <1(x). 
9. ET 

This contradicts the definition of K(EG ), and completes the proof U
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3. Conditional expectations arising from discrete 
group actions 

At this point we shall investigate conditional expectations of finite index arising from 
several discrete group actions on compact Hausdorif spaces. The investigations are 
inspired by the results of Y. Watatani [20: Propositions 2.8.1 and 2.8.2] on actions of 
finite groups G on compact Hausdorif spaces X giving rise to conditional expectations 
of finite index E on C(X), 

	

EG(f)(x ) = 1-	f(gx)	(x E X), 
IC' gEG 

which are sometimes non-algebraically of finite index. We would like to give a more 
detailed analysis of actions of amenable discrete groups G on compact Hausdorif spaces 
X for which the orbit of every x E X is finite. For the definition of a corresponding 
conditional expectation EG on the C*algebra C(X) we refer to Lemma 2.10 and 2.12. 
The goal is to give a more detailed analysis of the phenomena appearing from the view 
point of Hilbert C*module theory adapting techniques from [20]. 

First we want to give two examples of conditional expectations of finite index which 
are not algebraically of finite index in the sense of Y. Watatani's definition. They are 
derived from [20: Propositions 2.8.1 and 2.8.2] as special cases giving new arguments 
for proving their non-triviality. 

Example 3.1. Let X be the compact Hausdorif subspace X = It. e20t) : k = 
1, ..., n, t E [0, 1]} of C which can be considered as a starlike arrangement of n copies 
of the unit interval with zero as the common element. Let A be the C*-algebra C(X) 
of all continuous functions on X. Consider the normal conditional expectation E on A 
defined by taking the mean with respect to the cyclic group action 

f(x)+...+f(x) E(f)(x i ) = ... = E(f)(x) =	 (x i E [0, i], i = 1,..., n). n 

The image C*algebra B can be identified with the subset of functions of A 

{fE A: f(x i) = ... = f(x ) for x 1 E [0 , 1 J i ( i=1,...,n)} 

inheriting the C*structure from A. Note that {A, E((., .)A)} is not a self-dual Hilbert 
B-module since the bounded B-linear mapping 

E(ff)(x i )= ... =E(ff)(x)=
72 

defined for I E A with xi E (0, 1] i (i = 1,... ,n) and 

	

(1	if x 1 E (0,1] 
A 	—1 if x 2 E (0, 112 

	

'. 0	elsewhere
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maps A into B, but fo does not belong to A. Consequently, the Hubert B-module 
{A, E((., .)A)} cannot be finitely generated and projective, and E is not of finite index 
in the sense of Y. Watatani's algebraic definition. Nevertheless, E has a very good 
property: the mapping (n . E - idM) is obviously completely positive. Besides this, 
a careful analysis performed below yields the B-reflexivity of the Hilbert B-module 
{A, E(( . , ))}. The characteristic number of E is K(E) = n. 

Now let us consider the index value. For this we extend E to its canonical normal 
conditional expectation E" : A** -* B" c A" (see [4, 18]) and count the index 
of the extended conditional expectation E as an element of the center of A". The 
corresponding constants 

K(E") = K(E) = inf {K: (K . E - id A ) is positive on A} 

and
L(E') = L(E) = inf {L : (L . E - id A ) is completely positive on A} 

are preserved by inonotonicity [14]. 
The discrete part of the bidual linear space and W*algebra A" of A is isomorphic 

to 1(X) by the Gel'fand theorem. The formula defining E is the same as for E. The 
index can be algebraically counted. The resulting value is 

Ind(E) = lfld(E")discr = { 2 if x, 
54 0 (i = 1,..., n) 

1 ifx=0 

and Ind(E) A '- A scr Note that the index value Ind(E) E A 3 cr gives rise to a 
positive mapping (Ind(E) . E** - id A . ) on ASCT. 

Since A" is commutative (hence, type I) let us look at the non-discrete part of it. 
By the decomposition theory of commutative W*algebras it is a direct sum of W* 
algebras L00 ([0, 1], A), where A denotes the Lebesgue measure, (cf. 1181). Consider the 
canonical embedding A = C(X) C L°°(X, A)	L°°([0, 11, A). Again, the index 
of E" reduced to L(X, A) can be found; it equals the function f(x)	2, which is
different from the value obtained for the discrete part of Ind(E"). 

Example 3.2. Consider two copies of the usually topologized interval [-1, 11 and 
denote their disjoint union by X. Let the cyclic group G = 7L 4 act on X in such a way 
that the elements of X [-1, 11 U —1, 112 are mapped by the rule 

x  [—1,1] - —x E [-1,1j 2	and	x E [-1,112 -* x  [-1,1I1. 

The orbits of all points x E X \ 10 e [-1,11,0 E [-1,112) have length 4, the two 
exceptional points have an orbit of length 2. Now, switch back to the derived action 
of G on the corresponding unital C*algebra A = C(X) and consider the canonically 
defined conditional expectation 

E(f)(x) = (f (ex) + f(gx) + f(g2 x) + f(g3x))
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(where g E 7Z4 is a generator) which possesses the characteristic constant K(E) 4. 
If we consider a bounded B-linear functional on the Hubert B-module {A, E((., .))} 
defined by the rule E(ff) for f E A and 

(1	if X 	[-1,0) 

	

fi (x) =	—1 if x E (0, 1) 
10	if elsewhere 

we obtain the non-self-duality of {A, E((., ))} as Hilbert B-module again. Therefore, E 
cannot be algebraically of finite index, despite the non-existence of fixed points under 
the action of G on X. 

Two other examples show that actions of infinite amenable discrete groups can yield 
non-trivial conditional expectations of finite index, as well as mappings EG with images 
outside the C*algebra C(X). In other words, we must always keep in mind the elements 
of the construction. Very often we can adapt examples with locally compact spaces X 
to the compact situation switching to its one-point-compactification cxX. However, 
additional fixed points of the action of G can appear during this process. 

Example 3.3. Let G =	1 (Z 2 ), an infinite discrete group. Let g, be the gene- 
rator of the i-th copy of Z 2 . Let Y : n EN) U {0} and X := Y x I, where 
I = [0, 11. If the canonical pointwise identification maps a of {..} x land {} x I are 
used, we can define the action of G on X by 

{a(x) ifxE{LT}xI 
g2(x) 

=	 21-1W if xE{	x i 2* J 

X	 elsewhere. 

Then the cardinality of any orbit is less or equal to 2; however, the action of G does 
not factorize through any action of any compact or finite group. Now, define a natural 
conditional expectation E on A = C0 (X) by the formula 

	

E(f)(x) = urn -f--	f(gx) 
n—oo 2" gE®'...., (Z2), 

= urn - 2 1	(ni)(	f(9x))	(x E X) 
n—.cc

9Ez2 

- f(eox)+f(gox) 

We obtain a natural conditional expectation of finite index with structural constant 
K(E) = 2, which is algebraically of finite index, too. The intrinsic point is that E can 
be alternatively induced by an action of the group Z 2 on X, which is different from the 
group action we started with, despite the fact that the original group action cannot be 
replaced by any finite group action.
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Example 3.4. Let C = 7L act on X = R as shifts. Let f : R -* C be the following 
positive continuous even function: 

1	ifxE[n+-r,n+l-4T](n^O) 
f(x)= 0	ifx=n (n>0) 

linear if x in remaining intervals. 

Then E(f)(0 + i) = 0 for any i E Z. For x V 7L there exists a number Jo E N such that 
f(x +j) = 1 for  with Iii >j0 . Hence 

	

E(f)(x) = o 2n± 1	
f(x + i) 

k0 

	

1	
f(x+i)	

1 
= lim	 + urn	 f(x+i) 

	

n—.002n+1	 n—oo2n+1
ko<IjI<n 

=0+ urn 
2(n—ko)1 
2n+1 - 

Summing up we obtain

E(f)(x)={1 

if  
0 ifxEZ 

which is a discontinuous function. 
The following example describes an action of an amenable group C on a (locally) 

compact Hausdorif space X, which induces a non-trivial (i.e. non-state) conditional 
expectation E on the C*algebra C 0 (X) which cannot be induced by an action of a 
finite group on X 

Example 3.5. Let G = 1Zk, a separable discrete group. Denote by g,, the 
generator of the k-th summand ?Lk C G. Let X be the infinite disjoint union (summing 
over k e N) of disjoint unions of k copies of the interval 'k = [0, l] respectively. If 
a',(k) denotes the pointwise identification function of the intervals I and I at the kth 
position, then we describe the action of G on X by the formula 

gk(x) = f	mod k( k )( r) if x E I 

1. x	 elsewhere. 

Of course, in this situation the characteristic number K(E) =+c. 

Theorem 3.6. Let X be a compact Hausdorff space and C a discrete group acting 
in a uniformly continuous manner on X so that all orbits consist of the same finite 
number of points. Then the Hilbert Ca (X)-module { C(X), E( (., ) ) } is finitely generated 
and projective. 

Proof. We want to imitate the original proof of Y. Watatani in the case of a free 
action of a finite group [20: Proposition 2.8.11. By [18: Theorem VI.22.81 every compact 
Hausdorif space is normal. Thus Urysohn's lemma can be used (cf. [18: Prop. V.17.41). 
However, first we need the following two lemmata.
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Lemma 3.7. Let X be a compact Hausdorff space and G be a discrete group acting 
in a uniformly continuous manner on X so that all orbits consist of the same finite 
number of points. Then for x E X and g E G 1 there exists an open neighbourhood U1 
Of x on which g acts as the identity map. 

Proof. Consider the stabilizer subgroup G. C G. It is of finite index, and the index 
is C: G 1 = #(Gx) = n. Let x 1 ,... ,x, E X be the orbit of x and hi e C be elements 
such that h 1 x = x. Fix go e G 1 and assume that every neighbourhood U1 of x contains 
some point y E U. such that gay 54 y. Fix some neighbourhoods U2 , of the points x1 
satisfying U fl U. = 0 for i j . There exists a neighbourhood V1 ç U1 of x such 
that h(V1 ) c U1 . By assumption C acts on X uniformly continuously, so let W1 c V1 
be a neighbourhood of x such that g(W1 ) c V1 for every g E G 1 . For y E W with 
gay 54 y the orbit Gy contains at least n + 1 distinct points: {g 1 y : i = 1,. . . , n} E U 
and { y , go y } e V1 . This contradicts with the boundedness of orbits by n, and proves 
the lemma I 

Lemma 3.8. Let X be a compact Hausdorff space and G be a discrete group acting 
in a uniformly continuous manner on X so that all orbits consist of equal finite numbers 
of points. For any x E X there exists a neighbourhood V1 such that the action of G 1 on 
V1 is the identical map. 

Proof. For every g E G 1 set U,, (g) = {y E X : gy = y}. Suppose at the contrary 
that the set gEGr U1 (g) does not contain any neighbourhood of the point x, i.e. every 
neighbourhood U1 of x contains some point z such that for some g E G. we have 
9Z  0 z. Consider a neighbourhood V1 of x and neighbourhoods {Ugx } for fixed repre-
sentatives gi E G (g1 ?^ e) of the cosets of GIG,,, such that their pairwise intersection 
is empty and g 1 (V1 ) c U,, 1 (cf. the proof of Lemma 3.7). By assumption G acts in 
a uniformly continuous manner on X, i.e. there exists a neighbourhood W1 c V1 of 
x such that g(W1 ) c V1 for every g E G 1 . Define U. = Ug E Gg(WI ) c V1 . It is an 
C 1 -invariant open neighbourhood of x E X. By construction the assumption gzz 34 Z 
for some z E U1 , g E G. leads to an orbit of z consisting of at least n + 1 points, which 
contradicts the supposition I 

Let U. C V1 be neighbourhoods of x such that the action of G 1 on V. is the identical 
map. Then there exists a function II E C(X) such that suppf1 C V. and fIIu = 1. 
For any g E C we have either (gV1 ) fl V1 = 0 or gV1 V1 , which implies that 

-	g(j1) 2 f gX = 
&g(fx)	- I f1 1 0	otherwise 

where a denotes the action of the group G on functions, c 9 (f)(x) = f(gx). Fix a finite 
covering {U11 ,. . . , U1 } of X by such type of sets and set 

=	f1 . ^ 1,	u = v(f1	E C(X). 

Note that for representatives gj of the cosets of GIG,: we have a well-defined mapping 
n 

Ec(f)(z) 
= #(Cx)
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for every x E X, f e C(X) due to the fixed length of orbits on X and Lemma 3.7. It 
is a conditional expectation on C(X). Furthermore, for every f E C(X) we obtain the 
equalities 

u Ec(uf) =
	(	

ui(x)u(9ix)f(ix)) = f,	E(uu) = 

Hence, {u i , ..., u,,} is a quasi-basis of the Hubert CG(X)module {C(X), EG(( . , .))}, 
which is therefore shown to be finitely generated and projective  

Let us comment that finite generatedness and projectivity implies self-duality for 
the Hilbert CG(X)-module {C(X), EG(( . , .))}. In the case of general group actions we 
cannot expect the resulting action on the C*algebra A = C(X) to lead to a conditional 
expectation EG on A turning it into a self-dual Hilbert C G (X)module . However, if 
K(EG) < oo exists (i.e. when A is complete with respect to the norm given by the 
corresponding C*valued inner product) we can expect that it might be C*refiexive, 
i.e. the C*bidual Hubert CG (X)module A" of A coincides with A, where A' denotes 
the dual Banach C G (X)-module of bounded C G (X)homomorphisms from A to CG(X). 
We can show the following fact: 

Theorem 3.9. Let X be a compact Hausdorff space and G a discrete group acting 
in a uniformly continuous manner on X. If G acts in such a way that the lengths of 
all orbits are uniformly bounded by some number n and the number of points whose 
orbit is shorter than n is finite, then the Hubert C(X)-module {C(X), EG(( . , .))} is 
CG(X)reflexive. 

Proof. Suppose that X has isolated points {x ' ,. . . , xk} with orbit shorter than 
n. By assumption this set is invariant under the action of G on X as well as its 
complement X' C X. The Hubert C(X)-module {C(X), EG(( . , .))} splits into the 
direct sum C(X') C({x 1 ..... x k}), and the theorem is obvious for the second direct 
summand. So we may assume that X does not contain any isolated point with orbit 
shorter than ri switching from the C*algebra of coefficients C(X) to the smaller C*- 
algebra of coefficients CG(X). 

We start with a description of the C*dual Banach CG(X)module A'. Let x 1 ,. . . , 
be the points whose orbits have a length less than n. We can take some open neigh-
bourhoods U 1 ,. . . , U of these points such that, firstly, these neighbourhoods are in-
variant under the action of elements of (i.e. under the action of those which do 
not move the point x 1 , i = 1,...,n) and, secondly, such that if for some h E G we 
have hx = x 3 , then hUi U. Denote the compact space X \ (U1 U ... U.U) by V. 
Note that V is also G-invariant. Let F E A' be an C°(X)-valued functional on C(X). 
Due to commutativity we can consider its restriction to the Hilbert CG(Y)module 
{C(Y), EG(( . , .))}. More precisely, for g E C(Y) we can take its extension j E C(X) 
and define Fly by Fly(g) = F(y. The restriction defined in this way does not de-
pend on the choice of extension. If Y' D V is also a compact G-invariant subset of X 
not containing the points x 1 ,... ,x, then obviously (FIy ' ) Iy = Fey. However, since 
every point in Y has an orbit of the same length ri we can use the self-duality of the



848	M. Frank et. al. 

Hubert CG(Y)module {C(Y),EG((.,.))} to conclude that Fl y E C(Y) by Theorem 3.6. Denote by C(X \ I X I i ...  ) x i,)) the set of continuous functions on the non-compact space X \ {x 1 ,... , x,}. Then taking restrictions we get the map 

A'C(x\{x1,...,x})	 (4) 

If F1 , F2 E A' coincide on X \ (x 1 ,... , x), then (as they are mappings of continuous 
functions to continuous functions) they coincide on X, hence the map (4) is a monomor-
phism. 

Now we study local properties of functionals from A' near the singular points 
x 1 ,... ,x. Let x 0 be one of these points. There exists a neighbourhood U10 of the 
point x 0 such that for gxo = x 0 the set identity gU10 = U10 follows. The group G10 
contains a normal subgroup C 0 of elements which leave the points of U10 invariant. 
Fix one element g i in every coset GIG I0 . Then outside the point x 0 the action of a 
functional F E A' is given by the equality 

F(f)(x) =	F(gx) . f(g),	 (5) 

and this action is extended to the point xo by continuity. Let x 0 = x 0 , x 1 ,. . . ,xk	be
the orbit of x 0 . Then the sum (5) can be written as 

F(f)(x) =	
(

F(g 1 x) . f(x) 
1:grQ=z.	

) 
j=0  

Taking the norm limit which exists by assumption we obtain 

F(f)(xo)=lirn	

( j=0 jg 10=1'	 ) I 

which implies the existence of the limit 

I'O'	i2	F(g1x) 
I:gIo=r) 

for the special function f 1 of C(X) and for every x E X \ {x 1 , ..., x}. Recall that 
the function F was only defined outside the point x 0 . If we want to write the action of 
F on the Hilbert CG(Y)module {C(Y), EG(( . , .))} in the form of (5) everywhere on X 
we have to define the function F at the point x 0 by 

F(xo)= 1 lirn	F(gx).	 (6) 
i:g 10=1' 

Lemma 3.10. The module A' is isomorphic to the module of all bounded functions 
F on X which are continuous on X \ 1x 1 ,... , x,,} and which satisfy the limit condition 
(6).
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Proof. The remaining aspect is to prove that the image of the monomorphism (4) 
consists of bounded functions. Suppose the contrary. Then we can find some point ± 
such that IF(±)I > n II F II, where II F II defines the norm of F in the C*dual Banach 
CG (X)module A'. Moreover, we can choose a neighbourhood Uj of ± such that the 
intersection Uj n gjUT, is empty whenever g,± 54 i. Consider a function I E C(X) such 
that f(±) = 1 and supp f C U±. For f we derive F(f)(±) *F(±).f(±), from equality 
(5), and the resulting inequality 

F(f)(± )I =	IF(±)I If()I = 1 1 F ( ± ) I > IIFII, 
72	 fl 

gives rise to a contradiction I 

Now, equipped with a description of the elements in the C*dual module A' of the 
Hilbert CG(Y)module {C(Y), EG(( . , .))} we can finally describe the corresponding C 
bidual module A". Since A" is a canonical subset of A' and since the C*valued inner 
product of every Hilbert C*module can be continued to a C*valued inner product 
on its C*bidual Banach C*module turning the latter into a Hilbert C*module [13], 
we only have to find out the kind of functions of A' to which the CG(X)valued inner 
product can be extended to. Consider a function F from A' fl A". Without loss of 
generality (adding some continuous function from A) we can assume that F(xo) = 0. 
Then the value of the CG(X)valued inner product of F with itself has to be contained 
in CG(X) and is given by the formula 

(F,F)(x) = E(I F(x )1 2 ) = 	12 IF(g 1 x)1 2	 (7)
1:9, ro=Z' 

for every x E X. But, since (F, F)(xo) = 0 the assumption F E A" on F yields that 
- lim 1 ... 0 F(g1 x) = 0 for every summand in equality (7). Consequently, by equality 

(6) we obtain the continuity of F at xo, and F has to belong to Al 

Remark. Let X be a compact Hausdorff space. Suppose a discrete group G acts 
on X in such a way that the length of any orbit does not exceed n. Denote by Z C X 
the set of points whose orbits have a length shorter than maximal. If the set X \ Z is 
dense in X, then in a similar way we can prove that the dual Banach CG(X)module A' 
is isomorphic to some C*subalgebra of the algebra Cb(X \ Z) of all bounded continuous 
functions on X \ Z. The C*algebra Co(X \ Z) of continuous functions on X vanishing 
on Z is an ideal in Cb(X \ Z). It would be interesting to describe the structure of the 
factor-algebra A'/Co(X \ Z) in terms of the group action. 
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